
A Survey on Code Coverage as a Stopping Criterion for Unit Testing

Ben Smith and Laurie Williams
North Carolina State University
[bhsmith3, lawilli3]@ncsu.edu

Abstract

The evidence regarding code coverage as a

predictor of software quality is conflicting and
inconclusive. However, an estimate of the software
testing practices of the majority of professionals can
help researchers know how code coverage is being
used—or whether it is being used at all. The purpose
of this report is to present the results of an online
survey we conducted to estimate the percentage of
software developers who use code coverage as a
stopping criterion for unit testing. We find that a
majority of participants 1) perform automated unit
testing; and 2) use code coverage, though not always
as a stopping criterion. Those people who do not use
code coverage, do not find it useful or provide some
other reason. Finally, in place of code coverage, we
find that most participants stop testing when they
have “tested the most important parts of the code”.

1. Introduction

Code coverage, defined in 1963 by Miller and
Maloney [5] is loosely defined as the percentage of
some code structure or artifact which is executed or
covered by at least one test [6]. Some researchers
have since found that using code coverage to control
testing can be an effective way to remove faults [4];
however, others explain that code coverage may only
be associated with the number of tested faults
because both measures are related to the number of
test cases written (test intensity) [1]. Overall, the
evidence surrounding the use of code coverage as a
software reliability predictor is somewhat
inconclusive.

The purpose of this paper is to present the results
of an online survey we conducted to estimate the
percentage of software developers who use code
coverage as a stopping criteria for unit testing. An
estimate of the software testing practices of the
majority of developers can help researchers know

how code coverage is being used—or whether it is
being used at all. We also find relevant the rationale
behind using or not using test coverage and what
alternate forms of stopping criteria are used in its
place. In this report, we present the results (in the
appendix) of an online survey we conducted which
had 605 participants who answered questions about
code coverage and their software testing practices.
We also briefly survey the related literature to code
coverage to explain the relevance of these results and
our rationale for conducting the survey.

The rest of this report is organized as follows.
Section 2 provides a brief review of the history of
code coverage and presents some results in favor and
against using code coverage as a stopping criterion.
Then, Section 3 presents our method for conducting
the survey. Finally, Section 4 presents the results of
the survey. The results of the survey can be found in
the appendix.

2. Background

Code coverage dates back to 1963, when Miller
and Maloney first explained that if a section of a
program is not executed by at least one test, the
development team has no way of knowing whether
that section of code executes correctly or not [5].
Miller and Maloney describe code coverage
indirectly by indicating that “there should be no
possibility that an unusual combination of input data
or conditions may bring to light an unexpected
mistake in the program” [5]. Since its inception,
many researchers have performed studies to
determine whether code coverage (an internal metric)
can be used as an indicator of software reliability as
measured by the number of failures over execution
time (an external metric, or software quality factor).
For example, Lyu, et al. performed an empirical
evaluation of the effectiveness of code coverage
testing as a fault detection technique [4]. Lyu, et al.
asked 34 software teams to independently develop

their own versions of an industry-scale critical flight
application, and collected the faults the teams
introduced for further observation. Lyu, et al. found
that a good test case should not be characterized only
by its ability to detect more faults, but also by its
ability to detect unique faults—or those faults which
are not detected by any other test case [4]. In
addition, Lyu et al. find that code coverage is a good
indicator of test case variety, however code coverage
is not directly related to fault coverage [4].

Briand and Pfahl indicate that across many earlier
studies, code coverage has been significantly
correlated with defect coverage (the number of
defects uncovered by the test set divided by the total
number of defects in the system) [1]. However,
Briand and Pfahl explain that this relationship does
not indicate that there is a causal relationship
between high test coverage and better software
reliability [1]. Briand and Pfahl conducted an
empirical analysis in which Briand and Pfahl
collected 12 program versions which were
independently developed from the same specification
and tracked the code coverage and number of faults
found in each. Then, Briand and Pfahl conducted
statistical tests to see whether four common types of
code coverage were significantly predictive of the
system’s defect coverage [1]. Briand and Pfahl
conclude by contending that the relationship between
defect coverage and code coverage could be due to an
external influence: test intensity as measured by the
number of test cases [1].

Regardless of the mixed results in its history, code
coverage has been incorporated into reliability
estimation models [2], and used to prioritize certain
parts of a system for testing [3]. Chen, et al. explain
that models which estimate the reliability of software
systems tend to overestimate because they do not
contain a complete or thorough operational profile
and assume that each test case improves the
reliability of the system [2]. To help make reliability
estimates more accurate, Chen et al. incorporate code
coverage as a predictor of software quality [2].

3. Survey Method

The initial pool of potential survey participants
came from the second authors email address book.
She invited all those in her address book she felt were
involved in software development to take a short
survey and to forward her email to their colleagues.
Many invitation recipients indicated they did, indeed,
forward her email to their colleagues and posted it on
message boards.

Participants were emailed a link to a survey we
created on SurveyMonkey.com1 which contained the
following questions:

Q1. Do you (personally) perform automated unit

testing?
Q2. Do you (personally) use code coverage as a

stopping criteria for automated unit testing?
Q3. When do you (personally) stop writing

automated unit tests*?
Q4. Why do you use code coverage*?
Q5. Why don’t you use code coverage*?
Q6. What is your role at your organization*?
Q7. What programming languages do you use*?

Each question had to be answered once displayed

to the respondent; however, not all questions were
asked of each respondent (more details below). The
questions with an asterisk (*) allowed the respondent
to check more than one of the answers provided in
the appendix. The logical layout of the survey is
presented in Figure 1.

We only wanted to ask people who use unit testing
at all (Q1) whether they use code coverage as a
stopping criteria (Q2), therefore if a respondent
answered that he or she did not perform unit testing,
we asked his or her role and ended the survey.
Similarly, for those people who do conduct
automated unit testing, we want to know why they
used code coverage or refused to use code coverage.
As a result, when a respondent answered “Yes” to
Q2, we transitioned to Q4 and then directly to Q6.
However, if a respondent answered that they did not
use code coverage as a stopping criteria (Q2) we
wanted to know why not (Q5) as well as what they
used instead (Q3).

SurveyMonkey.com allows for the adaptive logic
presented above and the survey was designed to keep
the number of questions asked of each respondent to
a minimum. We also asked (Q6) what each
respondent’s self-reported role is at their organization
and rejected any response from a respondent who did
not answer any of the roles Tester, Test Lead,
Developer, Developer Lead, or Architect.

1 http://www.surveymonkey.com

Figure 1: Survey Logic

4. Results

Tables 1-7 present the responses we received from
our 605 participants. We divided the responses into
two groups: one group who only answered that they
were either an academic or a researcher; and one
group contained participants who identified
themselves as having roles traditionally associated
with industry. We grouped our responses by
isolating anyone who in Q6 marked any of the
following: management, test lead, developer lead,
developer, architect or marked “other” and typed
something similar to “tester” or “quality assurance.”
For example, if a participant marked “Academic” but
also marked “Developer”, this response was included
in the “Testers, Developers & Management”
category, but not the “Academics & Researchers”
side.

In Q2 and Q5, many responses indicated that the
participant used code coverage, but did not use code

coverage as a stopping criterion for writing tests. We
isolated these participants in both Q2 and in Q5, with
cross referencing. If a participant marked other in
Q5, and provided a response similar to “I do, but not
as a stopping criterion”, this response was marked in
the “I do, but not as a stopping criterion” in Q5 and
was also removed from the “No” category in Q2
(participants could not reach Q5 without first
marking “No” in Q2). We also moved several
participants from the “Other” category in Q2 to the “I
do, but not as a stopping criterion” in Q2, because
these participants’ answers for Q2 were something
resembling “I do, but not as a stopping criterion.”

In Q6, a significant number (37) of participants
selected the “Other” option and indicated something
similar to either “tester” or “quality assurance.” We
isolated these responses into a group called “Tester.”
In Q7, many participants (104) indicated that they
programmed in C#, and so we isolated these
responses into a new C# category.

Table 1. (Q1) Do you (personally) perform automated unit testing?

 Academics & Researchers Developers, Testers & Management
Answer Percent Responses Percent Responses
Yes 44.4% 82 59.2% 248
No 55.9% 104 40.8% 171
Answered Question 186 419
Skipped Question 0 0

Table 2. (Q2) Do you (personally) use code coverage as a stopping criteria for automated unit testing?
 Academics & Researchers Developers, Testers & Management
Answer Percent Responses Percent Responses
Yes 35.2% 25 29.5% 66
No 52.1% 37 37.6% 84
I use it, but not as a stopping criteria 11.2% 8 25.5% 57
Other 1.4% 1 7.1% 16
Answered Question 71 223
Skipped Question 115 110
Other answers: sometimes, depends; it is only part of the pictures; use it to identify missing tests; I try to

Table 3. (Q3) When do you (personally) stop writing automated unit tests? (Check all that apply)
 Academics & Researchers Developers, Testers & Management
Answer Percent Responses Percent Responses
When I have tested the most important parts
of the code

53.8% 21 48.1% 90

I code while I test, so I stop when I am done
coding

43.6% 17 48.1% 90

When my coworker or management has
approved my test set

12.8% 5 10.2% 19

When I have tested each method once 7.7% 3 6.4% 12
When I have tested the complex parts of the
code

33.3% 13 36.4% 68

When I or my team runs out of time 20.5% 8 23.5% 44
Other 20.5% 8 18.7% 35
Answered Question 39 187
Skipped Question 147 232
Other responses: confidence in the tests; test-driven development; other structure: boundaries, paths, use cases

Table 4. (Q4) Why do you use code coverage? (Check all that apply)
 Academics & Researchers Developers, Testers & Management
Answer Percent Responses Percent Responses
Lets me know which lines/paths I have
involved in a test case

61.9% 13 77.3% 51

Required by management or my organization 19.0% 4 25.8% 17
A respected publication tells me it was
important

0.0% 0 1.5% 1

It gives me confidence in the quality of my
tests

61.9% 13 69.7% 46

Other (see below) 19.0% 4 15.2% 10
Answered Question 21 66
Skipped Question 165 353
Other responses: find dead, missing or untested code; natural outcome of TDD; tells me what I can refactor;
repeatability of sound engineering practice

Table 5. (Q5) Why don’t you use code coverage? (Check all that apply)
 Academics & Researchers Developers, Testers & Management
Answer Percent Responses Percent Responses
I can’t find a good tool for my language 5.9% 2 10.4% 19
Coverage tools are too expensive 11.8% 4 3.3% 6
I don’t want to 17.6% 6 6.0% 11
I don’t find coverage information useful 20.6% 7 25.1% 46
I do, just not as a stopping criteria 23.5% 8 26.2% 48
Other (see below) 29.4% 10 39.3% 72
Answered Question 34 183
Skipped Question 152 236
Other responses: not a part of the process; tools are poor quality; limited resources; it is ineffective; I work in
performance testing; plan to use it; wasn’t aware of it

Table 6. (Q6) What is your role at your organization?
 Academics & Researchers Developers, Testers & Management
Answer Percent Responses Percent Responses
Academic 57.2% 83 6.4% 27
Developer 0.0% 0 42.5% 178
Management 0.0% 0 20.8% 87
Researcher 38.6% 56 9.8% 41
Architect 0.0% 0 17.7% 74
Test Lead 0.0% 0 12.6% 53
Developer Lead 0.0% 0 26.5% 111
Tester 0.0% 0 8.8% 37
Other 20.0% 29 4.2% 18
Answered Question 145 419
Skipped Question 41 0
Other responses: coach; consultant; manager; founder; analyst

Table 7. (Q7) What programming language(s) do you use? (Check all that apply)
 Academics & Researchers Developers, Testers & Management
Answer Percent Responses Percent Responses
Java 66.9% 97 57.7% 236
PHP 9.0% 13 6.9% 35
Perl 9.7% 14 11.7% 55
ActionScript(Flash) 1.4% 2 1.2% 7
C 28.3% 41 16.2% 74
C++ 33.8% 49 18.3% 79
C# 6.2% 9 22.6% 95
VisualBasic 2.1% 3 3.6% 19
Python 9.0% 13 9.6% 336
Other 25.5% 37 24.5% 103
Answered Question 145 419
Skipped Question 41 0
Other responses: Ruby; bash; ColdFusion; Smalltalk; Groovy; Assembler; Matlab; JavaScript; JSP; HTML; CSS;
SQL; ASP.NET; VB.NET

10. References

[1] L. Briand and D. Pfahl, "Using simulation for

assessing the real impact of test coverage on
defect coverage," Software Reliability
Engineering, 1999. Proceedings. 10th
International Symposium on, pp. 148-157,
1999.

[2] M. H. Chen, M. R. Lyu, and W. E. Wong, "An
empirical study of the correlation between
code coverage and reliability estimation,"
Proceedings of the 3rd International
Symposium on Software Metrics: From
Measurement to Empirical Results, 1996.

[3] M. Gittens, K. Romanufa, D. Godwin, and J.
Racicot, "All code coverage is not created
equal: a case study in prioritized code
coverage," Conference of the Center for

Advanced Studies on Collaborative
research, pp. 1-15, Toronto, Ontario,
Canada, 2006.

[4] M. R. Lyu, Z. Huang, S. K. S. Sze, and X. Cai,
"An empirical study on testing and fault
tolerance for software reliability
engineering," Software Reliability
Engineering, 2003. ISSRE 2003. 14th
International Symposium on, pp. 119-130,
2003.

[5] J. C. Miller and C. J. Maloney, "Systematic
mistake analysis of digital computer
programs," Communications of the ACM,
vol. 6, pp. 58-63, 1963.

[6] H. Zhu, P. A. V. Hall, and J. H. R. May,
"Software Unit Test Coverage and
Adequacy," ACM Computing Surveys, vol.
29, 1997.

