
Preserving Timing Anomalies in Pipelines of High-End Processors

Sibin Mohan and Frank Mueller
Dept. of Computer Science, North Carolina State University,

Raleigh, NC 27695-7534, mueller@cs.ncsu.edu

Abstract

Many embedded systems are subject to temporal con-
straints that require advance guarantees on meeting dead-
lines. Such systems rely on static analysis to safely bound
worst-case execution (WCET) bounds of tasks. Designers
of these systems are forced to avoid state-of-the-art proces-
sors due to their inherent architectural complexity that re-
sults in non-determinism. Such micro-processors are typi-
cally tuned to reduce average-case execution times — at
the expense of predictability. Dynamic instruction schedul-
ing techniques, such as out-of-order (OOO) execution, are
examples of features that reduce average time but are stati-
cally unpredictable at large.

This work addresses this problem by providing analy-
sis techniques for characterizing the worst-case behavior
of real-time systems on modern processor architectures.
We propose minor enhancements to processor architectures
that, coupled with static analysis techniques, support the
derivation of safe WCET bounds. We also introduce novel
pipeline analysis techniques for accurately capturing the
worst-case behavior of real-time tasks,i.e., methods to cap-
ture (“snapshot”) pipeline state and to subsequently per-
form a “merge” of previously captured snapshots. We prove
that our pipeline analysis correctly preserves worst-case
timing behavior on OOO processor pipelines. We further
specifically show that anomalous pipeline effects, effectively
dilating timing, are preserved by our method. To the best
of our knowledge, this method of pipeline analysis and in-
teractions between hardware/software for obtaining WCET
bounds on OOO processors is the first of its kind.

1. Introduction
Each year, billions of microprocessors are used in em-

bedded systems [29]. This is in sharp contrast to a few hun-
dred million desktop processors that are sold in the same
time frame. From automobiles to medical equipment, ther-
mostats to space shuttles, embedded systems are all around
us yet designers of such systems are inhibited in the type of
processors they can use. They are often forced to use older,
less sophisticated microprocessors, even when their appli-
cation domain has high computational requirements and
would profit from state-of-the-art architectures. Microarchi-
tectural complexity and lack of analysis tools for contempo-
rary processors are often to blame for this condition. The

situation is exacerbated in many embedded systems that
have strict timing constraints (often expressed in the form
of “deadlines”) on task execution. Such systems are often
referred to as “real-time systems.”

Real-time systems require advance knowledge of the
worst-case behavior of constituent tasks. This is to aid in
the process of offline schedulability analysis. Various tech-
niques exist to obtain worst-case execution times (WCETs)
for real-time tasks. These techniques are often categorized
as being eitherstatic timing analysis techniques [4, 7, 8, 10,
17, 18, 20, 22, 28] ordynamictiming analysis techniques
[5, 31, 33]. Complex architectural features, such as out-of-
order (OOO) processing [21] and branch prediction [26],
are often beyond the reach of static analyses, mainly due to
the fact that they introduce non-determinism into the task
code. These issues cannot be resolved at compile time forc-
ing real-time system designers to completely avoid the use
of such processors. Dynamic timing analysis, on the other
hand, has been shown to be dangerous because it may result
in underestimations in WCET estimation, which can lead to
fallouts dangerous to users, the environment or both [32].

In recent work, we introduced the notion of “hybrid”
timing analysis [16] called theCheckerModeinfrastructure.
This method combines the best features of both static and
dynamic analysis to obtain accurate WCET estimates for
real-time tasks running on modern microprocessors. We
proposed minor enhancements to the microarchitecture of
future processors that aid in the process of timing analysis.
A “checker mode” is added to processors that, on demand,
captures information in the form of “snapshots” of proces-
sor state. This information, along with accurate timing in-
formation for each path, is sent to a software module (sim-
ilar to static timing analyzers) that is then able to obtain
accurate WCET values for the entire program. When tim-
ing alternate paths, information from a previously captured
snapshot is “restored” onto the processor function units to
reflect the state of the system when the choice between the
paths was made.

In this paper, we(a) more formally define the semantics
of a snapshot;(b) explain how the information in a snap-
shot is obtained;(c) illustrate how two or more snapshots
are “merged”, which occurs when multiple control paths
“join” together and(d) provethat the mechanisms for cap-
turing and merging snapshots are correct in that they re-
tain all worst-case pipeline effects. We also explain how



our mechanisms to capture and merge snapshots are able to
correctly handle “timing anomalies” [3, 12, 13, 25]. To the
best of our knowledge, these techniques to capture/merge
pipeline information, coupled with hardware/software inter-
actions to accurately gauge the worst-case execution times
of real-time tasks and techniques for correct handling of
timing anomalies are, the first of their kind.

The remainder of this paper is organized as follows: Sec-
tion 2 lists the assumptions under which we operate. Section
3 gives a brief overview of the CheckerMode infrastructure.
Section 4 introduces our notion of snapshots while Section
5 explains the models used for the analysis in this paper
while Section 7 explains the techniques to capture the be-
havior of instructions in the pipeline. This is mainly aimed
at capturing structural and data dependencies in an accu-
rate manner. Section 6 details how a snapshot is captured
while Section 8 provides the context on how these snap-
shots can used. Section 9 discusses how two or more snap-
shots are merged (before a join point in the control flow) so
that the processor are reset to a consistent state for the fol-
lowing instructions. Section 10 proves that pipeline effects
that modify timing will be retained post-merge. Section 11
develops a simple mechanism to merge register files. Sec-
tion 12 discusses the details of our implementation. Sec-
tion 13 compares this work to related work, while Section
14 talks about our goals for future work. Finally, we con-
clude in Section 15.

2. Assumptions
• We constrain ourselves to analyzing the unpre-

dictable nature of out-of-order (OOO) instruction ex-
ecution in contemporary, high-end embedded proces-
sor pipelines.

• Other complexities, such as memory hierarchies
(which includes caches), dynamic branch prediction,
etc.are beyond the scope of this initial work and will
be addressed in the future.

• Tasks are assumed to execute in isolation.

• The issue of preemption delays (including cache-
related preemptions delays) is orthogonal to this work,
but existing [23, 24] and future techniques to han-
dle these issues can be incorporated (with minimal
changes) into our framework.

• We assume that there are no loops in the tasks being
analyzed. We are currently in the process of finalizing
afixed-pointmethod to capture the behavior of loops in
the task code, which is not explained here due to space
restrictions.

Note: The process of timing analysis, in our framework,
amounts to timing sequences of paths coupled with sav-
ing and restoring processor context (captured in the form
of “snapshots”) in a co-ordinated fashion. While this pro-
cess can be lengthy, it still remains independent of program
inputs and can be run overnight, even perhaps in a paral-
lelized fashion. This is anoffline task to be performed dur-
ing systems design and/or validation. Hence, cost is sec-

Figure 1. CheckerMode Design for High-
Confidence WCET Analysis

ondary anddoes notaffect the dynamic, run-time behavior
of the system after it has been deployed. In practice, such
extensive verification is generally only warranted after ei-
ther extensive code changes (development, upgrades, soft-
ware deployment,etc.) or when the hardware itself must be
reconfigured/upgraded.

3. CheckerMode
The CheckerMode infrastructure [16] depicted in Fig-

ure 1 provides the means to obtain accurate WCET values
for real-time tasks executing on modern processor pipelines.
We proposed modifications to the design of embedded pro-
cessors so that, in addition to the ability to execute software
normally (deploymentmode), processors are capable of ex-
ecuting in a novelcheckermode. This is to aid in the pro-
cess of timing analysis.

CheckerMode provides cycle-accurate bounds on a
task’s WCETs by analyzing alternate execution paths in a
program. Indeployment(normal execution) mode, the pro-
cessor executes along just one path following conditional
branches. Which path executes may depend on input data.
In checkermode, processors no longer proceed with con-
ventional data-driven execution. All alternate paths thatfol-
low a conditional branch are executed, one at a time. Be-
fore executing one of the (possibly) many alternate paths,
the original execution context (pipeline state, register file,
caches state, etc.) is restored onto the processor to ensure
that paths execute in isolation from one another. These low-
level WCET results are propagated inter-procedurally in a
bottom-up fashion over the combined control flow (and call
graphs) until the WCET for the entire task has been ob-
tained.Note: The “checker mode” is turned off or disabled
when the system is in deployment mode,i.e., when the sys-
tem is active and performing the tasks it was designed for.

The CheckerMode framework supports the following ca-
pabilities:
(1) The processor context can be captured as snapshots.
(2)The processor can be reset to a previously captured state.



(3) The processor can be started/stopped in its execution for
any pair of start/stop counter (PC) values.
(4) The timing analyzer (TA) breaks down task code into
its constituent paths and also determines the start and end
points for alternate execution flows,i.e., points where snap-
shots must be captured and merged, respectively. The TA
also calculates the final WCET for the entire task based on
information obtained from the hardware side.
(5)The driver controls the entire framework. It controls start
and stop of executions, when snapshots must be captured,
and when the state of the processor must be reset to a previ-
ous captured or newly merged snapshot.
(6) Altered instruction semantics to handle values that de-
pend on program inputs, many of which are known only at
run-time.

Capturing/restoring snapshots and constraining instruc-
tion flow through the pipeline can be achieved in one of two
ways, as we introduce in this paper:(a) by enhancing the
fetchandretire stages of the pipeline so that fine control can
be exercised onwheninstructions are to be fetched and from
wherein the program flow as well as when they should re-
tire; or (b) by insertingnop instructions to cover “bubbles”
in the program flow. The latter technique is less invasive
and requires hardly any changes at the micro-architectural
level. Since the driver in the CheckerMode infrastructure
has overall control of the framework, it could periodically
injectnops to maintain the correctness of the analysis.Note:
We still require minor modifications to theretire stage of
the pipeline:(i) to take note of when certain instructions re-
tire and(ii) to ensure that instructions retire only at prede-
termined points in time, which is similar to injectingnop
instructions between retiring instructions. We also require
knowledge of structural dependencies between instructions
that have beenissued. This is to retain the worst-case be-
havior in the pipeline. This technique used to capture these
effects is explained in more detail in Section 7.

4. Snapshots
Snapshotsdescribe the state of the processor cap-

tured while performing timing analysis using our “hybrid”
CheckerMode technique [16] to obtain the worst-case exe-
cution time for modern processor architectures. It typically
consists of the state of each functional unit of the proces-
sor at a given point in time (t). This state includes, but is
not limited to:

Figure 2. Sample Instruction Stream

I. pipeline state: in a generic sense, the state of instruc-
tions in the pipeline. Ideally, this state includes a descrip-
tion of which instructions are atwhat stage in the pipeline
at timet. It also includes the contents of the register file.
II. cache state: the contents of the instruction and data
caches att. This information could be either(a) the com-
plete cache contents or(b) incremental difference compared
to the last snapshot. It could also be a combination of the
two, where periodically we capture the state of the entire
cache, but in between we only store the incremental differ-
ences (so-called deltas).
III. branch predictor state: similar to the cache state
above:(a) complete branch history register and branch ta-
ble contents;(b) delta from previous snapshot; or(c) a com-
bination of the two. We are concerned with dynamic branch
predictors in this work.
IV. your favorite processor unit: state from any addi-
tional/future processor units that needs to be captured to ac-
curately characterize the worst-case behavior of the proces-
sor.

In this work, we focus on capturing thepipeline infor-
mation of the processor for snapshots and not on caches,
branch predictors,etc. Analysis of instruction caches is a
solved problem, and any such analysis can be plugged into
our framework to obtain better worst-case results. Analysis
of data caches is a hard problem but some analysis does ex-
ist [19, 23, 30, 34], results from which can also be inserted
into our framework to tighten the WCET results. We intend
to analyze the branch predictor as part of future work.

While we would like to capture fine-grained details of
instruction flow through the pipeline (defined above as
“pipeline state”), practical difficulties prevent us from do-
ing so. Many changes to the design and implementation of
the processor will have to be carried out to attain the abil-
ity to observe every single stage of the pipeline, instruc-
tions in flight, data forwarding, etc. Hence we have de-
vised a technique to capture pipeline information, which, in
essence, achieves the effect of characterizing the state ofthe
pipeline at the given instant. We call this the “drain-retire”
(DR) technique. The DR technique is based on the idea that
the only point of predictability in an out-of-order pipeline
is at the retire stage. Since retire happensin-order, we can
be sure that the retire order of instructions is determinis-
tic. We discuss the DR technique in more detail in Sections
6 and 8.

5. Analysis Model
Figure 2 shows a section of the instruction stream that is

executing through the pipeline. LetSn be the last snapshot
that was captured. Let “max” be the maximum number of
instructions that can fit into the pipeline assuming that there
are no dependencies between any of them. This is the theo-
retical upper bound for the pipeline capacity and is typically
never achieved in practice – due to the existence of depen-
dencies between instructions, which introduce bubbles in
the pipeline.

If r is the most recent instruction that was fetched into



the pipeline, then letp be the instruction that was issued
max cycles earlier in the instruction stream. Hence,p is
the farthest instruction in the stream that can directly af-
fect r’s flow through the pipe. Instructions beforep have
retired, and any resulting state changes have been commit-
ted.

Figure 3 shows the pipeline model that we assume for
this work. Fetch happens in-order, but multiple instructions
can be fetched in the same cycle. Similarly, retire also hap-
pens in-order and multiple instructions can retire in the
same cycle. Hence, when we fetchr at time tFr (i.e., the
Fetch time for instructionr), let q be the last instruction
that retired one cycle earlier at timetRq (i.e., the Retire time
for instructionq). From Figure 2, we see thatq must lie be-
tween:

p ≤ q < r (1)

Note thatq is no longer in the pipeline whenr is being
fetched. Hence:

tRq = tFr − 1 (2)

6. Snapshot Capture using Pipeline Drain-
Retire (DR) Technique

Ideally, capturing a snapshot atr would involve captur-
ing information about which instructions are in what stage
of the pipeline and how long they have been/will be there.
This resembles a step curve of the instructions that are in
the pipeline. This is not practical as we are unable to cap-
ture the precise information in a pipeline without significant
changes in silicon. Instead, we use what we call a “drain-
retire” mechanism to characterize the flow of instructions in
the pipeline. We take advantage of the fact that in an out-of-
order pipeline the only point where determinism is guaran-
teed is at theretire stage (instructionsmustretire in-order).
The algorithm to capture a snapshot using the DR mecha-
nism is as follows:

1. Stop fetching afterr.

2. StoretRq , the time whenq retired.

3. Let execution proceed through the pipeline untilr re-
tires (i.e., the pipeline drains completely).

4. Track the retire time of every instruction fromq up un-
til, and includingr (i.e., tRr ).

Figure 3. Pipeline Model

Figure 4. Snapshot Captured using DR Tech-
nique

Figure 4 shows the results of applying the above algo-
rithm to the model and instructions described in Section
5. This figure shows the step curve obtained by tracking
the retire times of all instructions followingq until r re-
tires. The vertical axis represents time while the horizon-
tal axis represents the instructions that retire. Hence, the
curve is bounded, in the time domain, bytRq and tRr with
upper boundmax. Unlike similar step curves for in-order
pipelines, this curve ismulti-dimensional. The horizontal
axis now encodes information about groups of instructions
that retire together. As the figure shows, the horizontal parts
of the “step” directly represents the order and the number
of instructions retiring at that particular point in time (i.e.,
multiple instructions retiring in the same cycle).Note: we
must also keep track of theexactorder of instruction retire-
ment at any given level. All of this information, combined
with the “state” of the reservation stations (Section 7), now
forms a pipelinesnapshot, which is formally defined in Fig-
ure 5.

7. Capturing Structural and Data Dependen-
cies using Reservation Stations

7.1. Structural Dependencies
Consider the situation shown in Figure 6. “a1” and “a2”

are twomulti-cycleinstructions that require the same exe-

Sn =
{

q, tRq ,
{

tR{i}, {i}
}

, RES, RF, S<q

}

where,

Sn : snapshot at instruction n

q : last instruction to retire before

n was fetched

tRq : retire cycle for q
{

tR{i}, {i}
}

: set of tuples where,

tR{i} : retire cycle

{i} : all instructions that retire at tR{i}

RES : state of the reservation stations

immediately after instruction n

has retired

RF : state of the register file immediately

after instruction n has retired

S<q : link/pointer to last snapshot before q

(= ∅ if Sn is first snapshot)

Figure 5. Definition of a Snapshot



Figure 6. Example to show hazards affecting
worst-case behavior

cution unit (fore.g., the “floating point multiply” unit). As-
sume that there is only one instance of this type of execution
unit in the pipeline. Now there exists astructural depen-
dencybetweena1 anda2. Hence,a2 cannot obtain access
(be issued) to the execution unit beforea1 vacates it. We
must retain this dependency across the join point (where al-
ternate paths meet) because it could affect the worst-case
behavior of execution that proceeds beyond it. Let us as-
sume that path “D”’s execution time is affected by the fact
that a2 has to wait. Assume that the WCET for path “D”
(wcetD) increases or decreases by a factorδ depending on
whethera2 is made to wait or not, respectively. LetwcetE
be the worst-case execution time for path “E”. We now have
the following pathological situation:

wcetD − δ < wcetE < wcetD + δ

Hence, we see that even though “E” becomes the longer
path (among “D” and “E”), it isnot the worst-case path for
the combination. The worst-case effects are seen whena2

experiences a delay due to structural dependencies witha1,
thus delaying path “D” to exhibit a WCET ofwcetD + δ.
We now need a mechanism to capture these structural de-
pendencies among instructions, especially those that lie on
either sides of snapshots. We introduce the concept ofreser-
vation stationsfor this purpose.

Reservation stations for tracking structural dependen-
cies, as shown in Figure 7, are implemented as a table with
one entry per execution unit. It stores three values per exe-
cution unit:
(i) the instruction using that execution unit;
(ii) entry cycle: cycle/time when the instruction was issued
the particular execution unit;

Figure 7. Reservation Stations

(iii) exit cycle: cycle/time when the instruction exited from
the execution unit.

7.2. Data Dependencies
Most modern pipeline use data-forwarding techniques

(bypass) to reduce the wait times for instructions that are
waiting on data (register values) to become ready. When
data is produced, at the end of the execution stage of certain
instructions, it can immediately be forwarded to instructions
that are waiting on them. These data values are available to
waiting instructions evenbefore they are written into the
register file. Such data forwarding techniques and their ef-
fects must be characterized correctly, if the CheckerMode
architecture is to correctly capture the worst-case behavior
of tasks.

From Figure 6, let us now assume thata1 anda2 have
only a data dependency among them(and not structural de-
pendency as explained in the previous section) such thata2

must wait fora1 to write a result into a register (sayr1)
that is a source register fora2. If another instruction (say
a3) on path “B” also writes tor1, but earlier than whena1

would have written to it. Sincea1 anda3 resides on the op-
posite side of a join point when compared toa2, the lat-
ter can gain access to the register value (r1) earlier than it
would have otherwise on the “A” path, and can execute ear-
lier. Hence, the worst-case behavior of the program is not
correctly preserved.

We use reservation stations for the register file to cor-
rectly track the data dependencies between instructions and
the time(s) when data becomes available and when they can
be used by dependent instructions. Each register now has an
associated “reservation station” which stores thelatestcy-
cle when the register value was available (i.e. after the exe-
cution stage of the instruction that produced that value).

Note: The process of writing information into the reser-
vation stations isnoton the critical path. Hence, it does not
affect the execution of instructions in the pipeline.

8. Snapshot Usage
A snapshot captured using the DR technique in the pre-

vious section consists of information about(i) instructions,
(ii) their order of retirement,(iii) cycles between retirement
of instructions and(iv) the last instruction that retired (q)
before the snapshot instruction (r). In this section, we elab-
orate on how this information will be used.

When execution must be restarted from a snapshot, we
must start fetching from instructionq because instructions
that preceded it cannot directly affect the execution ofr.
While we can start fetching fromq, we do not have infor-
mation about the processor state atq. Hence, we must re-
store the last snapshot beforeq, which is Sn, as seen in
Figure 2. To account for the worst case, we must actually
start from the snapshot that precedes instructionp. Instruc-
tion p is the instruction that is at the theoretical bound for
the capacity of the pipeline,max, relative tor. If there ex-
ists a snapshot betweenp and q, then we can reduce the
pessimism by starting at the snapshot thatimmediatelypre-



// DRM Algorithm to merge two snapshots

drm merge( snapshotSa, snapshotSb ) {
Sm ← NULL; // merged snapshot
do{

t1 ← get next retire cycle inSa ;
I1 ← get instructions retiring att1 in Sa ;
t2 ← get next retire cycle inSb ;
I2 ← get instructions retiring att2 in Sb ;

Sm ← {max( t1, t2 ),I1 ∪ I2 };
} while( notempty(Sa) and notempty(Sb));

Sm ← remaining retire times and instructions
from non-empty snapshot;

Sm ← older(Sa.q,Sb.q );
Sm ← older(Sa.prev snapshot,Sb.prev snapshot );

Sm ← mergereservationstations(Sa.RES,Sb.RES );

Sm ← mergereg file state(Sa.RF,Sb.RF ) ;

returnSm;
}

Figure 8. Snapshot Merge Algorithm (DRM)

cedesq since we know that instructionq defines therealis-
tic capacity of the pipeline.

We can now restore information from this snapshot to
bring the processor into a consistent state. We restart fetch-
ing from the instruction that immediately followsSn and let
execution proceed until the new/current snapshot,Sr (at in-
structionr), is reached. Once instructionq retires, we look
up the information about subsequent instructions fromSr

to see how much time elapses, if any, between their retire-
ment. Each instruction starting fromr can now retire only
after the a number of cycles has elapsed, as determined by
the information inSn. Hence, instructions can retire at or
after the number of cycles recordedfor it in the snapshot,
but never before. From Figure 4, we see that two instruc-
tions following q can retire at the same time, but no ear-
lier than1 cycle afterq. The next instruction can only re-
tire 2 cycles after the previous2 instructions have retired,
and so on.

A similar process is employed for theissuestage of the
pipeline. We use the reservation stations to control what in-
structions are issued, when and into what execution unit.
From Figure 7, we see that an instruction that wishes to use
an execution unit (say the integer multiplier), cannot gain
access to it before cycle104, and once it has been given
access, another instruction cannot obtain it until the previ-
ous instruction exits (which, in this case, will be cycle110).
This process ensures that structural dependencies between
instructions on either side of the snapshot are still retained.

Similarly, instructions that depend on certain register
values to be ready cannot proceed with their execution until
the cycle stored in that register’s reservation station comes

Figure 9. Snapshot Candidates for Merge us-
ing DRM Technique

to pass. This ensures that instructions that have data depen-
dencies among them still retain the correct dependency in-
formation post-merge.

We see that the semantic meaning associated with snap-
shots, initially constrained to static aspects only, has been
enhanced by dynamic information. This has an effect on the
instruction flow through the pipeline. Hence, a snapshot is
now defined as information that affects the flow of instruc-
tions through the pipeline when the “snapshot instruction”
(r in the above case) is fetched. Snapshots are able to af-
fect the pipeline behavior by allowing instructions captured
in them to retire only with predetermined delays (i.e., at or
after the retire times captured in the snapshot) or gain ac-
cess to execution units based on constraints enforced by the
reservation stations,etc.. Modifications to the retire stage,
mentioned in Section 3, as well as the issue stage (to look
up the reservation stations) are useful in aiding the process
of restoring snapshots by providing the ability to exercise
fine control on when certain instructions (captured in the
snapshot) are allowed to be issued or to retire.

9. Merging Pipeline Snapshots
When alternate paths meet, snapshots from both sides

must bemergedso that instructions that follow see a con-
sistent state of the pipeline. Also, the merged state must
inherit the worst-case behavior from either side. Another
requirement is that pipeline effects resulting from anoma-
lous behavior [12, 13] must still be retained post-merge. In
this section, we present a merge technique that handles all
of the above effects correctly. We shall refer to this merge
technique as “drain-retire merge” (DRM). Section 10 will
present a proof showing that timing anomalies are retained
after applying DRM.

9.1. Merging Two Snapshots
Merging more than two snapshots is a simple extension

of the same techniques. The algorithm to perform a merge
of two snapshots (DRM) is illustrated in Figure 8. It pro-
ceeds by simultaneously retrieving snapshots from the top
of each stack, extracting information and comparing it pair-
wise before composing a merged state and storing it in a
new snapshot (Sm).

Remark: We pick the older “starting point” (q) from the
two snapshots and also the older “last snapshot” (S<q). This
is to ensure that the state of the processor is correct when the
merged snapshot state is restored within the processor.



To understand how this algorithm works, consider ex-
amples of snapshots shown in Figure 9. Snapshot “A” has
three instructions (a, b, c) while snapshot “B” has four (f ,
g, h and i). Instructionsd andj are not part of the snap-
shot. They are the first instructions that follow the snapshot.
To perform the merge, we go through the following steps:

1. Start from the first (earliest) instruction in both snap-
shots.

2. Combine all instructions at the same cycle (level) into
the new, merged snapshot. Hence,a, f , g andh will be
combined so that they retire during the same cycle.

3. Compare instructions in both snapshots to find the
snapshot with the longer number of cycles until the
next retire occurs. From the figure, we see thatb andc
from “A” retire later thani from “B”.

4. Set the retire time for all instructions on both paths to
the longer delay. Hence,b, c and i will now retire at
cycle3.

5. Repeat for all remaining instructions/retire times in
both snapshots.

Figure 10 shows the results of applying the DRM merge
algorithm. After the merged snapshot is restored, we fol-
low the instruction stream immediately after the join point.
Also, for the sake of obtaining the WCET of the program,
we must pick the longer path and its WCET for our analysis.
If the path that provided snapshot “B” (PB) is longer, then
we use its instructions and WCET. The problem of finding
the WCET for the entire program is then reduced to find-
ing the longest path in short sections of code and using their
WCETs for future calculations.

As explained in Section 8, restarting execution at a snap-
shot means restarting from an instruction that originates
from before the particular snapshot (e.g., instructionq in
Figure 5). If PB is the longer path, thenq belongs to the
mix of instructions that constitutesPB. Even ifPB is very
short andq happens to lie before the branch condition, we
must pick the longer path to execute through the pipeline to
reach the merged state, which will eventually pass through
PB in this case. Hence, at any point in time, only instruc-
tions from one path (PA or PB) will execute through the
pipeline.

9.2. Incorrect Merge Technique
Figure 11 shows an incorrect way of performing the

merge. In contrast to Figure 10, each instruction now re-
tires at its original time. If we used the information from

Figure 10. Merge Results

Figure 11. Incorrect Merge Results
Figure 11, we would always retirei at cycle2 and not ac-
count for the fact that “A” could carry over some worse be-
havior where instructionsb andc retire one cycle later.

While this alternate method may result in fewer cycles
for the WCET, it does not safely capture effects due to the
execution of alternate paths and the influence they may have
on each other. The problem arises because we are searching
for paths that show worst-case behaviorlocally. If effects
from one part of the program affect the worst-case behav-
ior of instructions that are at a large distance, then using this
incorrect merge technique will result in wrong WCET esti-
mates.

Consider the situation shown in Figure 12. Let pathsPA

andPB be the paths that produced snapshots “A” and “B”,
respectively. Let the result of merging them be as depicted
in Figure 11. Let us further assume thatPB has the larger
WCET. As explained before, only instructions fromPB will
exist in the pipeline when this newly merged snapshot is
encountered. Now let us assume that there exists a timing
anomaly in this section of the program and the source of
this anomaly is at point (I). Let us also assume that only cer-
tain instructions in pathPA (point (II) in the figure) depend
directly on the instructions that form the anomaly. Instruc-
tion b in Figure 11 has its retire time increased due to this
anomaly. Let other instructions following the merge (point
(III) in the figure) depend indirectly (due to instructions at
(II)) on the anomaly. PathPB is not affected by the anomaly.
If we use the retire times shown in Figure 11, then the effects
of the anomaly will not be felt post-merge, because we do
not carry over the time dilation effects that resulted in an in-
crease in (say)b’s retire time.This would have otherwise di-
lated the execution/retire times for instructions at point(III).
Hence, by using the overly aggressive, incorrect merge we
may not be handling worst-case pipeline effects (in particu-
lar timing anomalies) correctly. There exists a distinct pos-
sibility that future instructions (post-merge) will not exe-
cute based on the worst-case behavior. Such incorrect merge

Figure 12. Effects of Incorrect Merge



techniques can result in an underestimation of the WCET
estimates.

9.3. Merging Reservation Stations
The steps to perform a merge for reservation stations are

shown in Figure 13. While merging reservation stations for
the execution units, we pick the later of the two entry cycles
as well as the later exit cycle. This ensures that the worst-
case behavior of the program is carried forward post-merge.

mergereservationstations(Sa.RES,Sb.RES ){
for each ( executionunit entry E ){

Emerged res stationentry cycle =
max(Ea.entry cycle,Eb.entry cycle);

Emerged res stationexit cycle =
max(Ea.exit cycle,Eb.exit cycle);

}

for each ( registerentry R ){
Rmerged register cycle =

max(Ra.cycle,Rb.cycle); }

return mergedres station;
}

Figure 13. Merging Reservation Stations

The merge for register reservation stations is similar in
that amax of the reservation station entries from both paths
is stored as the new value for that particular register. This
ensures that instructions that execute post-merge cannot
gain access to the register values until the cycle which is
stored in the reservation station for that particular register.
While the register values might be written earlier (from an
alternate path), they cannot be used until the reservation sta-
tion allows it.

9.4. Merge for More than Two Snapshots
The DRM algorithm can be extended to merge more than

two snapshots. In such situations, we can call it recursively,
as shown in Figure 14.

mergen(S1...Sn) {
if( only two snapshotsSx, Sy)

returndrm merge(Sx, Sy ) ;
returnmergen( mergen(S1...Sn−1), Sn ) ;

}

Figure 14. Merge for Multiple Snapshots

10. Proof of Correctness
The term “timing anomaly” refers to an anomaly in

the execution of code in dynamically scheduled proces-
sors [12]. It was later generalized by others [3, 13, 25]. It
denotes counter-intuitive results in timings,e.g., a cache hit
may result in longer execution times than a miss for a given
path due to overlapped structural resource conflicts. These
anomalous effects show up as pipeline effects, where exe-
cution times for instructions are dilated in ways that cannot

Figure 15. Anomaly Effects on Merge

be predicted easily. They prevent accurate modeling of out-
of-order processors and thus prevent us from obtaining ac-
curate estimates of worst-case execution times for such pro-
cessors. Instead, we show how such effects can be safely
bounded. Hence, any pipeline state merge algorithm must
ensure that the effects in the pipeline due to such anomalies
are retained,i.e., the merge must not remove these anoma-
lies from the pipeline and subsequent analysis.

Assumptions: We are only interested in pipeline effects
in this work. Hence, any architectural/execution artifactthat
results in changes to the passage of instructions through the
pipeline is considered. The causes could be internal (e.g.,
data dependencies) or external (e.g., cache hits/misses) to
the pipeline. The causes for the effects could have occurred
at a much earlier stage or just immediately before time dila-
tion in the pipeline. Effects on other parts of the processor,
including caches and branch predictors, are not yet consid-
ered here as they are subject to future work.

Theorem 1. Correctness of Merging Two Snapshots: The
DRM merge algorithm (Figure 8) retains all worst-case
pipeline timing effects, including timing anomalies.

Proof. (I) Consider the situation shown in Figure 15. It
shows two alternate paths (X and Y with WCETsCX and
CY respectively), each of (possibly) different lengths. A
snapshot is captured at the beginning (saySbranch) when
the two paths diverge. Two snapshots are captured (saySX

andSY ), one for each path, before the paths meet. These
two snapshots are “merged” using the DRM algorithm to
obtain the new, single snapshot (saySm) that is used to ini-
tialize the state of the processor before execution proceeds.
φ is the potential time dilation produced during the exe-
cution of pathX due to pipeline effects (such as timing
anomalies). Such dilation could lead to one of the follow-
ing three cases related to the retire time of some instruc-
tions inX :
• Case 1: φ causes some instructions to retirelater, i.e.,

it increases the execution times for some (or all) in-
structions, thus resulting in an increase inCX . These
instructions also enter and leave their respective reser-
vation stations later than they would have otherwise.
They also produce results (and write them to register
files) later.

• Case 2: φ causes some instructions to retireearlier,
i.e., it decreased the execution times for some (or all)
instructions, thus resulting in a decrease inCX . Hence,
they are able to enter/exit reservation stations, as well



as produce results (to be written into registers) earlier
than before.

• Case 3: φ does affect the retire times or reservation
stateion usage for any instructions in the snapshot,i.e.,
it neither increased nor decreasedCX .

(II) Consider the case of an arbitrary instructionk (part of
pathX) with its original reservation station times ([Entry,
exit]) denoted as[E, e]k, its retire timetRk which is part of
snapshotSX . Let RFk be the time when the instruction
writes its results (if any) into the register. Hence,RFk is
the time stored in the reservation station associated with the
register that was written into byk. Let SX also be affected
by an anomaly. Hence, the time(s) ofk and the WCET ofX
are now,

[E, e]′k = [E ± φ, e± φ]k (3)
t′k = tRk ± φ (4)

RF ′
k = RFk ± φ (5)

C′
X = CX ± φ (6)

As part of the DRM process,k, its reservation sta-
tion state and its retire time (t′k) will be compared with in-
structions from the snapshot on the the alternate path
(SY ). Let [E, e]{i} and RF{i} be the state of the reser-
vation stations andtR{i} be the retire time that[E, e]′k
and t′k are being compared with (from the other snap-
shot), where{i} represents the sequence of correspond-
ing instructions from the other snapshot.

(III) Case 1: (a) φ increased the retire times fork.
Hence,

[E, e]′k = [E + φ, e + φ]k (7)
t′k = tRk + φ (8)

Figure 16. Case 1 (a) (i) t′k is greater than tR{i}

(i) If t′k > tR{i} then the merged snapshot (Sm) will store
t′k as the retire cycle for all instructionsk ∪ {i}. Hence, we
see (Figure 16) that the increase in time to retire for an ar-
bitrary instructionk results in changes to the snapshot (in-
structions retire later), thus ensuring that the pipeline effect
propagates beyondSm.

Remark: These effects onSm will materialize regardless
of whethertRk < tR{i} (seen in Figure 16) ortRk > tR{i}.

(ii) If t′k < tR{i} then the merged snapshot (Sm) will store

tR{i} as the retire cycle for all instructionsk ∪ {i}. We see
here (Figure 17) that the increase in the retire time fork
did not affect the snapshot. The retire time fork (tRk ) would
neverhave affected the merged snapshot because the larger

Figure 17. Case 1 (a) (ii) t′k is less than tR{i}

tR{i} value would have been picked anyways. This is due to
the fact that we are trying to estimate the worst-case behav-
ior of the program. We can also conclude that the pipeline
effect would be contained withinSbranch and Sm in this
case because the retire time for the instructions affected are
not part of the worst-case behavior of the path.

Remark: This situation can only occur iftRk < tR{i} to be-

gin with as shown in Figure 17. IftRk was larger, then it
would default to case III (a) (i).

Case 1:(b) φ increased the WCET ofX . Hence,

C′
X = CX + φ (9)

(i) If C′
X > CY (Figure 16), then the WCET for the

entire construct will now beC′
X . Hence, the effects ofφ

will be included in the estimation of the total, increased
WCET of the program. Again, this is regardless of whether
CX > CY or CX < CY .

(ii) If C′
X < CY (Figure 17) then the WCET for the en-

tire construct will now beC′
Y . This result means that the

effects ofφ would never have affected the WCET estima-
tion of the program anyways asY was always the longer
path.

Remark: This result is only possible ifCX < CY to
start with, else we would default to case III (b) (i).

(IV) Case 2: (a) φ decreased the retire times fork.
Hence,

t′k = tRk − φ (10)

Figure 18. Case 2 (a) (i) t′k is less than tR{i}

(i) If t′k < tR{i} then the merged snapshot (Sm) will store

tR{i} as the retire cycle for all instructionsk ∪ {i}. If tRk <

tR{i}, then this change due toφ did not matter anyways, as
k’s retire time was not contributing to the worst-case state
to be seen by future instructions. If, on the other hand,tRk >
tR{i} (as shown in Figure 18), then the effect of the anomaly
is that it changed the worst-case behavior of instructions in
pathX . The significance of this effect is that instructions in
the other path will contribute to the worst-case state that is
carried forward beyondSm, and the worst-case retire cycle
is nowtR{i}, which is less than the originaltRk .



Figure 19. Case 2 (a) (ii) t′k is greater than tR{i}

(ii) If t′k > tR{i}, then the merged snapshot (Sm) will store
t′k as the retire cycle for all instructionsk ∪ {i}. Hence, we
see that the decrease in retire time fork results in changes
to the snapshot. Instructions previously retired attRk now re-
tire earlier (att′k) as seen in Figure 19. Thus the pipeline ef-
fect will propagate beyondSm.

Remark: This condition holds only iftRk > tR{i}; other-
wise, we would default to case IV (a) (i).

Case 2:(b) φ decreased the WCET ofX . Hence,

C′
X = CX − φ (11)

(i) If C′
X < CY (Figure 18), then the WCET for the en-

tire construct will now beC′
Y . If CX > CY , thenφ has al-

ready affected the WCET of the program. WhereCX would
have been chosen originally for the WCET of the construct
in Figure 15,CY is now chosen. Of course, ifCX < CY ,
then the anomaly limits its effects betweenSbranch andSm.
It does not affect the WCET for the two alternate paths be-
causeCY would have been chosen anyways.

(ii) If C′
X > CY (Figure 19), then the WCET for the en-

tire construct will now beC′
X . Hence,φ has resulted in a re-

duction of the WCET of the program from the originalCX .
Remark: This condition is true only ifCX > CY , else

we revert to the situation in IV (b) (i).

(V) Case 3: (a) φ did not affect the retire times of
any instructions in the snapshot. Hence,

t′k = tRk (12)

Figure 20. Case 3 (a) neither t′k nor tR{i}

change

The effects ofφ are completely encapsulated within the
boundary between the two snapshots (i.e., betweenSbranch

and SX ). Hence, we need not consider the anomaly as
it will not affect the execution of future instructions (be-
yond the merge point) because the effects of the anomaly on
the pipeline have been dissipated/absorbed before the in-
structions in snapshotSX reach the retire stage (Fig-
ure 20).

Case 3: (b) φ did not change the execution time of
X (Figure 20). Hence,

C′
X = CX (13)

(VI) Case 1:φ increased the [Entry,exit] fork. Hence,

[E, e]′k = [E + φ, e + φ]k (14)

(i) If e′k > e{i}, then the merged reservation station state
will have an entry cycle ofmax(E′

k, E{i}) and an exit cy-
cle of max(e′k, e{i}) = e′k. Hence, we see that instruc-
tions may gain access to the execution unit later than they
would have (ifE′

k > E{i}). They are also not allowed to va-
cate the unit until later (e′k). These effects are due to the in-
crease in time byφ.

(ii) If e′k < e{i}, the merged reservation station state
will have an entry cycle ofmax(E′

k, E{i}) and an exit cy-
cle ofmax(e′k, e{i}) = e{i}. We see that the exit times for
the merged state is not affected by this change. This is sim-
ilar to the situation in II, Case (1)(a)(ii) where the effects
of the anomaly would not have propagated since the reser-
vation station state of the path comprisingk does not re-
flect the worst-case behavior. Depending on whetherE′

k

or E{i} is greater, the instruction may or may not gain ac-
cess to the reservation station earlier.

Case 2:φ decreased the [Entry,exit] fork. Hence,

[E, e]′k = [E − φ, e− φ]k (15)

(i) If e′k < e{i}, the merged reservation station state will
have an entry cycle ofmax(E′

k, E{i}) and an exit cycle of
max(e′k, e{i}) = e{i}. If ek < e{i}, then the change did not
matter sincek’s reservation station state was not contribut-
ing to the worst-case state of the merged snapshot. If, on the
other hand,ek > e{i}, then the effect of the anomaly was to
modify the worst-case behavior of instructions in the path.
Instructions from the other path (with their corresponding
state of reservation stations) will contribute to the worst-
case behavior for the task. Hence, the effect of the anomaly
is seen. Instructions that execute post-merge gain access to
execution units earlier than they would have, thus reducing
overall execution time and, hence, retaining the original ef-
fect of the anomaly.

Instructions that are a part of the snapshot also gain ac-
cess to the reservation stations at a later time, depending on
whetherE′

k or E{i} is greater.
(ii) If e′k > e{i}, the effect of the anomaly was to re-

duce the time taken for instructions to be issued to exe-
cution units. The state of the merged reservation station
will be, [max(E′

k, E{i}), e′k]. Without reservation sta-
tions, instructions would have been able to exit from the
execution units atek. Due to the presence of reserva-
tion stations, they now exit at timee′k < ek. Hence, the
effect of the anomaly in reducing the execution time is car-
ried forward beyond the merge.



(VII) Case 1:φ increased theRF entry fork. Hence,

RF ′
k = RFk + φ (16)

(i) If RF ′
k > RF{i}, then the merged register reservation

station state will store the value,RF ′
k. Hence, we see that

instructions that depend on the register corresponsing to RF
will gain access to the execution unitlater than they would
have due to the increase in time byφ.

(ii) If RF ′
k < RF{i}, the merged register reservation sta-

tion state will will store the valueRF{i}. This is simi-
lar to the situation in II, Case (1)(a)(ii) and VI Case (1) (a)
(ii), where the effects of the anomaly would not have prop-
agated since the register reservation station state of the path
comprisingk does not reflect the true worst-case behav-
ior.

Case 2:φ decreased theRF for k. Hence,

RF ′
k = RFk − φ (17)

(i) If RF ′
k < RF{i}, the merged register reservation sta-

tion state will have a cycle ofRF{i}. If RFk < RF{i},
then the change did not matter sincek’s register reservation
station state was not contributing to the worst-case state of
the merged snapshot. If, on the other hand,RFk > RF{i},
then the effect of the anomaly was to modify the worst-case
behavior of instructions in the path. Instructions from the
other path (with their corresponding state of reservation sta-
tions) will contribute to the worst-case behavior for the task.
Hence, the effect of the anomaly is seen. Instructions that
execute post-merge are allowed to access the data written
into the register file earlier than they would have, thus re-
ducing overall execution time hence retaining the original
effect of the anomaly.

(ii) If RF ′
k > RF{i}, the effect of the anomaly was to

reduce the time taken for instructions to gain access to the
data (they depend on) from the register file. The state of the
merged register reservation station will be,RF ′

k. Without
register reservation stations, instructions would have been
able to read the required data values atRFk. Due to the
presence of reservation stations, they now get the required
inputs (from the register) atRF ′

k < RFk. Hence, the ef-
fect of the anomaly in reducing the execution time is car-
ried forward beyond the merge.

Cases (I) – (VII) we proved that pipeline effects due to
timing anomalies (or whatever other reasons) will be re-
tained post-merge if the merge is based on the DRM al-
gorithm. If the pipeline effects resulted in increases or de-
creases (execution time/retire cycles/etc.), then these effects
are carried over if these effects changed the worst-case be-
havior of the path. Hence, this proof holds for merging any
two snapshots.

Theorem 2. Correctness of Merging Multiple Snapshots:
The algorithm in Figure 14 is correct with respect to pre-
serving worst-case timing effects in the pipeline when merg-
ing multiple snapshots.

Proof. The DRM algorithm is effectively applied recur-
sively to perform merges on multiple snapshots. The
“drm merge” algorithm is called ontwo snapshots at a
time to obtain a merged state, which is then merged with
the next snapshot and so on. We have shown above that
pipeline effects are not lost when merging two snapshots
at a time. Since merging multiple snapshots occurs two at a
time, we can infer that the pipeline effects will be retained
across merging multiple snapshots if the said effects alter
the worst-case behavior of the paths. Hence, the proof hold
true for merging an arbitrary number of snapshots.

11. Merging Register Files
To perform a merge on the register file state (“RF” from

Figure 5) we use a simple technique on each register:

• If the register value isunchangedacross the snapshots,
then the merged state will retain that value in the reg-
ister;

• If the register value isdifferent, then set the merged
value to a Not-A-Number (NaN ) [16]. This is to han-
dle values that are input-dependent which will not be
known until run-time. This is safe due to the conserva-
tive semantics of any operation of NaN that, by def-
inition, results in a conservative value (NaN unless
trivial arithmetic rules apply, such as multiplication
with zero) and in conservative temporal requirements
(worst-case number of cycles for this operation under
the given operands).

Performing the above checks/modifications on every reg-
ister in the register file in both snapshots, we are able to eas-
ily construct a new “merged” state for the register file.Note:
a merge on register files deals with the actual register val-
ues. This is different from merging reservation stations for
register files (Section 9.3).

The ability to extract and/or write back register file state
can be realized by simple modifications of existing mi-
croarchitecture features,i.e., the Precise Event-Based Sam-
pling (PEBS) with user-selected access to selected shadow
buffers [27] present in the Intel X86 architecture. Our de-
sign makes buffers used in this and other architectural tech-
niques uniformly available to the user.

12. Implementation
TheCheckerModeinfrastructure has been implemented

on an enhancedSimpleScalarprocessor simulation frame-
work [6]. It has the ability to model a variety of processor
configurations (SMT, CMP,etc.). We had previously [16]
enhanced the simulator by adding the ability to start/stop
execution at given arbitrary program counter (PC) values
as well as the ability to capture timing information for the
given range of PCs. We have now further enhanced it to in-
clude the process of capturing the state of the processor dur-
ing theissuestage (i.e., using the concept of reservation sta-
tions introduced in this paper). We also have the ability to
capture and merge snapshots and to reset the state of the the
pipeline to a given snapshot as detailed in this paper.



13. Related Work
Accurate knowledge of worst-case execution times

(WCETs) is critical for hard real-time systems. WCETs
must be known or safely boundeda priori so that schedu-
lability analysis can proceed. Methods to estimate WCETs
range from dynamic analysis [5, 31, 33] to static analysis
methods [4, 7, 8, 10, 17, 18, 20, 22, 28]. Recently, some hy-
brid methods [4,9,15] as well as hardware-related methods
have been proposed [1, 2, 12]. Dynamic methods may pro-
duce unsafe results while static and hybrid methods tend
to be extremely pessimistic and typically overestimate the
WCETs so that the bound is not tight. Many methods are in-
capable of handling advanced micro-architectural features,
such as OOO execution. Our work is able to fill this gap and
contributes to high confidence in embedded systems design
for time-critical software.

Our work is closest to Lundqvistet. al.[12,13] who use
symbolic execution with tightly integrated path and timing
analysis to obtain WCET estimates for modern architec-
tures. Their work is similar to ours in that they use the con-
cept of “unknown” values to represent register values and
addresses that are input dependent. They also capture pro-
cessor state at branches and perform “merge” operations on
previously captured state. However, their work differs from
ours in significant ways. Their analysis is based on per-
forming static timing analysis within an architectural sim-
ulator usingin-order execution. They still require detailed
modeling of the pipeline and other functional units within
the processor. Their merge mechanism requires intricate
knowledge of instruction flow through the pipeline – which
instruction occupies/releases what resources,etc. Our ap-
proach avoids such costly and often impossible modeling of
complicated pipeline structures using reservation stations.
This technique avoids the detailed modeling of structural
and data hazards, but is still able toaccurately account for
their worst-case effects in the pipeline. In fact, the inabil-
ity to accurately model state-of-the-art processor pipelines
is the core issue why the process of timing analysis for such
processors is extremely difficult. We avoid larger overheads
by introducing minor modifications to existing processor
features that assist timing analysis. Another important prob-
lem with modeling is that processor vendors might be re-
luctant to share exact details about internal architectural de-
tails required for accurate conventional static WCET analy-
sis. With our method, the vendors themselves can build the
“checker mode” into their processors so that analysis can be
performed without risk of divulging their intellectual prop-
erty.

One other serious issue with analyzing dynamically
scheduled processors was also pointed out by Lundqvist et.
al. – that oftiming anomalies. Such effects cause anoma-
lous pipeline effects that complicate the task of modeling
processors leading to large overestimations in safely bound-
ing WCETs. We have shown in this and related work [16]
that problems associated with timing anomalies can be han-
dled in our framework because we do not intend to create
models for processor behavior. Instead, we resort to the ac-

tual processor execution itself. This, coupled with the fact
that our pipeline analysis is able to retain all pipeline effects
(including timing anomalies) while retaining the ability to
capture accurate worst-case execution times, means that we
do not face the same problems with timing anomalies that
other techniques have. Our analysis and merge techniques
are able to deal with out-of-order pipelines at a finer granu-
larity (instruction level) without the overheads of modeling
or significant micro-architectural changes.

14. Future Work
We intend to focus on dynamic branch prediction. While

we have been able to capture, merge and restore pipeline
state for OOO processors, we intend to find good solu-
tions to do the same for dynamic branch prediction schemes
[11,14]. We will also study how the snapshot capture/merge
mechanisms discussed in this paper can be integrated with
fixed-point analysis techniques for loops.

15. Conclusion
In this paper, we outlined a sophisticated pipeline analy-

sis scheme that is able to estimate the worst-case behavior of
out-of-order pipelines in asafemanner. We also show that
we are able to correctly deal with timing anomalies. We are
able to conduct our analysis in ways that are minimally inva-
sive with respect to the processor. More specifically, we sug-
gest minor changes to existing micro-architectural features
that extends contemporary monitoring techniques already
present in hardware. This work, when integrated with our
CheckerMode infrastructure, utilizes interactions between
hardware and software to make contemporary processors
predictable and analyzable. Such processors may now be
safely used in real-time systems, thus moving the state-of-
the-art forward. We believe that this work will enhance the
design choices that are available to designers of embed-
ded and real-time systems, particularly on the high-end of
computational requirements. To the best of our knowledge,
the analysis methods presented in this paper are the first of
their kind that deal with out-of-order processing and tim-
ing anomalies.

References
[1] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and

F. Mueller. Virtual simple architecture (VISA): Exceeding
the complexity limit in safe real-time systems. InInter-
national Symposium on Computer Architecture, pages 250–
261, June 2003.

[2] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and
F. Mueller. Enforcing safety of real-time schedules on
contemporary processors using a virtual simple architecture
(visa). In IEEE Real-Time Systems Symposium, pages 114–
125, Dec. 2004.

[3] C. Berg. Plru cache domino effects. In F. Mueller,
editor, 6th Intl. Workshop on Worst-Case Execution Time
(WCET) Analysis, number 06902 in Dagstuhl Seminar Pro-
ceedings. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany,
2006. <http://drops.dagstuhl.de/opus/volltexte/2006/672>

[date of citation: 2006-01-01].



[4] G. Bernat, A. Colin, and S. Petters. Wcet analysis of proba-
bilistic hard real-time systems. InIEEE Real-Time Systems
Symposium, Dec. 2002.

[5] V. Braberman, M. Felder, and M. Marre. Testing timing be-
havior of real-time software. 1997.

[6] D. Burger, T. Austin, and S. Bennett. Evaluating future
microprocessors: The simplescalar toolset. Technical Re-
port CS-TR-96-1308, University of Wisconsin - Madison,
CS Dept., July 1996.

[7] K. Chen, S. Malik, and D. I. August. Retargetable static tim-
ing analysis for embedded software. InProceedings of the
International Symposium on System Synthesis (ISSS), Octo-
ber 2001.

[8] J. Engblom.Processor Pipelines and Static Worst-Case Exe-
cution Time Analysis. PhD thesis, Dept. of Information Tech-
nology, Uppsala University, 2002.

[9] A. Hamann, M. Jersak, K. Richter, and R. Ernst. Design
space exploration and system optimization with symta/s -
symbolic timing analysis for systems. InIEEE Real-Time
Systems Symposium, pages 469–478, Dec. 2004.

[10] A. Hergenhan and W. Rosenstiel. Static timing analysisof
embedded software on advanced processor architectures. In
DATE, pages 552–559, 2000.

[11] D. Jimenez. Reconsidering complex branch predictors.
2003.

[12] T. Lundqvist and P. Stenström. An integrated path and tim-
ing analysis method based on cycle-level symbolic execu-
tion. Real-Time Systems, 17(2/3):183–208, Nov. 1999.

[13] T. Lunqvist. A WCET Analysis Method for Pipelined Mi-
croprocessors with Cache Memories. PhD thesis, Chalmers
University, 2002.

[14] S. McFarling. Combining Branch Predictors. TechnicalRe-
port TN-36, June 1993.

[15] S. Mohan and J. Helander. Temporal analysis for adapting
concurrent applications to embedded systems. Inaccepted
at ECRTS, 2008.

[16] S. Mohan and F. Mueller. Hybrid timing analysis of mod-
ern processor pipelines via hardware/software interactions.
In IEEE Real-Time Embedded Technology and Applications
Symposium, page (accepted), 2008.

[17] S. Mohan, F. Mueller, W. Hawkins, M. Root, C. Healy, and
D. Whalley. Parascale: Expoliting parametric timing analy-
sis for real-time schedulers and dynamic voltage scaling. In
IEEE Real-Time Systems Symposium, pages 233–242, Dec.
2005.

[18] S. Mohan, F. Mueller, D. Whalley, and C. Healy. Timing
analysis for sensor network nodes of the atmega processor
family. In IEEE Real-Time Embedded Technology and Ap-
plications Symposium, pages 405–414, Mar. 2005.

[19] T. Mowry and C.-K. Luk. Predicting data cache misses in
non-numeric applications through correlation profiling. In
MICRO-30, pages 314–320, Dec. 1997.

[20] F. Mueller. Timing analysis for instruction caches.Real-Time
Systems, 18(2/3):209–239, May 2000.

[21] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-
effective superscalar processors. InISCA, pages 206–218,
1997.

[22] P. Puschner and C. Koza. Calculating the maximum ex-
ecution time of real-time programs.Real-Time Systems,
1(2):159–176, Sept. 1989.

[23] H. Ramaprasad and F. Mueller. Bounding preemption de-
lay within data cache reference patterns for real-time tasks.
In IEEE Real-Time Embedded Technology and Applications
Symposium, pages 71–80, Apr. 2006.

[24] H. Ramaprasad and F. Mueller. Tightening the bounds on
feasible preemption points. InIEEE Real-Time Systems Sym-
posium, pages 212–222, Dec. 2006.

[25] J. Schneider.Combined Schedulability and WCET Analysis
for Real-Time Operating Systems. PhD thesis, Universitaet
des Saarlandes, 2002.

[26] Smith, J. E. A study of branch prediction strategies. In
Proc. 8th International Symposium on Computer Architec-
ture, pages 135–148, Minneapolis, 1981.

[27] B. Sprunt. Pentium 4 performance monitoring features.
2002.

[28] S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona,
M. Langenbach, R. Wilhelm, and C. Ferdinand. An Abstract
Interpretation-Based Timing Validation of Hard Real-Time
Avionics. In Proceedings of the International Performance
and Dependability Symposium (IPDS), June 2003.

[29] J. Turley. Embedded processors by the numbers, 1999.
[30] X. Vera, B. Lisper, and J. Xue. Data caches in multitasking

hard real-time systems. InIEEE Real-Time Systems Sympo-
sium, Dec. 2003.

[31] J. Wegener. Verifying timing constraints of real-timesys-
tems by means of evolutionary testing.Real-Time Systems,
15:275–298(24), 1998.

[32] J. Wegener and F. Mueller. A comparison of static analysis
and evolutionary testing for the verification of timing con-
straints.Real-Time Systems, 21(3):241–268, Nov. 2001.

[33] J. Wegener, H. Sthamer, B. F. Jones, and D. E. Eyres. Testing
real-time systems using genetic algorithms.Software Qual-
ity Journal, 6(2):127–135, June 1997.

[34] R. White. Bounding Worst-Case Data Cache Performance.
PhD thesis, Dept. of Computer Science, Florida State Uni-
versity, Apr. 1997.


