
Amoeba: A Methodology for Modeling and Evolution of
Cross-Organizational Business Processes

Nirmit Desai, Amit K. Chopra, and Munindar P. Singh
Department of Computer Science
North Carolina State University

Raleigh, NC 27695-8206
{nvdesai, akchopra, singh}@ncsu.edu

May 13, 2008

Abstract

Business service engagements involve processes that extend across two or more autonomous
organizations. Because of regulatory and competitive reasons, requirements for cross-organizational
business processes often evolve in subtle ways. The changes may concern the business transac-
tions supported by a process, the organizational structure of parties participating in the process,
or the contextual policies that apply to the process. Current business process modeling ap-
proaches handle such changes in an ad hoc manner, and lack a principled means of determining
what needs to be changed and where. Cross-organizational settings exacerbate the shortcom-
ings of traditional approaches because changes in one organization can affect the workings of
another.

This paper describes Amoeba, a methodology for business processes that is based on busi-
ness protocols. Protocols capture the business meaning of interactions among autonomous
parties via commitments. Amoeba includes guidelines for (1) specifying cross-organizational
processes using business protocols, and (2) handling evolution of requirements via a novel
application of protocol composition. This paper evaluates Amoeba using enhancements of a
real-life business scenario of auto-insurance claim processing.

1 Introduction

Successful cross-organizational business process management requires supporting the participants’
autonomy, heterogeneity, and dynamism [Singh and Huhns, 2005, pp. 7–10]. Supporting autonomy
means modeling and enacting business processes in a manner that minimally constrains the partici-
pants, thus maximizing their flexibility. Supporting heterogeneity means specifying not the internal
business logics of the participants, but the interactions among them. Supporting dynamism means
dealing with changing business requirements in a natural manner. Dynamism is crucial because
modern businesses must often reconfigure in the face of regulatory and competitive pressures. This
paper concentrates on requirements that pertain to interactions among the participants of a cross-
organizational process. It proposes guidelines not only for creating a process model but also for
modifying a process model to respond to evolving requirements.

1

Information Technology practice increasingly recognizes the challenges of requirements evolu-
tion in business processes Smith and Fingar [2002]. The term business-IT divide alludes partly to
the difficulty of accommodating changing business needs in current IT systems. Smith and Fingar
observe the importance of interaction and note that, as a process evolves, its set of participants and
their capabilities may grow or shrink. Interestingly, we realized after naming our project that Smith
and Fingar refer to process evolution as being “amoeba-like” (ch. 2). Existing approaches either
ignore interaction or address it purely in low-level terms that correspond more to implementation
(such as by specifying the legal sequences of message exchange between services) than business-
level specification of interaction. Consequently, existing approaches not only limit flexibility in
implementation, but also lack a notion of compliance suitable for business interaction.

A key feature of our approach is its treatment of interaction at the level of business meaning,
not merely at the level of messaging, as is common today. We use business protocols as the basic
building blocks of business processes. A business protocol specifies a conceptually cohesive set of
interactions among two or more roles. Examples include Order placement, Payment, and Shipping.
A protocol is

• meaningful, being based on a business purpose given to each interaction in terms of commit-
ments and other propositions Yolum and Singh [2002]; Winikoff et al. [2005];

• abstract because, like a component interface, it does not model the proprietary reasoning
databases or business logic of the agents enacting its roles; and

• modular because it helps its roles achieve interrelated goals.

We employ UML sequence charts (with extensions to notate commitments) to depict selected
scenarios of protocols graphically. The textual descriptions and the corresponding formal specifi-
cations (provided below) are definitive. (As a convention, in this paper, protocol names are written
Slanted and role names are written in SMALL CAPS.) For example, Fig. 1 shows a scenario of Order
protocol for specifying interactions between a BUYER and a SELLER. Here, the BUYER sends a
request for quote for an item to which the SELLER responds with a quote. The business meaning
of a message is captured in terms of commitments (shown below the given message). For example,
sending a quote creates a commitment from the SELLER to the BUYER that if the BUYER pays, the
SELLER will deliver the goods. The BUYER may accept or reject the quote (Fig. 1 shows only the
acceptance scenario).

Commitments are central to the business meaning of a protocol. In simple terms, commit-
ments are reified directed obligations: they can be flexibly manipulated, such as via delegation and
assignment Singh [1999]. (Section 2.1 discusses commitments in greater detail.) As the agents
participating in a business protocol interact, they enter into and manipulate commitments to each
other. Commitments yield a notion of compliance expressly suited to business processes: an agent
is compliant as long as it discharges its commitments. This, in turn, enables flexible implementation
and enactment: all runs of the protocol wherein the participants discharge the their commitments
are allowed.

Protocols may be composed Desai et al. [2005]. For example, we may define Purchase as a
composition of Order, Payment, and Shipping. The same protocols may be composed in different
ways thus enabling their reuse across processes. A composed protocol is like any other protocol
in every way: the only difference might be that some protocols exist before the process design and

2

Figure 1: Example: A scenario of Order protocol

some are created during the design. We show how composition is central to the ability to adapt
process models according to evolving requirements.

Contributions

This paper seeks to justify the claim that commitment-based process modeling better accommodates
requirements evolution than traditional approaches do. Based on previous work on protocol specifi-
cation and enactment, this paper proposes the Amoeba methodology for designing and maintaining
cross-organizational processes. Two advantages of using protocols are that they not only enable
flexible enactment Winikoff [2007] but also facilitate accommodating requirements changes Desai
et al. [2006]. Amoeba gives center stage to managing commitments among the participants as a way
of handling requirements evolution. It shows (1) how to derive protocols from interaction require-
ments as may be hidden in conventional designs and (2) how to guide designers in accommodating
evolving interaction requirements. A real-world business process scenario helps evaluate Amoeba.

Figure 2: Three elements of requirements of cross-organizational business processes

Following Singh et al.’s classification of architectural patterns for services [2007], we identify
three classes of business requirements and changes to them. The identification of the classes derives
from three architectural elements of business processes: the transactions a business process repre-

3

sents, the organizations that participate in a process, and the overarching context within which the
process operates. Fig. 2 depicts these elements. The corresponding classes of requirements are as
follows.

• Transactional. The business transaction that the process seeks to accomplish, e.g., a purchase.
An example of change is if we decide to modify a purchase process to include refunds for
damaged goods.

• Structural. The relationships within and among the organizations involved, such as which
party plays which role, or whether a party may delegate or assign certain commitments to
another party. An example of change is when a vendor outsources payment processing to
another party.

• Contextual. The rules of encounter to which the business process is subject. For example, a
contract is voided in case of fraud by any of the participants. An example of change is when
marketplace rules or government regulations change.

The above classes of requirements correspond to those well established in the literature Harker
and Eason [1993]; Lam and Loomes [1998]. To evaluate Amoeba, we identify requirement changes
of each of the above classes in the case of a real-world process, and describe how the guidelines
proposed in Amoeba handle these changes.

Organization

Section 2 introduces the background on commitments and protocols necessary for Amoeba. Sec-
tion 3 introduces and applies Amoeba to a real-life insurance industry scenario. Section 4 addresses
handling requirement changes that pertain to the interactions among the participants in a process. It
applies Amoeba to the insurance scenario as it goes through the three kinds of requirements changes
outlined above. Section 6 discusses related work and outlines some directions for future research.

2 Background and Running Example

This section briefly presents the key concepts of commitments, protocols, and protocol composi-
tion needed to understand Amoeba. Since the participants in cross-organizational processes are
autonomous and heterogeneous, we represent them computationally as agents Wooldridge [2002];
Singh and Huhns [2005]. Whereas agents are instantiated executable entities, roles are abstract
entities. Thus, protocols are specified in terms of roles, and business processes as instantiations
of protocols where each agent plays one or more roles. The (generally private) business logic of
an agent determines how it plays its roles. A process model consists of a protocol and a set of
preexisting contractual relationships among its roles.

We use the term participant in the descriptions of Amoeba to emphasize that they are business
entities. The participants are abstracted into roles, and the roles would be played by agents who
realize the various participants.

4

2.1 Commitments

Commitments Singh [1999] help capture the business meaning of the interactions of interest. At
runtime, the commitments are among agents. In the models, commitments are expressed abstractly
among roles. The following discussion is about agents, but applies equally to roles. A base commit-
ment C(x, y, p) denotes that agent x is committed (roughly obligated) to agent y for bringing about
condition p. Here, x is the debtor, y the creditor, and p the condition of the commitment. Commit-
ments can be conditional, denoted by CC(x, y, p, q), meaning that x is committed to y to bringing
about q if p holds. Here p is called the precondition of the commitment. Commitments are created,
satisfied, and transformed in certain ways. The following operations are defined on commitments:

• Create(x, c) establishes commitment c.

• Cancel(x, c) cancels commitment c.

• Release(y, c) releases c’s debtor from the commitment.

• Assign(y, z, c) replaces y with z as c’s creditor.

• Delegate(x, z, c) replaces x with z as c’s debtor.

• Discharge(x, c) (c’s debtor x) fulfills the commitment.

The rules below describe the discharge of a commitment. Each rule is specified in terms of the
conditions and the caused actions.

• A base commitment is discharged when its condition is brought about.

• A conditional commitment is detached when its precondition is brought about, and a corre-
sponding base commitment is created. (For simplicity, the conditional commitment is con-
sidered discharged.)

• A conditional commitment is discharged when its condition is brought about. No base com-
mitment is created in this case because the condition has already been brought about.

Consider, for example, a scenario where a buyer and a seller are exchanging goods for payment.
A conditional commitment CC(buyer, seller, goods, payment) denotes an obligation from the buyer
to the seller that if the goods are delivered, the buyer will pay. In the event that the precondition
goods holds, the conditional commitment changes to a base commitment C(buyer, seller, payment).
In the event that payment holds, the buyer’s commitment is discharged. Commitments do not imply
temporal ordering. For example, payment may happen before goods, thus discharging the above
conditional commitment.

Messages are given a business meaning by specifying of how they affect the commitments. In
the example above, a shipment message would bring about the precondition goods and a payment
message would bring about the condition payment. In the Order protocol of Fig. 1, sending a
quote message creates a commitment for the SELLER. As the interaction progresses, messages
manipulate the commitments. At any time, the active commitments reflect the pending obligations
of the concerned parties.

Previous works describe the formal semantics of all commitment operations, especially in the
face of concurrency Desai et al. [2005, 2007]. Other considerations include the transfer (or not) of

5

responsibility upon a delegate or assign Singh et al. [2007]. For example, a payer may eschew all
responsibility of paying by delegating its commitment to pay to a bank. Conversely, a seller may
not eschew its responsibility of delivering some goods by delegating the commitment to a shipper.
Business scenarios can differ in this regard. The present examples involve retaining responsibility,
which is the more complex situation.

2.2 Specifying a Protocol

The following discussion provides an overview of our protocol specification language; its semantics
is formalized elsewhere Desai and Singh [2007]. Briefly, our language maps to the action descrip-
tion language C+ Giunchiglia et al. [2004]. C+ specifications translate into transition systems
models, and can be queried to formally verify various properties of interest. For example, the Or-
der protocol introduced earlier has the transition system model of Fig. 3. CCalc is a tool that can
compile C+ specification into transition system models, and answer queries about properties of the
model CCalc [2004]. The events occur on the transitions and each state is given by the fluents that
hold in it.

Figure 3: The transition system model of the Order protocol

A protocol primarily specifies one or more messages in terms of the conditions they bring about,
and the operations on commitments they perform. The message events, commitment operations,
and commitment conditions map to actions in C+, whereas the commitments map to fluents in
C+. Messages may contain parameters. By virtue of causal rules, the parameters of commitment
conditions are bound to the values of the corresponding message parameters. Further, a protocol
constrains the occurrence and ordering of the messages. A protocol specification thus consists of
role and message declarations, and logical axioms. Three axiom schemas are relevant.

• Message axioms specify the preconditions and effects of messages. A message event may be
atomic or complex. For example, an event that “goods are received” is atomic whereas an
event that the “goods are received and they are undamaged” is complex. A message event
would count as bringing about specified conditions or performing commitment operations.
Message axioms are written pevent → effectq, where event is a logical expression involving
message events and state fluents and effect is either a commitment operation or a commitment

6

condition. Such axioms specify the constraint that if the message events in an event expres-
sion occur on a transition from a state that satisfies the fluents in the event expression, then
effect also occurs on the transition. For example, the payment of a specified amount would
count as meeting the condition of a commitment to pay that amount (thereby discharging that
commitment). And, quoting a price for an item to a customer may create a commitment to
deliver the specified item if the customer pays the price. The latter can be specified as pquote
→ create(CC(S , B , pay , goods))q. When the name of the operation is omitted, create is
assumed.

• Data Flow axioms specify the data flow from the parameters of a source to those of a sink
message. Data flow axioms are written pmsg1 .param1 ; msg2 .param2q, where msg1 is the
source message and msg2 is the sink message. Such axioms specify the constraint that in all
models of the protocol, the sink message parameter is bound to the value of the source mes-
sage parameter. For example, in Order, the item parameter of a quote must match that of the
preceding reqForQuote. This can be specified as preqForQuote.itemID ; quote.itemIDq.
When a data flow is specified across protocols, the source and the sink messages are qualified
by the respective protocol names.

• Event Order axioms specify temporal dependencies between the occurrences of various mes-
sages. Event order axioms are written either pmsg1 ≺ msg2q or pmsg1 XOR msg2q. The
first schema specifies the constraint that in all models of the protocol, msg1 must occur be-
fore msg2 . For example, in (prepaid) purchase, an item must be paid for before it is shipped.
This can be specified as ppay ≺ goodsq. The second schema specifies the constraint that
in all models of the protocol, either msg1 or msg2 but not both can occur. For example in
Order, where the buyer may either accept or reject a quote exclusively. This can be specified
as paccept XOR rejectq. Note that a data flow axiom implicitly specifies a temporal ordering
with the source message preceding the sink message.

These axiom schemas are subject to important wellformedness properties which are discussed in
our earlier work Desai and Singh [2007]. The following axioms specify Order of Fig. 1, further il-
lustrating the above axiom schemas of our language. For readability, parameters of the commitment
conditions are elided in the figures but specified in the formal specifications.

ORD1 . quote(itemID, itemPrice)→ CC(S, B, pay(itemPrice), goods(itemID))

ORD2 . acceptQuote(itemID, itemPrice)→ CC(B, S, goods(itemID), pay(itemPrice))

ORD3 . reqForQuote.itemID ; quote.itemID

ORD4 . quote.itemID ; acceptQuote.itemID

ORD5 . quote.itemPrice ; acceptQuote.itemPrice

ORD6 . quote.itemID ; rejectQuote.itemID

ORD7 . quote.itemID ; rejectQuote.itemPrice

ORD8 . acceptQuote XOR rejectQuote

7

The parties enacting a protocol would play their respective roles in that protocol. Their behavior
is constrained only up to their commitments. For example, in Order, when the SELLER quotes a
price, it commits to providing the goods at that price. Whether goods are shipped first or the payment
is made first does not matter. Also, whether and when the receipts are provided is immaterial.

2.3 Composing Protocols: Concepts

The power of protocols in modeling arises from the fact that they can be readily composed. A
classical example is Purchase, which can be modeled as a composition of simpler protocols that
handle Order, Payment, and Shipping, respectively. A composite protocol is treated on par with any
other protocol.

Specifying the composition of two or more protocols involves the axiom schemas of Section 2.2
augmented with the following, which help relate the roles of the protocols being composed.

• Role Identification axioms specify how a role in the composite protocol replaces selected
roles in existing protocols (as debtor or creditor of any commitments and sender or receiver of
any messages). Role identification axioms are written pprotocolnew .rolei

.= protocol1 .rolej ,
protocol2 .rolek , . . .q, where protocolnew is the composite protocol, rolei is a role in the
composite protocol, protocol1 etc. are the protocols being composed, and rolej etc. are the
roles of the composite protocols. The constraint being specified is that the agent playing
rolei must play rolej and rolek as well. In the model, this is achieved by simply renaming
rolej and rolek to rolei . For example, the PURCHASER in Purchase would be the BUYER

in Order, the PAYER in Payment, and the RECEIVER in Shipping. This can be specified as
pPurchase.purchaser .= Order .buyer , Payment .payer , Shipping .receiverq.

Section 3.5 illustrates composition of two protocols.

2.4 Enacting Protocols to Realize Processes

The global view of an interaction as captured in a protocol can be automatically translated into
role skeletons—each role’s perspective of the protocol Desai et al. [2005]. More specifically, the
skeleton for a role captures the constraints on the role’s behavior due to the protocol. Our approach
expresses protocols and role skeletons derived from them as sets of axioms. However, such skeletal
axioms are not executable because they are abstract.

A participant who adopts a role in a protocol fleshes out the skeletal rules by supplying its
business logic for how it would behave. A role skeleton, when augmented with the business logic of
an agent enacting the role, yields the agent’s local process. A business process aggregates the local
processes of the agents interacting according to the roles they are playing. The protocol and its role
skeletons reflect the reusable parts of a business process; the business logic reflects the non-reusable
part.

A conversation is a possible enactment of a protocol. A protocol generates a conversation if the
messages in the conversation occur on any path consistent with a transition system that models the
C+ specification of the protocol. A set of roles is correct with respect to a protocol if and only if the
roles generate all and only the conversations generated by the protocol. The role skeletons derived
from an enactable protocol are guaranteed to be correct with respect to the protocol Desai and Singh
[2008]. However, correctness of the agent implementations of business logic is not guaranteed. This

8

is because the business logic is proprietary and controlled by the respective agent. For example, an
agent’s business logic may conflict with the protocol rules.

2.5 Running Example: Automobile insurance processing

This paper demonstrates and evaluates Amoeba using a real-life insurance claim processing case
Browne and Kellett [1999]. This real-life business scenario provides an independent and significant
test-case and helps contrast Amoeba with a traditional approach. This contrast is significant because
even the prevalent process modeling techniques such as BPEL [2007] are based on the abstraction
of workflows similar to those employed in the insurance case study.

Notify

Lee CS

Amend

estimate

Reconcile

info

Finalize

claim

Gather

info

Validate

info

Assign

garage

Notify

AGFIL

Receive

 car

Estimate

repair cost

Inspect

car

Repair

car
Invoice

Obtain

details

Contact

garage

Assign

adjustor

Agree

repair

Check

invoice

Estimate

< 500

Check

claim form

Obtain

claim form

Figure 4: Traditional model of a cross-organizational insurance claim process

Fig. 4 (due to Browne and Kellett [1999]) shows the parties involved and the overall process
flow. AGF Irish Life Holdings (AGFIL), a subsidiary of Allianz, is an insurance company in Ireland.
AGFIL underwrites automobile insurance policies and covers losses incurred by policy holders.
Europ Assist provides a 24-hour help-line service for receiving claims. An approved mechanic
provides repair services. Lee CS is a consulting firm that coordinates with AGFIL and the mechanics
to handle a claim. AGFIL holds ultimate control in deciding if a given claim is valid and if payment
is made to a mechanic.

3 Modeling a Cross-Organizational Business Process via Protocols

The motivation behind business protocols is to address the major shortcomings of the traditional
approaches for modeling cross-organizational business processes Desai et al. [2005].

To contrast protocol and traditional flow-based representations, notice that each box in Fig. 4
represents a participant’s flow that synchronizes at various touch points with other flows. However,
the touch points lack a business-level meaning: they fix the control flow but ignore the business

9

significance of the synchronization. Real-life cases are rife with subtle business significance. For
example, one might ask: Does AGFIL eschew the responsibility for a claim by asking Lee CS to
handle it? Is it significant at the business-level if Europ Assist assigns a claim to a garage before
notifying AGFIL? How does it affect the various business relationships if inspectors are directly
controlled by AGFIL and not by Lee CS? There is no basis for answering such questions in the
absence of an appropriate business-level meaning. Organizations must thus follow a rigid sequence
of steps and any deviation from this expected sequence must be treated as significant, regardless of
the business-level significance—or lack thereof—of the deviation.

By contrast, based on its explicit meaning, a protocol can be readily substituted by another
protocol involving different roles or messages while preserving the business meaning of the overall
process. For example, a single message may be replaced by an extended negotiation or vice versa.
In a purchase process, a merchant—instead of following a rigid sequence of steps—can advertise
goods instead of waiting for requests for quotes, and still be compliant with the protocol by keeping
its commitments. The essence of the interaction—captured via appropriate commitments—is to
exchange goods and money without constraining the agents to follow a rigid sequence of steps.

Another limitation of the flow-oriented approaches is that the flows are monolithic, and formed
by ad hoc intertwining of the participants’ internal business logics and external interactions. For
example, Lee CS may have a unique policy to behave differently if the estimated cost of repairs is
under a threshold amount. Since such business logic is proprietary, the flow of one agent may not
be available for reuse by another. Moreover, since such business logic is contextual, the flow of
one agent may not be readily usable by another agent, even when available. For instance, if a new
consultant were to participate in this process, its flow would need to be developed from scratch, even
though it would interact with the other partners in the same manner as Lee CS. Protocols capture
the reusable interaction patterns and abstract out the business logic. Each agent adopting a role in
the protocols would specify its business logic.

To illustrate a shortcoming of flow-oriented approaches, it is worth remarking that Fig. 4 does
not include the insurance holder. From the standpoint of interactions, this is a major shortcoming.
Although the internal flow of the insurance holder’s process (its box) may not be important to
AGFIL, its external interactions with other parties (i.e., the insurance holder’s interconnections) are
crucial. Although missing a participant may be an exception rather than the norm, it points to the
unsuitability of flow-oriented modeling abstractions for cross-organizational processes.

Commitments and protocols yield a natural way of modeling a cross-organizational process in
terms of interactions among the roles, which would be played by autonomous business partners.
What Amoeba primarily demonstrates is how (as Section 4 shows) protocol-based modeling yields
a natural treatment of evolving requirements. Table 1 outlines Amoeba, showing the inputs and
outputs for its main steps, which are described below in greater detail. The steps are performed in
sequence and may be iterated over.

Previous work on protocol-based process modeling represents the actors, their goals, and their
mutual dependencies to induce the protocols of interest Mallya and Singh [2006]; Bresciani et al.
[2004]. Additionally, Amoeba accommodates the equally important situation when a process has
already been modeled using traditional means. Accordingly, this section illustrates Amoeba in such
a reverse engineering setting, where protocols are identified from a traditionally modeled cross-

10

Table 1: The main steps of Amoeba

Step Description Knowledge Required Artifacts Produced

M1 Identify roles played by the
participants in the process
and the corresponding
protocols

Boundaries of autonomy Role identities and
protocols (with message
declarations)

M2 Identify and capture
contractual relationships as
commitments

Roles and expectations
from roles

Commitments
describing contractual
relationships

M3 Specify message meanings
emphasizing the creation and
manipulation of
commitments

How the contracts are
played out

Message axioms

M4 Specify constraints on
message occurrence and
ordering within each protocol

Bindings among
parameters and
applicable conventions
regarding order

Data flow and event
order axioms

M5 Compose individual
protocols to specify the
process model

How the roles are
identified in the process,
how the messages affect
commitments, and how
the messages are
constrained

Process model
specifying the
participants’ interactions

organizational process. However, the above steps are equally applicable to a case where no tradi-
tional model exists and the protocols must be identified and designed from scratch.

When a conventional process model exists, it often includes a specification of the business
logics of one or more of the participants (depending on whose perspective was taken in the original
model). Whereas interactions are reusable, business logics generally are not. Such business logics
can be readily identified as they do not involve interacting with another participant. For this reason,
Amoeba concentrates on the interactions and disregards the business logics. For example, how
Lee CS determines whether an estimate is below a certain threshold depends upon its business
logic. Any other claims handler would participate in the same interactions, but would apply its own
potentially distinct business logic.

3.1 Step M1: Identify Roles and Protocols

3.1.1 Identify Participants

Since we begin from a concrete process, it helps to first identify the participants and then abstract
them to the roles of interest. The participants are the units of autonomy at a chosen level of detail.
In general, identifying the relevant participants requires human insight.

An existing process may have been specified as a choreography, i.e., a constrained set of mes-

11

sages exchanged among the participants from a global perspective, or as an orchestration, i.e., con-
trol and data flows of service invocations from a single participant’s perspective. A choreography
makes the participants explicit, but might sometimes artificially separate a participant into multiple
roles. A monolithic orchestration would invoke services: the participants are the orchestrator and
the providers of the invoked services. When the participants are proactive, more than one orches-
tration may be involved. Fig. 4 illustrates synchronized orchestrations: each box therein represents
a participant.

Thus, the participants in the insurance process are AGFIL, Lee CS, Europ Assist, the mechanics,
the policy holder, and the inspectors (the last two having been added by us.)

3.1.2 Identify and Group Logically Related Interactions

Some interactions contribute to a related business purpose. These include communications such
as reporting claims, gathering information (policy holder and call center), validating policy details
(call center and insurance company), and so on. Likewise, interactions pertaining to the buying and
selling of insurance coverage go together. In some cases, existing (traditional) models may fail to
identify an interaction. For example, AGFIL would obtain the claim form from Europ Assist even
though Fig. 4 omits this interaction.

3.1.3 Map Participants to Roles and Interactions to Protocols

Each related group of interactions identified in Section 3.1.2 forms a protocol. For example, interac-
tions related to receiving claims would naturally go together as a claim reception protocol. For each
protocol, define suitable roles, ideally with names that reflect their essential contribution to that
protocol. For example, describe the claim reception protocol as arising between the REPORTER,
CALL CENTER, and PROVIDER roles, not the specific participants. These roles would apply in any
process involving insurance claims, not just the present process. Likewise, we can consider Ins, the
insurance buying (and selling) protocol, which involves two roles (SUBSCRIBER (S) and VENDOR

(V)).
Interactions map to sets of messages. For each message, identify its parameters, including

identifiers of the information records exchanged such as policy numbers and claim numbers. Such
parameters can be found as the content of the interactions. If the protocol is being defined from the
scratch, then these have to be defined. For example, Ins includes the messages reqForQuote(driverID,
coverage), quote(driverID, policyNO, premium), and pay(policyNO, premium).

3.2 Step M2: Identify Contractual Relationships

Identify any assumed contractual relationships among partners that exist prior to the participants
engaging in the process. For example, AGFIL already has partnered with Lee CS and Europ Assist.
The negotiations that yield such partnerships are out of the scope of insurance claim processing.
Identify other contractual relationships that come about as the interaction progresses. Capture both
kinds of relationships in terms of commitments. In most cases, both kinds of relationships are
derived from the clauses described in the legal contracts among the participants. The obligatory
clauses in such legal contracts naturally map to commitments. If the obligation under question
is created before the interactions take place, then it is an assumed contractual relationship. An
obligation that is created as a result of the interactions is the second kind of contractual relationship.

12

In the case of assumed relationships, leave out the specification of creation of the corresponding
commitments. Specify how the assumed commitments are manipulated and satisfied by the proto-
cols. For other relationships, specify the creation, manipulation, and discharge of the corresponding
commitments.

Figure 5: Assumed relationships as commitments in the auto insurance scenario

We propose relationship diagrams to depict contractual relationships among partners in business
ecosystems. A relationship diagram depicts each partner as a node. An edge between two nodes
depicts a contractual relationship between the corresponding partners as a set of commitments.
Edges are directed from the debtor to the creditor. Some of the edges depict assumed relationships.

Fig. 5 shows the assumed relationships in our running example. AGFIL has agreed to pay Eu-
rop Assist for responding to filed claims. Also, AGFIL would authenticate the filers of reports.
Similarly, AGFIL has agreed to pay for the consulting services provided by Lee CS. Lee CS has
hired inspectors, who would assess vehicle damage and estimate repair expenses. The relationship
between AGFIL and John Doe (insured) is not assumed: protocols would specify how the corre-
sponding commitments are created.

3.3 Step M3: Specify Message Meanings

Specify the meaning of a message in terms of the conditions it brings about and how it affects the
commitments among the participants. As an example, the axioms below capture the meanings of the
messages in Ins (identified in Section 3.1.3). (As explained in Desai and Singh [2007], nonmono-
tonic causal logic provides the formal semantics of the axioms.) INS1 specifies the meaning of quote
as creating a commitment from the VENDOR (abbreviated V) to the SUBSCRIBER (abbreviated S)
that if the SUBSCRIBER subscribes to the policy then the VENDOR commits to providing insurance
coverage. The parameters of the commitment conditions are bound to those of the message. The
SUBSCRIBER is subscribed if the quoted premium is paid. INS2 specifies that if the payment occurs
and the amount matches the quoted premium then it counts as a subscription for the specified policy
with the premium paid. If the parameter values of subscribe match those of the commitment cre-
ated in INS1, then it would automatically create a base commitment and discharge the conditional
commitment (according to the rules given in Section 2.1). INS3 decomposes the commitment to
provide insurance coverage to the policy holder into two commitments: all valid claims must be

13

served and all claim requests must be responded to. The parameters of these conditions are left un-
specified in Ins: they would possibly be specified when Ins is composed with other protocols. Also,
as long as the SUBSCRIBER is insured, multiple claims can be filed and served. This is because
INS3 keeps creating the commitments to serve as long as the insurance commitment is active. Thus,
filing and servicing of a claim discharges the commitments on the right, which are recreated because
the commitment on the left remains active. When the policy expires and insurance is caused, the
commitment on the left is discharged.

INS1 . quote(driverID, policyNO, premium)→
CC(V, S, subscribe(policyNO, premium), insurance(policyNO))

INS2 . pay(policyNO, premium) ∧ quote(driverID, policyNO, premium)→
subscribe(policyNO, premium)

INS3 . C(V, S, insurance(policyNO)→ CC(V, S, serviceReq ∧ validClaim, claimService)
∧ CC(V, S, reqForClaim, claimResponse)

3.4 Step M4: Specify Constraints Among Messages

Constrain message occurrences based on data flow requirements or temporal ordering requirements.
The axioms below illustrate this step. INS4 specifies that the parameter driverID of quote must be
bound to the parameter driverID of reqForQuote. Data flow axioms imply temporal ordering between
the messages. Similarly, INS5 and INS6 specify that the parameters policyNO and premium of pay are
bound to those of quote.

INS4 . reqForQuote.driverID ; quote.driverID

INS5 . quote.policyNO ; pay.policyNO

INS6 . quote.premium ; pay.premium

Figure 6: Example scenarios (annotated with commitments) from Rec and Ins in the insurance
claim process of Fig. 4

The formal specifications of protocols (as given in the appendix) are definitive. Fig. 6 (and
Fig. 9 later) show representative scenarios of some protocols derived from Fig. 4. The messages in
Ins are annotated with commitments they create.

14

Figure 7: The progression of contractual relationships with composition

Fig. 7 illustrates the progression of contractual relationships. As described earlier, part (a)
(copied from Fig. 5) shows the relationships assumed at the outset—these relationships exist even
when no protocols have been specified in the process model. As we proceed, the model evolves to
include additional protocols, and the relationships affected by these protocols (as they are incorpo-
rated in the model via composition) are depicted. Part (b) depicts the contractual relationships for
the model corresponding to Ins. Ins creates the relationship between AGFIL and John Doe. Simi-
larly, part (c) depicts the contractual relationships for the model corresponding to a composition of
Ins, Rec, and Mon. In Fig. 7, dashed edges denote commitments that have been delegated to a new
debtor. The original debtors remain responsible for ensuring the fulfillment of the commitments: in
case the new debtor fails to fulfill a commitment, the original debtor would be expected to arrange
for its fulfillment. AGFIL delegates to Europ Assist its commitment to John Doe for responding to
claims. AGFIL also delegates to Lee CS its commitment to John Doe for handling all valid claims.
Finally, part (d) shows the contractual relationships for the model corresponding to a composition
of Ins, Rec, Mon, and Han. Here, Lee CS enters into agreement with a mechanic (by virtue of Han),

15

and delegates the commitment for providing claim services to the mechanic.

3.5 Step M5: Compose Protocols to Reconstruct a Business Process

Once we factor out individual protocols from a traditionally modeled process, we can compose these
protocols to reconstruct the original process.

Any realistic business process would involve multiple protocols. For example, AGFIL partici-
pates in protocols for selling insurance policies (Ins) and for receiving and handling claims (Rec).
Consider how protocols can be composed to form a more complete protocol. Let’s assume that
AGFIL outsources its help-line service for receiving claim reports to a call center, but handles the
claims itself (without the benefit of any partnership with Lee CS, the mechanics, or the inspectors).
The claim reception and validation part is supported by the protocol Rec (shown in Fig. 6). The
requisite process can be obtained by composing Ins (specified above) and Rec (Appendix A.1) into
a new protocol, Bas (Basic insurance claim processing).

3.5.1 Specify role identification axioms

Identify the roles in the desired composite protocol. These are typically mapped from the partic-
ipants identified in the initial part of Step M1 (Section 3.1.1). For each of the identified roles,
determine the roles of the components protocols that should be played by an agent that plays the
role. Accordingly, specify a role identification axiom for each of the roles of the composite protocol.

For example, BAS1 defines a role INSURED in protocol Bas and states that the SUBSCRIBER in
Ins and the REPORTER in Rec are identified and replaced by INSURED in Bas. BAS2 and BAS3 define
additional roles in Bas similarly.

BAS1 . Bas.Insured .= Ins.Subscriber, Rec.Reporter

BAS2 . Bas.Insurer .= Ins.Vendor, Rec.Provider

BAS3 . Bas.CallCenter .= Rec.CallCenter

3.5.2 Specify message axioms

Like in Step M3 (Section 3.3), specify the meaning of a message in terms of the conditions it brings
about and how it affects the commitments among the participants. The only difference here is that
instead of the message effects being local to one protocol, a message in one protocol may affect
the commitments in other protocols. For each pair of messages and commitments in the protocols
being composed, decide if the message affects the commitment. If so, specify a message axioms to
capture the effect.

For example, BAS4 is a message axiom stating that the authentication of the REPORTER by
the PROVIDER in Rec means that the filed claim should be counted as valid in the context of Ins.
Notice how the meaningful parameter claimNO for the validClaim condition of Ins is provided here.
BAS5 states that the reporting of a claim counts as a request for claim service in the context of Ins.
Similarly, according to BAS6 and BAS7, both the approval and denial of a reported claim count as
claim responses in the context of Ins. For brevity, let ‘·’ denote a parameter that is not relevant in
the given axiom.

BAS4 . Rec.authOK(claimNO, policyNO)→ Ins.validClaim(claimNO)

16

BAS5 . Rec.report(driverNO, policyNO, info)→ Ins.reqForClaim(driverNO, policyNO)

BAS6 . Rec.approved(claimNO, policyNO) ∧ Rec.report(·, policyNO, ·)→
Ins.claimResponse(claimNO, policyNO)

BAS7 . Rec.denied(claimNO, policyNO) ∧ Rec.report(·, policyNO, ·)→
Ins.claimResponse(claimNO, policyNO)

3.5.3 Specify data flow axioms

Like in Step M4 (Section 3.4), constrain message occurrences based on data flow requirements.
The only difference here is that the messages being constrained come from different protocols. For
each pair of messages in the protocols being composed, decide if a parameter of a message must be
bound to the value of a parameter of the other message. If so, specify a data flow axiom to capture
the constraint.

For example, BAS8 binds the driverNO parameter of the quote messages in Ins to driverID pa-
rameter of the report message in Rec via a data flow axiom. Similarly, BAS9 binds the policyNO
parameter.

BAS8 . Ins.quote.driverID ; Rec.report.driverNO

BAS9 . Ins.quote.policyNO ; Rec.report.policyNO

3.5.4 Specify event order axioms

Like in Step M4 (Section 3.4) constrain message occurrences based on temporal ordering require-
ments. Again, the only difference here is that the messages being constrained come from different
protocols. The messages constrained by a data flow axiom are already temporally ordered: the
source precedes the sink. Apart from these, for each pair of the messages from the protocols be-
ing composed, decide if a temporal ordering or a mutual exclusivity between them is desired. If
so, capture it via specification of an event order axiom. The present example does not need these.
However, protocols Rep, Han, Picp, and Pcsc demonstrate event order axioms.

3.5.5 Result

The above axioms are simply unioned with the union of the axioms of Ins and Rec to yield the
protocol Bas, which captures the desired interactions. Fig. 12 shows a scenario of Bas in the context
of another example.

We propose protocol-composition diagrams to provide a high-level view of compositions of
protocols. Fig. 8 shows role identifications by binding the new roles to the original roles being
identified. Message, data flow, and event order axioms are depicted as directed bridges between
specified elements of the protocols being composed. The direction of the data flow axioms is the
direction in which the data flow occurs. Similarly, the direction of the message axioms is the direc-
tion of the causality. The direction of the event order axioms is earlier to later. To reduce clutter,
some composition diagrams in this paper elide some of the axioms.

By virtue of composition, the protocols factored out of a traditional model can be composed
in many ways. One of the compositions would yield the original (traditionally modeled) process.

17

Figure 8: Composing Ins with Rec to produce Bas

Thus, a process model based on protocols would generalize over a traditionally modeled process by
including alternatives that represent various configurations of the original process.

Composing protocols is an iterative process. Initially, designers may overlook some of the
desired composition axioms. Thus, tools to determine if a given composite protocol is missing
important axioms are essential. Desai & Singh propose a set of properties of protocols that can be
enacted correctly and a method to check whether a protocol satisfies them [2008]. Thus, designers
are freed of the burden of manually ensuring the correctness of their protocols.

The following discussion assumes a composite protocol Picp (Partial insurance claim process-
ing) constructed from the composition of Bas, Mon (Monitoring outsourced handling), Han (Han-
dling filed claims), and Rep (Administering repairs). The roles in Picp are INSURER, INSURED,
CONSULTANT, CALL CENTER, REPAIRER, and ASSESSOR. Picp carries out the core steps of the
insurance claim process. Appendix A.5 specifies Picp.

4 Accommodating Evolving Interaction Requirements

The foregoing shows how a cross-organizational process may be specified via its interaction re-
quirements, and in a manner that deemphasizes internal business logics and behaviors. Let us now
consider the evolution of requirements of cross-organizational processes that call for modifications
in the structure of the interactions among the parties involved. Changes local to the internal func-
tioning of any of the participants can be handled through conventional means.

Section 4.1 shows how Amoeba accommodates requirement changes that affect interactions.
Sections 4.2, 4.3, and 4.4 exercise Amoeba on the three kinds of requirement changes introduced in
Section 1: transactional, structural, and contextual.

18

Figure 9: Example scenarios (annotated with commitments) from Mon, Rep, and Han in the insur-
ance claim process of Fig. 4

4.1 Amoeba: Process Adaptation via Protocol Composition

Given a changed requirement, how does a designer come up with the right set of composition axioms
to adapt the process model? When a change calls for additional interactions, participants, and
commitments, what guidance can we provide to a designer on what elements are needed? Assuming
that (1) the process model corresponding to the original process, and (2) the new requirements are
given, the following steps guide designers in handling the changed requirements. In essence, these
steps derive from those presented in Table 1: instead of identification and specification of elements
from a traditionally modeled process, modifications and adjustments to the protocols are considered.

4.1.1 Step M1: Identify new roles and protocols

Generally, the evolution of a business model results in the formation of new business relationships,
possibly with new participants. Some existing participants may leave. Identify the new participants
according to the original Step M1 (Section 3.1.1).

Also, the interactions among the participants may change: a new group of interactions may
be necessary, or an existing protocol may become obsolete. Define a protocol for the new group
of interactions according to the original Step M1 (Section 3.1.2). Obsolete protocols are dropped
simply by excluding them from the composition.

Finally, such evolution may introduce new roles or render existing roles unnecessary. Following
the original Step M1 (Section 3.1.3), update the mapping of participants to roles and interactions to
protocols. Capture the new mappings via role identification axioms. Handle the removal of a role
by fusing it with an existing role via a role identification axiom. Having to introduce new roles in
a cross-organizational process is a common situation. For example, buyers and sellers may switch
between a direct transaction and an escrow model for routing payments, thereby introducing or
removing the role of an escrow agency.

19

4.1.2 Step M2: Identify changes to contractual relationships

With new participants, new contractual relationships may be formed outside the scope of the pro-
cess. Capture such new assumed contractual relationships among existing or newly identified par-
ticipants as commitments according to the original Step M2 (Section 3.2).

Determine what commitments are affected by the proposed changes. If necessary, identify newer
ways to operate on existing commitments, e.g., discharge, cancel, or delegate. Specifically, a com-
mitment created in an existing protocol may be discharged by a message in a newly introduced
protocol. For example, a buyer and a seller may commit to each other: the buyer to paying and the
seller to delivering the goods. However, to fulfill these commitments presupposes new protocols
Shipping and Payment, respectively.

4.1.3 Step M3: Modify message meanings

Either identify the existing messages, or introduce new messages to communicate the modified
operations on commitments and effects on other conditions (as identified in the previous step).
Express the meanings of the newly introduced messages via message axioms. Group new messages
into newly defined protocols based on the commonality of their purpose. If the necessary roles are
not yet defined, go back to the first step to introduce them.

In general, identify messages that affect the commitments in the newly formed contractual rela-
tionships. Also, identify commitments that are affected by messages in the newly defined protocols.
Capture these via message axioms.

4.1.4 Step M4: Modify message constraints

Perform this step according to the guidance given in the original Step M4 (Section 3.4).

Capture data flows among messages

Capture data flows via parameter bindings, establishing the main relationships among the existing
protocols and the newly defined protocols, and any refinements within the newly defined protocols.

Capture event orders

Typically, these constraints are not required by the data but as a matter of convention. For example,
we may wish to restrict Purchase to allow only prepayment: in that case, payment must precede
shipment. Identify and capture such constraints among the existing protocols and the newly defined
protocols, and any refinements within the newly defined protocols.

4.1.5 Step M5: Compose new protocols

Perform this step according to the guidance given in the original Step M5 (Section 3.5).
The above steps are the simplest when elements are introduced and composed with existing

protocols. But what happens if an existing element needs to be changed or removed? Examples
include changes in message parameters, message ordering and data flows, or message meaning. For
such cases, simply replace an existing protocol with a new protocol (retrieved from a repository or
defined afresh) via composition.

20

Let us now apply Amoeba on the three kinds of requirements changes.

4.2 Transactional Change: Alternative Enactment to Discharge Commitments

A transactional change is caused by a change in the way the business transaction supported by
the process is carried out. A business transaction can be captured in terms of life cycles of the
commitments involved. Thus, a change in the business transaction would map to alternative life
cycles of the underlying commitments. For example, damaged goods may be returned by a buyer,
thereby canceling its commitment to pay if the payment was not made. If the payment was already
made, a new commitment for the seller to refund the payment is created. The transaction still
achieves the exchange of goods and payment via fulfillment of the corresponding commitments, but
more flexibly than before.

In handling claims where the value of the car is less than the estimated cost of repairs, the
COMPANY may want to scrap the car, i.e., declare it a total loss. To settle such a case, the COMPANY

pays the OWNER a sum equal to the value of the car and takes possession of the car instead of
administering repairs on it. Alternatively, especially if the damage is minor, the OWNER may accept
a cash settlement instead of having the car repaired. The net result is that the COMPANY becomes
committed to paying the OWNER the value of the car or an amount in lieu of repairs if the OWNER

accepts the offered amount.

Figure 10: A scenario of Pcsc (pay cash and scrap car)

4.2.1 Step M1: Identify new roles and protocols

There may be no change to the set of participants due to the evolution of transactional requirements.
However, new roles and a new protocol are needed to capture the change.

According to the changed business policy, AGFIL, Lee CS, and the policy holders would interact
in new ways to achieve a settlement. Each party would adopt a role, say, COMPANY, CONSULTANT,
and OWNER, respectively. Let us name their containing protocol Pcsc (Pay cash and scrap car).
Since no new participants are involved, the new roles are fused with the existing roles of Picp
yielding the roles of the composite protocol Icp (Insurance claim processing) as follows.

ICP1 . Icp.Insured .= Picp.Insured, Pcsc.Owner

ICP2 . Icp.Insurer .= Picp.Insurer, Pcsc.Company

21

ICP3 . Icp.Consultant .= Picp.Consultant, Pcsc.Consultant

ICP4 . Icp.Repairer .= Picp.Repairer

ICP5 . Icp.CallCenter .= Picp.CallCenter

ICP6 . Icp.Assessor .= Picp.Assessor

4.2.2 Step M2: Identify changes to contractual relationships

AGFIL would have delegated its commitment CC(V, S, serviceReq ∧ validClaim, claimService) to
Lee CS, thereby making Lee CS responsible for servicing claims. Lee CS would in turn delegate
the servicing of claims to the REPAIRER. Fig. 7(d) shows the REPAIRER (mechanic) committed
to the POLICY HOLDER (John Doe). When Lee CS advises scrapping the car or making a cash
payment for minor damage, it fulfills its commitment to provide the consulting service. As a result,
the commitment to service the claim falls back to AGFIL, which becomes committed to paying
the policy holder. Further, when AGFIL settles the payment, it provides the claim service, thereby
discharging its commitment.

4.2.3 Step M3: Modify message meanings

The new roles would need additional messages to effect the above described evolution of commit-
ments. Fig. 10 shows a scenario of Pcsc having new messages and their respective parameters.
The CONSULTANT advises the COMPANY to either scrap the car and pay the value of the car to the
OWNER or to pay a cash amount in lieu of administering repairs. In the former case, the COMPANY

may pay the value of the car to the OWNER via a settle message. In the latter case, the COMPANY

offers a cash amount and, if the OWNER accepts the offer, pays that amount via the settle message.
Appendix A.6 specifies Pcsc.

The following message axioms capture the desired evolution of commitments.

ICP7 . Pcsc.adviseScrap(claimNO, value)→
Picp.delegate(Con, Ir, CC(Rp, Id, serviceReq ∧ validClaim, claimService))

ICP8 . Pcsc.adviseCash(claimNO, amount)→
Picp.delegate(Con, Ir, CC(Rp, Id, serviceReq ∧ validClaim, claimService))

ICP9 . Pcsc.adviseScrap(claimNO, value)→ Picp.consultingService(claimNO)

ICP10 . Pcsc.adviseCash(claimNO, amount) ∧ Pcsc.accept(claimNO, amount)→
Picp.consultingService(claimNO)

ICP11 . Pcsc.settlement(claimNO, amount) ∧ Pcsc.accept(claimNO, amount)→
Picp.claimService(claimNO)

ICP12 . Pcsc.settle(claimNO, value) ∧ Pcsc.adviseScrap(claimNO, value)→
Picp.claimService(claimNO)

22

4.2.4 Step M4: Modify message constraints

Capture data flows among messages

Since either of adviseScrap and adviseCash may occur, and since Pcsc does not open a new claim,
the value of the claimNO parameter in these messages must flow in from other protocols. The new
behavior would apply only to claims approved during claim reception. Thus, we need the following
data flows.

ICP13 . Picp.approved.claimNO ; Pcsc.adviseScrap.claimNO

ICP14 . Picp.approved.claimNO ; Pcsc.adviseCash.claimNO

Capture event orders

No additional temporal constraints are needed between the messages of Pcsc and Picp.

4.2.5 Step M5: Compose new protocols

No other changes within existing protocols are needed and thus no existing protocols need to be
replaced. Axioms INS1 through ICP14 yield the composite protocol Icp.

4.2.6 Result

Figure 11: Accommodating a transactional change by composing Icp from Picp and Pcsc

Fig. 11 shows the corresponding composition diagram (omitting INSURED (Id), REPAIRER (Rp),
CALL CENTER (Ca), and ASSESSOR (A) for Picp to reduce clutter). Notice how a business logic
change internal to AGFIL is accommodated across the business process. In practical terms, the
commitments involved are not affected. AGFIL must still handle an insured subscriber’s claim:
instead of repairing the car, AGFIL discharges its commitment by paying off the subscriber.

23

4.3 Structural Change: Outsourcing

A structural change is caused by changes in the participants and their relationships captured via
commitments among them. Thus, changes in relationships amount to new commitments among the
participants and delegation or assignment of original commitments to new or existing participants.
Outsourcing illustrates changes not only to the internal functioning of the outsourcer but also to the
interactions involved because a new participant is introduced that interacts with the other existing
participants. Insourcing to undo the effects of outsourcing would likewise alter the interactions.

Let’s assume AGFIL is operating based on Bas (as in Section 3.5). Say AGFIL wishes to out-
source the handling of claims to a consulting firm. To outsource the claim handling to a consultant
presupposes that AGFIL interacts with the consultants, monitors progress, and makes the necessary
decisions. AGFIL may do so by reusing Mon of Fig. 9, as specified in Appendix A.4. The COM-
PANY assigns claims to the CONSULTANT to handle. The CONSULTANT takes the necessary steps
and returns with an invoice for repairs. The final decision on whether or not to authorize such repairs
is up to the COMPANY. Thus Mon and Bas can be composed to yield Out (Outsourced handling).

Figure 12: Accommodating a structural change by composing Out from Mon and Bas

Appendix A.7 describes the composition of Out from Mon and Bas. Fig. 12 shows the cor-
responding composition diagram. Obviously, a change in the business model is a big shift for an
enterprise; new partnerships are formed and new interactions emerge.

4.4 Contextual Change: Handling Business Exceptions

A contextual change reflects changes in the legal or other context (such as government regulations)
under which the participants interact. The contextual rules can be captured as metacommitments.
For example, a legal context ensures that a merchant delivers the goods by a deadline. If the mer-
chant fails to meet this commitment, then the context ensures that the customer’s commitment to
pay by a deadline is canceled. Such contextual rules enable handling business exceptions elegantly.

24

Exceptions are abnormal conditions arising during a business interaction. In our example, a fraud-
ulent auto-insurance claim can be understood as an exception. Policy holders may file fraudulent
claims. AGFIL would need a way to detect such claims and respond appropriately. If the current
process model does not accommodate the appropriate treatment of fraudulent claims, it needs to be
updated with additional interactions. We classify handling fraud as a contextual change because,
due to the surrounding legal framework, fraudulent activity by one party can release another party
from its commitments, in essence relieving it from its contractual obligations to the fraudulent party.

4.4.1 Step M1: Identify new roles and protocols

Handling fraudulent claims in this setting does not involve additional contracts and does not intro-
duce new participants. However, new roles and a new protocol are needed to capture the change.

Fraudulent claims are detected by the inspectors when they conduct an inspection. Because the
inspectors have no direct contract with AGFIL, any interaction triggered by fraud detection must be
propagated to AGFIL via Lee CS. AGFIL can then notify the policy holder. Thus, new roles need
to be adopted by the policy holder (OWNER), AGFIL (COMPANY), Lee CS (CONSULTANT), and the
inspectors (ASSESSOR). The new roles fall into a new protocol, Fra (Fraudulent claims detection).
Since no new participants are needed, the new roles are fused with the roles of Picp yielding the
roles of the composite protocol Ficp (Fraud-resistant insurance claim processing) as follows.

FICP1 . Ficp.Insured .= Picp.Insured, Fra.Owner

FICP2 . Ficp.Insurer .= Picp.Insurer, Fra.Company

FICP3 . Ficp.Consultant .= Picp.Consultant, Fra.Consultant

FICP4 . Ficp.Repairer .= Picp.Repairer

FICP5 . Ficp.CallCenter .= Picp.CallCenter

FICP6 . Ficp.Assessor .= Picp.Assessor, Fra.Assessor

4.4.2 Step M2: Identify changes to contractual relationships

It is clear that handling this exception involves addressing the distinct goals of detecting it and
responding to it. An auto inspector detects the exception, and AGFIL and Lee CS respond to it.

AGFIL responds by canceling the policy coverage of the policy holder and Lee CS responds by
releasing the repairers from the commitment to perform repairs (Appendix A.2). The ASSESSOR’s
detection of fraud counts as an inspection response and thus discharges CC(A, Con, inspectReq, in-
spectRes) (Appendix A.3). When AGFIL and Lee CS form their relationship, a conditional commit-
ment CC(Com, Con, consultingService, payForService) is created meaning that AGFIL will autho-
rize payments for handling individual claims if Lee CS provides the consulting service (Fig. 7(a)).
The CONSULTANT propagating the detection of fraud to the COMPANY counts as the consulting
service being provided.

25

4.4.3 Step M3: Modify message meanings

New messages are needed to propagate the fraud detection and notify the policy holder. In general,
we can model two roles apiece for detecting and responding to the exception: one sending a message
(of a detected exception or a concomitant response), and the other receiving the message. In our
present scenario, the ASSESSOR deals only with the CONSULTANT, and only the COMPANY deals
with the OWNER when a fraudulent claim is detected. For this reason, we would need to introduce
another message to convey this information from the CONSULTANT to the COMPANY.

The ASSESSOR may send an adviseFraud message to the CONSULTANT who may propagate
it as a fraudulent message to the COMPANY. The COMPANY may notify the OWNER of the fraud
detection via a fraud message. Each of these messages has a claimNO parameter for correlation.
Appendix A.8 specifies Fra. The following axioms describe part of the composition of Fra and Picp
into Ficp.

FICP7 . Fra.fraud(claimNO)→
Picp.cancel(Ir, CC(Rp, Id, serviceReq ∧ validClaim, claimService))

FICP8 . Fra.adviseFraud(claimNO)→
Picp.release(Con, CC(Rp, Con, acceptEstimate(claimNO, price), performRepair(claimNO)))

FICP9 . Fra.adviseFraud(claimNO)→ Picp.inspectRes(claimNO)

FICP10 . Fra.fraudulent(claimNO)→ Picp.consultingService(claimNO)

4.4.4 Step M4: Modify message constraints

Capture data flows among messages

Clearly, the value of the claimNO in the fraudulent and fraud messages flows from the adviseFraud
message. However, as Fra does not open a new claim, the value of claimNO in adviseFraud must
flow into Fra from other protocols. Only the claims approved during the claim reception can go to
the inspectors. Thus, the following data flow is identified between Picp and Fra.

FICP11 . Picp.approved.claimNO ; Fra.adviseFraud.claimNO

Capture event orders

No additional temporal constraints are needed between the messages of Fra and Picp.

4.4.5 Step M5: Compose new protocols

No other changes within existing protocols are needed and thus no existing protocols need to be
replaced.

4.4.6 Result

Fig. 13 illustrates the new protocol Fra for interactions relating to detecting frauds. The compo-
sition diagram of Fig. 14 shows how a composite protocol Ficp (Fraud-resistant insurance claim
processing) is constructed by composing Picp and Fra. Here INSURED (Id), REPAIRER (Rp), CALL

CENTER (Ca), and ASSESSOR (A) are not shown for Picp.

26

Figure 13: A scenario of Fra (fraudulent claims detection)

Figure 14: Accommodating a contextual change: Incorporating handling of fraudulent claims

Notice how the resulting interaction allows AGFIL to end the process by canceling and releasing
the commitments in case of fraud. Simply adjusting the commitments can yield greater flexibility
while enabling the parties to continue to interoperate. Thus, fraud, which is an exception, is handled
by applying contextual rules to adjust the commitments—AGFIL cancels its commitment to handle
an otherwise insured subscriber’s claim. Support for autonomy comes from the ability to control
the effects of foul behavior of a participant.

5 Case Study: Aerospace Aftermarket Services

To evaluate Amoeba, we apply it to the modeling and evolution of cross-organizational processes
developed under the European Union CONTRACT project van Aart et al. [2007] in the domain of
aerospace aftermarket services.

Fig. 15 shows a high-level flow of a process in aerospace aftermarket services. This process
involves three parties: an operator (i.e., an airline), an aircraft engine manufacturer, and a parts
manufacturer. The engine manufacturer provides the required number of serviceable engines to keep
the airline operator’s aircraft flying. The engine manufacturer is paid by the hour when the engines
are available and suffers a penalty when planes are on the ground waiting for a serviceable engine.
The operator regularly supplies engine health data to the manufacturer. Based on the analysis of the
data, the manufacturer informs the operator of any required engine maintenance termed unscheduled
maintenance in this industry. The operator may proactively request maintenance termed scheduled
maintenance in this industry. In either case, the operator and the manufacturer schedule a time and
place for the engine to be serviced. The manufacturer may either replace the engine or refurbish
it. The engine manufacturer maintains a pool of serviceable engines via contracts with one or more
parts manufacturers, who supply individual engine parts.

27

Figure 15: A high-level model of the aerospace aftermarket process (verbatim from the CON-
TRACT project)

5.1 Modeling

Figs. 16 and 17 are obtained by performing Amoeba steps M1–M5 of Section 3. The contract
between the operator and the manufacturer is created in Msc. A similar protocol (not shown in
Fig. 16) would create the contract between the engine manufacturer and the parts manufacturer.
Fig. 17 shows the contractual relationships that hold after Msc is added to the process model. No
other contractual relationships need be assumed. The remaining protocols simply detach or dis-
charge the commitments created in Msc. Message annotations within square brackets show the
commitment conditions being brought about.

Let us observe a few important points about the commitments and the protocols of Figs. 16 and
17. In Msc, the creation of C1 and C2 would detach and discharge C0, respectively. Also, like in
INS3, as long as C1 is active, C4 and C5 may be created and discharged multiple times. Similarly, C2

keeps creating C3 and C6. In Pma, both refurbishEngine and replaceEngine count as serviceInTime.
If the service was delayed, the operator would pay for the service and the manufacturer would pay
the penalty for being delayed. Penalty for delayed parts consignment in Spa is modeled similarly.

We find that whereas requirements referring to design-level artifacts could be adequately cap-
tured, requirements referring to multiple instances of protocols could not be adequately captured
via Amoeba. While these requirements do not relate directly to the interactions, they are a part of
the contract and thus affect the commitments. For example, the manufacturer’s commitment to pay
a penalty is conditioned on a certain number incidents where aircraft were unavailable for a certain
duration due to pending engine service. Amoeba handles this on a per instance basis and assumes
that the operator signals a delay in service only when such contractual conditions are met and both
parties agree to it.

28

Figure 16: Scenarios of protocols in the aerospace aftermarket process

5.2 Evolution

We applied Amoeba to accommodate requirement changes in the aerospace aftermarket process.
As in the insurance scenario, we consider a transactional, a structural, and a contextual change. For
each change, the additional requirements and how they can be accommodated are briefly described.
In the following, a protocol Ams (Aerospace aftermarket services) as a composition of Msc, Sma,
Uma, Pma, Opa, and Spa is assumed. The engine manufacturer plays CONSUMER in Spa and
BUYER in Opa. The parts manufacturer plays SUPPLIER in Spa and SELLER in Opa. The other role
identifications are self-explanatory.

29

Figure 17: The contractual relationships with Msc in the process model

5.2.1 Transactional Change

Flights are commonly delayed due to bad weather. In Sma and Uma, the operator and the manu-
facturer have agreed on an airport and a time for performing maintenance on a particular engine. It
is quite possible that the aircraft having the concerned engine gets delayed and is not available for
service. As the weather improves, a large number of aircraft become available for service, possibly
from different operators. This overloads the maintenance resources of the manufacturer, who thus
ends up paying penalties for service delays. To amend this situation, the manufacturer negotiates
new conditions for its service contracts with the operators such that if the engine is not available at
the agreed upon schedule, then the delay penalty is waived.

Following steps M1–M5 in Section 4.1, a new protocol Wpe (Waive penalty) is introduced
wherein the manufacturer signals that an engine is unavailable to the operator. In the composition
of Wpe with Ams, the effect of the engine unavailable message is captured via a message axiom
that cancels the commitment to pay the penalty for delayed service.

5.2.2 Structural Change

The engine manufacturer decides to focus on its core competency of building and diagnosing en-
gines and outsource to a service company the work of performing timely maintenance on the various
engines and aircraft.

Following steps M1–M5 in Section 4.1, a new partnership between the manufacturer and the
service company is formed and a new protocol Scm (Subcontracted maintenance) is introduced
wherein the manufacturer delegates C3 to the service company and pays the service company for
maintenance services in return. As a new interaction, the manufacturer informs the service company
of the schedules of maintenance that it has agreed upon. In role identifications the service company
would play MANUFACTURER in Pma.

5.2.3 Contextual Change

The FAA (Federal Aviation Administration) or other responsible agency changes its safety regula-
tions. Under the new regulations, all engine manufacturers must be licensed by FAA to monitor
and service engines to ensure safety. Also, an FAA official may inspect aircraft at any time without

30

prior warning. If an aircraft is found to be unsafe due to the condition of its engines, the license of
the manufacturer may be suspended or revoked.

Following steps M1–M5 in Section 4.1, a commitment from the manufacturer to the operator is
assumed under which the manufacturer holds a valid license whenever it services an aircraft. Also,
a new protocol Ias (Inspect aircraft safety) capturing the inspection interactions between the FAA,
the operator, and the manufacturer is introduced. If the FAA finds an engine to be defective and the
manufacturer has not informed the operator of a required maintenance of the engine, then the license
of the manufacturer is suspended. Also, the service company is released from its commitments and
C1, C4, and C5 are canceled. This effectively ends the contracts between the manufacturer and the
operator.

6 Discussion and Future Work

Amoeba helps model cross-organizational business processes in terms of commitment-based busi-
ness protocols. The various requirements changes result in changes to the roles and the protocols in
which they participate. The models at each stage are driven by the business meanings of the inter-
actions among the participants. In this manner, the above case studies provide some evidence that
capturing the business meanings of interactions facilitates process modeling in light of requirements
evolution of cross-organizational business processes. Like any software engineering methodology
work, the real benefits (in terms of cost savings or improvement in quality), or lack thereof, of
Amoeba can only be discovered after it is put to practice. This paper is a first step toward the overall
goal of applying Amoeba in practice and understanding ts effectiveness.

A dominant paradigm for service-oriented business process modeling today is orchestration,
as epitomized by the Business Process Execution Language (BPEL) [2007]. In orchestration, a
process is represented from the perspective of a central engine that invokes various services and sets
up desired data and control flows among them. Business processes have traditionally been modeled
as workflows, and BPEL reflects this legacy. However, workflows inadequately model interactions,
and cannot properly handle cross-organizational settings in which the autonomy of the participants
is crucial Bussler [2001].

In contrast with orchestration, the emerging choreography approaches support a peer-to-peer
metaphor for business processes. Choreography efforts include the Electronic Business Extensible
Markup Language (ebXML) Business Process Specification Schema (BPSS) recently standardized
by OASIS ebBP [2006] and the Web Services Choreography Description Language being con-
sidered for recommendation by the W3C WS-CDL [2005]. Because choreographies explicitly ac-
commodate autonomous participants, they more readily support cross-organizational processes than
orchestration does.

Orchestration and choreography approaches, even when formal, lack an appropriate encoding of
the business meaning. Traditional semantics reflects the occurrence and ordering of tasks (units of
orchestrations) or messages (units of choreographies), but fails to identify the business interactions
that these support. For example, they would specify that a quote message can be followed by an
acceptance or a rejection message, but would ignore the business commitment that an acceptance of
the quote creates. This limitation becomes more pronounced under requirements evolution, because
absent a business meaning, there is no principled basis for validating a business process or modifying
it in a reliable manner. In contrast with object-oriented models, Yu argues for an emphasis on the
intentional aspects of actor relationships for early-phase requirements engineering [1996].

31

Like Amoeba, agent-oriented software engineering (AOSE) methodologies in general Bergenti
et al. [2004]; Henderson-Sellers and Giorgini [2005] address the challenges of autonomy and het-
erogeneity. Amoeba complements existing AOSE methodologies by concentrating on requirements
evolution, which they deemphasize. Also, unlike other AOSE methodologies, Amoeba provides
guidelines for reverse engineering traditionally modeled processes. In principle, Amoeba could
be incorporated into existing AOSE methodologies by enhancing them with protocols as reusable
artifacts based on commitments.

Table 2: Amoeba evaluated with respect to the established criteria for agent-oriented methodologies

Criterion Evaluation

Concepts Agent: roles in protocols are adopted by agents
Role: interactions are described among roles
Message: roles interact via messages
Protocol: logically related messages are grouped into protocols

Properties Reactiveness: protocol rules are reactive
Proactiveness: agent business logics can be proactive
Sociality: roles interact and create (social) commitments
Autonomy: agents adopting roles are autonomous and are
constrained only by their commitments

Model Properties Analyzability: the specifications can be analyzed
Abstraction: three levels: commitments, protocols, agents enacting
protocols
Precision: unambiguous due to formal specifications
Expressiveness: due to formal representation
Modularity: protocols are modular and can be composed
Testability: implementations can be tested

Development Process Guidelines and steps for analysis, design, reverse engineering, and
requirements evolution

Tools Tools supporting some Amoeba steps exist Desai et al. [2005]
Composition: given a set of protocols to compose and composition
axioms, generate the composite protocol
Model generation: Generate all possible models of a C+ protocol
specification, e.g., using CCalc
Skeleton generation: Generate role skeletons from protocols
Enactment: Augment role skeletons with business logic and generate
implementations for roles, e.g., in J2EE

Recent years have seen the emergence of common evaluation criteria for agent-oriented method-
ologies. Important evaluation efforts include those by Dam and Winikoff [2004] (of MaSE, Prometheus,
and Tropos); Sturm and Shehory [2004] (of Gaia, Tropos, and MaSE); Tran and Low [2005] (of ten
methodologies). Sudeikat et al. [2004] frame comparisons relative to a target platform. These stud-

32

ies have identified key criteria including concepts, modeling techniques, development processes,
and tool support for methodologies. Table 2 applies these criteria to Amoeba.

Importantly, the vital criterion of handling requirements evolution does not feature in the ex-
isting studies. An evaluation with respect to requirements evolution would consider the guidance
provided by a methodology in (and the complexity of) updating models for specific changes in inter-
action requirements. Table 3 compares Amoeba with Tropos, Gaia, Prometheus, and MaSE under
this criterion.

Most of the current AOSE methodologies agree on protocols as reusable message patterns
among roles. The key commonly missing pieces are a business-level abstraction analogous to com-
mitments and a mechanism for composing protocols as a way of accommodating requirements
change. Below, we reflect on what it would take to accommodate changing requirements in Tropos
and Gaia. Similar arguments can be made about other methodologies, and are omitted in the interest
of brevity.

Requirements Evolution in Tropos Tropos employs the abstractions of goals, dependencies, and
organizations to capture requirements. Transactional changes would correspond to newer subgoals,
tasks, and resources for fulfilling goals. Structural changes would alter the actor diagram of the cor-
responding organization via changes in the stakeholders. Contextual changes would be accommo-
dated via modeling the context as an actor. Even assuming that a methodology for accommodating
such changes is available, Tropos has some key limitations. Although prominent in the early and
late requirements phases, the autonomous actors disappear in the detailed design phase and only a
single information system actor remains. Thus a centralized information system is designed instead
of one information system for each actor. Thus, Tropos seems to be targeted for applications where
the actors collaborate via a central information system. Also, mapping the dependencies to interac-
tions is nontrivial; Mallya and Singh [2006] propose a set of guidelines to this end. Although goals
can also be manipulated via delegation or assignment like commitments, the autonomy supported
by commitments is lacking to an extent. For example, when an agent’s goals are manipulated by
other agents, its autonomy is compromised. However, such operations are quite common in business
service engagements and hence their natural treatment is crucial. Lastly, it is nontrivial to map any
changes to the models in the early phases to models in the later phases. For example, how would a
new goal in the actor diagram affect the means-ends analysis? Hence, Tropos would benefit from
a decentralized perspective with an abstraction of commitments and guidelines for accommodating
and tracing the changes in the various phases of the methodology.

Requirements Evolution in Gaia Unlike Tropos, the newer versions of Gaia explicitly target
open environments such as marketplaces. Thus, each agent adopts roles and has an interaction
model instead of a centralized model for all agents. Explicit models of the environment and the or-
ganizations make it easier to accommodate structural and contextual changes. Responsibilities are
given a first-class status, but are described in terms of procedural coordination rather than declar-
ative (contractual or goal-based) requirements. Thus, a direct high-level abstraction to capture a
transactional change is missing. Gaia would benefit from role schemas described in terms of com-
mitments being created and manipulated. Our technique of protocol composition can be readily
adapted for Gaia protocols. Methodologies based on Gaia, such as ROADMAP Juan et al. [2002],
explicitly model goals in role schemas and are a step in the right direction. However, the arguments
about goals versus commitments in Tropos also apply to ROADMAP.

33

Table 3: Methodologies evaluated relative to requirements evolution

Methodology Evaluation

Tropos Bresciani
et al. [2004]

Requirement changes can map to the exclusion or inclusion of new
actors, changed dependencies between actors, changed goals, and
changed ways to achieve the goals in the early and late requirements
analysis phases

Gaia Juan et al.
[2002]; Zambonelli
et al. [2003]

Requirement changes cut across the analysis and architectural design
phases with possible changes to the environmental, role, and
interaction models, organizational rules, and organizational structure

Prometheus
Padgham and
Winikoff [2005]

Requirement changes result in changes in scenarios, goals, and
potentially changes in interaction protocols and functionalities

MaSE DeLoach
[2004]

Requirement changes cut across goal hierarchy, use cases, sequence
diagrams, role models, and conversation diagrams

Amoeba Requirement changes yield changes in roles and changed ways to
fulfill commitments that are captured via composition axioms

A crucial distinguishing feature of our work is its foundation in commitments. Considering
commitments explicitly enables us to give processes a suitable and precise business meaning, which
is lacking in most approaches. Commitments are valuable because they support both flexibility and
compliance: agents may flexibly choose their actions as long as they comply with their commit-
ments. Traditional, low-level representations support compliance but only at the cost of flexibility.
Winikoff [2007] concurs that conventional message-oriented protocols lack business meaning, thus
leading to rigid implementations. Winikoff models commitments between agents to yield agent
implementations whose flexibility derives from being able to plan. Narendra and Orriëns [2007]
also use commitments to express functional requirements from which they derive service composi-
tions. Maamar et al. [2007] propose interactions to support design and development of composite
services. They separate service interactions into two layers: business logic and support, which is
similar in spirit to how Amoeba separates protocols from business logics of agents. These recent
works signal an increased interest in interactions and a recognition of commitments as a natural
abstraction to capture the essence of the interactions among autonomous parties.

Kongdenfha et al. [2006] outline a taxonomy of possible adaptations that (business process)
services might have to make to accommodate clients, but these adaptations are at the level of mes-
sages. For instance, a service might require only one of the many messages that a client sends to
achieve a business functionality (message merge); another kind involves adaptation of the type of an
incoming message to a type understood by a service (type mismatch). The adaptations themselves
are achieved using aspect-oriented programming (AOP) in the services. It would be interesting to
see such adaptations analyzed at the level of commitments. For example, a customer may discharge
a commitment to make a payment of $100 in five steps of $20 each. Either AOP or Winikoff’s
planning-based approach may be used for implementing such agents.

Service composition has been extensively studied. The orchestration approaches discussed
above mix interactions with local business logic, complicating reuse and adaptation of interactions.

34

OWL-S DAML-S [2002], which includes a process model for Web services, facilitates dynamic
composition. The Semantic Web Services Framework (SWSF) [2005] proposes an expressive for-
mal language and an ontology for modeling services. Similarly Web Services Modeling Ontology
(WSMO) [2004] employs a formal language and an ontology for modeling behavior of services and
mediators that facilitate interoperability among them. However, dynamic composition presumes
perfect markup and an ontological matching of the services being composed. By contrast, Amoeba
seeks only to guide a human designer in composing services. Although conceptually rich, both
of these are focused on the representation and reasoning about services rather than methodologies
for evolution of requirements and methodologies. Semantic Annotations for WSDL (SAWSDL)
[2007] is an approach for annotating and reasoning about the input, output, and meta-data of Web
services via description logic ontologies such as OWL. Our approach can benefit from SAWSDL
for handling the data heterogeneity of protocols.

Vitteau and Huget [2004] compose protocols from microprotocols in a bottom-up manner, but
only in limited ways, and do not support interleaving protocols. Mazouzi et al. [2002] compose
protocols in a top-down manner by associating refinements with abstract transitions in Colored
Petri Nets, but also do not support interleaving. By contrast, Amoeba provides composition axioms
that offer indirection, which enables us to arbitrarily compose protocols including by interleaving
them.

OMG’s Model-Driven Architecture (MDA) OMG [2006] promotes three kinds of models (from
higher to lower levels of abstraction): computation independent, platform independent, and platform
dependent. In MDA, development proceeds by transforming higher to lower models. Amoeba op-
erates on protocol-based, i.e., computation-independent, models, thus specializing MDA for cross-
organizational business processes. Krüger et al. [2006] motivate interaction patterns as first-class
modeling elements for all levels of abstraction in MDA. They treat interaction patterns as aspects
and explore the space of suitable service-oriented architectures. Being composable, protocols are
similar in spirit to aspects albeit with a business-level focus. Thus, the techniques proposed by
Krüger et al. can be extended for cross-organizational engagements by adopting protocols as as-
pects.

6.1 Software Requirements Evolution

The software engineering community has long studied the challenges of handling evolving require-
ments. The main distinguishing aspect of our work with respect to this body of work is that we
focus on business-level requirements pertaining to interactions among organizations. Existing ap-
proaches differ in the style of handling requirements evolution. Zowghi and Offen [1997] propose a
logical framework for reasoning about requirements evolution. They employ nonmonotonic reason-
ing and belief revision to relate successively refined requirement models. Similar to our approach,
a requirement model is a nonmonotonic theory. Etien and Salinesi [2005] address the evolution of
requirements where a change impacts multiple aspects of a system, such as its teams, engineering
domains, viewpoints, or components. The main challenge they address is that of maintaining consis-
tency between the various aspects as they evolve together. Of the three styles of handling evolution
of requirements that Etien and Salinesi describe, our approach expresses the evolution requirements
explicitly. However, neither of the above works focus on business-level interaction requirements
and it is not clear how they would treat these as first-class requirements. Unlike in our approach,
they present neither a methodology nor case studies.

35

Requirements evolution has been studied from the nonfunctional requirements perspective.
Chung et al. [1995] propose a model in which nonfunctional requirements are represented as goals,
which may be decomposed and analyzed in relation with one other. In addition, the model may
be systematically annotated with design decisions and rationales. An important feature of Chung
et al.’s model is that it captures the history of the evolution of requirements. Cleland-Huang et
al. [2005] propose an approach for understanding the impact of a functional requirement change
on nonfunctional requirements. The nonfunctional requirements and their interdependencies are
captured via a soft-goal interdependency graph. A probabilistic model is used to identify subgraphs
affected by a change. Although our emphasis is on business-level cross-organizational requirements
rather than nonfunctional intraorganizational requirements, our work can benefit both from main-
taining the history of the requirements evolution and from understanding the relationship between
the functional and nonfunctional requirements.

Several approaches emphasize different perspectives on requirements. Lormans [2007] pro-
poses a system for tracing requirements into other products of the software development life cycle
as a means of monitoring and managing requirements evolution. For end users, the system presents
different views on requirements depending on the perspective selected. Lam and Loomes [1998]
propose a conceptual model for requirement evolution, and a process that uses this model in ana-
lyzing changes. In particular, they classify requirement changes into four categories: environment,
requirements, viewpoint, and design. These roughly correspond to the three classes considered in
this paper. However, neither modeling abstractions nor comprehensive case studies are discussed.
Anderson and Felici [2001] argue for a product-oriented instead of a process-oriented requirements
evolution methodology. They seek to characterize industrial settings so that specific methodolo-
gies can be developed taking product features into account. They describe case studies where the
requirements are related not to business contracts but to safety critical features in avionics and secu-
rity in smart cards. Also, in all of these works, the focus is on the requirements of a single software
project rather than a cross-organizational information system.

Future Work

Amoeba introduces key computational abstractions and primitives with which to model processes
and their adaptations. This opens up a fruitful line of research for service-oriented computing. A
tool-suite to support the steps and techniques involved in Amoeba is essential. With tools, Amoeba
can be employed in practical settings and can be applied to handle requirement changes in the
context of various real-life processes. Such studies could uncover additional properties, benefits,
and potential pitfalls in the methodology.

Acknowledgments

We thank Nanjangud Narendra, Michael Winikoff, Pınar Yolum, and the anonymous reviewers for
helpful comments on previous versions of this paper.

36

References

Stuart Anderson and Massimo Felici. Requirements evolution from process to product oriented
management. In Proceedings of International Conference on Product Focused Software Process
Improvement, pages 27–41, 2001.

Federico Bergenti, Marie-Pierre Gleizes, and Franco Zambonelli, editors. Methodologies and Soft-
ware Engineering for Agent Systems. Kluwer, Boston, 2004.

BPEL. Web services business process execution language, version 2.0, July 2007. http://docs.oasis-
open.org/wsbpel/2.0/.

Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopolous. Tropos:
An agent-oriented software development methodology. Journal of Autonomous Agents and Multi-
Agent Systems, 8(3):203–236, May 2004.

Sinead Browne and Michael Kellett. Insurance (motor damage claims) scenario. Document Identi-
fier D1.a, CrossFlow Consortium, 1999. http://www.crossflow.org.

Christoph Bussler. The role of B2B protocols in inter-enterprise process execution. In Proceedings
of the 2nd International Workshop on Technologies for E-Services, volume 2193 of Lecture Notes
in Computer Science, pages 16–29, Berlin, 2001. Springer-Verlag.

CCalc. The causal calculator CCalc, 2004. http://www.cs.utexas.edu/users/tag/cc/.

Lawrence Chung, Brian A. Nixon, and Eric Yu. Using non-functional requirements to systemat-
ically support change. In Proceedings of the IEEE International Symposium on Requirements
Engineering, pages 132–139, 1995.

Jane Cleland-Huang, Raffaella Settimi, Oussama BenKhadra, Eugenia Berezhanskaya, and Selvia
Christina. Goal-centric traceability for managing non-functional requirements. In Proceedings
of the International Conference on Software Engineering, pages 362–371, 2005.

Khanh Hoa Dam and Michael Winikoff. Comparing agent-oriented methodologies. In Paolo
Giorgini, Brian Henderson-Sellers, and Michael Winikoff, editors, Agent-Oriented Information
Systems, volume 3030, pages 78–93, Berlin, 2004. Springer-Verlag.

DAML-S. DAML-S: Web service description for the semantic Web. In Proceedings of the 1st
International Semantic Web Conference (ISWC), volume 2342 of Lecture Notes in Computer
Science, pages 348–363, Berlin, July 2002. Springer-Verlag. Authored by the DAML Services
Coalition, which consists of (alphabetically) Anupriya Ankolekar, Mark Burstein, Jerry R. Hobbs,
Ora Lassila, David L. Martin, Drew McDermott, Sheila A. McIlraith, Srini Narayanan, Massimo
Paolucci, Terry R. Payne and Katia Sycara.

Scott A. DeLoach. The MaSE methodology. In Federico Bergenti, Marie-Pierre Gleizes, and
Franco Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, chap-
ter 6, pages 107–126. Kluwer, Boston, 2004.

Nirmit Desai and Munindar P. Singh. On the enactability of business protocols. In Proceedings of
the National Conference on Artificial Intelligence (AAAI), 2008. To appear.

37

Nirmit Desai and Munindar P. Singh. A modular action description language for protocol composi-
tion. In Proceedings of the National Conference on Artificial Intelligence (AAAI), pages 962–967,
2007.

Nirmit Desai, Ashok U. Mallya, Amit K. Chopra, and Munindar P. Singh. Interaction protocols as
design abstractions for business processes. IEEE Transactions on Software Engineering, 31(12):
1015–1027, December 2005.

Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. Business process adaptations via protocols.
In Proceedings of the 3rd IEEE International Conference on Services Computing (SCC), pages
103–110, Los Alamitos, 2006. IEEE Computer Society Press.

Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. Representing and reasoning about commit-
ments in business processes. In Proceedings of the National Conference on Artificial Intelligence
(AAAI), pages 1328–1333, 2007.

ebBP. Electronic business extensible markup language business process specification schema
v2.0.4, December 2006. docs.oasis-open.org/ebxml-bp/2.0.4/OS/.

Anne Etien and Camille Salinesi. Managing requirements in a co-evolution context. In Proceedings
of the International Conference on Requirements Engineering, pages 125–134, 2005.

Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hudson Turner. Non-
monotonic causal theories. Artificial Intelligence, 153(1-2):49–104, 2004.

S. D. P. Harker and K. D. Eason. The change and evolution of requirements as a challenge to
the practice of software engineering. In Proceedings of the IEEE International Symposium on
Requirements Engineering, pages 266–272, 1993.

Brian Henderson-Sellers and Paolo Giorgini, editors. Agent-Oriented Methodologies. Idea Group,
Hershey, PA, 2005.

Thomas Juan, Adrian Pearce, and Leon Sterling. ROADMAP: extending the Gaia methodology for
complex open systems. In Proceedings of the 1st International Joint conference on Autonomous
Agents and Multiagent Systems, pages 3–10, New York, 2002. ACM Press.

Woralak Kongdenfha, Régis Saint-Paul, Boualem Benatallah, and Fabio Casati. An aspect-oriented
framework for service adaptation. In Proceedings of the 4th International Conference on Service
Oriented Computing, pages 15–26, New York, 2006. ACM Press.

Ingolf H. Krüger, Reena Mathew, and Michael Meisinger. Efficient exploration of service-oriented
architectures using aspects. In Proceeding of the 28th International Conference on Software
Engineering, pages 62–71, Los Alamitos, 2006. IEEE Computer Society.

W. Lam and M. Loomes. Requirements evolution in the midst of environmental change: A managed
approach. In Proceedings of the Euromicro Conference on Software Maintenance and Reengi-
neering, pages 121–127, 1998.

Marco Lormans. Monitoring requirements evolution using views. In Proceedings of the European
Conference on Software Maintenance and Reengineering, pages 349–352, 2007.

38

Zakaria Maamar, Djamal Benslimane, and Quan Z. Sheng. Towards a two-layered framework for
managing web services interaction. In Proceedings of the 6th IEEE/ACIS International Confer-
ence on Computer and Information Science, pages 87–92, Los Alamitos, 2007. IEEE Computer
Society.

Ashok U. Mallya and Munindar P. Singh. Incorporating commitment protocols into Tropos. In
Jörg P. Müller and Franco Zambonelli, editors, Proceedings of the International Workshop
on Agent Oriented Software Engineering, volume 3950 of LNCS, pages 69–80, Berlin, 2006.
Springer-Verlag.

Hamza Mazouzi, Amal El Fallah Seghrouchni, and Serge Haddad. Open protocol design for com-
plex interactions in multi-agent systems. In Proceedings of the 1st International Joint Conference
on Autonomous Agents and MultiAgent Systems (AAMAS), pages 517–526, New York, July 2002.
ACM Press.

Nanjangud C. Narendra and Bart Orriëns. Modeling web service composition and execution via a
requirements-driven approach. In Proceedings of the ACM Symposium on Applied Computing,
pages 1642–1648, New York, 2007. ACM Press.

OMG. The Object Management Group’s Model Driven Architecture (MDA), 2006.
http://www.omg.org/mda/.

Lin Padgham and Michael Winikoff. Prometheus: A practical agent-oriented methodology. In Brian
Henderson-Sellers and Paolo Giorgini, editors, Agent-Oriented Methodologies, chapter 5, pages
107–135. Idea Group, Hershey, PA, 2005.

SAWSDL. Semantic Annotations for WSDL – SAWSDL, 2007.
http://www.w3.org/2002/ws/sawsdl/.

Munindar P. Singh. An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law, 7:97–113, 1999.

Munindar P. Singh and Michael N. Huhns. Service-Oriented Computing: Semantics, Processes,
Agents. John Wiley & Sons, Chichester, UK, 2005.

Munindar P. Singh, Amit K. Chopra, and Nirmit Desai. Commitment-based SOA. TR 2007-19,
North Carolina State University, March 2007.

Howard Smith and Peter Fingar. Business Process Management: The Third Wave. Megan-Kiffer
Press, Tampa, 2002.

Arnon Sturm and Onn Shehory. A comparative evaluation of agent-oriented methodologies. In
Federico Bergenti, Marie-Pierre Gleizes, and Franco Zambonelli, editors, Methodologies and
Software Engineering for Agent Systems, chapter 7, pages 127–150. Kluwer, Boston, 2004.

Jan Sudeikat, Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf. Evaluation of agent-
oriented software methodologies: Examination of the gap between modeling and platform. In
Paolo Giorgini, Jorg P. Müller, and James Odell, editors, Agent-Oriented Software Engineering,
volume 3382 of LNCS, pages 126–141, Berlin, 2004. Springer Verlag.

39

SWSF Committee. SWSF: Semantic web services framework (W3C submission), 2005.
http://www.daml.org/services/swsf/.

Quynh-Nhu Numi Tran and Graham C. Low. Comparison of ten agent-oriented methodologies. In
Brian Henderson-Sellers and Paolo Giorgini, editors, Agent-Oriented Methodologies, chapter 12,
pages 341–367. Idea Group, Hershey, PA, 2005.

C. J. van Aart, Jioi Chabera, Martin Dehn, Michal Jakob, Kristof Nast-Kolb, J. L. C. F. Smulders,
Patrick P. A. Storms, Camden Holt, and Malcolm Smith. Usecase outline and requirements.
Document Identifier D6.1, IST-CONTRACT Project, 2007. http://tinyurl.com/6adejz.

Benjamin Vitteau and Marc-Philippe Huget. Modularity in interaction protocols. In Frank Dignum,
editor, Advances in Agent Communication, volume 2922 of LNCS, pages 291–309, Berlin, 2004.
Springer-Verlag.

Michael Winikoff. Implementing commitment-based interaction. In Proceedings of the 6th In-
ternational Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pages
868–875, Columbia, SC, May 2007. International Foundation for Autonomous Agents and Mul-
tiAgent Systems.

Michael Winikoff, Wei Liu, and James Harland. Enhancing commitment machines. In Proceedings
of the 2nd International Workshop on Declarative Agent Languages and Technologies (DALT),
volume 3476 of LNAI, pages 198–220, Berlin, 2005. Springer-Verlag.

Michael Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, 2002.

WS-CDL. Web services choreography description language version 1.0, November 2005.
www.w3.org/TR/ws-cdl-10/.

WSMO Committee. WSMO: Web services modeling ontology, 2004.
http://www.wsmo.org/TR/d2/v1.2/.

Pınar Yolum and Munindar P. Singh. Flexible protocol specification and execution: Applying event
calculus planning using commitments. In Proceedings of the 1st International Joint Conference
on Autonomous Agents and MultiAgent Systems (AAMAS), pages 527–534, New York, July 2002.
ACM Press.

Eric Siu-Kwong Yu. Modelling strategic relationships for process reengineering. PhD thesis,
Canada, 1996.

Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing multiagent sys-
tems: The Gaia methodology. ACM Transactions on Software Engineering Methodology, 12(3):
317–370, 2003.

Didar Zowghi and Ray Offen. A logical framework for modeling and reasoning about the evo-
lution of requirements. In Proceedings of the IEEE International Symposium on Requirements
Engineering, pages 247–257, 1997.

40

A Protocol Listings: May Be Placed Online

This section presents complete specifications of the protocols referenced above.

A.1 Claim Reception and Verification (Rec)

A scenario of Rec is shown in Fig. 6. REC2 states that the CALL CENTER sending authReq should
count as meeting the precondition of the assumed commitment of REC1. Both the success and failure
of authentication count as authentication responses (REC3 and REC4). When parameters are omitted,
all parameters of the message on the left are bound to the corresponding parameters of the message
on the right.

REC1 . start→ CC(P, C, reqAuth(claimNO, policyNO), authResponse(claimNO, policyNO))

REC2 . authReq(claimNO, policyNO, info)→ reqAuth(claimNO, policyNO)

REC3 . authReq(claimNO, policyNO, info) ∧ authOK(claimNO, policyNO)→
authResponse(claimNO, policyNO)

REC4 . authReq(claimNO, policyNO) ∧ authNOK(claimNO, policyNO)→
authResponse(claimNO, policyNO)

REC5 . report.policyNO ; authReq.policyNO

REC6 . authReq ; authOK

REC7 . authOK ; approved

REC8 . authReq ; authNOK

REC9 . authNOK ; denied

REC10 . approved ; notification

A.2 Administering Repairs (Rep)

A scenario of Rep is shown in Fig. 9. The roles of OWNER and REPAIRER would be adopted by
the policy holders and the mechanics, respectively. The OWNER requesting repairs counts as her
committing to the mechanic to acknowledge any repair services provided (REP1). The REPAIRER

completing the repairs counts as him providing the repair service (REP2). The OWNER responding
either positively or negatively counts as her affirming the provision of repair services (REP3 and
REP4). The value of claimNO flows from repairReq to repaired and subsequently to repairOK or
repairNOK (REP6 and REP7). Messages repairOK and repairNOK are mutually exclusive (REP8).

REP1 . repairReq(claimNO)→ CC(O, Rp, repairServed(claimNO), affirm(claimNO))

REP2 . repaired(claimNO) ∧ repairReq(claimNO)→ repairServed(claimNO)

REP3 . repairOK(claimNO, approval) ∧ repaired(claimNO)→ affirm(claimNO)

REP4 . repairNOK(claimNO) ∧ repaired(claimNO, policyNO)→ affirm(claimNO)

REP5 . repairReq ; repaired

41

REP6 . repaired.claimNO ; repairOK.claimNO

REP7 . repaired ; repairNOK

REP8 . repairOK XOR repairNOK

A.3 Handling Filed Claims (Han)

A scenario of Han is shown in Fig. 9. The roles of HANDLER, GARAGE, and ASSESSOR would
be adopted by Lee CS, the mechanics, and the inspectors, respectively. The assumed commitment
to respond to inspection requests would have been created when the inspector and Lee CS formed
their relationship (HAN1).

The GARAGE estimating a price for repairs counts as a commitment to perform repairs if the
HANDLER accepts the estimate (HAN2). The HANDLER may ask the ASSESSOR to assess the cost
of repairs and the value of the car, which counts as a request for inspection (HAN3). The ASSESSOR

responding with the necessary assessments counts as an inspection response (HAN4). The HANDLER

may accept to deal with the mechanic on a previous estimate. Doing so creates a commitment for
the HANDLER to pay for the completed repairs (HAN5). Also, if the price of the deal matches that
of the estimate, then a deal counts as acceptance of the estimate (HAN6). The mechanic performs
repairs, obtains approval from the policy holder, and sends a bill to the consultant. Billing on a
previously accepted estimate counts as completing the repairs (HAN7). The HANDLER’s paying the
bill counts as payment for the repairs (HAN8).

The value of claimNO flows from estimate to deal or noDeal, and to inspect (HAN9, HAN10, and
HAN11). Because deal does not depend on inspect, requesting inspections is not always necessary.
The price in the bill must flow from the price specified in the deal (HAN14). Similarly, the paid price
must be the same as the billed price (HAN16). Other data flows are self explanatory. Finally, deal
and noDeal are mutually exclusive (HAN17).

HAN1 . start→ CC(A, H, inspectReq(claimNO), inspectRes(claimNO))

HAN2 . estimate(claimNO, price)→
CC(G, H, acceptEstimate(claimNO, price), performRepair(claimNO))

HAN3 . inspect(claimNO)→ inspectReq(claimNO)

HAN4 . inspected(claimNO, cost, carValue) ∧ inspect(claimNO)→ inspectRes(claimNO)

HAN5 . deal(claimNO, price)→ CC(H, G, performRepair(claimNO), payment(price))

HAN6 . deal(claimNO, price) ∧ estimate(claimNO, price)→ acceptEstimate(claimNO, price)

HAN7 . bill(claimNO, price, approval) ∧ deal(claimNO, price)→ performRepair(claimNO)

HAN8 . pay(claimNO, price) ∧ bill(claimNO, price, approval)→ payment(price)

HAN9 . estimate ; deal

HAN10 . estimate ; noDeal

HAN11 . estimate.claimNO ; inspect.claimNO

HAN12 . inspect.claimNO ; inspected.claimNO

42

HAN13 . deal.claimNO ; bill.claimNO

HAN14 . deal.price ; bill.price

HAN15 . bill.claimNO ; pay.claimNO

HAN16 . bill.price ; pay.price

HAN17 . deal XOR noDeal

A.4 Monitoring (Mon)

A scenario of Mon is shown in Fig. 9. The roles of COMPANY and consultant would be adopted by
AGFIL and Lee CS, respectively. The COMPANY assigns a case to the CONSULTANT who after tak-
ing necessary steps, returns with an invoice. The COMPANY authorizes payment for the consulting
services provides by the CONSULTANT.

The assumed commitment represents an agreement between the COMPANY and the CONSUL-
TANT reached a priori (MON1).

The CONSULTANT returning back with an invoice of a handled claim counts as the CONSUL-
TANT providing the consulting service (MON2). The COMPANY authorizing a payment to the CON-
SULTANT counts as a payment for the consulting service (MON3). The values of claimNO and pol-
icyNO flows from handle to invoice, and from invoice into authorizePay (MON4, MON5, MON6, and
MON7). Also, the value of quote flows from invoice into authorizePay (MON8).

MON1 . start→ CC(Com, Con, consultingService(claimNO), payForService(claimNO))

MON2 . handle(claimNO) ∧ invoice(claimNO, quote, approval)→ consultingService(claimNO)

MON3 . authorizePay(claimNO, quote) ∧ invoice(claimNO, quote, approval)→
payForService(claimNO)

MON4 . handle.claimNO ; invoice.claimNO

MON5 . handle.policyNO ; invoice.policyNO

MON6 . invoice.claimNO ; authorizePay.claimNO

MON7 . invoice.policyNO ; authorizePay.policyNO

MON8 . invoice.quote ; authorizePay.quote

A.5 Partial insurance claim processing (Picp)

Picp is composed of Bas, Mon, Han, and Rep. The following role identifications are self explana-
tory.

PICP1 . Picp.Insured .= Bas.Insured, Rep.Owner

PICP2 . Picp.Insurer .= Bas.Insurer, Mon.Company

PICP3 . Picp.CallCenter .= Bas.CallCenter

PICP4 . Picp.Consultant .= Han.Handler, Mon.Consultant

43

PICP5 . Picp.Repairer .= Rep.Repairer, Han.Garage

PICP6 . Picp.Assessor .= Han.Assessor

The INSURED requesting repairs from a REPAIRER counts as a request for repair service (PICP7).
INSURED approving the repairs counts as provision of claim service (PICP8). The value of claimNO
flows from approved into repairReq and from notification into handle (PICP10 and PICP9). Similarly,
the claimNO in estimate gets its value from the claimNO in repairReq (PICP11).

PICP7 . Rep.repairReq(claimNO)→ Bas.serviceReq(claimNO)

PICP8 . Rep.repaired(claimNO) ∧ Rep.repairOK(claimNO, approval)→ Bas.claimService(claimNO)

PICP9 . Bas.notification.claimNO ; Mon.handle.claimNO

PICP10 . Bas.approved.claimNO ; Rep.repairReq.claimNO

PICP11 . Rep.repairReq.claimNO ; Han.estimate.claimNO

Before the REPAIRER performs repairs, the repair estimate must have been accepted by the CON-
SULTANT (PICP12). Similarly, before the REPAIRER sends a bill to the CONSULTANT, the approval
of repairs from the INSURED must have been acquired (PICP13). Finally, the CONSULTANT must
have received a bill from the REPAIRER before he sends an invoice to the INSURER (PICP14).

PICP12 . Han.deal ≺ Rep.repaired

PICP13 . Rep.repairOK ≺ Han.bill

PICP14 . Han.bill ≺Mon.invoice

A.6 Pay cash and scrap car (Pcsc)

A scenario of Pcsc is shown in Fig. 10. The roles of OWNER, COMPANY, and CONSULTANT would
be adopted by the policy holders, AGFIL, and Lee CS, respectively.

The COMPANY offering cash in lieu of repairs creates a commitment to pay the offered amounts
as settlement if the offer is accepted (PCSC1). Similarly, the COMPANY notifying the OWNER of
scrapping of the car and promising settlement money creates a commitment to pay the value of
the car as settlement (PCSC2). The OWNER accepting the offer counts as an acceptance of the cash
offer (PCSC3). The COMPANY paying the settlement amount counts as achievement of a settlement.
The data flows are self-explanatory. Finally, the CONSULTANT can either advise to scrap the car or
advise to pay cash in lieu of repairs, but not both (PCSC11). Similarly, the cash offer can either be
accepted or rejected, but not both (PCSC12).

PCSC1 . cashOffer(claimNO, amount)→ CC(Com, O, acceptCash(claimNO), settlement(amount))

PCSC2 . adviseScrap(claimNO, value)→ C(Com, O, settlement(value))

PCSC3 . accept(claimNO, amount) ∧ cashOffer(claimNO, amount)→ acceptCash(claimNO)

PCSC4 . settle(claimNO, amount) ∧ accept(claimNO, amount)→ settlement(amount)

PCSC5 . settle(claimNO, value) ∧ adviseScrap(claimNO, value)→ settlement(value)

44

PCSC6 . adviseScrap ; settle

PCSC7 . adviseCash ; cashOffer

PCSC8 . cashOffer ; accept

PCSC9 . accept ; settle

PCSC10 . cashOffer ; reject

PCSC11 . adviseScrap XOR adviseCash

PCSC12 . accept XOR reject

A.7 Outsourced insurance claim processing (Out)

A scenario of Out is shown in Fig. 12. The roles of INSURED, INSURER, CALL CENTER, and CON-
SULTANT would be adopted by the policy holders, AGFIL, Europ Assist, and Lee CS respectively.
In Out, the details of how the CONSULTANT handles claims are hidden as business logic.

The role identification axioms are self explanatory. The CONSULTANT returning back with an
invoice of a handled claim counts as provision of the claim service to the INSURED (OUT5). The
invoice is signed with an approval by the INSURED. The INSURED asking the CONSULTANT to
handle a claim counts as a request for repair services (OUT6). The condition serviceReq affects the
commitments created via Ins. The data flows are self explanatory.

OUT1 . Out.Insured .= Bas.Insured

OUT2 . Out.Insurer .= Bas.Insurer, Mon.Company

OUT3 . Out.CallCenter .= Bas.CallCenter

OUT4 . Out.Consultant .= Mon.Consultant

OUT5 . Mon.handle(claimNO) ∧Mon.invoice(claimNO, quote, approval)→
Bas.claimService(claimNO)

OUT6 . Mon.handle(claimNO)→ Bas.serviceReq(claimNO)

OUT7 . Bas.approved.claimNO ; Mon.handle.claimNO

OUT8 . Bas.approved.policyNO ; Mon.handle.policyNO

A.8 Fraudulent Claims Detection (Fra)

A scenario of Fra is shown in Fig. 13. The roles of OWNER, COMPANY, CONSULTANT, and ASSES-
SOR would be adopted by the policy holders, AGFIL, Lee CS, and the inspectors, respectively. Due
to the absence of indigenous commitments, no message axioms are needed. The value of claimNO
flows from adviseFraud into fraudulent, and from fraudulent into fraud.

FRA1 . adviseFraud.claimNO ; fraudulent.claimNO

FRA2 . fraudulent.claimNO ; fraud.claimNO

45

