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ABSTRACT

Selecting and precomputing indexes and materialized views,
with the goal of improving query-processing performance in
the system, is an important part of database-performance
tuning. The significant complexity of the view- and index-
selection problem may result in high total cost of ownership
for database systems. In recognition of this challenge, soft-
ware tools have been deployed in commercial DBMS, includ-
ing Microsoft SQL Server [1, 2, 5, 6] and DB2 [4, 32, 34], for
suggesting to the database administrator views and indexes
that would benefit the evaluation efficiency of representative
workloads of frequent and important queries.

In this paper, we focus on developing a unified quality-
centered approach to view and index selection, for a range
of query, view, and index classes that are typical in practi-
cal database systems. Our problem inputs include efficient
evaluation plans for the input workload queries. This ver-
sion of the view- and index-selection problem is NP hard [7]
and difficult to solve even with a small number of indexes
and views appearning in the input query plans. In spite of
this, we develop efficient methods that deliver user-specified
quality (with respect to the best theoretically possible qual-
ity given the input query plans) of the set of selected views
and indexes. Our approach can be extended in a straightfor-
ward manner to dealing with index selection in presence of
clustered indexes, as well as to handling updates in the in-
put workload. Our experimental results and comparisons on
synthetic and benchmark instances demonstrate the compet-
itiveness of our approach, and show that it provides a win-
ning combination with end-to-end view- and index-selection
frameworks such as those of [2, 5].

1. INTRODUCTION

This paper addresses the problem of selecting and precom-
puting indexes and materialized views in a database system,
with the goal of improving the processing performance for
frequent and important queries. Our specific optimization

problem, which we refer to as VISP (for View and Index
Selection), is as follows: Given a set of possible plans for
each query, choose a subset of plans that provides the great-
est reduction in query costs. Each plan requires the mate-
rialization of a set of views and/or indexes, and cannot be
executed unless all of the required views and indexes are ma-
terialized. The total size of materialized views and indexes
must not exceed a given space (disk) bound. This version of
the view- and index-selection problem is NP hard [7], and is
difficult to solve optimally even when the set of indexes and
views mentioned in the input query plans is small.

Our problem statement for view and index selection does
not require any information about the input plans other than
(just the IDs of) the views or indexes in the plans, and the
cost reduction the plans yield. Thus, our solution is not tied
to any particular database model (that is, the queries and
even database schemas can take any form, including rela-
tional and XML), nor do we need to know how the indexes
or views affect the query costs. These details are abstracted
by the cost function, which in turn can come from any cost
model that most suits the application.

In this section we provide the background and outline
our contributions to solving the view- and index-selection
problem VISP (Section 1.1), and discuss related work (Sec-
tion 1.2). Section 2 presents an integer linear program (ILP)
for VISP, and discusses the standard branch-and-bound
(B&B) technique for solving ILPs. In Section 2 we also out-
line extensions of our approach to index selection in presence
of clustered indexes (cf. [7, 27]) and to view and index selec-
tion under the maintenance-cost constraint [13, 14, 29]. We
discuss our methods for finding the upper and lower bounds
in B&B in Sections 3 and 4, respectively. Section 5 discusses
complements and extensions of our approach that enable its
practical use in database tuning, including construction of
input query plans and handling of updates in the input work-
load. Section 6 reports our experimental results.

1.1 Motivation and contributions

Database-performance tuning is an important responsi-
bility of database administrators (dba’s) in enterprise-class
databases. One focus of the tuning is selecting and creating



indexes and materialized views, with the goal of improving
query-processing performance in the system. The complex-
ity of this problem is significant and may result in high total
cost of ownership for database systems. In recognition of
this challenge, software tools have been developed for sug-
gesting beneficial views and indexes to the dba, to improve
the evaluation efficiency of representative workloads of fre-
quent and important queries. Users can specify constraints
that must be met by the tool, typically an upper bound on
the storage (disk) space or, alternatively, indexes that must
be included. Such view- and index-recommender tools are
part of commercial database-management systems, includ-
ing Microsoft SQL Server [1, 2, 5, 6] and DB2 [4, 32, 34].

In our formulation of the problem of view and index selec-
tion, the inputs include the query workload of interest and
the amount of available disk space for the views and indexes
to be materialized. We adopt the standard measure of per-
formance of a query workload, which is the sum — perhaps
weighted — of evaluation costs of the workload queries.

We assume that each problem instance specifies one or
more evaluation plans for each query. Each plan is viewed
by our approach as just a set of candidate views and in-
dexes that provides acceptable — “good enough” in the sense
of [25] — time costs of evaluating the query. Thus, the input
query plans form the search space of candidate solutions in
our view- and index-selection problem. (See Section 5 for a
discussion of the possible preprocessing algorithms.)

This version of the view- and index-selection problem is
known to be NP hard [7]. To mitigate the complexity of
the problem, we develop efficient methods that deliver user-
specified quality. Here, quality means proximity to the glob-
ally optimum performance for the input query workload given
the input query plans. Note that, while authors of past
projects have generally opted for polynomial-time heuristics
with no quality guarantees (see Section 1.2), we show ex-
perimentally in Section 6 that our methods fare better than
well-known past work w.r.t. scalability, in addition to pro-
viding solution-quality guarantees for realistic-size instances.

Query workloads in practice tend to include a variety of
query types, such as aggregate queries on one stored re-
lation (familiar from the OLAP setting [8, 12]) alongside
nonaggregate queries defined on joins of other stored rela-
tions. To the best of our knowledge, we are the first to
propose a tool for recommending indexes and materialized
views that would guarantee a certain user-defined (perhaps
optimum) level of evaluation performance for such real-life
workloads. That is, the solutions proposed in this paper are
agnostic of the structural properties of the queries, views,
indexes, and query plans, and, as such, are appropriate for
a variety of practically important query, view, and rewrit-
ing languages, including SQL select-project-join queries with
arithmetic (inequality) comparisons or with grouping and
aggregation. The reason we are able to provide such guar-
antees is that our approach accepts query plans as inputs
and hence does not need to look into the internal structure
of queries, indexes and views.

Our main contributions are as follows:

e a problem statement (Section 2) that is flexible in the
sense of being adaptable to the full spectrum of data
models and query languages, as well as to a variety of

constraints, including the storage-limit constraint and
the maintenance-cost constraint;

e effective upper and lower bounding techniques that
lead to attractive tradeoffs between time and solu-
tion quality and to interactive quality control by the
user (Sections 3 and 4); our solution-quality guaran-
tees hold for all cases of the storage-bounded prob-
lem VISP, as well as for some practically important
special cases of view and index selection under the
maintenance-cost constraint (see Section 2);

e a discussion of the place of our approach in end-to-end
frameworks, such as those of [2, 5] (Section 5); and

e experimental results on benchmark instances as well
as on random instances of increasing size, to illustrate
scalability (Section 6).

Our experiments show that the proposed approach achieves
globally optimum solutions with reasonable computation time
for realistic-size problem instances. Furthermore, our ap-
proach allows for (a) excellent tradeoffs between runtime
and solution quality; and (b) interactive (online) response
to user demand for progressively better quality guarantees.

The runtime versus solution quality tradeoff is extremely
important. While no approach can guarantee optimum solu-
tions in reasonable time with increasing instance size unless
P = NP, we are able to guarantee < 2% relative error with
respect to the optimum on realistic-size instances, with ac-
ceptable runtimes. The desired precision is given as input to
our algorithm instead of being one of its limitations. And,
precision being a worst-case guarantee, the output solution
often has better quality than requested. Also note that we
allow users to specify the precision of the output of our al-
gorithm in two ways — maximizing the gain or minimizing
the query-evaluation costs — while always obtaining correct
solutions. (Cf. the observation in [19] on the line of work
in [12, 13, 15], please see Section 1.2 for a short discussion.)

Alternatively, our algorithm can be run in an interactive
(online) setting, where it behaves as follows. It begins under
the assumption that it is seeking an optimum solution. As
soon as it finds a feasible solution, it reports how close that
solution is to an optimum one (based on known bounds),
asking whether to stop or continue to search for a better
one. In both of these settings, the computation of branch
and bound is sped up by our interaction between upper and
lower bounds — see Sections 3 and 4.

1.2 Related work

It is known that in selecting views or indexes that would
improve query-processing performance, it is computation-
ally hard to produce solutions that would guarantee user-
specified quality (in particular, globally optimum solutions)
with respect to all potentially beneficial indexes and views.
In general, reports on past approaches concentrate on exper-
imental demonstrations of the quality of their solutions. A
notable exception is the line of work in [12, 13, 15]. Unfor-
tunately, in 1999 Karloff and colleagues [19] disproved the

'In our experiments we have solved problem instances with
up to 200 queries for the error-free version of the general
case, and with up to 1000 queries for either special cases or
for those instances where the user-defined error is greater
than zero while staying in the 1-3% range.



strong performance bounds of these algorithms, by show-
ing that the underlying approach of [15] cannot provide the
stated worst-case performance ratios unless P=NP. Please
see [3] for a detailed discussion of past work that centers on
OLAP solutions, including [12, 15].

The problem VISP considered in this paper is related to
the problem of index only (as opposed to index and view)
selection, with the focus on selecting clustered as well as
nonclustered indexes for the stored data, see [7, 27] and ref-
erences therein. Given the theoretical complexity of each
problem, we believe that solving the two problems indepen-
dently (i.e., selecting first the clustered /nonclustered indexes
on the stored data, and then selecting any auxiliary views
and indexes to further improve the processing efficiency of
the representative queries) improves the odds of developing
algorithms with better quality guarantees for each problem.
Please see Section 2.2 for a further discussion, and Section 6
for comparisons of our approach to those of [7, 27].

In 2000, [2] introduced an end-to-end framework for se-
lection of views and indexes in relational database systems;
the approach is based partly on the authors’ previous work
on index selection [9]. The contributions stated in [2] in-
clude (i) an end-to-end framework for practical view and
index selection, and (ii) a module for building the search
space of candidate views and indexes for the input queries.
Note that the authors of [2] do not recognize as a contribu-
tion their heuristic algorithm for selecting views and indexes
from that search space. We show (Section 6) that our pro-
posed algorithm fares well in comparison to the heuristic
algorithm of [2]. Thus, our algorithm is suitable for com-
plementing the framework of [2], by providing the user with
solution-quality guarantees on the views and indexes to be
materialized. In Section 5 we discuss a potential use of our
methods within the approach of [5], which builds on [2] while
focusing on a different way of both defining and selecting in-
dexes and views. Our methods can also be combined with
the approaches of [6, 11], which consider the problem of
evolving the current physical database design to meet new
requirements.

Papers [26, 30] by Prasan Roy and colleagues report on
projects in multiquery optimization (MQO). Specifically, [30]
proposes algorithms for improving query-execution costs in
this context, by materializing (as views) and reusing cer-
tain common subexpressions. [26] discusses how to find an
efficient plan for the maintenance of a set of materialized
views, by exploiting common subexpressions between dif-
ferent view-maintenance plans. While our approach can be
extended to the MQO context, we focus on improving the
evaluation costs of individual queries (as opposed to MQO)
in presence of materialized views, and consider selecting and
materializing indexes (as well as views) for this purpose.

Genetic algorithms have had some success in situations
where there are no hard constraints (see, e.g., [18, 21, 23] and
references therein). If, for example, our problem replaced
the space (disk) bound with a per-unit penalty on space re-
quired by each view/index, our problem would be equivalent
to that discussed in [21]. With genetic algorithms, the dif-
ficulty posed by a hard constraint is that either (a) when
feasibility is taken into account, the solutions arrived at by
transforming the current solutions are mostly infeasible, or

(b) when the constraint is built into the objective function,
the resulting genetic-algorithm solution is highly likely to be
infeasible, requiring a heuristic similar to that proposed in
Section 4 to make it feasible. Other transformation-based
meta-heuristics have similar difficulties, please see [28] for
a general discussion. Our problem formulation has an ad-
ditional feature making it more difficult to solve: the sec-
ondary effects of any simple transformation. That is, re-
moval of a view/index eliminates all query plans that use
them, and addition of views/indexes may or may not make
additional plans possible. Thus, we posit that problems
(such as our problem VISP) in presence of hard constraints
are not amenable to genetic-algorithm approaches.

2. INTEGER LINEAR PROGRAMMING

This section establishes the theoretical context of our work.
We begin with a specification of our view- and index-selection
problem VISP, which can be shown to be NP hard via a
straightforward reduction from the problem of [7]. Then we
reformulate VISP as an integer linear program (ILP, Sec-
tion 2.1), and outline the modifications (Section 2.2) needed
to use the ILP to solve the problem of index selection in
presence of clustered indexes, as well as the problem of view
and index selection under the maintenance-cost constraint.
We also discuss (Section 2.3) the branch-and-bound (B&B)
technique [22] for solving ILPs. The problem-specific heuris-
tics and algorithms that we present in Sections 3 and 4 use
B&B as their basic framework.

In our view- and index-selection problem VISP, inputs
include (efficient) evaluation plans for the input workload
queries.? Each plan is represented as a set of views and
(or) indexes; thus, the set of plans in the problem input de-
fines the search space of candidate views and indexes. Each
plan has an associated evaluation cost. Each input view or
index has an associated size, measured as the amount of
disk space required to materialize this view or index. (The
plan costs and view/index sizes can be obtained by a what-
if optimizer [2, 5].) Finally, the problem input includes two
constraints: (1) a storage limit (the amount of disk space
available to store the output views or indexes), and (2) a
user-defined error bound on the quality of the output. The
output of VISP is a set of query plans that minimize the
evaluation costs for the input query workload subject to the
constraints; this output defines the views and indexes to
be materialized. We adopt the standard measure of per-
formance of a query workload, which is the sum (perhaps
weighted) of evaluation costs of the workload queries. A
formal problem statement for VISP can be found in [20].

2.1 An ILP model for VISP

The ILP model presented in this paper continues our line
of work [3, 24] on formal systematic exploration of view- and
index-selection problems. Similar ILPs have been developed
for index selection in presence of clustered indexes [7, 27].
Our ILP model uses the following 0/1 variables: x;; is 1
when the j-th plan (p;;) is chosen for query i, 0 otherwise;
ye is 1 if the ¢t-th view or index (v, of size w:) is mate-
rialized, 0 otherwise. Here, each input plan p;; (jth plan

2A discussion of the place of VISP in a practical end-to-end
database-tuning framework can be found in Section 5.



for query 1) is represented by a set of all views and indexes
required to execute query i. The objective is to maximize
>oicy 2jey bijzij, where by; is the improvement (gain) in
query-evaluation cost when plan p;; is chosen for query 1,
subject to

IN
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g Tij
j=1
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sz-yt < B (3)
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Here, constraint (1) says that a query can have at most one
plan. When plan p;; is chosen for query i, all views/indexes
in p;; must be materialized. One way to state this is x;; < y;
for all ¢, j,t. However, taking (1) into account, we only need
a single constraint (2) for each query and view/index. Recall
that v; € p;; means that the j-th plan for query ¢ requires
view/index v;. That is, if v; is not selected (y: = 0), none
of the plans using v: can be chosen (all z;; = 0 where v; €
pi;). Constraint (3) says that the total size of the selected
views/indexes cannot exceed the input storage limit B.

These constraints fully define our view- and index-selection
problem VISP. Note that while not being an essential part
of the problem formulation, the option of having the user-
defined error bound in the input does make our algorithms
more powerful than some of the previous approaches.

2.2 Extensions to related view- and index-
selection problems

While our focus in this paper is on selecting and precom-
puting indexes and materialized views for the case where
the layout of the original stored data (including clustered
indexes) is already in place, our ILP can be modified to
model the problem of index only selection, with the focus on
selecting clustered as well as nonclustered indexes. Please
see [7, 27] for a discussion of the constraints needed to mod-
ify the ILP. While the required modification of the ILP is
not a contribution of this paper, we argue that the close
relationship between the ILPs for the two problems per-
mits an exploration of explicit solution-quality guarantees
of the index-selection problem of [7, 27], akin to the guaran-
tees that we provide in this paper for VISP. Providing such
solution-quality guarantees for index selection in presence of
clustered indexes is a direction of our current work.

While our proposed ILP would have to be modified as
discussed above to model index selection in presence of clus-
tered indexes, we do not have to modify our ILP to model
another class of problems of practical interest. We are re-
ferring here to a family of special cases of the problem of
view and index selection under the maintenance-cost con-
straint, see [5, 13, 33] and references therein. In this problem
class, our ILP? correctly models all special cases for which
there are no “update-cost dependencies” between the candi-
date views or indexes to be selected.These special cases in-
clude the practically important problems of selecting, under

%Note that the input “sizes” of views/indexes would need to
be interpreted as update costs, ditto for the storage limit.

the maintenance-cost constraint, (1) (nonclustered) indexes
only, or (2) views only for the cases where it is not effective
to merge (in the sense of [2, 5]) the definitions of different
views. The fact that we can use our ILP to model all these
cases of view and index selection under the maintenance-
cost constraint means that we extend to all these cases our
solution-quality guarantees provided in this paper. (This
guarantee is in contrast with the quality guarantees of the
approach of [13], see Section 1.2 for a discussion of [13, 19].)

2.3 Branch and bound

Branch and bound (B&B) is a well-known approach that
obtains optimum solutions to ILPs at the expense of worst-
case exponential runtime. Its effectiveness relies on the as-
sumption that the worst case occurs only rarely in practice.
The algorithm starts with the root node of a tree, which rep-
resents the initial problem instance. Other nodes represent
smaller instances based on fixed variable assignments. (E.g.,
if y¢ = 0, the instance has one fewer view/index; if y, = 1,
constraints (2) go away, but the B in (3) is reduced by w;.)
Each interior node has two children, one for each of the val-
ues 0/1 of a fixed variable. The leaves of the tree arise when
the node assignment violates the constraints (i.e., is infea-
sible) or when all variable values have been fixed, in which
case the assignment is feasible but not necessarily optimal.

With no bounding, B&B is a search of all feasible solu-
tions. A subtree can be pruned if the best gain its root
can achieve (its upper bound) is no better than the gain of a
known feasible solution, the global lower bound. The success
of B&B in quickly obtaining optimal solutions relies on the
quality of heuristics for obtaining upper and lower bounds.
Our approaches to these are discussed in Sections 3 and 4.

A node is processed when its bounds have been computed
and its children (when feasible and upper bound > lower
bound), have been created. A node’s lower bound, when
greater than the current global bound, replaces it. A node
is active when it has been created but not yet processed.
Nodes may be processed in any order, but the order is typ-
ically depth first, based on judicious choices of branching
variables and assignments to explore first. At any point in
the execution of B&B, the integrality gap is the difference be-
tween the current lower bound and the largest upper bound
among the active nodes. This integrality gap bounds the
relative error of the current best solution. If current is the
gain of the current solution and opt is that of the optimal
solution, the relative error is defined as (opt — current)/opt.

Our experimental results (Section 6) show that our upper-
and lower-bound computations yields good scalability with
increasing instance size, better solution quality as compared
with the heuristic [2] when terminated early, and promising
tradeoffs between runtime and solution quality.

3. FINDING UPPER BOUNDS

Upper bounds are essential to cut off subtrees of the branch-
and-bound tree: If, at some node, an upper bound does not
exceed the current global lower bound, then the node and its
descendants can be eliminated. The two best-known meth-
ods for obtaining upper bounds for maximization problems
are linear programming relazation (LPR), a general tech-
nique that applies to all integer programs, and Lagrangian
relaxzation (LaR), whose details are specific to the problem



and to the constraints the expert wishes to relax.

Linear Programming Relaxation (LPR) turns the
ILP into an ordinary linear program (LP) by relaxing the
constraints that force variables to be integers. In our prob-
lem, the constraints that z;; and y; are 0/1 variables are
replaced by 0 < z;; <1 and 0 <y; < 1. An optimal LP so-
lution at a node that has all 0/1 values is a potential lower
bound. Otherwise, the value of the objective is an upper
bound on the optimum value with 0/1 values. This relax-
ation is used by general-purpose ILP solvers (e.g, CPLEX).

Lagrangian Relaxation (LaR) (see, e.g., [16]) requires
choosing the constraints to relax. The relaxed constraints
are then incorporated into the objective function, so that
there is a penalty associated with an unmet constraint.

We relax constraints (2) and add to the objective func-

tion the term > wit {ye — D>,  wi; |, where uy; is the
V(i t) {jlve€pij}

penalty associated with the (¢,7)-th constraint in the group.

Any choice of non-negative u; yields an upper bound on the

original objective function. To get the best possible upper

bound we want to find a choice that minimizes the objective.

We use an iterative process called subgradient optimiza-
tion [17]. It stops when either (a) all of the relaxed con-
straints are satisfied and the current solution is an optimal
solution to the original instance; or (b) further improvement,
i.e., a decreased upper bound, is deemed unlikely.

Every iteration step solves the relaxed problem using the
ui¢’s (initially arbitrary) and, if the solution is not optimal,
adjusts the u;:’s to increase the penalty for the unsatisfied
constraints. While there is no best way to choose step size
in the adjustment, it is usually started at a fixed value (we
use 2.0) and halved when the upper bound fails to decrease
after a fixed number of steps (we use 10). There is also a
fixed lower limit for the step size (0.01 in our case). These
choices, deduced from our preliminary experiments, appear
to work well for the full range of instances of this model.

Our choice of constraints to relax has a useful feature: The
relaxed problem can be partitioned into two subproblems,
one involving only the z;;’s, the other only the y;’s. To wit,

o max} iy > i biw — 30 X
V(i,t) {jlve€pij}
to X2 @i < 1, for i = 1,...,n; and x5 € {0,1},
fori=1,...,nand j =1,...,m, which can be solved
optimally by a simple greedy algorithm — the objec-
tive function reduces to max 2" | 77" | Bi;xij, where
Bij =bij — Z{tlvtEPij} uit, and

Uit Tij, subject

e max Y wiy: subject to Sor_ wi-ye < B,y € {0,1},
V(i,t)
for t =1,...,k, which is a knapsack problem.

LaR consistently produces better upper bounds than LPR.
However, the difference between the two diminishes with
increasing problem size. Also, the runtime of LPR scales
better than that of LaR. That said, there are several key
advantages of LaR in the B&B context: LaR can be used:

e in an effective lower-bound heuristic (Section 4),

e to fix values of some variables, thus reducing the size
of the B&B tree (see Variable Binding below),

e to significantly decrease runtime when a given approx-
imation ratio is desired, see Section 6, and

e to use computations at the parent of a node as a start-
ing point; in particular, the final u;:’s at a node make
good choices for initial u;¢’s at its children.

Variable Binding. Lagrangian relaxation allows us to use
one additional trick, applicable in any node of the B&B tree
to reduce subproblem size. Note that constraints (1) are
present in the Lagrangian relaxation and, in fact, are the
only constraints on x;;’s. Thus, in the solution to the relax-
ation we can choose only one plan for each query. Suppose
that in the solution to the lagrangian relaxation z;; = 1.
We can fix z;; = 1 if setting it to 0 (and thus taking the
second best plan into the solution) reduces the upper bound
so that it does not exceed the current lower bound. This can
be done in time linear in the number of plans. In the same
way, if in the solution to the lagrangian relaxation z;; = 0,
we can fix it to 0, if setting it to 1 (and thus removing the
best plan for this query from the solution) reduces the upper
bound so that it is does not exceed the current lower bound.

4. FINDING LOWER BOUNDS

In this section we discuss our proposed methods for finding
lower bounds for the branch-and-bound method (discussed
in Section 2) for our view- and index-selection problem VISP.

4.1 Greedy algorithm

To explain this algorithm, it is easier to talk in terms of
views/indexes and plans. In the input to this algorithm we
get a feasible solution {Z, §}. In this solution, Z corresponds
to the set of chosen plans and § corresponds to the set of
chosen views and indexes. It is possible that both of these
sets are empty. We want to greedily fill in the available
space, to maximize the total benefit of the plans that can
be executed using the chosen views and indexes.

Let V be the set of views and indexes corresponding to
y. For a set of views and indexes chosen for materialization
we can find a set of query plans that maximizes the total
benefit. To do this, for each query we take the best plan
that is based on a view/index set that is a subset of V. Let
P(V) be the set of plans that maximizes the total benefit of
using V, and B(V') be the benefit of P(V'). Let S(V') be the
total weight of the views and indexes in V.

Algorithm 1: Algorithm Greedy({Z,y})

Input : ILP formulation of the original problem;
a (possibly trivial) feasible solution {Z, 5}

Output: feasible solution to original problem (candi-
date lower bound)
begin
Let k£ be the maximum number of views and
indexes that a plan can have in its definition;
Let W be the set of all views and indexes;
while we can add views/indezes to V without
violating the space constraint do
find a subset U C W\V of size at most k that
has maximum
(B(VUU) = B(V))/(S(VUU) = S(V));
V.=VuU;
return {P(V), V'}
end




4.2 Lagrangian heuristics

We now describe the Lagrangian heuristics that we use to
obtain lower bounds. This algorithm transforms a solution
to the Lagrangian relaxation into a feasible solution, using
the heuristic of Section 4.1. The idea of the Lagrangian
heuristics is to take a solution to the Lagrangian relaxation
of the original problem (in general not a feasible solution)
and to modify it as little as possible to get a feasible solution.

To this end, we examine every query-plan assignment ob-
tained after solving the Lagrangian relaxation (i.e., deter-
mine every pair 4,j for which x;; = 1). For each such as-
signment we consider the collection of required views and
indexes in plan j, and if any one of these views or indexes is
not materialized (i.e., the corresponding y; = 0), we simply
remove the assignment of plan j to query i (i.e., z;; = 0).
This process yields a feasible solution to the original prob-
lem. We then remove every unused view/index by setting its
1y = 0, and use the available space according to the heuristic
of Section 4.1 to obtain a feasible solution to the problem.

Algorithm 2: Lagrangian Heuristics

Input : Solution to the lagrangian relaxation {Z,7};
ILP formulation of the original problem

Output: feasible solution to original problem (candi-
date lower bound)

begin

for each (i,7) such that T;; =1 do

check all group (2) constraints with Z;;;

if there is at least one violated constraint then

L set T;; = 0

for each k such that g, =1 do
check all group (2) constraints with gg;

if there is at least one constraint whose
left-hand side evaluates to 1 for solution {Z,y}
then

| keep yr = 1;
else

| set yx = 0;

return Greedy({z,y})

end

5. USING OUR APPROACH IN PRACTICE

Our problem formulation is a useful abstraction of an im-
portant component of the view- and index-selection prob-
lem, for which we can deliver explicit quality guarantees on
the solutions provided by our approach. In this section we
discuss how our methods can be built into an end-to-end
framework for selection of views and indexes for efficient
query processing in database systems in practice.

5.1 Obtaining input query workloads

In all past work that we know of on view or index se-
lection, the authors assume knowledge of the representative
query workloads, including knowledge of the frequency of
updates on the stored data. (Please see Section 5.3 for a
more detailed discussion of the issue of updates.) It is gen-
erally assumed that a workload of representative queries and

updates can be developed by a skilled dba; please see [6] for a
range of approaches. When it is not practical to use our algo-
rithm to recompute from time to time beneficial view/index
configurations from scratch, the methods of [6, 11] can be
used to adapt the view and index definitions and contents
to the changes in system requirements over time.

5.2 Obtaining candidate query plans

Note that even though our proposed algorithm may not
scale up to an extremely large number of query plans in the
problem input, Lohman in (the slides for) [25] argues that
for all practical purposes it is enough to consider for each
query just a small number of “good enough” (w.r.t. evalu-
ation costs) query plans. The methods of [2, 5, 10] can be
used to generate good-quality [25] query plans for the query
workloads in our problem inputs. (See note in the beginning
of Section 6 on using [2] in our TPC-H [31] experiments.)
In addition, in our ongoing work we have developed algo-
rithms for ranking large numbers of view- and index-based
query plans based on the plan costs. Our current results
show that it is possible to efficiently obtain a small num-
ber of competitive evaluation plans for workloads involving
a large practically important class of SQL queries.

5.3 Handing updates in the input workload

In general, the class of space-bounded problems (e.g., our
VISP here) and the class of problems under the maintenance-
cost constraint are not interchangeable, and each problem
class is known to be hard to solve formally [13, 19, 29]. In
practice, it is typical to consider “compromise” approaches
(see, e.g., [2, 5, 33]). Our problem VISP can be modified
in this spirit, by including update statements into the in-
put workload and by adding the maintenance-cost constraint
into the objective function of our ILP model of Section 2.1
(cf. [27]). Determining the solution-quality guarantees for
this modification of the problem is part of our current work.

5.4 Incorporating our approach into end-to-
end database-tuning frameworks

In Section 6 we show that our proposed algorithm fares
well in comparison to the heuristic algorithm of [2], which
means that our algorithm is suitable for complementing the
overall framework of [2] by providing the user with solution-
quality guarantees on the selected views and indexes. We
now discuss how using our approach can enhance the quality
guarantees of database tuning in the framework of [5].

In the line of work of [1, 2, 9, 5, 6, 7], Bruno and Chaud-
huri in [5] focus on the following problem: As heuristic-based
methods for physical database tuning become more complex,
it is increasingly difficult to analyze, evolve, and add new al-
gorithmic features without risk of regression. [5] addresses
this problem by proposing a new framework for physical de-
sign, where the search space of views and indexes is produced
by a “what-if” optimizer,* and then search is performed in
this space for an output view/index configuration. Under
the constraints on both (1) the runtime of the search algo-
rithm of [5], and (2) the input storage limit and update costs
for the solution, the algorithm outputs a configuration that
provides the best workload-performance quality among the

4The search space includes each view or index that the op-
timizer deems “interesting” for any workload query.



configurations explored so far. The search is performed by
iterative dropping or merging some views/indexes, possibly
with backtracking to states that have already been explored.

To the best of our understanding, [5] does not list global so-
lution quality among the contributions. On the other hand,
our proposed algorithm has excellent global quality guar-
antees and, moreover, is directly compatible with the de-
sirable principles (of what-if APIs and dependence on the
optimizer) listed in [5]. Thus, we believe that the practi-
cal benefits of the framework of [5] on very large problem
inputs could be greatly enhanced by using our approach.
Specifically, our algorithm can be used instead of the search
strategy of [5], as soon as the size of the view/index config-
uration can be handled by our approach.® (Sections 5.2-5.3
provide a discussion of the required preprocessing.)

6. EXPERIMENTAL RESULTS

Our experiments focus primarily on the advantages of La-
grangian relaxation, both in the context of B&B and as part
of a heuristic. Direct comparison with other work in the lit-
erature is not possible or even appropriate in most cases.’
Often (as pointed out in Sections 1.2 and 5) there are ei-
ther fundamental differences in problem formulation, or the
other work complements and is orthogonal to ours. Other
times, the instances used in related work are not available or
are too small to demonstrate the scalability of our approach.
We return to these points in Section 6.5 and draw what con-
clusions we can. Note that our comparisons with those past
projects may be partly relevant despite the differences.

We did preliminary experiments on the TPC-H bench-
mark dataset [31]. Our B&B algorithm was able to ob-
tain an optimum solution in 0.2 seconds on instances with
22 input queries (the actual TPC-H queries) and 32 views.
Note that the input query plans for these experiments were
formed using the module of [2] that builds the search space
of potential views and indexes.

A major theme in our experiments is that of scalabil-
ity. Note that, with our approach, approximate solutions
are needed only for very large query loads, see footnote
1 in Section 1. To draw conclusions about scalability we
must rely on randomly generated instances that emulate real
databases and exhibit increases in difficulty with increasing
size. We posit that our way of generating random instances
could allow fair and relevant comparison with future work.

The generation of random instances is discussed in Sec-
tion 6.1. The advantages of our B&B algorithm with re-
spect to the quality-runtime tradeoffs are demonstrated in
Section 6.2. A direct comparison between or B&B algorithm
and the greedy heuristic of [2] is given in Section 6.3. These
results show that our algorithm (which, unlike the heuristic
of [2], guarantees optimal solutions) is competitive with the
heuristic. In Section 6.4 we compare our LaR-based heuris-
tic (Algorithm 2 in Section 4.2) to the greedy heuristics of [2]
and [27]; we conclude with Section 6.5.

For the experiments we used an Intel 1.86GHz processor

5The scalability results reported in this paper imply that
for many realistic-size problem inputs, our approach can be
applied directly on the original search space produced in [5].
SE.g., Microsoft Research is currently unable to distribute
the research prototype externally due to IP considerations.

with 1GB RAM, running Red Hat Linux.
6.1 Random generation of problem instances

We generated problem instances based on the values of
several parameters. These can be grouped into (i) structural
parameters, and (ii) numerical parameters. The structural
parameters are as follows:

e N, total number of queries;

e M, number of plans per query;

e T, total number of views/indexes; and

e K, maximum number of views/indexes per plan.
The numerical parameters are as follows:

e Winin and Wi,az, the min/max view/index weights;

e Cin and Chaz, the min/max query costs; and

e P the minimum plan cost.
We generated problem instances randomly using the follow-
ing process. (All numerical values are chosen at random,
uniformly distributed over a specified interval.)

Structural properties — queries, plans, and views/indezes:
For each query 7, we choose the number of views or indexes
relevant to the query, a random integer r in [K, KM/2].
Then we randomly choose a subset V; of r views/indexes
that covers all plans for query i. For each of the M plans
for query 7 we choose a random number s of views/indexes
in [1, K] and a subset of size s from V;. For an instance with
N queries we assume there are 7' = 2N views and indexes.
Finally, we scale instance size by increasing N.

Weights and costs: The weight of each view/index is a
random value from [Wiin, Winae|. The cost of query i is C;,
a random value within [Chin, Cmaz]. For each plan j for
query 14, its cost ¢;; is a random value from [P,C;]. Thus,
the benefit b;; of using plan ¢ to answer query j is (C; —¢;j).

Space bound. We choose a space bound that is a fraction
of the sum of the weights of the views and indexes. Our pre-
liminary experiments show that the value of one third of the
total view/index weights yields difficult problem instances.

An additional feature of our problem structure is that we
order all views and indexes in a list where we assume that
neighboring views and indexes have more in common than
others, making them more likely to be usable for the same
query. (This property occurs in, e.g., the OLAP context [3,
12, 15, 24].) Thus, when choosing random views and indexes
for a query, we choose contiguous sublists of this list.

Our uniform choice of view/index weights and plan costs/
benefits ensures that, as is common in practice, these factors
will vary from very small to very big. The query-plan costs
might not be independent (as in our random generation),
but the dependencies are likely be too complex to model.

6.2 B&B behavior

Our B&B algorithm exhibits a lot of flexibility when it
comes to tradeoffs between runtime and guaranteed solu-
tion quality. For example, Figure 1 shows the scalability of
our algorithm for different maximum allowed errors. The
X-axis represents problem size via the number of queries in
the workload. The Y-axis shows the runtime of the algo-
rithm. Each point on the plot corresponds to the average
of the runtimes for thirty instances, all of a given problem
size. Each curve corresponds to a relative error bound spec-
ified explicitly by the user; the algorithm does not terminate
unless the current solution is within that bound of optimal.



Runtime decreases significantly even when the input rela-
tive error is a mere 1-2%. Beyond what is shown in Figure 1,
we were able to solve almost all (29 out of 30) 80-query in-
stances with errors of 1% and 2% in less than 15 seconds.

For the next experiment, see Figure 2, we used a ten-
query instance with a big difference between the initial upper
and lower bounds,” and tested the runtime against various
maximum allowed errors. The X-axis in Figure 2 represents
the user-specified error, and the Y-axis shows the runtimes
for our algorithm. A point on the graph shows how long
it took the algorithm to get a solution within each relative
error. Each point represents a different run with the given
error bound as user input. The actual relative error of the
solution may be significantly smaller than the input error
value. The runtime decreases not only because of the more
easily satisfied stopping criterion, but also because we bind
more variables (see Section 3) and prune more subproblems
during the exploration of the branch and bound tree.
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Figure 1: Scalability of B& B for various input errors.

The next experiment, in Figure 3, shows the interactive
(online) property of our algorithm. During execution the
program pauses when the relative error improves. A user
can then choose to accept the current solution or have the
algorithm look for a better one. The plot in Figure 3 is based
on experimental results for 30 random instances, where each
instance has 15 queries, 6 plans per query, and 30 views. On
this plot, the X-axis represents the runtime, and the Y-axis
represents the relative error. Each run yields multiple plot
points, one for each time the relative error improved in that
run. The highlighted line shows the progress of one partic-
ular run — points along that line are points at which the
relative error improves. The remaining points were gener-
ated in similar fashion based on the other 29 runs.
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Figure 2: Runtime of B&B on a fixed instance with
various input errors.

"Large differences between the initial upper and lower
bounds are likely to make the problem instance hard to solve.
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Figure 3: Relative error improvements for multiple
runs using our interactive approach.

Results for Greedy(k,m) with k = 2
queries | median mean stdev max

25 10.1 13.1 8.5 32.0
30 11.8 11.4 6.5 23.5
35 9.6 11.2 5.4 23.9
40 11.2 11.1 5.4 22.1

Results for our B&B with 20% error
queries | median mean stdev ~max

25 6.5 6.3 3.9 15.9
30 8.7 7.4 4.4 13.9
35 5.6 5.8 3.0 12.7
40 7.5 7.4 3.5 15.9

Table 1: Quality of Greedy(k,m) outputs vs. our
B&B: statistics for relative error w.r.t. optimum.

6.3 Comparison with Greedy(k,m) of [2]

In this subsection we show, via direct comparison, that the
guaranteed optimum solutions obtained by our B&B heuris-
tic compare favorably with expected (but not guaranteed)
quality of solution obtained by algorithm Greedy(k, m) of [2].

Heuristic Greedy(k, m) proposed in [2] exhaustively sear-
ches for an optimal subset of views/indexes of size k, and
then greedily adds views and indexes until the subset has
m views/indexes. Note that, while our algorithm can work
with any weight values, Greedy(k, m) assumes that all views
and indexes have weight 1. Any comparisons involving
Greedy(k, m) will therefore be on unit-weight instances (with
all other aspects of random generation the same). Because
it searches exhaustively for a set of view/indexes of size k,
the runtime for Greedy(k, m) is exponential in k.

Table 1 shows the behavior of the solution quality for
Greedy(k,m) with k = 2; the results for £ = 1 are slightly
worse. Each line shows basic statistics for the relative er-
ror (w.r.t. the optimum) with 30 experiments of the given
problem size. Even though our B&B only guarantees a 20%
input error bound, the actual errors are much smaller, both
objectively and in comparison with those of Greedy(k, m).

Figure 4 shows the scalability of Greedy(k, m) and of our
B&B, with input error 20%. The X-axis shows problem
size via the number of input queries, and the Y-axis shows
the runtimes. A point on the plot represents the average
runtime for 30 experiments for given problem size. Our B&B
runtime falls between the linear and quadratic curves for k =
1 and k = 2, respectively, showing that we get better quality
and a guarantee with competitive runtime. (Recall that to
enable the comparison with Greedy(k, m), we use here the
unrealistic assumption of unit-weight views and indexes.)
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Figure 4: Runtime of B&B with 20% relative error
versus Greedy(k,m) of [2] with k=1,2.

6.4 Advantages of Lagrangian relaxation

We now compare the solution quality, runtime, and scala-
bility of our LaR heuristic (Algorithm 2 in Section 4.2) ver-
sus two other heuristics. One of these others is Greedy(k, m)
discussed in Section 6.3. Because of the large size of the in-
stances used for the experiments reported in this subsection,
the only feasible choice for k in Greedy(k,m) is 1.

The other heuristic that we consider in this subsection
is the approach of [27], based on LP relaxation, to select-
ing clustered and unclustered indexes (only, as opposed to
views), please see Sections 1.3 and 2.2 for an overview and
discussion.® In this subsection we refer to this heuristic as
LPR. To obtain a feasible solution from an LP relaxation
we (a) turn all non-zero valued variables into 1’s to sat-
isfy the integrality constraint; then (b) greedily remove in-
dexes/views until the space constraint is satisfied.

None of the three heuristics has guarantees on solution
quality. Indeed, all the instances were too large to be solved
optimally. These randomly generated instances had be-
tween 50 and 550 queries, 20 plans per query, and 100 in-
dexes/views. We obtained similar results with a larger or
smaller number of plans per query.

Figure 5 illustrates that the solution quality (total benefit)
of our LaR approach is significantly better than that of LPR,
the difference being nearly a factor of 2. The greedy heuristic
yields even higher quality solutions. (Recall that we imposed
significant restrictions on problem inputs to make the three
heuristics comparable, please see footnote 8 for a descrip-
tion. Thus, the solution-quality results of this subsection
may not be representative of the more realistic problem in-
stances that our approach can handle.) As shown in Table 2,
the LaR heuristic is significantly faster than the other two.

While the time to solve an LP is faster than the La-
grangian relaxation discussed in Section 3, the time for the
LaR and LPR heuristics is dominated by the greedy conver-
sion to feasible solutions. In the case of LaR, the number of
indexes/views added during the greedy part (Algorithm 1 of
Section 4.1) is usually small, thus the minimal increase in
runtime with increasing problem size. However, the greedy
phase of the LPR heuristic must typically remove a large
number of indexes/views to obtain a feasible solution.

8For the experimental comparison to be meaningful, we as-
sumed that all three approaches do selection of (unclus-
tered) indexes only. In addition, we had to apply to all
the problem instances the unit-weight restriction on the use
of Greedy(k,m), see discussion in Section 6.3.
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Figure 5: Average benefit for three heuristics on
large instances.

queries | LaR | greedy | LPR
100 0.1 2.2 7.6
200 0.3 44| 172
300 0.5 6.5 | 27.3
400 0.9 8.8 | 38.3

Table 2: Average runtime for three heuristics on
large instances.

6.5 Other observations

We now discuss the relevance of our experiments to re-
lated work. We commented in Section 1.2 on the genetic al-
gorithms proposed in [18, 21, 23] and their need to “soften”
the space constraint. The two remaining papers that most
closely address our problem are [5] and [7]. (The approach
of [27] is extended and compared to ours in Section 6.4.)

As discussed in Section 5.4, the authors of [5] focus on
exploring the search space of combinations of views and in-
dexes to find those combinations that have low(er) query-
processing costs while satisfying the input space bound. Un-
like us, they do not appear to address solution quality with
respect to a global optimum. The ideas presented in [5] could
be used either to develop a good set of plans (and thus be
orthogonal to our work) or to provide a heuristic solution in
the setting where there are no predefined plans with arbi-
trary benefits (and thus be incomparable to our work). Note
that our work is applicable no matter how the benefit of a
plan is calculated. Finally, we posit that the approach of [5]
can be combined with our proposed algorithm to improve the
quality guarantees of the output view/index configurations;
please see Section 5.4 for a detailed discussion.

If we specialize our work to the problem of [7] of select-
ing clustered and unclustered indexes (but not views), their
result may apply in the sense that (as reported in [7]) they
achieve roughly the same solution quality as Greedy(k, m)
of [2], with somewhat better execution performance than
Greedy(k,m). In contrast, we obtain solutions having guar-
anteed (including optimum) quality, with much faster exe-
cution times than Greedy(k,m) in a more general context.
We posit that experimental comparisons of the approach
of [7] with ours would confirm the conclusions of [7] that the
quality and performance characteristics of their approach
are comparable to those of Greedy(k,m). Thus, we expect
our approach to compare with that of [7] in the same way
our approach compares with Greedy(k,m), see Section 6.3.

To summarize, we have shown that: (a) a B&B algorithm
based on Lagrangian upper and lower bounds is effective
in obtaining optimal solutions, solutions with user-specified
relative error, or solutions selected interactively by the user



based on reductions in relative error; (b) Lagrangian relax-
ation has distinct advantages over linear programming re-
laxation (such as the approach of [27]) as a starting point
for computing feasible solutions; and (c) our B&B algorithm
obtains optimal solutions faster than non-optimal solutions
computed by the greedy heuristic of [2]. The work presented
here is clearly competive in a practical /experimental sense.
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