
Reliability and Security Analysis of Open Source Software

Prasanth Anbalagan1 Mladen Vouk2

Department of Computer Science , North Carolina State University, Raleigh, NC 27695, USA
1panbala@ncsu.edu 2vouk@ncsu.edu

Abstract

Existing reliability prediction and security assessment
of open source software systems seem to focus on analysis
based primarily on the number of faults reported against
the software. Since information like problem reports, soft-
ware usage level, and project’s behavior in terms of time
taken to fix a problem report are publicly available, it is ad-
vantageous to also consider these factors in analyzing open
source projects. We study the characteristics of FEDORA
(a popular open source project) problem reports for differ-
ent releases and show that traditional reliability models can
be utilized for prediction of problem rates across releases.
Also, we estimate the risk exposure due to security problem
reports, a subset of the total problem reports. We discuss
metrics that could help end-users assess the trustworthiness
of open source projects.

Keywords: Software reliability, Open-source software,
trust, risk analysis.

1 Introduction

Current trend in widespread usage of open source soft-
ware systems invites the need to analyze the behavior, char-
acteristics, and quality of open source projects. Much of
the existing analyses on quality of open source projects are
limited to qualitative discussions e.g., [15], process level de-
cisions based on statistical analysis e.g., [25], analysesin
terms of the design attributes e.g., [7], analyses in terms of
source code metrics e.g., [33], etc. Much less attention has
been given to analyses from the perspectives of field usage
of the software, project’s behavior in terms of time taken to
report the faults and time taken to fix the faults.

Software reliability is an important characteristic of soft-
ware quality [9, 20]. It helps provide a quantitative assess-
ment of the software quality from the perspective of field
usage of the software. Existing reliability analyses of open
source software focus on models based only on the number
of faults reported against the software i.e., fault count data
e.g., [40, 41, 35]. Publicly available information like soft-

ware usage level in terms of number of users and project’s
behavior in terms of the time taken to report the faults, and
time taken to fix the faults, have not been considered in
these analyses. We believe that it is necessary to take in
to account all this information in order to gain a compre-
hensive view of open source projects.

Similar to the general category of faults, security assess-
ment i.e., analyses on security faults, have either been lim-
ited to fault count data e.g., [1, 23] or are primarily qualita-
tive e.g., [32, 16, 5]. Risk analysis is one of the important
aspects of security assessment [8]. Often work on risk is
done from the perspective of software proprietors i.e., in
terms of cost impact on the software proprietors [4, 14, 19].
But for an open source project, the end-user is also a part
of the development community. Hence security risk assess-
ment for open source projects needs to be done not only
quantitatively, but also from the perspective of an end-user.

From the perspective of an end-user, trust is another fac-
tor that is given importance in the open source community
e.g., [6]. Existing research on analysis of trust in open
source software has been primarily qualitative [6, 17]. Trust
is closely tied to vulnerabilities [17], therefore analysis on
the security trends observed with open source projects can
help an end-user assess the trustworthiness of open source
projects.

The objectives of this study is to

1. Study the characteristics of FEDORA project in terms
of time taken to report and correct problems.

2. Study problem report and correction patterns across re-
leases and compare trends in security and non-security
problem reports.

3. Assess whether traditional reliability models can be
used for prediction of problem rates across releases for
both security and non-security problems.

4. Discuss possible end-user perceptions of security risk,
in relation to security problem report rate and mean
time taken to fix a security problem report.

5. Develop a model that captures an end-user’s security
risk level over time.

1



6. Discuss an end-user’s perception of trust, in relation to
security problem report and correction rates.

The rest of the paper is organized as follows. In Section
2, we discuss elements of software quality: software relia-
bility, security risk and trust. In Section 3, we discuss the
data used for our analysis. In Section 4, we discuss the pat-
terns observed with the problem reports for eight FEDORA
releases. In Section 5, we discuss the metrics estimated in
our analyses. In Section 6, we discuss prediction of prob-
lem rates per release and across releases. In Section 7, we
discuss the security risk analysis. In Section 8, we discuss
trust analysis. In Section 9, we discuss related work and
Section 10 concludes the paper and looks at future work.

2 Quality

Quantitative assessment of software quality requires
defining a set of characteristics important for the software,
studying the behavior of the software, developing metrics
and evaluating them against the defined characteristic [9].
Software reliability [12, 29, 26, 27] is one such key charac-
teristic of software quality [9, 20].

2.1 Software reliability

Software reliability is defined as the probability of fail-
ure free operation of the software system in a given time
and in a specified operational environment [29]. In order
to estimate the reliability of a project [22], it is necessary
to prepare or collect data required for the analysis. While
data regarding the field failures and the operational environ-
ment are required, factors like the severity of failures, fault
removal process, and similar are also recommended [22].
With open-source system, it may be difficult to track fail-
ures in operational environments, but may be possible to
estimate this data from public records.

2.2 Security Risk

Security failures and security faults are a subset of the
general category of software failures and faults [29]. We
call a weakness or a fault in a software system that can be
exploited by a malicious user a security problem or vulner-
ability [39, 24]. We call an action or an attempt to exploit
this vulnerability, with intention or by accident, an attack.
We define a security risk as the probability (P) that an at-
tack occurs and succeeds multiplied by the damage or cost
that exploitation of the vulnerability entails [8], i.e.,

Risk = P [successful attack] × Cost (1)

Cost may include different types of losses both qualita-
tive and quantitative, both real and perceived. This means

that we need to collect information that tells us how often
a product may fail in the field, how many latent faults there
may be in the product, how many of those may be security
vulnerabilities, how many materialize in practice as security
failures, and how prompt and diligent software developers
are in mitigating such issues. Of course information about
the cost of all these failures is also needed, as is informa-
tion about the operational profile of the product [28]. Con-
structing the latter requires, among other things, informa-
tion about the usage level of the product in the field [28, 12]

2.3 Open Vs Closed Source System

Security-risk analysis has been applied to both open-
source and closed-source software systems by a number of
researchers e.g., [11]. Also, a number of security risk mod-
els have been proposed [4, 14, 19]. Many of these models
focus on metrics such as annual loss expectancy, savings,
benefits, return of investment, etc. In addition to the above
metrics, the models also deal with the estimation and pre-
diction of the number of vulnerabilities in a software sys-
tem [1, 13, 23, 3]. This is further discussed in section 9.

With closed-source software systems, information about
vulnerabilities is often made available only after the prob-
lem has been resolved and a fix has been released1. There
is a reason for this. The argument is that releasing infor-
mation about a security problem may increase the risk for
end-users since it makes a larger number of potential hack-
ers aware of it, and until a fix is available, this increases the
exposure of the end-users to danger. A counter-argument
is that hackers probably already know about the problem,
and not releasing information about a vulnerability imme-
diately prevents end-users from taking precautions and also
erodes the trust of the end-users. For example, how many
of the problems have they not told us about? Since the
proprietor may not release information regarding develop-
ers activities, security-risk analysis on closed-source sys-
tems is often restricted to the count of vulnerabilities. Even
in the cases where the software proprietor makes informa-
tion available to individual researchers, analyses have been
primarily targeted toward metrics such as loss in terms of
investment [4, 14, 19]. This should be contrasted with re-
porting of non-security faults and failures by vendors. Ven-
dors have been much more open about that and a number
of data suites and reports exist that discuss and model fail-
ures, faults, availability, reliability, and in general problem
related costs of commercial software [29, 22].

With Open-source software systems, much of the project
behavior is visible to an end-user. Problem reports or faults
against the vulnerabilities are tracked through open bug
tracking systems. These problem reports maintain infor-
mation from the time the problem was reported until the

1http://www.microsoft.com/technet/security/current.aspx

2



problem is resolved. This allows us to estimate problem
reporting rates, problem correction rates, and probable du-
ration of exposure of the end-users to the described security
problems or vulnerabilities.

2.4 Trust

”Trust is defined as the degree of confidence that exists
that the software will be acceptable for one’s needs” [17].
With open source software, a weakness in a system can be
identified either by a user or developer, who would fix it, or
by a cyber criminal who would exploit the weakness. There
is always a race between the ”‘good guys” and the criminals
as to who can spot the weakness first [18]. The degree of
confidence with which a user may view open source soft-
ware might depend on factors such as how quickly the de-
veloper fixes a vulnerability, how difficult it is to exploit a
vulnerability, the impact due to such exploits, etc.

3 Data

Some existing reliability studies of open source projects
e.g., [40, 41] concentrate on projects from SourceForge2.
The size of the projects are relatively small with the total
number of faults reaching approximately 500 . Tamura et
al. [35] provide numerical illustrations based on FEDORA
release 6. But their data included only the number of faults
reported against FEDORA version 6, those until October
2006. This is even smaller than the number of faults in small
scale projects used by other studies e.g., [40, 41]. Alhazmi
et al. [1, 23] focus their analyses on the number of vulnera-
bilities found in REDHAT3 operating system (version 6.2).
This work does not consider the project’s behavior on the
faults or problem reports associated with the vulnerabilities
like the time taken to fix a fault. Considering the factors
of popularity, significant size in terms of number of faults
reported, complete information about the project’s behavior
on the faults etc., we selected FEDORA as the subject for
our analyses.

Fedora4 is a free and open source linux based operating
system developed and maintained by the the open-source
community Fedora Project5. FEDORA is sponsored by
REDHAT.

3.1 Problem Reports

FEDORA problem reports are tracked through RED-
HAT’s bug-tracking system6. The Common Vulnerability

2http://sourceforge.net/
3http://www.redhat.com/
4http://fedoraproject.org
5http://fedoraproject.org/wiki/
6http://bugzilla.redhat.com/

Exposure7 database and National Vulnerability Database8

maintain a list of publicly known security vulnerabili-
ties and exposures. The security vulnerabilities logged in
against FEDORA have a mapping or link to reports in RED-
HAT’s bug-tracking system. This helped us identify the se-
curity problem reports for each release of FEDORA.

Table 1 shows the problem report and registration statis-
tics collected for FEDORA releases 1 to 8. The table shows
the total number of security and non-security problem re-
ports for each release of FEDORA. Also, the number of in-
stallations or registrations for FEDORA releases 6, 7 and 8
are as shown. From the table, we find that security problem
reports account for roughly 1% to 2% of the total problem
reports. This is consistent with the rates reported by other
researchers [1, 23]. Based on this percentage, we could
assume that analysis on non-security problem reports may
hold true for the total subset of problem reports as well.

3.2 System Usage

Ideally, we would have liked to collect the usage infor-
mation of every system running FEDORA release. Usage
information like the total number of systems in operation
during a given time, the total operation time as well as
downtime for each FEDORA releases. Due to the limited
availability of information, we had to restrict our attention
to the download statistics maintained by FEDORA project.
Based on some assumptions and download statistics from
FEDORA project, we were able to approximate the system
usage for FEDORA.

We assume that the number of downloads or installations
or unique IP addresses represent the total number of oper-
ational systems. This may not be true since not all down-
loads or installations may be actually operational. Based on
this we can calculate the inservice time i.e., product of total
number of systems and the time they have been operational.
The FEDORA download statistics is only available from
FEDORA release 6. Therefore our analysis has been done
on FEDORA releases Zod (Release 6),Moonshine (Release
7), and Werewolf (Release 8).

Figure 1 shows the number of installations(actually
registrations) for Zod(for 26 weeks from its release
date),Moonshine(for 23 weeks from its release date), and
Werewolf(for 26 weeks from its release date). The down-
load statistics are collected only for a certain period after
each release date. The data have been collected by the de-
velopers only to observe if the number of downloads have
reached a count of 2 million. Beyond that the data was not
available. That obviously limits the range of analyses we
can perform.

7http://cve.mitre.org/
8http://nvd.nist.gov/

3



Table 1. FEDORA Statistics

Statistics FEDORA 1 FEDORA 2 FEDORA 3 FEDORA 4 FEDORA 5 FEDORA 6 FEDORA 7 FEDORA 8

No of security 31 82 128 154 201 194 92 26
problem reports(PRs)
No of non-security 3141 4124 7528 7644 7805 7877 5468 4490
problem reports(PRns)
Total no of 3172 4206 7656 7798 8006 8071 5560 4516
problem reports(PRt)
Percentage ofPRs 0.98 1.95 1.67 1.97 2.51 2.4 1.65 0.58
Registered users - - - - - 2864875 1920667 2152583

Figure 1. Number of installations Vs Calendar
Time

The calendar time or the operating time is defined as the
cumulative sum of time after release of the software [29].
The inservice time refers to cumulative sum of the execution
time of software [29, 12]. In our case, an upper bound on
the inservice time can be estimated as

Inservice time(t) =
t

∑

i=1

∆ti × ni (2)

∆ti = ti − ti−1 (3)

where∆ti is time interval at i, andni is the total num-
ber of installations(registrations) in time interval i. Inour
analysis, the inservice time has been calculated from the
point the software was released until the time for which
the usage statistics were available. Growth of inservice
time for FEDORA 6 is illustrated in Figure 2 vs Calendar
time(Reported time).

Figure 2. InService Time

4 Problem Report Events and Patterns

Figures 3 and 4 show the Time-to-Problem-Report
(TTPR) and Time-to-Problem-Correction (TTPC) for FE-
DORA 6 non-security problems. The figures also show the
calendar time when FEDORA 6 and FEDORA 7 were re-
leased. The horizontal axis shows calendar time at which
the problems were reported, and the vertical axis shows
the time in minutes between successive problem reports
(TTPR) and the time to corrections(TTPC) from the time
a problem was reported. In this section, we discuss the pat-
terns with problem report and corrections by dividing the
total observation period in to three distinct regions:burn-in
period (time period during which the software is developed
and is not yet officially released i.e., time period before the
official release of the software), theactualperiod (time pe-
riod between release of current version of the software and
the next version), theafter period (time period after official
release of the next version).

In figures 3 and 4, theburn-in period marks the devel-

4



Figure 3. Time To Problem Report

Figure 5. Problem correction activity in after
period

opment of FEDORA 6. Theactual period is the time pe-
riod between official releases of FEDORA 6(current ver-
sion) and FEDORA 7(next version). Theafter period is the
time period after release of FEDORA 7. Also, the release
dates for test versions of FEDORA 6 are marked as T1, T2,
and T3, T1 being the first test release and T3 being the last
test release. Figure 5 shows the total number of days spent
in correcting problem reports for a particular release during
its after period. Figure 6 shows the total number of faults
during each of the three periods. Figure 7 and 8 show the
average repair and report time during each period. The av-
erage repair and report time is defined as the average repair

Figure 6. Fault count during each period

and report time of all problem reports found during each of
the three periods.

From figure 3, we see that as the project progresses from
theburn-inperiod into the release date, the time interval be-
tween problem reports appears to keep decreasing. The de-
crease become more prominent soon after the release of test
versions. More number of problems are being reported dur-
ing theactualperiod (from figure 6). This may be caused
by an increased number of users using the software after the
official release of the product and finding more faults. This
is also evident from figure 8 which shows that the average
time to report reduces significantly when compared to the
burn-inperiod average.

Although more faults are being reported during theac-

5



Figure 4. Time To Problem Correction

tual period, we observe that after several months in to the
release, there is an increase in time interval between prob-
lem reports, possibly indicating that product is getting better
(provided the old problems have been fixed). The trend con-
tinues until the next release is made, and even for a small
period after the next release. The average time to report
increases fromactual period to theafter period. Figure 6
shows that the number of faults reported during theafter
period is less. This may be due to the fact that users may be
moving to the new version.

The time to problem correction during theburn-in pe-
riod is longer compared to that of theactualandafter peri-
ods. Similar to the trend with problem reporting, the time
to problem correction reduces as the project progresses to-
ward the test release and official release of the software.
The number of problems reported during theburn-inperiod
is very less. This may be because more time is spent on
development of features rather than testing activity.

Soon after release of the first test version, we find that the
time to problem correction decreases more intensely. Since
more problems are reported during theactualperiod, devel-
opers may tend to fix it quickly. Also, we observe the trend
continues in to theafterperiod. From Figure 5, we find that
the number of days spent in correction activity duringafter
period reduces as the project progresses through the eight
releases. Based on this, we can note that the calendar time
by when all problem reports for an older release is resolved
moves closer to the release date of the new version. This
may be because any time constraint by which the develop-
ment team have to resolve all problem reports of the older
release decreases as the project progresses over releases,or
developers may move the problem reports to the newer re-

lease i.e., close the problem reports for the older release
and provide the fix in the newer release, or developers may
prefer to resolve the problem reports for the older release
quickly so that they can concentrate more on the problem
reports for the new release.

Figure 7. Average Time to Repair)

4.1 Non-security Vs Security Problem
Reports

Existing work on interdependence between security and
reliability faults focus on probabilistic analysis of reliabil-
ity failures influencing security failures [31]. Currentlythe
FEDORA database does not have any classification as to
whether a problem reported is an actual reliability problem

6



Figure 8. Average Time to Report

or not. Here we focus on the interdependence between se-
curity and non-security problem reports.

Figure 9. Time To Problem Report

Figures 9, and 10 show TTPR and TTPC respectively
for security problem reports for FEDORA release 6. Fig-
ures 11, and 12 show the comparison of average time to re-
pair and average time to report for non-security and security
problem reports. From Figure 9, we find that the TTPR for
security problems are relatively constant. Security problem
reports do not seem to be influenced by the occurrence of
non-security problems. Figure 12 also confirms this trend
where the average time to report is constant in comparison
with varying values for non-security problem reports across
all releases.

From figure 11, we find that average time to repair a se-
curity problem remains almost constant for all releases. In
contrast to this, the average time to repair for non security

Figure 10. Time To Problem Correction

Figure 11. Non security Vs Security (Average
Time to Repair)

problem reports shows a gradual decrease from FEDORA
release 1 to 8. This may indicate that developers may be
concentrating more on non security problem reports due to
its large volume and no extra priority is given to resolving
security related issues.

5 Problem Report Rates and Correction
Rates

5.1 MTTPR

Mean Time To Problem Report(MTTPR) is the mean
or average amount of time a system is operational without
problems. In an ideal situation where we have individual
operational system numbers, this might be close to mean-

7



Figure 12. Non security Vs Security (Average
Time to Report)

time-to-failure. Figure 13 shows a sample window of two
periods consisting of four problem reports marked with the
time when the problems were reported and corrected.

Figure 13. Problem Report and Correction
Time Intervals

In the period i-1, the Mean Time to Problem Report
would be estimated as the average of X1 and X2.

5.2 MTTPC

Mean Time To Problem Correction(MTTPC) is defined
as the average time taken to correct problem reports [29]. It
is a considerably more meaningful metric in the context of
this paper. Once the problem is reported, on the average, it
might take that long to apply a fix and terminate exposure to

that particular problem. For period i+1 in figure 13, Y2 and
Y3 indicate the correction time spent for problem reports 3
and 4. The total correction time spent in the period i is given
by the sum of time periods Y2 and Y3. The Mean Time
to Problem Correction is given by the total correction time
divided by the number of problems reported in a period.
For period i, the Mean Time to Problem Correction is the
total correction time divided by two (since only problems 3
and 4 were reported in that period). Figure 14 shows, for
FEDORA 6, this particular way of assigning Mean Time To
Problem Correction. Vertical axis is MTTPC in minutes,
and horizontal axis is inservice time (also in minutes).

There is one thing to note, however. Once a problem
is reported, its TTPC may be longer than the next window
of interest. In that case, exposure to announced or open
problems needs to include not only the problems found in
that particular period, but also the ones found earlier and not
yet closed.

Figure 14. Mean Time To Problem Correction

6 Problem Report Rate Prediction

In a typical case, it is unlikely that all the problem re-
ports logged result in a field failure. Therefore the number
of problem reports can be used to perform a worst case anal-
ysis. Let the problem report rate in the time interval i (λi)
be estimated by .

λi =
((no)i + (nf )i)

(ni × ∆ti)
(4)

where(no)i represents the number of open problem re-
ports from the previous week,(nf )i represents number of
problems reported in time interval∆ti (e.g., in minutes).
The number of users (ni) in time interval∆ti is very large
compared to the total number of problem reports considered

8



((no)i+(nf )i). This is also evident from Table 1. It is worth
noting thatλi is different from the inverse of theMTTPRi.
The latter reflects arrival time of unique problem reports in
the calendar time frame, while the former reflects the num-
ber of open reports with respect to the inservice time during
time period i. We may wish to useλ when discussing the
quality of the system as a whole, and MTTPR in the con-
text of calendar-based problem resolution rate. The problem
correction rate can be estimated through the inverse of the
Mean Time To Problem Correction (MTTPC), where this
time refers to problem reports in time frame i.

µi =
1

MTTPCi

(5)

Figure 15 shows the weekly problem reporting and cor-
rection rates for FEDORA 6. Under our assumptions, these
rates exhibit behavior and consistency typical of low fail-
ure rate systems for which we have actual total failure data
e.g. failure and correction rates of telecommunication sys-
tems [12]. Problem repair rate appears to be relatively con-
stant, and several orders of magnitude larger than the re-
porting rate for unique problems. The problem reporting
rate appears to be a decreasing function of inservice time.

Figure 15. Problem Report and Correction
rates

Since the FEDORA releases exhibit the same character-
istic with respect to problem report and corrections, we ob-
served the parameters estimated for a particular release of
the software can be applied to the next release as well. This
may be useful in assessing the system’s possible availabil-
ity and vulnerability, as well as in planning when to make
a transition to a new system. Musa’s Logarithmic Pois-
son Execution Time (LPET) model [30] was applied to FE-
DORA 6 data to model the problem report rate. Figures
16 and 18 show the LPET fit for FEDORA 6 security and
non-security problem report rates. Figures 17 and 19 show
the fit for FEDORA 7 problem report rate using parameters

Figure 16. Problem report rate and LPET fit

Figure 17. Fedora 7 - Fit from Fedora 6

from FEDORA 6 release. Similar results were obtained for
FEDORA 7 and FEDORA 8, and both security and non-
security categories.

7 Security Model

In this section, we discuss possible end-user perceptions
of security risks. Some of the questions an end-user may
ask are: What is my risk exposure today, and what might
it be three weeks from now? What is the probability that
6 weeks from now, my system will not experience security
problems? What is the effect of the possible security faults
on the availability of my system?

In general, when a system is unavailable to an end-user,
the time taken to bring the system back up is the time taken
to fix the problem associated with the system unavailability.
This period may be as long as the time needed to actually
provide a software fix for the vulnerability, or it may be
just the re-boot time, or may also involve mitigation of the
damage that may have been done by an intruder. We will as-

9



Figure 18. LPET fit for Problem report rate

Figure 19. Fedora 7 fit using Fedora 6

sume that during the time a problem report associated with
a vulnerability is being fixed, an end-user may be attacked.
Although problems in most cases would have existed from
the beginning, the perception of an end-user about an in-
creased security risk may heighten only when the problem
is reported and not yet fixed.

At the start of the paper, we have assumed that security
risk is proportional to the probability of a successful attack.
However if we assumeλ is the attack or problem exposure
rate and MTTPC is the exposure time during a week, then
risk can also be approximated as

Risk ∝ λ × MTTPC × Cost (6)

For an end-user, cost is best related to the impact of
an attack in terms of system availability, workarounds for
the problems, extent of damage, etc. We used the severity
of problem reports as defined by REDHAT to define cost
associated with an attack. We considered four categories

Figure 20. Problem report and Correction
rates

of problem reports namely low, medium, high and urgent,
based on severity classification from REDHAT’s bug track-
ing system. Low severity indicates that it is a minor prob-
lem and workaround is available. Medium severity indi-
cates that the problem is a bug and has to be fixed. No
workaround is available in this case. High severity indicates
temporary system unavailability e.g. problems like crash,
memory leak, etc. Urgent severity indicates total system un-
availability e.g. system does not boot. In our illustrations,
we used a linear cost model, specifically numbers from 1 to
4 for levels low to urgent to quantify cost. But cost could
be any appropriate number. For example, logarithmic scale
could be used to assign numbers to cost perhaps 1, 10, 100,
1000, or actual dollar costs, etc.

Figure 21. Risk

Figure 20 shows the problem report and correction rate

10



Figure 22. Risk

for FEDORA 6 security problems. Figure 21 shows the
overall risk calculated using equation (6) and Figure 22
shows the risk calculated using equation (6) for the four in-
dividual categories of severity of problem reports. In this
case the cost is an average of the reported severity numbers.
From the figure, we see that the risk due to medium severity
problem reports is higher than the risk due to high severity
problem reports. As the project progresses, we find that risk
due to medium severity problem reports is higher than that
of urgent severity problem reports as well. But considering
the overall trend, risk decreases as the project progresses.

7.1 Model

When a problem report is tagged as a security problem,
it is possible that the problem could be unexploitable i.e.,
the problem could be hidden in the source code such that
it is not accessible to any attacker. Also, the degree with
which a security problem can be exploited depends on the
environment in which the end-user is operating. In order
to completely describe a system that captures an end-user’s
security risk, it is necessary to study how many of these se-
curity problem reports actually lead to field failures. Unfor-
tunately, this information is not always available. However,
earlier discussed data indicate that our estimated vulnerabil-
ity exposure rate appears to be a relatively slowly changing
function of time, as does individual system risk level.

In general, the problem is a multi-state multi-transition
problem, but we believe that in the first approximation a
simple two-state model may be able to capture most of the
end-user’s security transitions over time.

Since the problem report rates and problem correction
rates vary with time, a non-homogeneous Markov chain
model would be appropriate. Consider a continuous-time
stochastic process X(t) (X(t),t∈ R+). Let X(t) represents

the system being in state ’Safe’ or state ’Attacked’. Figure
15 shows the model

Figure 23. Security Risk Model

Let λ(t) be the problem report rate andµ(t) be the prob-
lem correction rate (i.e., exposure that leads to an attack).
From Figure 23 we find thatλ(t) dt is the transition prob-
ability from system safe state to the risk state.µ(t) dt is
the transition probability from system risk state to the safe
state. For each state, the probability of remaining in the
same state is given by 1-λ(t) dt and 1-µ(t) dt for safe or
attacked state respectively. Of special interest is the prob-
ability of remaining in the safe state. This is equivalent to
reliability, i.e., the probability of not being attacked during
inservice time which runs from t=0 to t=W.

PNot Attacked(0 to W ) =
W
∏

i=0

(1 − λi∆ti) (7)

Where in our case time increments are in weeks and∆ti
is the inservice time during a particular week. This is a
discrete time approximation.

In the case only the final state is of interest (e.g., as in
the availability at time t) one can, following [12], form the
transition probability matrix as follows:

P =

[

1 − λ(t)dt λ(t)dt

µ(t)dt 1 − µ(t)dt

]

(8)

Then solve for a particular state out of n transition peri-
ods, for example, numerically e.g. [34, 38, 12].

From the graph for correction rate (shown in Figure 20),
we find that the correction rate decreases slightly but then
flattens. So we consider the correction rate for use in our
model to be a constant. As already mentioned, this con-
stant value is about 43000 minutes (or 4 weeks). The LPET
model fit parameters and this constant value of MTTPC can
be used to compute the Risk curve. In this case, the problem
exposure is constant. But in reality it could be exponen-
tially decreasing [10]. Lawrence et al. [10] show that the

11



Figure 24. Safe state probability

probability of a successful attack exponentially decreases
over time i.e., the chances of a successful attack is high ini-
tially, but reduces exponentially over time since attackers
stop attacking after a certain period of time. In such a case,
problem exposure is not constant. But we assume prob-
lem exposure to be constant due to unavailability of such
data for FEDORA. Figure 24, based on equation 7, shows a
conservative estimate of the probability that FEDORA sys-
tem remains unexposed over its inservice time (shown in
minutes). The span of the horizontal axis is over about 23
weeks.

8 Establishing Trust

It is reasonable to assume that from an end-user perspec-
tive the degree of confidence a user might have in a soft-
ware product would be related to the number of problems
reported about the product given how long it has been in the
field and how quickly the problems are resolved. We define
trust-coefficient (Tc) to be inversely proportional to the rate
at which the problems are reported and directly proportional
to the rate at which the problems are repaired.

Tc ∝
µi

λi

(9)

From Figure 25, we see thatTc is a relatively constant,
perhaps slightly increasing function of inservice time. Fig-
ure 26 shows the plot for(no)i, (nf )i and(no)i + (nf)i.
Figure 27 shows the MTTPR and MTTPC for FEDORA 6
security problems. From the figures, we can observe that
the MTTPR is roughly of the same order as MTTPC with
both having considerable variance, and the overall number
of open problem reports appears to be growing. This in-
dicates that there is at least some backlog. In addition to
the system facing latent problem exposure, it faces back-

log problems as well. This might indicate that the potential
for a security breach may be getting worse since there are
more problems that can be used to attack an individual sys-
tem. On the other hand, sinceλ (and MTTPR as well) is
a slightly decreasing function of inservice time, the overall
security profile of the system is probably be getting better
since it is now taking longer to find new problems.

Figure 25. Trust-Coefficient

Figure 26. Fedora 6-Security problem reports

8.1 Exploitability

Exploitability score identifies the level of difficulty for
an attacker (in terms of access, complexity, and authentica-
tion) to exploit a vulnerability. Impact score identifies the
impact (in terms of confidentiality, integrity, and availabil-
ity) when such a vulnerability is exploited. Both factors
have been extracted from the Base metric group proposed
by the Common Vulnerability Scoring System9.

9http://www.first.org/cvss/

12



Figure 27. Fedora 6 - MTTPR vs MTTPC

The exploitability score is formed using three compo-
nents namely access vector, access complexity, and authen-
tication vector. The access vector tells about the location
of the attacker in terms of being present at the machine lo-
cally, or in adjacent network or in a remote network. The
access complexity tells the complexity level(high, medium
or low) involved in exploiting the vulnerability. Authentica-
tion vector tells how many times(multiple,single or none) an
attacker has to authenticate in order to attack a user. Sim-
ilarly, the impact score is composed of confidentiality, in-
tegrity, and availability impacts. All three components can
have values of None, Partial and Complete with respect to
loss of Confidentiality, Integrity, and Availability. Thisim-
pact score could also be used as the cost factor in computing
the risk curve.

Let λc be the problem report rates estimated for each of
the four categories of problem reports. Both impact and ex-
ploitability scores are in the range of 1 to 10. Exploitability
and Impact can be estimated as follows

Exploitability = λc × Exploitability score (10)

Impact = λc × Impact score (11)

From Figure 28 and 29, we find that until week 10-13,
users were not subject to total system unavailability. Also
minor problems appear to cause higher impact than other
categories. Week 10-13 shows low chances of total system
unavailability. Toward end of week 17-20, irrespective of
the severity of the problems as well as the difficulty with
which problems could be exploited, the impact appears to
have remained the same. Week 24-26 shows a different
trend. Though the chances of all categories of problems
increase, the impact due to such problem reports appear to
decrease. This suggests that even though users may see an
increase in the problem reports and possibly failures due to

Figure 28. Exploitability

Figure 29. Impact

exploitation of the reports, the consequences would be less
than those observed during earlier periods. Interestingly,
this is consistent with the overallλ trend. Overall we can
observe that as the project progresses, the problem report
trend and impact due to security problems decrease which
is a good sign for the project as well as the user. The data
shown in this paper are for Fedora 6. Similar trends were
observed for Fedora 7 and 8.

9 Related Work

Tamura et al. [37] provide a software reliability growth
model for open source software based on a stochastic dif-
ferential equation. The differential equation relates rate
of change of number of faults in the open source system
to an exponential failure intensity function and a gaussian
process that represents the problem reporting phenomenon.
The authors assume that there is an inherent time delay be-
tween the actual fault detection and reporting it to the bug
database. In order to account for this irregularity in the
problem reporting phenomenon, they add a fluctuation fac-
tor represented by a gaussian process. In our paper, we fo-
cus from the perspective of problem exposure for an end-
user, and not on the actual fault detection. We show that
traditional reliability models can be used not only for pre-
diction of problem report rates in a single release, but also
for prediction in future releases. By problem report rates,

13



we mean the rates at which problems are exposed for end-
users.

Tamura et al. [36] combine neural networks and software
reliability approach to estimate reliability, considering the
effect of each software component. The authors associate
weight parameters to the interaction among components.
Reliability equation is modeled using the weight parame-
ters and failure intensity function. Based on the fault count
data, the failure parameters are estimated. In our paper, we
consider the software as a black box and analyse the prob-
lem report process.

Paul et al. [21] empirically test their hypothesis that
weibull model is better compared to other reliability mod-
els for predicting faults in multiple releases of a software. In
our paper, we show that using traditional reliability models
like LPET, one can predict problems for future release using
parameters estimated for the current release of the software.

Martin et al. [25] present a statistical analysis on the
defect reports of Debian Linux system. The authors study
the accumulation of open bug reports and correlate the trend
with defect removal rate. Further they study the impacts on
defect removal process due to bursts of activity (to study if
defects are removed in bursts rather being a gradual removal
process), influence of popularity or importance of software
packages, importance of modifications and uploads of new
versions of the software, maintenance of the software pack-
age by one person or a team. In complement to their hy-
pothesis about the trends in problem reports and problem
correction, we present a study of security trends in open
source software and extend it for risk and trust analysis.

Zhou et al. [40] study the bug reports for popular open
source projects from Sourceforge. They observe bug report-
ing patterns across the projects and also identify that open
source projects exhibit similar reliability growth compared
to closed source projects. The authors study the applica-
bility of Weibull distribution model to explain the failure
process data. Also, they study the correlation of page views
and downloads with bug arrival rate. While their approach
focuses on only newly opened bugs per month, we take in
to account the problem report rate, problem correction rate,
as well as the software usage level in our analyses.

Cramp et al. [12] study the unavailability of large soft-
ware based telecommunication system. The authors study
the failure and recovery rates across various releases and
present a simple two state markov model to approximate the
unavailability of the system. In our analysis of FEDORA,
we find that the problem report and correction rates exhibit
behavior and consistency typical of low failure rate systems
like the software based telecommunication system studied
by Cramp et al.

Alhazmi et al. [2] experiment their vulnerability discov-
ery model on Redhat linux, another popular open source
software, along with other major operating systems and

evaluate the accuracy of the model in predicting long term
and short term number of vulnerabilities. Their experimen-
tation with REDHAT focuses on the number of vulnerabil-
ities reported against the operating system. In addition to
the number of vulnerabilities, we take in to account sys-
tem usage level and project characteristics in terms of time
taken to report and correct problems to analyse the security
trends.

10 Conclusions and Future Work

We have studied the problem reports for FEDORA oper-
ating system and identified trends with problem report and
problem correction across releases. Based on the informa-
tion available through the bug tracking system, we have pro-
vided security risk and trust analysis of FEDORA using tra-
ditional reliability techniques. We find that the non security
problems do not have any influence on security problems
based on the behavior that security problems have a constant
time to report while that of non security problems change
over time. It is shown that ”classical” reliability models
could be applied to the data to provide satisfactory estimates
of future risk exposure, and that a more complex Markov-
based model could be used to account for more complex
transitions and states. Examination of the security problem
report trends and other security metrics provide useful infor-
mation about the project’s behavior. Thus we can propose
that such quantitative results, coupled with qualitative dis-
cussion, would help understand and evaluate open source
projects better, and thereby establish one’s level of trustin
the software.

Existing studies are mostly based on faults. Faults only
represent the unique number of problems present in the sys-
tem. It is necessary to base reliability analysis not only on
the number of faults but also on the actual failures caused
by such faults. Since information about failures is not read-
ily available for open source projects, one of the open issues
lie in relating faults to failures. As an initial step, we have
showed that existing reliability models can be used in es-
timating problem report rates. Next direction would be to
collect data on failures, relate faults to failures, study the
application of existing reliability models, and develop mod-
els to quantitatively estimate quality factors like risk and
trust for open source projects.

One other open issue lies in analysing the effects of
publicly disclosing such information about problem reports
i.e., compare it against the policy of closed source systems
where such information are not disclosed. Although in-
formation about closed source systems are not available in
the form of problem reports, the closest we could get to
is through security threat reports10 about the average time

10http://www.symantec.com/business/theme.jsp?themeid=threatreport

14



taken to provide fix to problem reports. If we could get
further data on the failures (which still remains a open is-
sue), we would be able to compare selected open source
and closed projects quantitatively.

References

[1] O. H. Alhazmi and Y. K. Malaiya. Modeling the vulnera-
bility discovery process. InISSRE ’05: Proceedings of the
16th IEEE International Symposium on Software Reliability
Engineering, pages 129–138, Washington, DC, USA, 2005.
IEEE Computer Society.

[2] O. H. Alhazmi and Y. K. Malaiya. Application of vulnerabil-
ity discovery models to major operating systems.Reliability,
IEEE Transactions on, 57(1):14–22, March 2008.

[3] O. H. Alhazmi, Y. K. Malaiya, and I. Ray. Measuring, an-
alyzing and predicting security vulnerabilities in software
systems.Computers & Security, 26(3):219–228, 2007.

[4] A. M. Anderson. Comparing risk analysis methodologies.
In David T. Lindsay and Wyn L. Price, editors, Proceedings
of the IFIP TC11, Seventh International Conference on In-
formation Security, IFIP/Sec 91, IFIP Transactions, pages
301–311, May 1991.

[5] R. Anderson. Security in open versus closed systems the
dance of boltzmann, coase and moore. InIn Conference on
Open Source Software Economics, pages 1–15. MIT Press,
2002.

[6] M. Antikainen, T. Aaltonen, and J. Väisänen. The role of
trust in oss communities - case linux kernel community. In
OSS, pages 223–228, 2007.

[7] V. R. Basili, L. Bri, and W. L. Melo. A validation of object-
oriented design metrics as quality indicators.IEEE Trans-
actions on Software Engineering, 22:751–761, 1996.

[8] B. W. Boehm, editor. Software risk management. IEEE
Press, Piscataway, NJ, USA, 1989.

[9] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative
evaluation of software quality. InICSE ’76: Proceedings
of the 2nd international conference on Software engineer-
ing, pages 592–605, Los Alamitos, CA, USA, 1976. IEEE
Computer Society Press.

[10] L. Carin, G. Cybenko, and J. Hughes. Cybersecurity strate-
gies: The queries methodology.Computer, 41(8):20–26,
2008.

[11] S. Comino and F. M. Manenti. Open source vs closed source
software: Public policies in the software market. Industrial
Organization 0306001, EconWPA, June 2003.

[12] R. Cramp, M. Vouk, and W. Jones. On operational availabil-
ity of a large software-based telecommunications system. In
Proc. Third Intl. Symposium on Software Reliability Engi-
neering, pages 358–366, 1992.

[13] K. Goeva-Popstojanova, F. Wang, R. Wang, F. Gong,
K. Vaidyanathan, K. Trivedi, and B. Muthusamy. Char-
acterizing intrusion tolerant systems using a state transi-
tion model. InDISCEX II: DARPA Information Survivabil-
ity Conference and Exposition, volume 2, pages 211–221,
2001.

[14] L. A. Gordon and M. P. Loeb. The economics of information
security investment. InACM Transactions on Information
and System Security, page 438457, November 2002.

[15] G. Gousios, V. Karakoidas, K. Stroggylos, P. Louridas,
V. Vlachos, and D. Spinellis. Software quality assessment
of open source software. In T. S. Papatheodorou, D. N.
Christodoulakis, and N. N. Karanikolas, editors,Current
Trends in Informatics: 11th Panhellenic Conference on In-
formatics, PCI 2007, volume A, pages 303–315, Athens,
May 2007. New Technologies Publications.

[16] J. henk Hoepman and B. Jacobs. Increased security through
open source.Communications of the ACM, 50:79–83, 2007.

[17] S. A. Hissam, D. Plakosh, and C. B. Weinstock. Trust and
vulnerability in open source software.IEE Proceedings -
Software, 149(1):47–51, 2002.

[18] S. A. Hissam, D. Plakosh, and C. B. Weinstock. Trust and
vulnerability in open source software.IEE Proceedings -
Software, 149(1):47–51, 2002.

[19] K. J. S. Hoo, A. W. Sudbury, and A. R. Jaquith. Tangible
roi through secure software engineering. InSecure Business
Quarterly: Special Issue on Return on Security Investment.
@stake, 2001.

[20] ISO/IEC-9126. Software engineering product quality part
1: Quality model. InInternational Organization for Stan-
dardization, Geneva, Switzerland. ISO/IEC 9126-1:2001,
2001.

[21] P. L. Li, M. Shaw, J. Herbsleb, B. Ray, and P. Santhanam.
Empirical evaluation of defect projection models for widely-
deployed production software systems.SIGSOFT Softw.
Eng. Notes, 29(6):263–272, 2004.

[22] M. R. Lyu, editor.Handbook of software reliability and sys-
tem reliability. McGraw-Hill, Inc., Hightstown, NJ, USA,
1996.

[23] Y. Malaiya, A. von Mayrhauser, and P. Srimani. An ex-
amination of fault exposure ratio. InIEEE Transactions on
Software Engineering, pages vol. 19, no. 11, pp. 1087–1094,
Nov 1993.

[24] G. McGraw. Software Security: Building Security In.
Addison-Wesley, New York, NY, USA, 2006.

[25] M. Michlmayr and A. Senyard.A Statistical Analysis of De-
fects in Debian and Strategies for Improving Quality in Free
Software Projects. Elsevier B.V., 2006.

[26] J. D. Musa. A theory of software reliability and its appli-
cation. InIEEE Transactions on Software Engineering,SE-
1(3), pages 312–327, September 1975.

[27] J. D. Musa. Validity of execution-time theory of software.
In IEEE Transactions of Software Reliability, volume R-
28,no.3, pages 941–946, 1979.

[28] J. D. Musa. Operational profiles in software reliability en-
gineering. InIEEE Software, volume 10,no.2, pages 14–32,
March 1993.

[29] J. D. Musa, A. Iannino, and K. Okumoto.Software relia-
bility: measurement, prediction, application. McGraw-Hill,
Inc., New York, NY, USA, 1987.

[30] J. D. Musa and K. Okumoto. A logarithmic poisson exe-
cution time model for software reliability measurement. In
ICSE ’84: Proceedings of the 7th international conference
on Software engineering, pages 230–238, Piscataway, NJ,
USA, 1984. IEEE Press.

15



[31] N. F. Schneidewind. Reliability - security model. InICECCS
’06: Proceedings of the 11th IEEE International Conference
on Engineering of Complex Computer Systems, pages 279–
288, Washington, DC, USA, 2006. IEEE Computer Society.

[32] J. M. Smith, M. B. Greenwald, S. Ioannidis, A. D.
Keromytis, B. Laurie, D. Maughan, D. Rahn, and J. Wright.
Experiences enhancing open source security in the posse
project. In S. Koch, editor,Free/Open Source Software De-
velopment, pages 242–257, Hershey, PA, 2004. Idea Group
Publishing.

[33] D. Spinellis. Code Quality: The Open Source Perspective
(Effective Software Development Series). Addison-Wesley
Professional, 2006.

[34] W. J. Stewart. Introduction to the Numerical Solution of
Markov Chains. Princeton University Press, 1994.

[35] Y. Tamura and S. Yamada. Comparison of software reliabil-
ity assessment methods for open source software. volume 2,
pages 488–492 Vol. 2, July 2005.

[36] Y. Tamura and S. Yamada. Software reliability assessment
and optimal version-upgrade problem for open source soft-
ware. Systems, Man and Cybernetics, 2007. ISIC. IEEE In-
ternational Conference on, pages 1333–1338, Oct. 2007.

[37] Y. Tamura and S. Yamada. Software reliability growth
model based on stochastic differential equations for open
source software.Mechatronics, ICM2007 4th IEEE Inter-
national Conference on, pages 1–6, May 2007.

[38] K. S. Trivedi. Probability and statistics with reliability,
queuing and computer science applications. John Wiley and
Sons Ltd., Chichester, UK, UK, 2002.

[39] J. Viega and G. McGraw. Building Secure Software.
Addison-Wesley, 2001.

[40] Y. Zhou and J. Davis. Open source software reliability
model: an empirical approach.SIGSOFT Softw. Eng. Notes,
30(4):1–6, 2005.

[41] F. Zou and J. Davis. Analyzing and modeling open source
software bug report data. InAustralian Software Engineer-
ing Conference, pages 461–469, 2008.

16


