
DiffQ: Differential Backlog Congestion Control for Wireless
Multi-hop Networks

Ajit Warrier, Sangtae Ha, Prashant Wason and Injong Rhee
Dept of Computer Science

North Carolina State University
acwarrie,sha2,pwason,rhee@ncsu.edu

ABSTRACT
Congestion control in wireless multi-hop networks is chal-
lenging because of two reasons. First, broadcast is an inher-
ent feature of wireless networks and motivates many creative
protocols including opportunistic routing and network cod-
ing. These protocols enable the use of many diverse, yet
dynamically changing routing paths. Congestion control for
these protocols using traditional end-to-end protocols such
as TCP may result in too conservative rate control. Second,
the wireless medium is shared among neighboring nodes;
thus bandwidth must be allocated fairly among neighboring
flows that do not necessarily share the same link. There have
been no practical solutions for congestion control for these
networks. Inspired by existing theoretical solutions of cross-
layer optimization, we develop a protocol, called DiffQ, for
congestion control in wireless multi-hop networks. DiffQ
can support congestion control for network flows that use
either single-path or opportunistic multi-path routing. The
protocol is currently implemented in Linux 2.6 series and
tested in a network of 46 IEEE 802.11 wireless nodes. It is
observed that DiffQ greatly improves the efficiency and fair-
ness of existing transport protocols that use application-level
multi-path routing and single-path routing.

1. INTRODUCTION
Providing congestion control for wireless multi-hop

networks is challenging. The major challenge comes
from the liberal use of multi-paths in wireless networks –
especially so with the recent proposal of schemes such as
opportunistic routing [4] and network coding [24], which
leverage the broadcast nature of wireless networks to
improve network capacity. In these protocols, packets
of a single flow simply “flows” through many paths to-
ward the destination just like a river flowing through
valleys. They make possibly dynamic and local changes
in routing paths adapting to dynamically varying wire-
less link condition. Routing is also non-deterministic as
it occurs opportunistically through intermediate routers
that happen to receive packets through overhearing.

Unfortunately, there has been little research on con-
gestion control for non-deterministic multi-path routing
for wireless multi-hop networks. Most existing work in

multi-path routing pertains to wired networks (e.g., [25,
41]). Applying such algorithms directly to flows taking
non-deterministic routing paths is difficult – since the
path traversed by a packet is non-deterministic, it is
not feasible to allocate traffic to specific paths. More-
over, most congestion control enhancement proposals
for wireless networks (see [30]) pertain to single path
routing and rely on end-to-end congestion control after
gathering feedback on path characteristics from the net-
works such as link estimation [3, 6, 39], ECN [12, 35] or
AQM marking [41] or losses [43, 32, 40]. Applying these
protocols to opportunistic multi-path routing is not ef-
fective because of a potentially large number of paths
that a single flow may take. As the number of possible
paths gets large, receiving feedback from all (possibly
temporary) congestion incidents from various parts of
the network can cause feedback implosion commonly
seen in reliable multicast [10]. Protocols using TCP as
end-point congestion control must react to all these un-
correlated congestion signals from the network which
limits the transmission rate to a very low rate, causing
low resource utilization. Techniques to aggregate the
feedback inside the network such as reporting only the
maximum delays (e.g., ATP [3]) or minimum link rate
(e.g., EXACT [6]) lead to too conservative rate control
because the end-point rate control protocols must react
only to the worst case condition in the network.

Another challenge comes from the wireless medium
being a shared medium over the air. The common
form of media access control (MAC) is CSMA such as
IEEE 802.11 where a radio transmission can affect a ge-
ographically scoped region instead of a specific receiver.
In such a network, contention occurs not only among
those flows that share the same links or routers, but also
among neighboring flows that do not necessarily share
the links. Directly applying TCP to these networks
causes severe unfairness in resource usage among com-
peting flows and this problem has been well-documented
in a number of papers (see [17]).

Congestion control over multi-path routing have also
been studied in cross-layer optimization. Many existing
cross-layer optimization frameworks are highly theoret-

1

ical with unrealistic assumptions about wireless inter-
ference models and have too strong limitations to be ap-
plied directly to real networks. For instance, to achieve
the optimal performance requires solving an NP-hard
problem in general interference models. As a result,
none of the existing solutions have been implemented
in real systems.

In this paper, we propose a new congestion control
protocol for general purpose wireless multi-hop networks.
This protocol is designed with the following informally
defined goals: (1) it must support traffic carried by
non-deterministic multi-path routing over possibly di-
verse and many paths as well as single path routing.
This means congestion control must be scalable to the
number of paths being used, (2) congestion control is
a service for diverse applications so that it should not
require any changes in application operations such as
reliability (e.g., coding) and application-level routing
(e.g., opportunistic multi-path or single path), and (3)
it must improve efficiency in resource usage to achieve
high throughput and fairness in resource sharing among
concurrent flows.

In developing our solutions, we borrow heavily from
existing theoretical work. Our solution is adapted from
differential backlog based backpressure, conveniently called
differential backlog. The technique was first applied to
wireless multi-hop networks by Tassiulas and Ephremides
[26] and later used in several follow-up studies [33, 34,
36]. We call our adapted version of differential backlog
as DiffQ. DiffQ implements router-assisted rate control,
source rate control and MAC scheduling over an IEEE
802.11 driver. DiffQ is currently implemented in the
Linux kernel and supports various transport protocols
including UDP, TCP (without its congestion control),
as well as application-level routing supported by MORE
and ExOR.

We conduct the evaluation of DiffQ in a testbed of
46 IEEE 802.11b nodes deployed over a 100,000 sq ft
building. Our experiments show that DiffQ significantly
improves the performance of MORE by 2 to 3 times
when tested under 32 concurrent flows of MORE. This
gain is possible because the congestion control mech-
anism of DiffQ avoids congestion collapse and ensures
fair sharing of bandwidth among concurrently running
MORE flows. The results demonstrate that DiffQ effec-
tively handles multi-path routing used in opportunistic
routing and network coding in wireless multi-hop net-
works. We also compare the performance of DiffQ aug-
mented TCP-SACK and UDP with that of commonly
used single-path congestion control algorithms such as
TCP-SACK [31], TCP-FeW [32], and TFRC/ECN [13,
12]. TCP-FeW and TFRC/ECN are designed specifi-
cally for wireless multi-hop networks; TCP-FeW solves
the capacity over-estimation problem of TCP [16] in
wireless networks and TFRC is augmented with ECN

[12] to remove TCP’s dependence on using packet losses
as congestion indications. TFRC/ECN uses AQM mark-
ing as congestion indications and ignores packet losses.
Our experiments show that the DiffQ augmented pro-
tocols show superior fairness properties than these pro-
tocols while achieving comparable average throughput.

The rest of the paper is organized as follows. Sec-
tion 2 motivates for our work, Section 3 presents related
work, Section 4 and 5 describe the design of DiffQ and
implementation details of DiffQ into Linux respectively,
and Section 6 discusses the experimental results.

2. MOTIVATIONS
This section examines two key congestion-related per-

formance problems observed in wireless multi-hop net-
works. The following results are derived from a testbed
network of 46 indoor IEEE 802.11 nodes deployed over
a three story building of 100,000 sq. ft. space (more
detailed description in Section 6). Tests are conducted
between random pairs of source and destination nodes
The maximum number of hops in our testbed is around
6 or 7 hops. MORE is representative of the multi-path
schemes which can benefit from using DiffQ. In each ex-
periment, we increase the number of concurrently run-
ning MORE flows. We repeat each experiment 20 times.
Figure 1 (a) shows the CDF of per-flow throughput of
MORE as we increase the number of flows in each run.
We do not employ any congestion control for this exper-
iment.As the number of flows increase, we observe that
the number of starved flows increases quickly. With 32
flows, over 50% of flows are completely starved. We
also run TCP in the same setup and compare the re-
sult in Figure 1(b). TCP also experiences much starva-
tion with about 30 to 40% of flows starving. Figure 1
(c) compares their average per-run total throughput.
From these graphs, we find that the problems of these
two protocols under high traffic load are quite different.
For MORE, since it does not use any congestion con-
trol, under higher load, the total throughput of MORE
substantially reduces and eventually under 32 flows, not
many flows get much utility out of the network; from its
CDF of the 32 flow case, we see that over 90% of flows
are getting less than 100 kbps. This is a clear sign of
congestion collapse. On the other hand, the maximum
throughput that TCP flows achieve is almost invariant
of the number of concurrent flows running. This shows
that TCP experiences extremely unfair bandwidth shar-
ing among its competing flows; while a few flows get a
disproportionally larger amount of throughput, many
flows are starving.

Figure 2 further illustrates the fairness problem of
TCP. In this test, we run three flows as illustrated in
Figure 2 (a) where one multi-hop flow (flow 1) starts
first and the other two one-hop flows join later. Fig-
ure 2 (b) shows the instantaneous throughput of each

2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06

C
D

F

Throughput (bps)

1 Flow
4 Flows
8 Flows

16 Flows
32 Flows

(a) CDF of per-flow average throughput of
MORE

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06 1e+07

C
D

F

Throughput (bps)

1 Flow
4 Flows
8 Flows

16 Flows
32 Flows

(b) CDF of per-flow average throughput of
TCP

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

32 Flows16 Flows8 Flows4 Flows1 Flow

Th
ro

ug
hp

ut
 (b

ps
)

MORE
TCP

(c) Average per-run total throughput

Figure 1: Congestion problems observed in wireless multi-hop networks. Many concurrent MORE
flows running without congestion control experience congestion collapse while concurrent TCP flows
experience the fairness problem.

flow over time. As soon as the third flow joins, the
first flow quickly starves off. The following explains
the reason. While the second and third flows get inter-
ference from only the first flow, the first flow does so
from the other two flows as well as its own flow being
forwarded in different nodes. As a result, the channel
accesses of node B interfere with those of four other
nodes, A, C, E and G. Thus, the first flow gets less
channel accesses especially at node B than the other
two flows. This causes congestion at node B. In the
mean time, flows 2 and 3 do not get any losses because
their destinations are not under any interference. This
enables the TCP senders of flows 2 and 3 to increase
their rates according to their AIMD algorithm while
the TCP sender of flow 1 reduces its rate drastically.
This gives the other two flows more chances for chan-
nel access and their TCP senders further increase their
rates as they interpret the increased channel accesses as
increase in available bandwidth. The situation escalates
to the eventual starvation of the first flow. This prob-
lem is unique in wireless multi-hop networks because in
wired networks, when a flow in a congested link receives
congestion indications, all the other flows competing in
the same link receive a similar amount of congestion in-
dications. In wireless networks, although several flows
share the same resource, it is possible that only a subset
of those flows get congestion indications depending on
their topology. This unfairness problem does not disap-
pear by replacing the congestion indications from losses
to delays, ECNs or explicit rate estimation at the link
as in ATP [3], EXACT [6], WXCP [39] and ECN[12].
It requires coordinated rate control among competing
nodes within the same interference range.

3. RELATED WORK

3.1 Congestion control for wireless multi-hop
networks

Lochert et al. [30] gives an extensive overview on

(a) A test scenario; dotted circles represent interference ranges.

10M

1M

100K

10K
 0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (b

ps
)

Time (seconds)

Flow 1
Flow 2
Flow 3

(b) Instantaneous throughput of three TCP flows

Figure 2: The fairness problem of TCP in multi-
hop wireless networks. We test three flows –
one flow over three hops started at time 0 and
the two other flows over one-hop started at sec-
onds 45 and 70 respectively. We find that the
throughput of flow 1 quickly reduces to zero as
flows 2 and 3 join due to the fairness problem.

proposals for improving TCP performance in wireless
multi-hop networks. Many involve retaining the end-
point congestion control of TCP with slight modifica-
tions in router functionality to give notifications about
link failures (e.g., [19, 29]) and congestion states (e.g., [12,
40, 43]) or to use other congestion metrics such as delays

3

(e.g., [14, 3]) or explicit rate calculation (e.g., [6, 39])
measured inside routers. Some (e.g., [15, 32]) fix the
problems of TCP over-estimation of path bandwidth
by reducing the source rate of TCP.

Since all these solutions rely on end-point congestion
control, when applied with multi-path routing, they
have potential problems with feedback implosion [10]
or being too conservative by adapting only to the worst
case path condition. Furthermore, these solutions ig-
nore the fairness issues arising from radio interference.
Recently, there have been several proposals to fix the
fairness problems. Some of them can be applied only to
mesh networks or sensor networks where traffic patterns
always follow many-to-one transmissions involving one
or more gateways or sink nodes (e.g., [17, 37, 20, 38]).

3.2 Congestion control for multi-path routing
Most congestion control studies for multi-path rout-

ing are on wired networks with the perspective of load
balancing [28, 41, 25]. These solutions apply conges-
tion control at the end-points based on feedback from
the routers such as marking or losses that indicate prices
of sending a certain rate to a path. Based on the feed-
back, end-points decide the amount of traffic to send
through each path. These techniques cannot be applied
to non-deterministic multi-paths where end-points do
not have any prior information on which path a packet
would traverse at the time of transmission. There are
also some multi-path congestion control algorithms for
wireless networks (e.g., [18]) but they use multiple paths
only for fault-tolerance against link failures.

3.3 Cross-layer optimization
Our solution is inspired by theoretical cross-layer op-

timization approaches, especially differential backlog back-
pressure, first proposed for wireless multi-hop networks
by [26]. There have been many follow-up studies (e.g., [34,
7, 36, 27, 33]) that use the framework to jointly opti-
mize various components of the protocol stack including
scheduling, routing, congestion control, multi-receiver
diversity and coding. However, these studies use inter-
ference models such as the one-hop interference model
to avoid solving an NP-hard problem for the optimal
solution. But the interference in real wireless networks
commonly affect a multi-hop neighborhood. More im-
portant, most of them require the network to be suffi-
ciently loaded to offer the optimization in order to mea-
sure queue size differences. In these solutions, when the
network is lightly loaded, packets are sent almost ev-
erywhere randomly to “create congestion”. This incurs
high transport delays (see [42]). Since all these solutions
optimize for maximizing a function of throughput, the
high delays do not affect their optimality. But in prac-
tice, delay is an important issue for Internet applica-
tions (e.g. web, instant messaging) whose requirement

is not real time, but fast response time is a key for their
success. Because of combination of the above factors,
we do not find any implementation of these solutions in
real systems. Recently, Neely and Urgaonkar [34] com-
bine opportunistic routing, and Radunovic et al. [36]
combine network coding, into the cross-layer optimiza-
tion framework. They also propose some practical adap-
tations of their optimal solutions. Both solutions re-
quire a reliable link-level signal plane that transports
acknowledgment for each broadcast transmission. Pro-
viding reliable link-level acknowledgments for broadcast
incurs high overhead in each packet transmission. These
solutions are also not completely free from the problems
cited above for differential-backlog cross layer optimiza-
tion. For instance, [34] does not solve packet reordering
problems due to the use of diverse paths, and both so-
lutions, to a varying degree, still allow packets to reach
many parts of the network that may not lead to des-
tinations just to “create congestion”. In general, these
cross-layer optimization solutions require changes in ex-
isting application-level routing schemes. From the sys-
tems perspective, it is of more utility for a congestion
control service module to support many application-
level protocols without requiring their modifications.

4. DIFFQ DESIGN
In DiffQ, each node maintains a queue for each des-

tination of the flows whose packets it forwards. At the
reception of a packet, it can be delivered to the appli-
cation if the node is the destination or placed into its
destination queue in the FIFO order for forwarding to
next hops. The queue information and states in a node
are soft-state – a destination queue may disappear when
there is no packet for that destination.

Each node keeps track of the sizes of destination queues
located at its neighboring nodes. When sending a packet,
a node piggybacks the queue size of its destination queue
where that packet has been queued. This informa-
tion is overheard by its neighbors. If the next hop is
the destination of a packet, then the size of the corre-
sponding queue in that next hop is set to zero. The
queue size information is used in a unique way to ap-
ply backpressure-based congestion control. Below we
first describe congestion control for single-path flows
and then for multi-path flows.

4.1 Congestion control for single path routing
We assume that routing is determined by the underly-

ing routing layer and each node knows its next hop for-
warding nodes for destinations of received packets. The
per-hop congestion control algorithm of DiffQ works as
follows. Let us denote Qi(d) to be the destination queue
for destination d in node i. For each destination queue
Qi(d), it maintains the following information every time
a new packet is received or overheard from a neighbor

4

destined to destination d. Suppose that j is the next
hop node toward the destination d from node i accord-
ing to the underlying routing layer.

QDi(d) = |Qi(d)| − |Qj(d)| (1)

where |Qi| is the size of queue Qi. We call QDi(d)
the queue differential or differential backlog of destina-
tion d at node i. For the head-of-line (HOL) packet
of each destination queue, we assign a priority which
is used for resolving MAC contention in IEEE 802.11
when it is transmitted. At each time that a new packet
needs to be transmitted, node i evaluates the priority
of the HOL packet of each queue based on its queue dif-
ferential – the larger the queue differential, the higher
priority the packet gets. Since we can only support a
finite number of priority levels, we quantize the queue
differential value. For simplicity, we use a linear quanti-
zation by dividing the queue differential by a fixed inter-
val that is set by dividing the maximum queue size by
the number of supported priority levels. Node i chooses
the HOL packet of the highest priority among all HOL
packets in its destination queues, for transmission next
time. Ties are broken arbitrarily. The priority of the
HOL packet is used to resolve the channel access. We
modified the IEEE 802.11 MadWiFi driver to support
prioritized access among competing nodes by adjusting
the contention window sizes and AIFS. More details are
given in Section 5. It ensures higher chances for chan-
nel access to the node with a higher priority packet
for transmission. The pseudo code for the source and
forwarder are given in Source Rate Control() and For-
warder Algorithm() respectively.

A source node regulates its flow rate based on its own
queue size. Its queue size increases or reduces based on
the function of backpressure coming from the network
based on our DiffQ scheduling. The rate control must
reduce its rate when the queue increases and increase its
rate when the queue decreases. As the particular choice
of rate control has significant effect on the utility of the
system in terms of throughput, it must be carefully de-
signed. In our study, we evaluate AIMD or logarithmic
adjustment (which optimizes for the sum of log of per-
flow throughput) as used in [8] or [21]. Our pseudo-code
of DiffQ below describes a version of AIMD.

Algorithm Source Rate Control()
1. F = Destination of flow originating at this node
2. qlen ←|Qi(F)|;
3. if qlen > QUEUE THRESH
4. rate = rate/β;
5. else
6. rate = rate + α;

Algorithm Forwarder Algorithm()
1. ∆ ←Number of priority levels supported by MAC;

2. D ←Maximum per-destination queue size;
3.
4. Flow Scheduling
5. F ←argmaxd QDi(d);
6. P ←HOL packet of Qi(F);

7. P.priority←MAX(⌈QDi(F)
D

∆⌉, 0); P.qlen←|Qi(F)|;
8. Transmit P;
9.
10. On receiving packet P from local application
11. Encapsulate P with DiffQ header;
12. if P is the first packet
13. Create flow entry for P ’s destination;
14. F ←Destination of P ;
15. Enqueue P into Qi(F);
16.
17. On reception of packet P from node j
18. F ←Destination of P ;
19. if F is this node
20. Decapsulate DiffQ Header;
21. Send it up to the application;
22. else
23. if No flow entry exists for F
24. Create flow entry for F ;
25. if node j is the routing next-hop for F
26. QDi(F) ←|Qi(F)| − |Qj(F)|;
27. else
28. Enqueue P into Qi(F);

We now provide the rationale for the above algorithm.
DiffQ looks a lot like a scheduling algorithm. But it also
has a unique way of applying backpressure. Suppose
that a flow f is forwarded through a chain of nodes X ,
Y , Z and so on in that order, and suppose the size of
the destination queue of flow f at node Z is reducing as
somehow Z can forward the packets of f fast to its next
hop. Then it will cause the queue differential at node
Y to increase. This has effect of increasing the forward-
ing rate at node Y because the channel access priority
increases with the queue differential. As Y gets more
prioritized access, X will be waiting and its queue builds
up. After Y ’s queue gets depleted, then again X ’s pri-
ority increases because its queue differential against Y ’s
queue is rising, and then X will have a higher chance to
the channel next. For the opposite case, suppose that
Z’s next hop is congested so Z cannot forward its pack-
ets. Then Z’s queue will build up while increasing its
priority. In the mean time, Y ’s queue differential will
reduce because Z’s queue is increasing and allows less
chance accesses for Y . Consequently, Y ’s queue builds
up. This backpressure will propagate to the source if
Z’s congestion does not resolve soon enough.

Through backpressure, the size of a destination queue
in a node reflects the aggregated condition of all paths
from that node to the destination: small queues repre-
sent good path conditions on the paths as packets can
leave the queue fast and indicate that the paths may be

5

able to support additional load. Thus, when the desti-
nation queue size of the next hop node gets smaller, the
priority of the flow being forwarded to that node gets
increased, ultimately increasing the flow rate to that
node. On the other hand, large queues represent bad
path conditions from that node to the destination. This
reduces the queue differential of the preceding hop node
which reduces its transmission. This condition propa-
gates until the backpressure reaches the source unless
the situation improves soon.

The differential backlog scheme improves fairness among
neighboring flows although those flows do not share the
same routers or links. When a flow is continually de-
nied of transmission at a node in a network path due
to contention from its neighbors, then its queue size at
that node will increase. This has an effect of increasing
the queue differential for that flow at that node, and
thus its channel access priority. Consider the scenario
in Figure 2. As the one-hop flows send at a high rate,
the first flow continues to be denied of channel access.
In DiffQ, the destination queue of node B will increase
and eventually, get a higher priority than the nodes with
single-hop flows (E and G). Thus, B will be allowed to
forward the packets of flow 1. DiffQ ensures the nodes
with more congestion to have a higher channel access
priority so that they can relieve the congestion faster
before the backpressure reaches the source. This fea-
ture allows DiffQ to enforce fairness among competing
flows in wireless multi-hop networks.

DiffQ is different from the queue occupancy based
technique used in [22, 20] which sets the contention win-
dow size inversely proportional to the queue size, thus
giving a higher priority to a node with a larger queue.
While it also provides more congested nodes to send
packets fast, the difference comes when an area is con-
gested and many neighboring nodes are congested to-
gether. In that situation, the queue occupancy scheme
allows the node with the largest queue to send packets
first whether or not its next hop is congested or not.
Thus, it is not clear whether those transmissions will
relieve congestion. With DiffQ, those nodes with the
largest queue differential make the first transmissions,
allowing transmissions to occur always to the direction
where congestion can be relieved. This difference is il-
lustrated in Figure 3 where node E has a largest queue.
According to the queue occupancy scheme, E will get
the highest channel access priority. But in this case, E’s
transmission only adds congestion already occurring in
node F . But in DiffQ, nodes B and F get a channel
access first as they have the largest queue differential
values within their sensing ranges. This relieves conges-
tion from the locations where it first happens and also
backpressure quickly propagates back to the up-stream
nodes.

4.2 Congestion control for multi-path routing

Figure 3: The operation of DiffQ. The thick lines
represent channel accesses. According to DiffQ,
nodes B and F get the channel access first as
they have the largest queue differential values
within their sensing ranges.

For the single-path algorithm, we have the informa-
tion about the next hop router for each packet from the
routing layer. For multi-path routing, especially oppor-
tunistic routing, each packet does not know the next
forwarding node(s); this information is available only
after the reception of that packet by the neighboring
nodes. One or more neighboring nodes receiving that
packet may become the next forwarding routers.

Existing opportunistic routing protocols use source-
based routing where each packet contains information
about the set of candidate forwarding nodes in the net-
work. This means that at each node i, we can narrow
down the possible set of forwarding routers by taking
the intersection of the candidate forwarding router list
in a forwarded packet p and the one-hop neighbors of
that node. Let us call that intersection Fip. When
evaluating the priority of an HOL packet p with desti-
nation d, each node i computes Fip and then computes
the queue differential of that packet with respect to a
neighbor j ∈ Fip. The queue differential value, QDi(d),
of p at node i is set to be the minimum of such queue
differential values. We use that value for setting the
priority of that packet at node i. The following defines
this operation.

QDi(d) = min
j∈Fip

{|Qi(d)| − |Qi(d)|} (2)

Node i schedules for transmission the packet with the
highest priority (i.e., the maximum queue differential)
among all HOL packets and the priority of that packet
is used by the MAC layer to schedule the transmission.
Each node schedules its transmission based on the worst
case next hop router. If there is a queue buildup at any
next hop in Fip, then the priority of packet p gets re-
duced and thus that packet will get a lower channel
access priority, which effectively reduces the transmis-

6

Figure 4: DiffQ Architecture and Packet Header
Format - DiffQ sits on top of IP and provides
congestion control services to upper layer trans-
port modules. It also controls the MAC priority
of packets for scheduling and performs source
rate controls for the transport flows (for support
of TCP, it disables TCP’s congestion control.

sion rate of the flow packet p belongs to. This approach
is conservative because the packet may not be received
by that worst case next hop.

5. IMPLEMENTATION DETAILS

5.1 Overall architecture
DiffQ has been implemented as a kernel module for

the 2.6 series of the Linux kernel (2.6.18 onwards). DiffQ
performs queuing and scheduling on every packet being
transmitted or received in the Linux networking stack.
DiffQ is primarily implemented on top of IP except for
prioritized channel access (link layer) and source rate
control (transport layer). DiffQ uses the routing sup-
port of IP for single path routing while using source
routing for multi-path routing in which case, DiffQ by-
passes IP routing.

To implement the functions of DiffQ over IP, we need
various mechanisms (1) to capture, process and re-inject
all IP packets before or after routing in the kernel, (2)
to control the MAC priority of each packet transmitted
by MAC, and (3) to provide DiffQ information to the
transport layer (e.g., queue size information for source
rate control). DiffQ uses the Linux Netfilter module to
implement the first mechanism, and uses the TOS field
of IP header to specify the priority of each packet. The
MadWiFi driver is modified to read this field of each
packet to get the priority information of the packet and
put the packet into appropriate priority queues. The
driver outputs packets into the air interface in the order
of priority using the queues.

5.2 Interface into IP Layer
We utilize the Netfilter mechanisms of Linux to cap-

ture IP packets for DiffQ processing. The Netfilter API

provides various hooks throughout the networking stack
where packets can be captured from the stack.

We use the PREROUTING hook to trap packets re-
ceived from a network interface. If the packet has a
DiffQ header, then this packet is part of a DiffQ flow
and hence we enqueue the packet into its destination
queue. If the header is not present then the packet is
not a DiffQ flow and is returned back to the stack – this
enables our system to handle other IP traffic.

5.3 DiffQ header format
Each DiffQ packet is appended with a DiffQ header

containing various fields used by the DiffQ algorithm.
We attach the header at the end of data so that the
IP layer treats the packet just like an IP packet. This
allows the transport header not to be modified since we
remove the DiffQ header before passing it to transport
layer on the receiver side. The IP header is modified
to reflect the new size of the packet. Since we change
the size of the packet, we re-compute the checksum be-
fore injection to the network stack and delivery to the
transport.

The DiffQ header has the following fields (illustrated
in Figure 4): The type field contains the type of the
flow that this packet belongs to, e.g. we use this field
to recognize whether a flow is a source-routed flow like
MORE or not. The flowid is the source assigned id for
the current flow. Qlen is the length of the packet queue
of the destination of the flow. This field is updated
by each transmitting node according to the DiffQ algo-
rithm. Timestamp is the timestamp at the source node
when this packet was transmitted. Sequence number is
used for testing purpose to trace packets.

5.4 DiffQ scheduler
The DiffQ scheduler schedules the queued packets for

transmission. The scheduler works as follows: Given
that some packets can be transmitted, the scheduler
looks into its destination queues and schedules the des-
tination with the highest queue differential. The HOL
packet for that destination is then dequeued and re-
injected back into the IP stack. Once re-injected, the
packet traverses the remaining part of the IP stack to
the MAC layer and finally over the air. The MAC layer
priority of the packet is loaded into the TOS field of IP
header to inform the MAC of the priority to use while
transmitting the packet.

5.5 MAC prioritization extension
The packet scheduled by the DiffQ scheduler needs

to be transmitted over the air by the MAC with a pri-
ority (from the IP TOS field) commensurate with its
queue differential; higher the queue differential, higher
the priority. We use a linear quantization to allocate
packets to one of the priority levels based on the queue

7

Table 1: 802.11e configuration parameters
Parameter 0 1 2 3 4 5 6 7
AIFS 7 6 6 6 3 3 3 2
CWMin 5 5 5 5 4 3 2 1
CWMax 10 9 8 7 5 4 3 3

differential values as discussed in Section 4. DiffQ uses
a modified MADWiFi-NG driver where 8 MAC priority
levels have been implemented. This is an extension of
the IEEE 802.11e scheme with 4 priority levels. The
driver has code that checks the TOS field and puts the
packet in the appropriate hardware queue. Most legacy
applications do not use IP TOS and hence TOS field is 0
by default. The parameters for various queues (CWmin,
CWmax, AIFS) are modified (with values shown in Ta-
ble 1) to implement MAC priority levels. All non-DiffQ
traffic is always sent at priority 0 whose value settings
correspond to the default settings of IEEE 802.11b.

6. EXPERIMENTAL RESULTS

6.1 Experimental Setup
Our testbed consists of 46 wireless nodes distributed

over three floors in a building of about 100,000 sq ft
space. Nodes are PCs with 128MB RAM and 266 MHz
processor. Each node is equipped with two Atheros-
based 802.11 a/b/g wireless interfaces (AR 5213/5112)
connected to omni-directional antennas. All wireless in-
terfaces are configured to operate in the ad-hoc mode
with RTS/CTS disabled, transmission power set to 19
dBm and PHY rate set to 11 Mbps. We use an imple-
mentation of the OLSR [23] routing protocol which uses
ETX [9] to generate routes. We compare the following
single path congestion control algorithms:

2

1

3
4

8

5 6

7

11

12

10

9 15
16

17

20

13 18

14
19

Figure 5: One floor of our testbed with 20 nodes.
The full testbed has 46 nodes over three floors.

TCP: We use TCP-SACK [31] as the baseline.
TCP-FeW: TCP-FeW [32] is a variant of TCP pro-
posed for wireless networks. It addresses the congestion
window overestimation problem of TCP-Reno style al-
gorithms by reducing their window growth rate. We
implement the algorithm in Linux kernel (it is available

only in NS-2).
TFRC-ECN: We implement TFRC-ECN where we
switch off TFRC’s [13] response to packet losses. In-
stead, intermediate nodes monitor the interface queue
size and set the ECN bit in the IP header whenever
the queue size exceeds 75% of the maximum queue size.
Marked packets within an RTT are treated as a conges-
tion event.
DiffQ-TCP: We implement a TCP-compatible version
of DiffQ, where we retain TCP’s reliability algorithm
but switch off TCP’s loss-based congestion control scheme.
Instead, the TCP source transmits packets at the rate
dictated by the DiffQ source rate control.
DiffQ-UDP: We augment UDP with the DiffQ source
rate control. It does not provide any reliability and so
its performance is compared to unreliable TFRC-ECN.

To demonstrate DiffQ’s effectiveness in supporting
non-deterministic multi-path routing schemes, we use
the following algorithms.
MORE: MORE [5] combines network coding with op-
portunistic routing. We obtained its source code from
the authors and ported it over native Linux. It is orig-
inally implemented on top of Click [1].
DiffQ-MORE: We apply DiffQ congestion control to
MORE as described in Section 4.2. In this implemen-
tation the MORE source transmits encoded packets at
the DiffQ regulated source rate.

MORE is implemented in the application layer, and
MORE packets are delivered to the application at every
hop for coding. This particular implementation strat-
egy incurs significantly more performance overheads (con-
text switching, system calls and coding) than TCP im-
plemented in the native Linux kernel. Consequently, the
performance of MORE is lower than TCP as shown in
Table 2. In this paper, we do not study how much per-
formance enhancement MORE makes over single-path
routing. Instead, we focus on evaluating congestion con-
trol performance when MORE is combined with DiffQ.
Since our purpose is to implement congestion control
for opportunistic routing like MORE, the current user-
space implementation of MORE is sufficient to serve
our purpose.

Table 2: Throughput of MORE and TCP
1-hop 2-hop 3-hop 4-hop

MORE (Mbps) 1.87 1.25 0.94 0.62
TCP (Mbps) 4.25 2.29 1.45 1.25

We construct scenarios with varying number of con-
current flows. The source and destination of each flow
is chosen randomly. For a given number of flows, we
construct 20 scenarios with different configurations of
sources and destinations. The packet size for all the
above algorithms is set to 1400 bytes. MORE and
DiffQ-MORE use a batch size of 32 packets. In the

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

32 Flows16 Flows8 Flows4 Flows

Fa
irn

es
s

In
de

x

MORE
DiffQ-MORE

(a) Average per-run fairness index

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

32 Flows16 Flows8 Flows4 Flows1 Flow

Av
er

ag
e

Pe
r-R

un
 A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

bp
s) MORE

DiffQ-MORE

(b) Average per-run aggregate throughput

 0

 50

 100

 150

 200

 250

32 Flows16 Flows8 Flows4 Flows

Lo
g

U
til

ity

MORE
DiffQ-MORE

(c) Average per-run log utility

Figure 6: Performance metrics for MORE and DiffQ-MORE.

experiment, we set α and β factors of the DiffQ source
rate control to be 0.01 and 0.5 respectively.

The duration of each run is 1 minute. At the end of a
run, the throughput of each flow is recorded. We report
the mean and 95% confidence intervals of the following
metrics. For N competing flows and average per-flow
throughput ri, 1 ≤ r ≤ N),
Fairness index per run [2] is given by

(
∑N

i=1 ri)
2/(N

∑N
i=1 r2

i). A fairness index closer to 1
indicates almost equal bandwidth shares among N flows
within a run.
Log utility per run is given by

∑N

i=1 log(ri). It mea-
sures the degree of proportional fairness [11]. This is a
utility function commonly used to measure whether a
congestion control algorithm achieves high efficiency as
well as fairness.
Aggregate throughput per run is

∑N

i=1 ri. Although
the aggregate throughput of a run may be high, the fair-
ness index and log utility for that run may be low, indi-
cating unfair bandwidth allocation among concurrently
running flows.

6.2 Multi-path congestion control
The original MORE source [5] broadcasts as fast as it

can toward the destination. We saw earlier in Section 2,
how this can rapidly lead to congestion collapse, with
MORE starving almost 50% of its flows. DiffQ-MORE,
however restricts the source rate based on its multi-path
backpressure algorithm. The effect of congestion con-
trol can be readily seen in Figure 7. The experimental
setup is the same as in Section 2.

When there is little or no congestion in the network,
e.g. for the case with 1,4 flows, MORE and DiffQ-
MORE show similar performance. In fact, the single
flow performance of MORE is slightly better than that
of DiffQ-MORE. This can be seen in Figure 6 (b) which
shows the average per-run aggregate throughput. We
attribute this to the fact that DiffQ is conservative in
congestion control, it uses the minimum queue differen-
tial among all its MORE forwarders to decide its out-
going packet priority. This results in some reduction in

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06

C
D

F

Throughput (bps)

1 Flow
4 Flows
8 Flows

16 Flows
32 Flows

Figure 7: CDF of per-flow average throughput
for DiffQ-MORE.

capacity. As the number of flows in the system increase,
MORE experiences a dramatic reduction in both aver-
age throughput as well as fairness, seen in Figure 6,
DiffQ is however able to maintain consistent perfor-
mance, starving only 18% of the flows in the 32 flow
scenario.

Figure 8 shows the normalized throughput difference
of DiffQ-MORE and MORE for the 32 flows scenario
– for each flow we calculate the difference of through-
puts of DiffQ-MORE and MORE and divide it with the
throughput of MORE. The x-axis shows the ETX of
that path. A positive value indicates a higher through-
put for DiffQ-MORE. As the path ETX increases, the
throughput difference also increases. This is because
MORE selects several forwarders for long lossy paths,
and it is precisely such paths which face high contention
and congestion. DiffQ-MORE effectively controls con-
gestion among all forwarders for such paths, and hence
delivers more throughput.

6.3 Single-path congestion control
We run the same setup as in Section 2 with various

single-path algorithms. Figure 9 shows the CDF of per-
flow average throughput of DiffQ-TCP. It clearly shows
that DiffQ-TCP gets a far less number of starved flows
than TCP (see Figure 1 for comparison). We also con-
sider the 3-flow unfair scenario for TCP that we pre-
sented in Figure 2. Figure 10 shows the performance

9

over DiffQ for the same scenario. The routing path for
flow 1 is 20→13→12→7→6→5, flow 2 is 4→8→10 and
flow 3 is 18→19, on nodes in the Figure 5. Even after
all three flows have started, they co-exist and share the
medium fairly without starving any one flow. This is
due to the DiffQ scheduling based on differential queues.

-2

 0

 2

 4

 6

 8

 10

 12

 5 10 15 20 25 30 35 40

R
el

at
iv

e
D

iff
er

en
ce

Path ETX

Figure 8: Relative throughput difference be-
tween DiffQ-MORE and MORE with respect to
path ETX.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 1000 10000 100000 1e+06 1e+07

C
D

F

Throughput (bps)

1 Flow
4 Flows
8 Flows

16 Flows
32 Flows

Figure 9: The CDF of per-flow average through-
put of DiffQ-TCP. It shows that DiffQ-TCP do
not incur much flow starvation.

10M

1M

100K

10K
 0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (b

ps
)

Time (seconds)

Flow 1
Flow 2
Flow 3

Figure 10: The instantaneous throughput of
three DiffQ-TCP flows for the same scenario de-
scribed in Figure 2.

Figure 11 (b) compares the average per-run aggregate
throughput of various reliable transfer algorithms under
different numbers of concurrent flows. We find that the
average throughput of DiffQ-TCP is slightly less than
TCP especially under 8 flows, but overall, it achieves
comparable average performance to that of TCP and

TCP-FeW. On the other hand, the fairness of DiffQ-
TCP is much higher. Figures 11 (a) and (c) compare
the fairness index and log utility of these protocols re-
spectively. The fairness index is about two times higher
for DiffQ-TCP and the log utility is about 20% better.
These results are manifested in their median through-
put. Table 3 shows the ratio of average median per-flow
throughput of DiffQ-TCP over that of TCP.

Table 3: Ratio of average per-run median
throughput of DiffQ-TCP over TCP-SACK
Number of Flows 4 8 16 32

Median Ratio:DiffQ−TCP
TCP−SACK

1.96 3.45 4.35 8.18

Figure 12 shows a scatter plot comparing flow-by-
flow the performance of TCP and DiffQ. For all runs
involving 32 concurrent flows, for each source and des-
tination pair, we plot the per-flow throughput of TCP
and DiffQ-TCP on a scatter plot. Points on the straight
line (y = x) indicate that both algorithms got the same
throughput over the same path and points on top of
the line indicates DiffQ-TCP achieves more through-
put than TCP. We can see that for a fraction of flows
starved for TCP getting no or less than 1 kbps through-
put, DiffQ-TCP achieves about 10 to 100 kbps. Further,
TCP has a small fraction of flows around 1 to 5 Mbps
but at the cost of a significant fraction of flows around
low throughput areas. On the other hand, DiffQ-TCP
distributes more evenly around the middle section of
plot (around 50 to 500 kbps).

We also find that the performance problem of TCP
cannot be fixed by solving only the over-estimation prob-
lem of TCP window control [15]. This can be seen
from the performance of TCP-FeW which shows about
similar performance as TCP. This implies that the so-
lutions for TCP performance problems require much
more coordinations of different techniques. On the same
note, we find that the unfairness problem of TCP is not
completely due to use of packet losses for congestion
indications. This can be seen from the performance
of TFRC-ECN in Figure 13. We also plot the per-
formance of DiffQ-UDP for comparison. DiffQ-UDP
achieves still much better fairness than TFRC-ECN. In
this case, DiffQ-UDP also achieves up to 20% higher av-
erage throughput. These results imply that even though
we remove the effect of losses as congestion indications,
TCP-like end-to-end protocols still show significant un-
fairness to a good fraction of flows. Thus, use of differ-
ential backlog using prioritized channel access improves
fairness as well as efficiency. This can be visualized from
Figure 14 which shows the CDF of per-flow throughput
of all the single path algorithms from a particular run
involving 32 flows. The figure shows that many flows
of TCP and TCP-FeW are starving up to 60% of flows
while TFRC-ECN can significantly reduce the number

10

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

32 Flows16 Flows8 Flows4 Flows

Fa
irn

es
s

In
de

x

TCP-SACK
TCP-FeW
DiffQ-TCP

(a) Average per-run fairness index

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

32 Flows16 Flows8 Flows4 Flows1 Flow

Av
er

ag
e

Pe
r-R

un
 A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

bp
s) TCP-SACK

TCP-FeW
DiffQ-TCP

(b) Average per-run aggregate throughput

 0

 50

 100

 150

 200

 250

 300

32 Flows16 Flows8 Flows4 Flows

Lo
g

U
til

ity

TCP-SACK
TCP-FeW
DiffQ-TCP

(c) Average per-run log utility

Figure 11: Performance metrics for reliable single-path congestion control algorithms.

of starved flows, but more than 40% of flows are achiev-
ing less than 1 kbps throughput. Since TFRC does not
react to packet losses, this indicates that much of TCP
starvation is due to heavy losses causing TCP connec-
tions to timeout. We also find that these paths where
TCP flows are starving can support more than 500 kbps
when run without any competing flows.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

D
iff

Q
-T

C
P

TCP SACK

Figure 12: Scatter plot of per-flow throughputs
for the 32 flow scenarios.

6.4 Contribution of rate control, scheduling
and MAC prioritization

At this point, a pertinent question about DiffQ would
be: how much does each DiffQ component (source rate
control, differential backlog based scheduling, and MAC
prioritization) contribute to the overall fairness and ef-
ficiency ? To answer this we construct two variants of
DiffQ-UDP: a) DiffQ-UDP Only RC – we retain only
source rate control and switch off the scheduling and
MAC priority components of DiffQ. Flows are scheduled
based on a simple round-robin scheduling scheme, and
packets are transmitted with priority 0. b) DiffQ-UDP
RC + Scheduling – we retain both source rate control
and scheduling, but transmit all packets at priority 0.

We run both variants along with the full DiffQ-UDP
algorithm for a single experiment consisting of 16 flows.
In Figure 15 we plot the number of queue overflows
on intermediate nodes with respect to the path length
of the flow (in hops). DiffQ-UDP incurred only about
2500 queue drops over a 2 minute experiment duration,
70% of which occurred along nodes on the 8-hop path.

However, both variants of DiffQ-UDP suffer more than
70,000 queue drops over the same period. Source rate
control alone is effective only for the 1-hop and 2-hop
flows which incur 0 queue drops. The large number of
queue drops observed for DiffQ-UDP RC + Schedul-
ing, albeit somewhat lower than DiffQ-UDP RC indi-
cate that over multi-hop paths, just scheduling flows
with higher differential backlog is not enough to control
congestion. MAC prioritization is key to flush out the
packets for the flows that are scheduled by the schedul-
ing algorithm. This is reflected in the log utilities for
this experiment in the same figure.

7. CONCLUSION
DiffQ is a flexible and scalable congestion control al-

gorithm for wireless multi-hop networks. It does not put
any restriction on the traffic patterns of flows and can
be applied to general ad hoc networks. We implemented
DiffQ in the Linux kernel for support of UDP and TCP
as well as opportunistic routing such as MORE.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06 1e+07

C
D

F

Throughput (bps)

TCP-SACK
TCP-FeW

TFRC-ECN
DiffQ-TCP
DiffQ-UDP

Figure 14: Distribution of throughput of each
flow when run together.

8. REFERENCES
[1] http://www.read.cs.ucla.edu/click/.
[2] Jain, r. the art of computer systems performance analysis, first

ed. wiley, 1991.
[3] I. Aad and C. Castelluccia. Differentiation mechanisms for ieee

802.11. In INFOCOM’01.
[4] V. Anantharaman, K. Sundaresan, H.-Y. Hsieh, and

R. Sivakumar. Atp: A reliable transport protocol for ad hoc
networks. IEEE Transactions on Mobile Computing,
4(6):588–603, 2005.

11

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

32 Flows16 Flows8 Flows4 Flows

Fa
irn

es
s

In
de

x

TFRC-ECN
DiffQ-UDP

(a) Average per-run fairness index

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 5.5e+06

32 Flows16 Flows8 Flows4 Flows1 Flow

Av
er

ag
e

Pe
r-R

un
 A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

bp
s) TFRC-ECN

DiffQ-UDP

(b) Average per-run aggregate throughput

 0

 50

 100

 150

 200

 250

 300

32 Flows16 Flows8 Flows4 Flows

Lo
g

U
til

ity

TFRC-ECN
DiffQ-UDP

(c) Average per-run log utility

Figure 13: Performance metrics for unreliable single-path congestion control algorithms.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

Utility8 Hop7 Hop6 Hop5 Hop4 Hop3 Hop2 Hop1 Hop
 150

 160

 170

 180

Q
ue

ue
 O

ve
rfl

ow
s

Lo
g

U
til

ity

DiffQ-UDP Only RC
DiffQ-UDP RC+Scheduling

DiffQ-UDP

Figure 15: Number of queue overflows in a 2
minute experiment with variants of DiffQ-UDP.

[5] S. Biswas and R. Morris. Exor: opportunistic multi-hop routing
for wireless networks. SIGCOMM Comput. Commun. Rev.,
35(4):133–144, 2005.

[6] S. Chachulski, M. Jennings, S. Katti, and D. Katabi. Trading
structure for randomness in wireless opportunistic routing. In
SIGCOMM ’07.

[7] K. Chen, K. Nahrstedt, and N. Vaidya. The utility of explicit
rate-based flow control in mobile ad hoc networks. In
WCNC’04.

[8] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle. Cross-layer
congestion control, routing and scheduling design in ad hoc
wireless networks. In INFOCOM’06.

[9] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A
high-throughput path metric for multi-hop wireless routing. In
MobiCom ’03: Proceedings of the 9th annual international
conference on Mobile computing and networking, pages
134–146, New York, NY, USA, 2003. ACM.

[10] D. DeLucia and K. Obraczka. Multicast feedback suppression
using representatives. In INFOCOM’97.

[11] S. Floyd. Tcp and explicit congestion notification. ACM
Computer Communication Review, 24(5):10–23, 1994.

[12] S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-based congestion control for unicast applications. In
SIGCOMM’00.

[13] Z. Fu, B. Greenstein, X. Meng, and S. Lu. Design and
implementation of a tcpfriendly transport protocol for adhoc
wireless networks. In ICNP’02.

[14] Z. Fu, P. Zerfos, k Xu, H. Luo, S. Lu, L. Zhang, and M. Geda.
On tcp performance in multihop wireless networks.

[15] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla. The
impact of multihop wireless channel on tcp throughput and
loss. In INFOCOM’03.

[16] V. Gambiroza, B. Sadeghi, and E. W. Knightly. End-to-end
performance and fairness in multihop wireless backhaul
networks. In MobiCom ’04.

[17] G. Holland and N. Vaidya. Analysis of tcp performance over
mobile ad hoc networks. In MobiCom ’99.

[18] B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating
congestion in wireless sensor networks. In SenSys ’04:
Proceedings of the 2nd international conference on Embedded
networked sensor systems, pages 134–147, New York, NY,
USA, 2004. ACM.

[19] P. Jacquet, P. Mhlethaler, T. Clausen, A. Laouiti, A. Qayyum,
and L. Viennot. Optimized link state routing protocol. In
INMIC’01.

[20] C. Jin, D. X. Wei, and S. H. Low. Fast tcp: Motivation,
architecture, algorithms, performance. In INFOCOM’04.

[21] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and
J. Crowcroft. Xors in the air: practical wireless network coding.
SIGCOMM Comput. Commun. Rev., 36(4):243–254, 2006.

[22] F. P. Kelly, A. Maulloo, and D. Tan. Rate control in
communication networks: shadow prices, proportional fairness
and stability. Journal of the Operational Research Society,
pages 237–252, 1998.

[23] P. Key, L. Massoulie, and D. Towsley. Path selection and
multipath congestion control. In INFOCOM’07.

[24] H. Lim, K. Xu, and M. Gerla. Tcp performance over multipath
routing in mobile ad hoc networks. In ICC’03.

[25] X. Lin and N. B. Shroff. The impact of imperfect scheduling on
cross-layer congestion control in wireless networks. IEEE/ACM
Trans. Netw., 14(2):302–315, 2006.

[26] X. Lin and N. B. Shroff. Utility maximization for
communication networks with multi-path routing. IEEE
Transactions on Automatic Control, 51(5):766–781, 2006.

[27] J. Liu and S. Singh. ATCP: TCP for mobile ad hoc networks.
IEEE J–SAC, 19(7):1300–1315, 2001.

[28] C. Lochert, B. Scheuermann, and M. Mauve. A survey on
congestion control for mobile ad hoc networks: Research
articles. Wirel. Commun. Mob. Comput., 7(5):655–676, 2007.

[29] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. Tcp
selective acknowledgement options.

[30] K. Nahm, A. Helmy, and C.-C. J. Kuo. Tcp over multihop
802.11 networks: issues and performance enhancement. In
MobiHoc ’05: Proceedings of the 6th ACM international
symposium on Mobile ad hoc networking and computing,
pages 277–287, New York, NY, USA, 2005. ACM.

[31] M. J. Neely. Energy optimal control for time varying wireless
networks. In INFOCOM’05.

[32] M. J. Neely. Optimal backpressure routing for wireless networks
with multi-receiver diversity. In CISS’06 (invited paper).

[33] B. Radunovic, C. Gkantsidis, P. Key, P. Rodriguez, and W. Hu.
An optimization framework for practical multipath routing in
wireless mesh networks. In MSR-TR-2007-81, June 2007.

[34] S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis.
Interference-aware fair rate control in wireless sensor networks.
SIGCOMM Comput. Commun. Rev., 36(4):63–74, 2006.

[35] A. Raniwala, P. De, S. Sharma, S.Krishnan, and T. Chiueh.
End-to-end flow fairness over ieee 802.11-based wireless mesh
networks. In INFOCOM’07.

[36] I. Rhee, L. Xu, and S. Ha. Cubic for fast long-distance
networks, ietf, internet draft, 2007.

[37] Y. Su and T. Gross. Wxcp: Explicit congestion control for
wireless multi-hop networks. In IWQoS’05.

[38] L. Tassiulas and A. Ephremides. Stability properties of
constrained queueing systems and scheduling for maximum
throughput in multihop radio networks. IEEE Transactions on
Automatic Control, 37(12):1936–1949, 1992.

[39] O. Tickoo, V. Subramanian, S. Kalyanaraman, and K. K.
Ramakrishnan. Lt-tcp: End-to-end framework to improve tcp
performance over networks with lossy channels. In IwQoS’05.

[40] C. Wang, B. Li, Y. Hou, K. Sohraby, and Y. Lin. Lred: a
robust active queue management scheme based on packet loss
rate. In INFOCOM’04.

12

[41] W.-H. Wang, M. Palaniswami, and S. H. Low. Optimal flow
control and routing in multi-path networks. Perform. Eval.,
52(2-3):119–132, 2003.

[42] A. Warrier, L. Le, and I. Rhee. Cross-layer optimization made
practical. In Broadnets’07 (Invited Paper).

[43] K. Xu, M. Gerla, L. Qi, and Y. Shu. Enhancing tcp fairness in
ad hoc wireless networks using neighborhood red. In MobiCom
’03: Proceedings of the 9th annual international conference
on Mobile computing and networking, pages 16–28, New York,
NY, USA, 2003. ACM.

13

