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ABSTRACT
The problem of decentralized data sharing is relevant for a
wide range of applications and is still a source of major the-
oretical and practical challenges, in spite of many years of
sustained research in information integration. We focus on
the challenge of efficiency of query evaluation in information-
integrations systems, with the objective of developing query-
processing strategies that are widely applicable and easy to
implement in real-life applications. In our algorithms we
take into account important features of today’s data-sharing
applications, namely: XML as likely interface to or repre-
sentation for data sources; potential for information overlap
across data sources; and the need for inter-source processing
(i.e., joins of data across data sources) in many applications.

Our proposed approaches are applicable both to the origi-
nal stored data and to materialized views, including restruc-
tured views, which are a framework for representing, e.g.,
the pivot operation available in many database-management
systems. To the best of our knowledge, our methods are the
first to account for the practical issues of information over-
lap across data sources and of inter-source processing. While
most of our algorithms are platform- and implementation-
independent, we also propose XML-specific optimization
techniques that allow for system-level tuning of query-
processing performance. Finally, using real-life datasets and
our implementation of an information-integration system
shell, we provide experimental results that demonstrate that
our algorithms are efficient and competitive in the infor-
mation-integration setting.

1. INTRODUCTION
The need for decentralized data sharing arises naturally in

a wide range of applications, including enterprise data man-
agement, scientific projects undertaken across universities
or research labs in domains such as biology and astronomy,
and data sharing among governmental databases. Histor-
ically, significant research effort has been directed toward
information-integration systems that query data sources
through a single central point with a fixed mediated schema
[39]. In the mediator-based framework, the need to establish
the mediated schema and translation rules, or mappings, be-
tween the data sources and the central mediator is a major

bottleneck in integration efforts for real-life applications [37].
Peer data-management systems [18] address some aspects

of this schema-mediation problem by having physical peers
use agreed-on local mappings between their schemas. At
the same time, the need to compose peer-to-peer schema
mappings in query evaluation may result in inferior query-
processing efficiency. (Please see [37] and Section 5 for the
details.) On the other hand, query processing in mediator-
based information-integration systems is typically addressed
in research literature at the level of rewriting queries posed
on the mediator using the given mappings (see, e.g., [39]),
rather than at the level of providing query-execution strate-
gies that would be efficient in implemented systems.

Systems built for real-life applications provide further ev-
idence of the importance of the query-processing challenge
in information integration. For instance, many ontology-
based [30] information-integration systems [14, 21, 29, 33]
use the “materialization approach,” by importing into a sin-
gle central data repository the information from all the data
sources, usually in the form of RDF or OWL data, and then
use Semantic-Web [35] tools and languages to give users ac-
cess to the information accumulated in such a central data
warehouse. Other such systems evaluate queries by sim-
ply identifying relevant sources and processing the query on
each source independently. Note that both approaches as-
sume that the problem of establishing mappings between the
data sources and the mediator has been solved successfully.

In general, there could be a number of ways to process
user queries, with widely different performances. No single
query-processing strategy would be optimum for all queries
and cases. Rather, an intelligent query-optimization ap-
proach would be to be able to choose from a number of alter-
natives. In this paper we focus on the problem of efficiency of
query evaluation in information-integrations systems, with
the objective of developing query-processing strategies that
are widely applicable and easy to implement in real-life ap-
plications. In our algorithms we take into account the follow-
ing important features of today’s data-sharing applications:

• XML as representation for data sources: The recent
advent of XML as a standard for online data inter-
change (and perhaps even for data storage, see, e.g.,
the datasets of [10, 36]) holds much promise toward
promoting interoperability and data integration.

• Overlapping information in data sources: In many prac-
tical applications (e.g., banking or medical information



systems) data sources may overlap on the data they
store, such as information about user accounts in indi-
vidual bank branches.

• Inter-source processing: Some applications (e.g., bank-
ing or data sharing among governmental agencies) re-
quire evaluation of queries that involve joins of data
stored across data sources.

While our theoretical results and most of our proposed tech-
niques are implementation neutral and thus applicable in a
variety of settings for information-integration systems, we
are also introducing platform-specific approaches (such as
our semantic optimization for XQuery1 in Section 2.5) that
allow for system-level tuning of query-processing performance.

To compare and rate the proposed approaches, we have
obtained experimental results (see Section 4) using our in-
formation-integration system shell [28] that incorporates an
implementation of all the algorithms and optimizations pro-
posed in this paper. This software system enables interac-
tion between (i) data sources that store data using the XML
data model, and (ii) relational mediators whose schemas
conform to the Semantic Model introduced in [22]. In the
semantic-model approach, the data at each source are viewed
as a collection of (logical) binary relations, which is called
semantic-model view. (See Appendix B for illustrative ex-
amples.) To include a data source in the integration effort,
the source owner provides mappings from the source data
to the semantic-model view. The semantic-model approach
is consistent with recent work on large-scale information in-
tegration [13, 25], as well as with approaches based on on-
tological modeling [29, 30] in the Semantic-Web initiative.
For methods for building source-to-mediator mappings in
this setting, we refer the reader to [11, 12, 32] and to refer-
ences therein. Our system can also serve as a building block
in a three-tier architecture [28] for information integration,
which is the subject of our ongoing work. The purpose of the
architecture is to decouple query processing and optimiza-
tion into “intra-coordinator processing” (largely covered in
this paper) and “inter-coordinator processing” (conceptually
analogous to query processing in peer-to-peer systems), thus
keeping the optimization choices relatively local and improv-
ing the overall query-processing performance of the system.

Our specific contributions are as follows:
1. We propose query-processing algorithms for informa-

tion integration; the algorithms do not involve build-
ing source-to-mediator mappings (in contrast with the
methods of item 3 here), and are platform- and im-
plementation-independent. To the best of our knowl-
edge, our methods are the first that account for infor-
mation overlap and for inter-source processing.

2. We present theoretical results that allow for further re-
duction of inter-source processing by using information
about integrity constraints in the data sources.

3. We develop an end-to-end suite of algorithms for effi-
cient query processing in presence of materialized re-
structured views [4] (as exemplified by, e.g., operation
unfold, or pivot [7, 24]); the algorithms are applica-
ble to views materialized in both mediators and data
sources.

4. We propose XML-specific optimization techniques that
allow for system-level tuning of query-processing per-
formance.

1Our proposed semantic-optimization techniques are also
more widely applicable to general XQuery optimization.

5. Using real-life datasets and our implementation of an
information-integration system shell [28], we report
experimental results that demonstrate that our algo-
rithms are efficient and competitive.

The remainder of the paper is structured as follows: In the
main text, we first describe our basic query-processing algo-
rithms in Section 2. Then, Section 3 introduces algorithms
using materialized restructured views. Section 4 presents
our experimental results; we conclude with an overview of
related work in Section 5. Appendix A presents our formal
results, while Appendix B illustrates the semantic-model ap-
proach [22] adopted in our implementation [28].

2. QUERY-PROCESSING ALGORITHMS
In this section we present our basic query-processing algo-

rithms for information integration. These algorithms are ap-
plicable both to the original stored data (in the data sources)
and to materialized views (either in the data sources or in
the mediator), as long as all the relevant source-to-mediator
mappings have already been constructed. (Contrast this
with the approaches presented in Section 3.) All our al-
gorithms, with the exception of semantic optimization for
XQuery (see Section 2.5), are platform- and implementation-
independent. To the best of our knowledge, our methods are
the first that account for information overlap across data
sources, as well as for inter-source processing.

We also introduce theoretical results that allow for further
reduction of inter-source processing by using information
about integrity constraints in the data sources. Specifically,
these results allow us (1) to determine when no inter-source
processing is needed, and, (2) in case inter-source processing
cannot be avoided, to determine minimal equivalence sets of
subqueries that are adequate to provide the complete answer
to a user query. Please see Appendix A for the details.

2.1 The Materialization Approach
This is the base approach against which we evaluate other

query-processing strategies. In the simple materialization
approach, we precompute those mediator-based data that
are relevant to the user query, and execute the query on the
materialized data. Example 1 illustrates the approach.

Example 1. Consider a system with four information
sources and a mediator. Suppose query Q = ΠB,C σP (r !
s) involves relations r(A, B) and s(A, C) in the mediator
schema, with selection condition P . Assume XML data
sources; Figure 1 shows a small part of two of the sources.
Note that the sources have different schemas.

... ...
<X> <Z>

<A>a1</A> <C>c3</C>
<B>b1</B> <W>
<Y> <A>a2</A>

<C>c1</C> </W>
<C>c2</C> </Z>

</Y> <Z>
</X> <C>c4</C>
<X> <W>

<A>a2</A> <A>a3</A>
<B>b2</B> <B>b3</B>

</X> </W>
... </Z>

...
Source 1 Source 2

Figure 1: Part of information in two data sources.



In the materialization approach, we create two material-
ized relations (fragments) for r(A, B) and s(A, C) in each
source. The conditions of predicate P that involve only r or
s are enforced at this point. The queries to create these frag-
ments are generated using the mapping rules for each source.
The materialized relations (r1 and s1 for Source 1, r2 and s2

for Source 2) are sent to the mediator. The mediator merges
these relations and executes the user query on them.

2.2 Subquery-Based Approach
This approach is based on generating and executing local

and inter-source subqueries for the user query, and merging
their results to obtain the query answer. A local subquery is
executed on data from a single source, while an inter-source
subquery is executed on data from multiple sources.

Example 2. Consider the user query ΠB,C σP (r "# s) of
Example 1. We have (up to) 42 = 16 subqueries.2 Only four
of these subqueries, ΠB,C σP (ri "# si), i = 1, . . . , 4, are local;
the remaining twelve are inter-source subqueries. The local
subqueries are translated to queries on the source schemas
and executed locally; the results are sent to the mediator. For
an inter-source subquery such as ΠB,C σP (r1 "# s2), either
the data for r1 is sent to Source 2, or the data for s2 is
sent to Source 1. (We have implemented in [28] algorithms
for data transmission and subquery execution for XML data
sources.) Finally, the mediator merges all partial results in
order to obtain the final answer to the user query.

Algorithm 1 provides the specific pseudocode for the
XQuery version of generating inter-source subqueries.

Algorithm 1: Inter-source subquery generation
input : User query Q, set of source-to-mediator mappings
output: Inter-source subquery(XQuery) Q′

foreach predicate in Q do1
create one variable p for predicate, specifying data locations;2
for each attribute in predicate, create one variable using p;3

end4
construct a FOR clause based on the above variables;5

copy the WHERE clause from Q into Q′;6
replace binary predicates in the WHERE clause with the7
corresponding variables in the FOR clause;
foreach head in Q’s head elements do8

generate its RETURN string with the corresponding9
variables in the FOR clause;

end10

concatenate the FOR, WHERE, and RETURN clauses;11
return XQuery Q′ with FLWOR expressions;12

2.3 The Optimized-Subquery Approach
The optimized-subquery approach uses our formal results

to eliminate, to the extent possible, inter-source processing.
Based on key and foreign-key constraints that are relevant
to the query, all or some of inter-source subqueries may be
redundant and will not be evaluated. The savings can be
substantial; for instance, given a query involving k mediator-
based relations in a system with n data sources, there are
only n local subqueries, while the number of inter-source
subqueries can be as large as nk − n. The details are pre-
sented in Appendix A.

2If source i has no data for relation r then all subqueries
involving fragment ri are empty and need not be executed.

Example 3. In the setting of Example 2, suppose that
attribute A is the key for r and that a foreign-key con-
straint holds from s.A to r.A. Then, by Theorem 1 (see Ap-
pendix A), no inter-source processing is needed. This reduces
the processing from sixteen to four (all local) subqueries that
are translated and executed locally on the data sources.

2.4 The Wrapper Approach
In the wrapper approach, we generate only one local query

per data source; the query extracts from the source the min-
imum amount of information that is needed to answer the
user query. We call this the“wrapper”approach because this
extraction can be viewed as a (query-specific) wrapper that
collects the needed information from each source. Compared
to the approaches based on subqueries (Sections 2.2–2.3),
the information extracted from each source in the wrapper
approach is richer than the result of the local subquery on
the same source, thus making it possible to obtain the full
answer to the user query by further processing. Intuitively,
the information collected by the local (wrapper) query cor-
responds to the full outer-join of the relations involved; see
Example 4 for a more detailed discussion. In a large class
of applications, an efficient chase-based algorithm [38] can
be applied to the extracted information to obtain the full
answer to the user query.

Algorithm 2: The Wrapper Approach
input : User query, set of sources Srcs and their mappings
output: Single XML document Doc

foreach source in Srcs do1
create a local subquery s for source;2
execute s locally, then send result to the mediator;3

end4

merge the local results at the mediator;5
if isInterSourceProcessingNeeded() then6

chaseSteps();7
end8

eliminate duplicates in the query answer;9
save the final answer into XML document Doc;10
return Doc;11

Example 4. Consider the user query ΠB,C σP (r "# s) of
Example 2. Suppose that A is the key of r, but no foreign-key
constraint holds from s to r (thus, according to Theorem 2 of
Appendix A, inter-source processing is needed.) In the wrap-
per approach, each source i generates a relation ti(A, B, C)
corresponding to the full outer-join of ri and si and sends
it to the mediator. The mediator combines there relations,
applies the chase, and enforces the query conditions and pro-
jections. In our example, Source 1 (see Figure 1) has the
following tuples (among others): (a1, b1) and (a2, b2) for
r1, and (a1, c1) and (a1, c2) for s1. Hence t1 contains (a1,
b1, c1), (a1, b1, c2), and (a2, b2, null). Source 2 has tu-
ple (a3, b3) for r2 and tuples (a2, c3) and (a3, c4) for s2.
Then t2 contains (a2, null, c3) and (a3, b3, c4). The re-
sult of unioning t1 and t2 and chasing with respect to the
key constraint generates a new tuple (a2, b2, c3) (among
others) in the result. The final step is to enforce predicate
P and to project onto output attributes B, C. The answer
contains (b2, c3) (unless filtered out by P ).

Note that in the subquery-based approaches (Sections 2.2–
2.3), the answer (b2, c3) of Example 4 is generated by inter-
source subquery ΠB,C σP (r1 "# s2). Thus, while executing



only local queries, the wrapper approach is able to generate
at the mediator the results of inter-source subqueries.

Algorithm 2 provides the pseudocode for the wrapper ap-
proach for XML data sources. Function isInterSourcePro−
cessingNeeded() is based on our formal results (see Ap-
pendix A), and function chaseSteps() is based on the results
described in [38].

2.5 Semantic Optimization for XQuery
In the approaches presented in Sections 2.2–2.4, the sys-

tem generates queries to be executed on local data (e.g.,
XQuery queries on XML data). In our implementation frame-
work of [28], user queries tend to have a relatively large num-
ber of joins of binary relations in the semantic-model view
(see Appendix B for illustrative examples). When the above
translation algorithms are adapted to this setting, they cre-
ate one variable in the XQuery query for each binary relation
in the user query. Our platform-specific semantic optimiza-
tion rewrites XQuery queries into more efficient equivalent
queries with fewer joins and variables. The algorithm uses
information from mapping rules and from key constraints of
the binary relations in the semantic model. Instead of cre-
ating one variable for each binary relation in the user query,
the new algorithm generates a single variable for all binary
relations that have a common “glue” variable (Appendix B)
in their mappings and the same key. Consider the following
illustration of our semantic-optimization rewriting process.

Example 5. Suppose an application involves multiple data
sources with information on stocks (see Figure 2 and Sec-
tion 4 for the background). The semantic-model view for
this application contains binary relations k-ticker, k-year,

k-month, k-day, k-price, k-priceType, where k is the unique
key. Each relation name refers to a nonkey stock attribute.
For example, k-ticker has two attributes: k is a unique key,
and ticker is the ticker (stock) id. For each stock, four price
types are recorded: open, close, high, and low. A mapping
rule for k-ticker in an XML source could be:

k-ticker($X, $Y) <- /stocks/stock $G,
$G/@uid $X, $G/ticker $Y

As an example for the improvement obtained by seman-
tic query rewriting, consider a user query that produces the
average closing price for IBM in October 2005. This query
uses five of the above binary relations, and a corresponding
XQuery will have five variables on the XML stocks docu-
ment. But since these five binary relations have the common
glue variable /stocks/stock and the same key k, we would
obtain the following local subquery with just one variable:

LET $br := /stocks/stock[year=2005 and month=’Oct’ and
ticker=’IBM’ and prices/priceType = 1 ]

RETURN avg($br/prices/price)

The effect of our semantic optimization, as demonstrated
by the experimental evaluation in Section 4, can be signifi-
cant (up to two orders of magnitude for certain queries).

2.6 Merging XML Data
Given two or more XML documents on the same schema,

our merge algorithm produces one XML document on the
same schema; the document contains all the data from the
input documents. In case merging the input documents is
not possible, the algorithm outputs the discrepancies that
hindered the merge operation. The algorithm can be used as
a subroutine in platform-specific instantiations of the other

Algorithm 3: The Merge Algorithm
input : XML documents and their schemas
output: Single XML document D

parseSchema(fileStr);1
D = mergeAll(dirStr);2

Procedure parseSchema(schemaStr)3
retrieve keys, unique nodes and other constraints from schema;4
treewalk all elements from root and classify elements into types5
(single required leaf, single optional leaf, etc...);

Function mergeAll(dirStr)6
foreach XML in the directory dirStr do7

DocumentnextDoc = getDoc(XML);8
rsDoc = mergeTwoDocs(rsDoc, nextDoc);9

end10
write rsDoc into an XML document D;11
return D12

Function mergeTwoDocs(rsDoc, nextDoc)13
get root element root1 from rsDoc;14
get root element root2 from nextDoc;15
foreach element under root1 do16

mergeElements(element, root2, rsDoc, nextDoc);17
end18
return rsDoc;19
Procedure mergeElements(e1, eleInNextDoc, rsDoc, nextDoc)20
determine e1’s type typeV al;21
switch typeVal do22

case Single Required Leaf23
check existence of corresponding element e2 in nextDoc;24
compare e1’s value with e2’s value;25
if e2 does not exist or same value as e1: print ERROR;26
break;27

end28
case Single Optional Leaf29

if e2 exists, compare e1’s value with e2’s value;30
break;31

end32
case Single Required NonLeaf33

check existence and size of eleInNextDoc in nextDoc;34
ele2 = eleInNextDoc’s child;35
foreach element under e1 do36

mergeElements(element, ele2, rsDoc, nextDoc);37
end38
break;39

end40
...41
otherwise42

print ERROR43
break;44

end45
end46

algorithms proposed in this section. The pseudocode for
merging XML data is shown in Algorithm 3; due to the
space limit for this paper, the pseudocode omits some cases
considered by the algorithm.

As an example, consider several XML documents of per-
sonnel information. Certain natural consistency constraints
are expected to hold on this kind of data. (For example, each
individual has a social security number, SSN, that uniquely
identifies the person’s name and date of birth. A person may
have multiple phone numbers, but the date of birth should
be unique, etc.) The output of running the merge algorithm
on such personnel data should contain all individuals men-
tioned in the input files. In addition, the information for
one individual (determined by the same SSN in different in-
puts) is combined in the output document in the intuitive
way: The date of birth of the same individual from differ-
ent inputs, if known, should be identical. If not, merge is
not possible and a discrepancy in the date of birth of this
individual is identified. Further, phone numbers from mul-
tiple inputs for the same individual are all included in the



merged information for that individual. In our information-
integration system shell [28], merge is halted if a discrepancy
is detected. Many other approaches are possible, including
approaches that use information about the degree of reliabil-
ity of sources to guide the merge in presence of discrepancies,
and can be incorporated with relative ease.

3. QUERY OPTIMIZATION USING MATE-
RIALIZED RESTRUCTURED VIEWS

In this section we present an end-to-end suite of algo-
rithms for efficient query processing in presence of material-
ized restructured views [4].3 An important part of the suite
is an algorithm for providing mappings between the defini-
tions of restructured views and the mediator schema; the
algorithm uses as inputs the mappings that are available to
the algorithms of Section 2. All the algorithms presented
in this section are applicable to views materialized both in
mediators (resulting in a version of the materialization ap-
proach of Section 2.1) and in data sources (resulting in a ver-
sion of the subquery-based approaches of Sections 2.2–2.3).
Our experimental results demonstrate that using restruc-
tured views may result in orders-of-magnitude improvement
in query-processing time for certain classes of queries.

3.1 Restructured Views: An Overview
The concepts of restructuring and restructured views stem

from a number of projects, including those described in [16,
20, 23]. In a restructured view, some data from the base ta-
ble(s) are represented as metadata — that is, schema infor-
mation, such as table and attribute names — or vice versa.
Intuitively, by moving data values that appear frequently
and repeatedly in a relation to metadata in the view, we
can represent the information in the view more compactly
than via regular view. This size reduction, together with the
physical clustering that results from the restructuring, may
yield impressive improvements in query-processing time [4].

Consider, for example, the Stocks relation of Figure 2,
which lists information about stocks over a number of years.
Figure 3 shows stocksByTicker, a restructured view which
represents the same information as Stocks, but the tickers
(ibm, msft, ... , dell) now play the role of attribute names,
and the stock values for a given price type are organized
“horizontally” into a single tuple for each day. Note that
each tuple of the view stocksByTicker represents the in-
formation from many tuples of the base table Stocks. For
example, if the Stocks table stores information about 20
stock tickers, then each tuple of stocksByTicker represents
the same information as the corresponding 20 tuples in the
Stocks table. This form of restructuring has been called the
unfold (or pivot) operation [7, 24]. Another form of restruc-
turing, known as the split operation [24], is analogous to
horizontal partitioning based on the values of an attribute.

3.2 Using Restructured Views in Information
Integration

We now discuss our approach to integrating restructured
views into the information-integration framework.

3.2.1 Defining restructured views
Restructured views can be defined by s-LOG mappings [4]

from the mediator schema. For example, the stocksByTicker

view of Figure 3 can be defined as:
3[4] focuses on restructured views in centralized databases.

ticker year month day priceType price
ibm 2005 Oct 25 open 91.43
ibm 2005 Oct 25 close 92.14
ibm 2005 Oct 25 low 91.06
ibm 2005 Oct 25 high 92.55
· · · · · · · · · · · · · · · · · ·
msft 2005 Oct 25 open 88.92
msft 2005 Oct 25 close 90.12
· · · · · · · · · · · · · · · · · ·

Figure 2: Base relation Stocks.

year month day priceType ibm msft · · · dell
2005 Oct 25 open 91.43 88.92 · · · 56.27
2005 Oct 25 close 92.14 90.12 · · · 55.78
2005 Oct 25 low 91.06 88.58 · · · 53.47
2005 Oct 25 high 92.55 91.63 · · · 56.55
· · · · · · · · · · · · · · · · · · · · ·

Figure 3: Restructured view stocksByTicker based
on the Stocks data of Figure 2.
stocksByTicker (year:Y,month:M,day:D,priceType:R,T:P) <-
k-ticker(k:K,ticker:T),k-year(k:K,year:Y),k-month(k:K,month:M),
k-day(k:K,day:D),k-priceType(k:K,priceType:R),k-price(k:K,price:P).

In order to further reduce the size of the restructured view,
we decompose it into a set of restructured views, one for each
ticker: stocksByIBM, stocksByMSFT, and so on. For instance,
the s-LOG rule for stocksByIBM is as follows:

stocksByIBM (year:Y,month:M,day:D,priceType:R,ibm:P) <-
k-ticker(k:K,ticker:‘ibm’),k-year(k:K,year:Y),k-month(k:K,month:M),
k-day(k:K,day:D),k-priceType(k:K,priceType:R),k-price(k:K,price:P).

Similarly, if we take priceType (whose value is one of“open”,
“close”, “high” and “low”) and price as parameters for the
pivot operation, we get a restructured view stocksByPrice

Type(ticker,year,month,day,open,close,min,max). We can
also define aggregate restructured views. As an example,
consider the following view definition that stores the monthly
average closing prices for the tickers.

monthlyAvgByTicker (year:Y,month:M,priceType:R,T:avg(P)) <-
k-ticker(k:K,ticker:T), k-year(k:K,year:Y), k-month(k:K,month:M),
k-priceType(k:K,priceType:‘close‘), k-price(k:K,price:P).

3.2.2 View materialization
Once restructured views are defined (e.g., by the database

administrator), one can use our algorithm for automatically
generating queries that materialize the view answers. The
algorithm composes the mappings from each data source to
the mediator schema with the mapping from the mediator
schema to the restructured view; the latter can be obtained
automatically from s-LOG view definitions. The pseudocode
for the XML-based setting is given by Algorithm 4.

As an illustration, for the view stocksByIBM defined above
one would obtain the query:

<stocksByIBM>{
FOR $br in /stocks/stock
WHERE $br/ticker = ‘ibm’
RETURN
<stock>

{$br/year}
{$br/month}
{$br/day}
{$br/priceType}
<ibm>{$br/price/text()}</ibm>

</stock>
}</stocksByIBM>



Algorithm 4: Materialization of restructured views
input : Source-to-mediator mappings and definition of

restructured view
output: Query Q to materialize the restructured-view answer

Examine the relations defining the restructured view, and their1
key constraints;
Construct FOR/LET clauses based on the relations appearing in2
the view definition;
Generate the WHERE clause if there is any constraint in the3
view definition;
Set up the RETURN clause from the head of the view definition;4
Concatenate the FOR/LET, WHERE, and RETURN clauses;5
Return query Q.6

3.2.3 Query rewriting
We now propose an algorithm for taking advantage of re-

structured views, by using them to rewrite user queries. Al-
gorithms for view usability and query rewriting for mate-
rialized restructured views have been presented in [4], and
are used in steps 2 and 3 of (the relational version of) Algo-
rithm 5 that summarizes our approach. The novelty for the
information-integration setting is in an extension of the algo-
rithm (not discussed here due to the space limit) to the case
of restructured views defined in XML-based data sources.
Another extension of the algorithm allows one to obtain
rewritings involving multiple views at a time.

Algorithm 5: Query rewriting using restructured views
input : User query Q and set of restructured views V
output: Equivalent query Q′ that uses views in V

foreach view v in V do1
if Q can be rewritten into an equivalent query that uses v2
then

Rewrite Q using v;3
Output the rewritten query;4

end5
end6

Example 6. The following user query lists the average
closing price for IBM in October 2005:
Q(monthlyAvg:avg(P)) <-

k-ticker(k:K, ticker:‘IBM’), k-year(k:K, year:2005),
k-month(k:K, month:‘Oct’), k-priceType(k:K, priceType:‘Close’),
k-price(k:K, price:P)

Our proposed algorithm can be used to rewrite Q into a query
that uses view monthlyAvgByTicker (select t.ibm from
monthlyAvgByTicker where t.year = 2005 and t.month =
‘oct’):

select m.oct
from monthlyAvgByMonth m
where m.year = 2005 and m.ticker = ‘ibm’

4. EXPERIMENTAL EVALUATION
In this section we present the results of our evaluation of

the impact of our query-processing techniques (introduced in
Sections 2 and 3) on the query performance in our information-
integration system shell [28]. Our experimental results demon-
strate that our algorithms are efficient and competitive.

4.1 Experimental Setup
We carried out two sets of experiments on different datasets

and queries. In our first experiments we used the setup of
[37], with the modification that in addition to the queries

used in [37] we defined extra queries that would require
more inter-source processing. The setup includes the “DB-
research” dataset, which contains data sources pertaining to
several universities, research organizations, and publication
information from sources such as CiteSeer [6], DBLP [10],
and SIGMOD [36]. Our mediator schema (which uses the
semantic-model view, see Appendix B for an overview) for
the DB-research dataset, shown in Figure 4, is based on the
academic department ontology [1] from the DAML ontology
library [8]; the queries are shown in Figure 5. (The first
eight queries are from [37]; Q9 is our extra query.)

[proceeding]
proceeding-title
proceeding-year
proceeding-location
proceeding-gc(general-chair)
proceeding-pc(program-chair)
proceeding-member(program-committee)

[paper] [project and person]
paper-title project-leader
paper-author project-member
paper-conference project-paper
paper-cite project-area
paper-status project-topic

person-adviser
[review] person-advisee
review-reviewer person-affiliation
review-rating person-homepage
review-paper
review-comment

Figure 4: Semantic model for DB-Research.

Q1: Find all XML-related projects
Q2: Find all projects involving a given person
Q3: Find all co-authors of a given researcher
Q4: Find all papers by a given pair of authors
Q5: Find papers by faculty leading XML projects
Q6: Find J. Shanmugasundaram’s VLDB’99 paper
Q7: Find recent PC chairs and their papers
Q8: Find UC Berkeley people and their web pages
Q9: List persons who are PC chairs at a conference

both in 2003 and in 2004

Figure 5: Queries for the DB-research experiments.

In our second set of experiments we downloaded stock
information from the Internet for various stocks (tickers),
and loaded it into sources with different XML schemas. We
also developed a simple semantic-model view based on an
ontology for stocks consisting of binary relations k-ticker,

k-year, k-month, k-day, k-price, and k-priceType, where k

is a unique key. (See Example 5 for more information.) User
queries for these experiments are listed in Figure 6.

The experiments were executed using PostgreSQL [31]
version 8.1.3 and SAXON [34] version 8 on a 2.0 GHz Pen-
tium M computer with 768 MB memory and 40 GB hard
disk running Windows XP Pro. All runtimes reported in
this section are the average of five runs of the queries.

4.2 Experimental Results
Figures 7 and 8 illustrate the performance of our algo-

rithms for the DB-Research dataset experiments. The ap-
proaches are as discussed in Section 2. The semantically
optimized versions of some of the algorithms, shown in the
graphs as Subqueries*, Optimized Subqueries* and Wrap-
per*, apply the semantic optimization to the queries then



Q1: List the closing price for ibm on 2005/11/21
Q2: List the average closing price for ibm in

October 2005
Q3: List stocks that had high price at least 20%

higher than low price at least once in 2005
Q4: List dates in 2005 when ibm’s closing price

was at least 50% higher than msft’s
Q5: List tickers that show a rapid increase in the

fourth quarter of 2005 (those whose average
closing price in the 4th quarter of 2005 has
at least 10% increase each month)

Q6: List the maximum closing price for ibm in
October 2005

Q7: List days when ibm’s price decreased rapidly
by 10% or more in two consecutive days

Figure 6: User queries for the Stocks experiments.

execute them. Figure 8 also shows optimization using the
restructured-views technique on a subset of the queries.

Figure 7: Experimental results (1) for DB-Research,
with all runtimes given in milliseconds.

Figure 8: Experimental results (2) for DB-Research,
with all runtimes given in milliseconds.

The horizontal (X) axes of Figures 7 and 8 list the queries,
and the vertical (Y) axes the respective execution times
in milliseconds. As shown in the figures, the Subqueries*
and Optimized-Subqueries* techniques seem to be the al-
gorithms of choice for most cases (Figure 7), except for cases
where optimization using materialized restructured views is
applicable and yields better performance (Figure 8). The
step of materializing relations in Materialization and the
chase steps in Wrapper were time consuming in this exper-
iment. Sometimes (e.g., for Q4) the Wrapper* method is
more efficient than Optimized Subqueries*, in cases where

the data are very regular at each source, and each source
contributes to all relations in a user query.

Our second set of experiments uses the Stocks dataset
(see Figure 2) and is primarily intended to show the impact
of optimization using restructured views. The restructured
views that were used in our experiments are listed in Fig-
ure 9, see Section 3 for some of the definitions.

stocksByOpen stocksByIBM monthlyAvgByIBM monthlyAvgByJan
stocksByClose stocksByMSFT monthlyAvgByMSFT monthlyAvgByFeb
stocksByLow stocksByCSCO monthlyAvgByCSCO ...
stocksByHigh ... ... monthlyAvgByDec

Figure 9: Restructured views for the Stocks dataset.

We carried out extensive experiments to evaluate the ef-
fect of query optimization using restructured views. The
results, reported in Figure 10, clearly show the superiority
of query optimization using our restructured-view algorithm
over the other options. Note that the Y-axis, the execu-
tion time (measured in milliseconds), is logarithmic. Hence
the improvement over the other techniques amounts to one
to three orders of magnitude. Note also that the semantic
optimization (applied on top of the optimized-subquery ap-
proach), which uses key-constraint information to optimize
the XQuery subqueries, yields an order of magnitude or bet-
ter performance than that of the (unmodified) optimized-
subquery approach.4 We expect the gains obtained by the
optimized algorithm to be typical for all user queries with
moderate to large number of joins. In addition, our opti-
mization using restructured views can be applied whenever
the data exhibit certain regularity properties, thus resulting
in substantial size reduction via restructured views.

Figure 10: Performance comparison (on the Stocks
dataset) for optimization using restructured views.

For each query of Figure 6, the restructured views used for
Figure 10 are as follows (please see Section 3 for the details
on some of the view definitions):

Q1. Q1 requires a simple selection. Either view stocks-
ByIBM or stocksByClose is usable for Q1. We chose
stocksByIBM for Q1 in the experiment.

Q2. Q2 involves a simple selection and aggregation. The
view monthlyAvgByIBM is used in Q2’s rewriting.

Q3. Q3 has self joins. Both stocksByHigh and stocksBy-
Low are utilized for Q3.

4Depending on the allocated memory, large numbers of vari-
ables in an XQuery query may have a pronounced effect on
execution time by SAXON.



Q4. Similarly, we take advantage of both stocksByIBM and
stocksByMSFT.

Q5. In Q5’s implementation using restructured views, three
views are involved: monthlyAvgByOct, monthlyAvg-
ByNov and monthlyAvgByDec.

Q6. Q6 looks for the maximum closing price for IBM in
October 2005. We use the MAX aggregation function
on stocksByIBM.

Q7. This query has a self join on stocksByIBM.

5. RELATED WORK
In recent years there has been a surge of interest in in-

formation integration, as well as in interoperability and its
applications (see, e.g., [17] and references therein.) The im-
portance of large-scale integration (web-scale integration)
and the“pay-as-you-go”paradigm in such environments have
been observed in many recent publications (see, e.g., [25]).
There has been a revitalization of ontological modeling as
a result of the W3C Semantic Web initiative [35]. Some
information-integration systems have been proposed and im-
plemented using ontological-modeling concepts. For exam-
ple, the ICS-FORTH Semantic Web Integration Middleware
(SWIM) [5] uses Semantic-Web tools for integration. The
main differences between these and our approach are in our
use of database tools and concepts, and in our emphasis
on query optimization. Further, we pay special attention
to queries that require data from multiple sources (inter-
source processing), while this important issue seems to have
not been addressed in SWIM or other projects.

In a recent report on indexing large volumes of data [13],
the authors advocate a “triple” model as a global model for
all data. Triples are closely related to RDF and ontolo-
gies, and to the semantic-model approach (see Appendix B)
used in our implementation [28], demonstrating that our
semantic-model views are valid and natural for modeling
the information contents of information sources.

The Piazza and related projects (see [18] and references
therein) cover various aspects of large-scale data integra-
tion, including (1) peer-based data management, (2) schema
mapping, and (3) theoretical foundations, indexing, and ac-
cess control. The main idea behind data integration/inter-
operability in Piazza is that users provide mappings between
pairs of information sources. There is no need to provide
mappings for all pairs. In fact, all that is needed is that
the graph that represents sources (via nodes) and available
mappings be connected. Mappings between any two sources
can then be obtained by composing the pairwise mappings
along a path connecting the two sources [26, 37]. While this
approach works well for sources belonging to the same appli-
cation domain and with similar data, in other scenarios the
composition process might result in information loss. In con-
trast, our experimental setting is based on mappings from
data sources to simple ontology-based semantic-model views
and can be applied to federations of sources with different
(as well as similar) information. In our approach mappings
are local: No knowledge about other sources is needed. An-
other advantage of our approach is that the system is more
resilient to erroneous mappings, in that only one source is
affected by an erroneous mapping. In contrast, an erroneous
mapping in Piazza affects all query processing that uses a
path that includes the mapping.

The Clio [27] and Hyperion [2] projects have developed
tools for automating common data and structure-management

tasks underlying many data-integration, translation, trans-
formation, and evolution tasks. The thrust of these projects
has been on supporting schema management, such as gen-
erating, matching, and mapping queries between schemas in
multi-source and peer-to-peer systems. The architecture is
similar to that of Piazza: A query is submitted at a peer,
which passes the query, possibly in translated form, to (some
of) its acquaintances, which repeat this process. In our
project, schema mappings are always between a simple se-
mantic model and a general schema. We may benefit from
some of the discoveries of these projects, but in general, we
do not need the sophisticated techniques for general schema
matching and mapping.

Our work is also related to works on distributed query
processing and optimization (see, e.g., [19] and references
therein.) Most of the related projects address relational
and object-oriented systems, and study the mechanisms and
tradeoffs among data shipping, query shipping, and hybrids
of these approaches (e.g., [15]). Our work differs from these
in that we concentrate on XML sources and, besides, our
data shipping (i.e., our materialization and wrapper ap-
proaches) transmit views derived from XML data, rather
than (transmit) base tables. In that respect, our work re-
sembles semantic-caching approaches (e.g., [?]), except that
we use significantly different and more sophisticated map-
pings to extract the data to transmit.
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APPENDIX
A. OUR FORMAL RESULTS

In this section we present theoretical results that allow for
further reduction of inter-source processing, in approaches
introduced in Section 2, by using information about integrity
constraints in the data sources. For ease of presentation,
the results are discussed for the semantic-model setting [22],
which is outlined in Appendix B. At the same time, the
extension of all the results to the general relational setting
is straightforward.

Eliminating Inter-Source Subqueries
Depending on the key and foreign-key constraints on the
mediator-based predicates, we may not need any inter-source
subqueries, or may only need a subset of all possible inter-
source subqueries. The formal results introduced in this
section play a significant role in query optimization in the
semantic-model approach. Our first result addresses the
question “when is inter-source processing not needed?” To
motivate this investigation, let us first obtain an intuition
about the amount of inter-source processing that may be
needed: Consider a system with n information sources, and
a user query involving k relations in the semantic model.
The total number of possible subqueries, where the data for
each of the k relations comes from one of the n sources, is
nk. Only n of these are local, in the sense that all data come
from the same source. The remaining nk−n subqueries may
require some degree of inter-source processing. This is, of
course, a worst-case scenario. In practice, even when the
total number of sources is very large, a specific relation in
the semantic-model view has a limited number of sources
with data pertaining to that relation, reducing the possible
inter-source queries to mk − n, where m << n is the num-
ber of sources with data for a given relation, on the average.
Nevertheless, in large-scale information integration, where
n can be in the hundreds or even thousands or higher, this
number can still be quite large. If we are able to identify the



minimum amount of inter-source processing that is required,
and restrict our query evaluation to avoid any extra work,
we can potentially achieve orders of magnitude faster query
processing in large-scale information integration.

Definition 1. (Local-Join Graph) Given relations
ri(A, B) and rj(B, C), we say ri and rj have the local-join
property if the following conditions hold:

1. Key constraint: For every source k, B is the key for the
fragment rj

k.
2. Foreign-key constraint: For every source k, there is a

foreign-key constraint from ri
k(B) to rj

k(B).
3. Consistency constraint: If rj

k(b, c) and rj
l (b, c

′) hold at
two sources k and l, then c = c′.

Let r1, . . . , rm be all the relations in the semantic-model
view. The local-join graph is a directed graph G = (N, E),
where nodes N corresponds to the relations r1, . . . , rm, and
(ri, rj) ∈ E if ri and rj have the local-join property.

Theorem 1. Given a user query involving the natural
join of two or more relations r1, . . . , rk, if the local-join
graph restricted to the query relations {r1, . . . , rk} contains
a directed spanning tree, then no inter-source processing is
needed for this query.

We omit the proofs of Theorems 1 and 2 due to the space
limit; both proofs can be found in [3].

Example 7. Consider user query r(A, B) "# s(A, C). As-
sume attribute A is the key for r(A, B), and a foreign-key
constraint holds from s.A to r.A. According to Definition 1
and Theorem 1, no inter-source processing is needed for this
query. As a result, evaluating only the local subqueries is
enough to obtain the exact (correct) answer to the query.

Theorem 1 gives a sufficient condition, based on key and
foreign-key constraints, for eliminating inter-source process-
ing in the evaluation of a user query. The question naturally
arises as to whether the condition of Theorem 1 is also nec-
essary. In other words, if the restriction of the local-join
graph to query relations does not have a directed spanning
tree, does the evaluation of the query require evaluation of
some inter-source subqueries? We should first mention that
there are weaker semantic constraints (than key, foreign-key
constraints) that may provide conditions for Theorem 1 [22].
However, these semantic constraints are, to the best of our
knowledge, not available as standard features in commercial
databases. Hence, we restrict ourselves to key and foreign-
key constraints. This means that if there is no edge from ri

to rj in the local-join graph, then no constraints of any form
exist between ri and rj . The following theorem addresses in
the positive the issue of whether the conditions of Theorem
1 are also necessary.

Theorem 2. Given a user query involving the natural
join of two or more relations r1, . . . , rk, if the local-join
graph restricted to the query relations {r1, . . . , rk} does not
contain a directed spanning tree, then a database instance
exists where at least one inter-source subquery is not sub-
sumed by any local subqueries.

Partitioning Inter-Source Subqueries
In this section we discuss the problem of determining the
set of subqueries that are needed for the evaluation of the
user query. In particular, we present a counterintuitive re-
sult, namely that the set of needed subqueries is not unique,

rather, there can be multiple equivalence sets of subqueries.
More specifically, we show that the set of subqueries can be
partitioned into (1) required subqueries, (2) redundant sub-
queries, with each subquery in this group being subsumed
by a subquery in the required group, and (3) zero or more
sets of equivalent subqueries, where we need to execute only
one subquery from each equivalence class.

Example 8. Consider a user query involving the natural
join of three relations r(A, B), s(A, C), t(A, D). Further,
assume that attribute A is the key for r, and foreign-key
constraints hold from s.A and t.A to r.A. Also assume the
consistency constraint of Definition 1 holds for r. Note that
the local-join graph, restricted to r, s, and t, has edges from
s and t to r, and does not have a directed spanning tree.

There are 23 = 8 subqueries. Two of them are local sub-
queries, namely, r1 ! s1 ! t1 and r2 ! s2 ! t2 (where ri

represents the fragment of r that comes from source i, sim-
ilarly for s and t.) It is easy to verify that, for this query,

• r1 ! s1 ! t1 and r2 ! s2 ! t2 are required;

• r1 ! s2 ! t2 and r2 ! s1 ! t1 are redundant: r1 ! s2 !
t2 is subsumed by r2 ! s2 ! t2, and r2 ! s1 ! t1 is
subsumed by r1 ! s1 ! t1; and

• r1 ! s1 ! t2 and r2 ! s1 ! t2 are equivalent, and so
are r1 ! s2 ! t1 and r2 ! s2 ! t1.

Hence, the user query can be evaluated fully by evaluating
just four subqueries out of the total 8. There are four sets of
such minimally-sufficient subqueries: Each set includes the
two required subqueries, plus one subquery from each of the
two equivalence classes in the third bullet above.

B. SEMANTIC-MODEL OVERVIEW
The examples in this section provide an illustration of the

semantic-model [22] approach in our implementation [28].

Example 9. Consider a federation of catalog sales busi-
nesses. Here we concentrate on their warehousing opera-
tions. A possible ontology for this application may use ob-
jects (concepts) such as item, warehouse, city, state, and
relationships (properties) such as item-name, item-ware-
house, warehouse-city, and warehouse-state. The
semantic-model view (i.e., the ontology-based mediator
schema) consists of binary relations representing the rela-
tionships. Sources with heterogeneous models and schemas
can model their warehousing operations using this semantic-
model view. For example, the DTDs of two hypothetical
XML sources are shown below.5 We discuss the mappings
from these schemas to the semantic-model view in Example
10.

<!ELEMENT store (warehouse*)>
<!ELEMENT warehouse (city, state, item*)>
<!ELEMENT item (id, name, description)>
<!ATTLIST warehouse id ID #REQUIRED>

<!ELEMENT store (items, warehouses)>
<!ELEMENT items (item*)>
<!ELEMENT item (id, name, description)>
<!ELEMENT warehouses (warehouse*)>
<!ELEMENT warehouse (city, state)>
<!ATTLIST item warehouse-id IDREFS #REQUIRED>
<!ATTLIST warehouse id ID #REQUIRED>

5We omit declarations of elements of type #PCDATA.



The language we use to specify XML-to-semantic-model
mappings is based on (a subset of) XPath [40] and is similar
to mapping languages, also called “transformation rules” or
“source-to-target dependencies” in the literature (see, e.g.,
[9]). A mapping for a binary relation p has the following
general form:

p($X, $Y) <- path1 $G, $G/path2 $X, $G/path3 $Y.

where $X and $Y correspond to the arguments of p. The
variable $G in the body of the rule is called the “glue” vari-
able, and is used to restrict ($X,$Y) pairs to have the same
$G ancestor element in the document.

Example 10. Consider the first information source of Ex-
ample 9. Some of the mapping rules that map data in this
source to the semantic-model view are as follows:
item-name($I,$N) <-
/store/warehouse/item $X, $X/id $I, $X/name $N.

item-warehouse($I,$W) <-
/store/warehouse $X, $X/item/id $I, $X/@id $W.

warehouse-state($W,$S) <-
/store/warehouse $X, $X/@id $W, $X/state $S.


