Preserving Timing Anomalies in Pipelines of High-End Procesors

Sibin Mohan and Frank Mueller
Dept. of Computer Science, North Carolina State University
Raleigh, NC 27695-7534, mueller@cs.ncsu.edu

Abstract situation is exacerbated in many embedded systems that
have strict timing constraints (often expressed in the form
Many embedded systems are subject to temporal conof “deadlines”) on task execution. Such systems are often
straints that require advance guarantees on meeting dead-referred to as “real-time systems.”
lines. Such systems rely on static analysis to safely pound Real-time systems require advance knowledge of the
worst-case execution (WCET) bounds of tasks. Designers st case behavior of constituent tasks. This is to aid in
of these systems are forced to avoid state-of-the-art Bfoce o rocess of offline schedulability analysis. Variousitec

Sors ‘?“e to their inherent architect'ural complexity that re . niques exist to obtain worst-case execution times (WCETS)
sults in non-determinism. Such MICro-processors are typi- o rea-time tasks. These techniques are often categbrize

cally tuned to reduc_e av_e_rage—case_e>_<ecutior_1 times — Ays being eithestatictiming analysis techniques [4,7, 8, 10,
the expense of predictability. Dynamic instruction schedu 17, 18, 20, 22, 28] odynamictiming analysis techniques
ing techniques, such as out-of-order (OOOQ) execution, are 5

s - [5, 31, 33]. Complex architectural features, such as out-of
examples of features that reduce average time but are stati-j o, (0O00) processing [21] and branch prediction [26],
cally unpredictable at large.

hi K hi | . | are often beyond the reach of static analyses, mainly due to
_ This work addresses this problem by providing analy- e tact that they introduce non-determinism into the task

SIS techmques for characterizing the worst-case _behaworcode_ These issues cannot be resolved at compile time forc-
of real-time systems on modern processor archngctures.ing real-time system designers to completely avoid the use
We propose minor enhancements to processor archltecture%f such processors. Dynamic timing analysis, on the other

that, coupled with static analysis techniques, support the ;.\ has heen shown to be dangerous because it may result

derivation of safe WCET bounds. We also introduce novel;, ,,nqerestimations in WCET estimation, which can lead to

pipeline analysis techniques for accurately capturing the ¢o4t5 dangerous to users, the environment or both [32].
worst-case behavior of real-time taskg,, methods to cap-

ture (“snapshot”) pipeline state and to subsequently per-
form a “merge” of previously captured snapshots. We prove
that our pipeline analysis correctly preserves worst-case

In recent work, we introduced the notion of “hybrid”
timing analysis [16] called th€heckerModénfrastructure.
This method combines the best features of both static and
timing behavior on 00O processor pipelines. We further dynamic analysis to .obtain accurate WCET estimates for
specifically show that anomalous pipeline effects, effetti '€2ltime tasks running on modern microprocessors. We
dilating timing, are preserved by our method. To the best proposed minor enhanqements to the mlcrqar_chltecture'of
of our knowledge, this method of pipeline analysis and in- future processors t_hat aid in the process of timing analysis
teractions between hardware/software for obtaining WCET A “checker mode” is added to processors that, on demand,

bounds on OOO processors is the first of its kind captures information in the form okhapshotsof proces-
sor state. This information, along with accurate timing in-

formation for each path, is sent to a software module (sim-

1. Introduction ilar to static timing analyzers) that is then able to obtain

Each year, billions of microprocessors are used in em- accurate WCET values for the entire program. When tim-
bedded systems [29]. This is in sharp contrast to a few hun-iNg alternate paths, information from a previously capdure
dred million desktop processors that are sold in the sameshapshot is “restored” onto the processor function units to
time frame. From automobiles to medical equipment, ther- reflect the state of the system when the choice between the
mostats to space shuttles, embedded systems are all arourRfths was made.
us yet designers of such systems are inhibited in the type of In this paper, wga) more formally define the semantics
processors they can use. They are often forced to use oldemf a snapshot{b) explain how the information in a snap-
less sophisticated microprocessors, even when their-appli shot is obtained(c) illustrate how two or more snapshots
cation domain has high computational requirements andare “merged”, which occurs when multiple control paths
would profit from state-of-the-art architectures. Microlair “join” together and(d) provethat the mechanisms for cap-
tectural complexity and lack of analysis tools for contempo turing and merging snapshots are correct in that they re-
rary processors are often to blame for this condition. The tain all worst-case pipeline effects. We also explain how

our mechanisms to capture and merge snapshots are able

correctly handle “timing anomalies” [3, 12,13, 25]. To the "" < Regriia
best of our knowledge, these techniques to capture/merc

pipeline information, coupled with hardware/softwaresint stnpo EE

actions to accurately gauge the worst-case execution time T [estSoapshor

of real-time tasks and techniques for correct handling of -
timing anomalies are, the first of their kind. Timing Analyzer Chockerods
The remainder of this paper is organized as follows: Sec L.
~—— Snapshot

tion 2 lists the assumptions under which we operate. Sectio :

3 gives a brief overview of the CheckerMode infrastructure.
Section 4 introduces our notion of snapshots while Sectiol
5 explains the models used for the analysis in this pape
while Section 7 explains the techniques to capture the be T\WT‘T
havior of instructions in the pipeline. This is mainly aimed M
at capturing structural and data dependencies in an acci

rate manner. Section 6 details how a snapshot is capture
while Section 8 provides the context on how these snap- figyre 1. CheckerMode Design for High-
shots can used. Section 9 discusses how two or more snap- cgnfidence WCET Analysis

shots are merged (before a join point in the control flow) so

that the processor are reset to a consistent state for the folondary anddoes notaffect the dynamic, run-time behavior
lowing instructions. Section 10 proves that pipeline efec of the system after it has been deployed. In practice, such
that modify timing will be retained post-merge. Section 11 extensive verification is generally only warranted after ei
develops a simple mechanism to merge register files. Secther extensive code changes (development, upgrades, soft-
tion 12 discusses the details of our implementation. Sec-ware deploymengtc) or when the hardware itself must be
tion 13 compares this work to related work, while Section reconfigured/upgraded.

14 talks about our goals for future work. Finally, we con-

clude in Section 15. 3. CheckerMode

2. Assumptions The CheckerMode infrastructure [16] depicted in Fig-
We constrain ourselves to analyzing the unpre- ure 1 prc_)wdes the means to obtain accurate WCET va_llues
for real-time tasks executing on modern processor pipgline
We proposed modifications to the design of embedded pro-
cessors so that, in addition to the ability to execute saftwa
.) . normally deploymeninode), processors are capable of ex-
e Other complexities, such as memory hierarchies gctingin a novetheckermode. This is to aid in the pro-
(which includes caches), dynamlp .b_ranch predlctlpn, cess of timing analysis.
etc.are beyonq the scope of this initial work and will CheckerMode provides cycle-accurate bounds on a
be addressed in the future. task's WCETs by analyzing alternate execution paths in a
e Tasks are assumed to execute in isolation. program. Indeploymen¢{normal execution) mode, the pro-

e The issue of preemption delays (including cache- Cessor executes along just one path following conditional
related preemptions delays) is orthogonal to this work, branches. Which path executes may depend on input data.

but existing [23, 24] and future techniques to han- !N checkermode, processors no longer proceed with con-
dle these issues can be incorporated (with minimal Ventional data-driven execution. All alternate paths fobt

changes) into our framework. low a conditional branch are executed, one at a time. Be-
fore executing one of the (possibly) many alternate paths,
. SKS DeINGy, o original execution context (pipeline state, register, fi
an_alyzed._We are currently in the process of f|nal|2|_ng caches state, etc.) is restored onto the processor to ensure
aflxed-pommetho_d t(.) capture ‘h‘? behavior of loops in that paths execute in isolation from one another. These low-
the tgsk code, which is not explained here due to SPaCeaye| WCET results are propagated inter-procedurally in a
restrictions. bottom-up fashion over the combined control flow (and call
Note: The process of timing analysis, in our framework, graphs) until the WCET for the entire task has been ob-
amounts to timing sequences of paths coupled with sav-tained.Note: The “checker mode” is turned off or disabled
ing and restoring processor context (captured in the form when the system is in deployment mode,, when the sys-
of “snapshots”) in a co-ordinated fashion. While this pro- temis active and performing the tasks it was designed for.
cess can be lengthy, it still remains independent of program The CheckerMode framework supports the following ca-
inputs and can be run overnight, even perhaps in a paral-pabilities:
lelized fashion. This is anffline task to be performed dur- (1) The processor context can be captured as snapshots.
ing systems design and/or validation. Hence, cost is sec-(2) The processor can be reset to a previously captured state.

| Start PC || Stop PC |

Exec
Cycles

Snapshot Manager

[]
dictable nature of out-of-order (OOOQ) instruction ex-
ecution in contemporary, high-end embedded proces-
sor pipelines.

e We assume that there are no loops in the tasks bein

(3) The processor can be started/stopped in its execution forl. pipeline state in a generic sense, the state of instruc-
any pair of start/stop counter (PC) values. tions in the pipeline. Ideally, this state includes a dgscri
(4) The timing analyzer (TA) breaks down task code into tion of whichinstructions are aivhat stage in the pipeline
its constituent paths and also determines the start and endt timet. It also includes the contents of the register file.
points for alternate execution flowisg., points where snap- Il. cache state the contents of the instruction and data
shots must be captured and merged, respectively. The TAcaches at. This information could be eithdia) the com-
also calculates the final WCET for the entire task based onplete cache contents (ly) incremental difference compared
information obtained from the hardware side. to the last snapshot. It could also be a combination of the
(5) The driver controls the entire framework. It controls start two, where periodically we capture the state of the entire
and stop of executions, when snapshots must be captured;ache, but in between we only store the incremental differ-
and when the state of the processor must be reset to a previences (so-called deltas).
ous captured or newly merged snapshot. lll. branch predictor state: similar to the cache state
(6) Altered instruction semantics to handle values that de- above:(a) complete branch history register and branch ta-
pend on program inputs, many of which are known only at ble contents(b) delta from previous snapshot; @) a com-
run-time. bination of the two. We are concerned with dynamic branch
Capturing/restoring snapshots and constraining instruc-predictors in this work.
tion flow through the pipeline can be achieved in one of two IV. your favorite processor unit: state from any addi-
ways, as we introduce in this papéa) by enhancing the tional/future processor units that needs to be captured-to a
fetchandretire stages of the pipeline so that fine control can curately characterize the worst-case behavior of the [groce
be exercised owheninstructions are to be fetched and from sor.
wherein the program flow as well as when they should re- In this work, we focus on capturing thepeline infor-
tire; or (b) by insertingnop instructions to cover “bubbles” mation of the processor for snapshots and not on caches,
in the program flow. The latter technique is less invasive branch predictorsetc. Analysis of instruction caches is a
and requires hardly any changes at the micro-architecturalsolved problem, and any such analysis can be plugged into
level. Since the driver in the CheckerMode infrastructure our framework to obtain better worst-case results. Analysi
has overall control of the framework, it could periodically of data caches is a hard problem but some analysis does ex-
injectnops to maintain the correctness of the analyNiste: ist [19, 23, 30, 34], results from which can also be inserted
We still require minor modifications to theetire stage of into our framework to tighten the WCET results. We intend
the pipeline{i) to take note of when certain instructions re- to analyze the branch predictor as part of future work.
tire and(ii) to ensure that instructions retire only at prede- While we would like to capture fine-grained details of
termined points in time, which is similar to injectingp instruction flow through the pipeline (defined above as
instructions between retiring instructions. We also regui “pipeline state”), practical difficulties prevent us frono-d
knowledge of structural dependencies between instrugtion ing so. Many changes to the design and implementation of
that have beeissued This is to retain the worst-case be- the processor will have to be carried out to attain the abil-
havior in the pipeline. This technique used to capture theseijty to observe every single stage of the pipeline, instruc-
effects is explained in more detail in Section 7. tions in flight, data forwarding, etc. Hence we have de-
4. Snapshots vised atechnique to capture pipeline info.rmation, whigh, i
essence, achieves the effect of characterizing the stéte of
pipeline at the given instant. We call this the “drain-retir
(DR) technique. The DR technique is based on the idea that
the only point of predictability in an out-of-order pipedin
is at the retire stage. Since retire happamsrder, we can
be sure that the retire order of instructions is determinis-
tic. We discuss the DR technique in more detail in Sections
6 and 8.

Snapshotsdescribe the state of the processor cap-
tured while performing timing analysis using our “hybrid”
CheckerMode technique [16] to obtain the worst-case exe-
cution time for modern processor architectures. It typgycal
consists of the state of each functional unit of the proces-
sor at a given point in timet). This state includes, but is
not limited to:

5. Analysis Model

Sa Figure 2 shows a section of the instruction stream that is
Instruction Stream executing through the pipeline. L&Y, be the last snapshot
P + that was captured. Letlaz” be the maximum number of
Theoretical instructions that can fit into the pipeline assuming thatehe
upper limit q— are no dependencies between any of them. This is the theo-
on pipeline retical upper bound for the pipeline capacity and is typycal
capacity e r =D+ max never achieved in practice — due to the existence of depen-
i p dencies between instructions, which introduce bubbles in
the pipeline.
Figure 2. Sample Instruction Stream If r is the most recent instruction that was fetched into

the pipeline, then lep be the instruction that was issued R =, number of instructions

(0]
maz cycles earlier in the instruction stream. Henpeis g i
the farthest instruction in the stream that can directly af- g 'Onfu?lzleers
fect s flow through the pipe. Instructions befopehave s 8l y
retired, and any resulting state changes have been commit- g S
ted. B T _l
Figure 3 shows the pipeline model that we assume for é &,
this work. Fetch happens in-order, but multiple instruactio T instructions
can be fetched in the same cycle. Similarly, retire also hap- Ei'gb’;e 4. Snapshot Captured using DR Tech-

pens in-order and multiple instructions can retire in the

> M
same gycle. Hgnce, W.hen we fetehat timet; _(|.e., the Figure 4 shows the results of applying the above algo-
Fetch time for instructior), let ¢ be the last instruction jy0'to the model and instructions described in Section

thaF retired_ one cycle ea_rlierat tin‘n§ (i.e, the Retirg time ¢ This figure shows the step curve obtained by tracking
for instructiong). From Figure 2, we see thamustlie be- 4 vetire times of all instructions following until r re-

tween: tires. The vertical axis represents time while the horizon-
psq<r @) tal axis represents the instructions that retire. Hence, th
Note thatq is no longer in the pipeline whenis being curve is bounded, in the time domain, b§ andt® with
fetched. Hence: upper boundnaz. Unlike similar step curves for in-order
th=tl—1 2) pipelines, this curve isnulti-dimensional The horizontal

. L . axis now encodes information about groups of instructions
6. Sna_‘pShOt Captur_e using Pipeline Drain- that retire together. As the figure shows, the horizontatigpar
Retire (DR) Technique of the “step” directly represents the order and the number
Ideally, capturing a snapshotatvould involve captur- of instructions retiring at that particular point in timee(,
ing information about which instructions are in what stage multiple instructions retiring in the same cycl&jote we
of the pipeline and how long they have been/will be there. must also keep track of thexactorder of instruction retire-
This resembles a step curve of the instructions that are inment at any given level. All of this information, combined
the pipeline. This is not practical as we are unable to cap-with the “state” of the reservation stations (Section 7wno
ture the precise information in a pipeline without signifita forms a pipelinesnapshatwhich is formally defined in Fig-
changes in silicon. Instead, we use what we call a “drain- ure 5.
retire” mechanism to characterize the flow of instructions i)
the pipeline. We take advantage of the fact that in an out-of- /- Capturing Structural and Data Dependen-
order pipeline the only point where determinism is guaran- cies using Reservation Stations
teed is at theetire stage (instructionmustretire in-order). 7.1. Structural Dependencies
The algorithm to capture a snapshot using the DR mecha-

L Consider the situation shown in Figure @1" and “ay”
nism is as follows:

are twomulti-cycleinstructions that require the same exe-
1. Stop fetching after.

2. Storet”, the time wheny retired. S, = {q, th, {tﬁ.}, {i}} .RES, RF, S<q}
3. Let execution proceed through the pipeline untie-

tires (.e., the pipeline drains completely). where,
4. Track the retire time of every instruction frogrup un- Sn ¢ snapshot at instruction n

til, and includingr (i.e., t). q last m;tzu}cltzsn to retire be fore
n was fetche

¥
time :tFNE fetch th . retire cycle for q

q
= {tﬁ}, {z}} set of tuples where,
’Qm? dispatch tﬁ} : retire cycle
E{‘ {i} : all instructions that retire at tﬁ}
oL issue RES : state of the reservation stations
g [1 execute immediately after instruction n
=] has retired
E retire RF . state of the register file immediately
(= after instruction n has retired
S<q ¢ link/pointer to last snapshot be fore q
q (=0if Sy is first snapshot)

time = t'=t" - 1

Figure 3. Pipeline Model Figure 5. Definition of a Snapshot

(iii) exit cycle cycle/time when the instruction exited from

I I i i
Path A: :Path B the execution unit.

a; merged 7.2. Data Dependencies
snapshot Most modern pipeline use data-forwarding techniques
ap (bypass) to reduce the wait times for instructions that are
Path C waiting on data (register values) to become ready. When

data is produced, at the end of the execution stage of certain
instructions, it can immediately be forwarded to instrant

Path D Path E that are waiting on them. These data values are available to
waiting instructions evemeforethey are written into the
Figure 6. Example to show hazards affecting register file. Such data forwarding techniques and their ef-
worst-case behavior fects must be characterized correctly, if the CheckerMode
architecture is to correctly capture the worst-case betnavi

cution unit (fore.g, the “floating point multiply” unit). As-
sume that there is only one instance of this type of execution
unit in the pipeline. Now there existssiructural depen-
dencybetweenu; andas. Hence,a; cannot obtain access

(be issued) to the execution unit befare vacates it. We ; . . .
must wait fora; to write a result into a register (say)

must retain this dependency across the join point (where aI-that is a source register fak,. If another instruction (sa
ternate paths meet) because it could affect the worst-case g 2 y

behavior of execution that proceeds beyond it. Let us as-s\fgu(?g ﬁ:\i vﬁit'?el iig\ﬁ'tgfngl’:#; ea:léiir dtgsagr\:vt?leené)
sume that path “D™'s execution time is affected by the fact ' 1 artlas P

thatay has to wait. Assume that the WCET for path “D” posite Side of a join point Wh‘?‘“ compareddg the Iat_-
(weet p) increases or decreases by a factatepending on ter can gain access to the register valtg €arlier than it

whetheras is made to wait or not, respectively. Letet would have otherwise on the “A’ path, and can execute ear-

be the worst-case execution time for path “E”. We now have lier. Hence, the worst-case behavior of the program is not

.) o correctly preserved.
the following pathological situation:
We use reservation stations for the register file to cor-

rectly track the data dependencies between instructioths an
the time(s) when data becomes available and when they can

Hence. we see that even thouah “E” becomes the lon erbe used by dependent instructions. Each register now has an
th » W “D” and EV it utgt]h A th f 9€T5ssociated “reservation station” which stores lttestcy-
fha (ar;nboir?gti N él'nh w)r' It Ino (:rwct)rs —rcase pna WBOL cle when the register value was availalle.(@after the exe-
€ co ation. The worst-case €efiects are see €N cution stage of the instruction that produced that value).
experiences a delay due to structural dependenciesayjth) . o
. A L Note: The process of writing information into the reser-
thus delaying path “D” to exhibit a WCET aficetp + 6.
. vation stations isoton the critical path. Hence, it does not
We now need a mechanism to capture these structural de- . .) . Lo
. “affect the execution of instructions in the pipeline.
pendencies among instructions, especially those thanlie o

either sides of snapshots. We introduce the concegisefr- 8. Snapshot Usage

vation stationdor this purpose. . . .
. . . A snapshot captured using the DR technique in the pre-
Reservation stations for tracking structural dependen-_. o .
cies. as shown in Fiqure 7. are implemented as a table withVIOus section consists of information abdi)tinstructions,
' A . P (ii) their order of retirementjii) cycles between retirement
one entry per execution unit. It stores three values per exe-* /. :) . . .
; N of instructions andiv) the last instruction that retired;)
cution unit: : . . .
. o before the snapshot instructior) (In this section, we elab-
() theinstruction using that execution unit; L . .
..) . : . : orate on how this information will be used.
(i) entry cycle: cycle/time when the instruction was issued .
. . . When execution must be restarted from a snapshot, we
the particular execution unit;) i X . .
must start fetching from instruction because instructions

of tasks.

From Figure 6, let us now assume thatanda, have
only a data dependency among them(and not structural de-
pendency as explained in the previous section) suchuzthat

weetp — 0 < weetg < weetp + 6

Exec [ctruction BNty Exit that preceded it cannot directly affect the execution-of
Unit Cycle Cycle While we can start fetching fromp, we do not have infor-
integer add a 103 104 mation about the processor stategatence, we must re-
integer mult . 104 110 st_ore the last snapshot befoge which is S,,, as seen in
: : : : Figure 2. To account for the worst case, we must actually
| | | | start from the snapshot that precedes instrugtiomstruc-
float add m 123 129 tion p is the instruction that is at the theoretical bound for
the capacity of the pipelinepaz, relative tor. If there ex-
float mult X 136 150 ists a snapshot betweenand ¢, then we can reduce the
Figure 7. Reservation Stations pessimism by starting at the snapshot ilanediatelypre-

// DRM Algorithm to merge two snapshots instructions instructions
a b c d f g h i j

Q -
drm_merge(snapshdt,, snapshof,) { E i ; | ;
Sy, — NULL; // merged snapshot 2 i3 3
do{ E5l 4 4
t; < get next retire cycle it : g i 3 5
. . - . . 5= 6 6
I, +— getinstructions retiring at, in S ; g 7 7
to < get next retire cycle iy}, ; z w7
I < getinstructions retiring at, in S, ; - Snapshot “A” Snapshot “B”
Figure 9. Snapshot Candidates for Merge us-
Sm — { max(t1,t2),, Ul }; ing DRM Technique

} while(notemptyS,,) and notempty(55));) . .
to pass. This ensures that instructions that have data depen

S, « remaining retire times and instructions dencies among them still retain the correct dependency in-
from non-empty snapshot; formation post-merge.

S, — older(S,.q, S.q); We see that the semantic meaning associated with snap-

S, — older(S,.prev.snapshotS,.prev.snapshot); shots, initially constrained to static aspects only, haanbe
enhanced by dynamic information. This has an effect on the

S,, — mergereservationstations(S,.RES,S,.RES); instruction flow through the pipeline. Hence, a snapshot is
now defined as information that affects the flow of instruc-

S, «— mergereg file_state(S,.RF, Sy.RF); tions through the pipeline when the “snapshot instruction”
(r in the above case) is fetched. Snapshots are able to af-

return S, fect the pipeline behavior by allowing instructions captlir

} in them to retire only with predetermined delay®(at or

after the retire times captured in the snapshot) or gain ac-

cess to execution units based on constraints enforced by the

cedeg; since we know that instructiopdefines thaealis- reservation stationgtc. Modifications to the retire stage,

tic capacity of the pipeline. mentioned in Section 3, as well as the issue stage (to look
We can now restore information from this snapshot to Up the reservation stations) are useful in aiding the p®ces

bring the processor into a consistent state. We restatifetc Of restoring snapshots by providing the ability to exercise

ing from the instruction that immediately follov#, and let fine control on when certain instructions (Captured in the

execution proceed until the new/current snapship(atin- ~ Shapshot) are allowed to be issued or to retire.

structionr), is reached. Once instructignretires, we look 9. Merging Pipeline Snapshots

up the information about subsequent instructions frf§m .
to see how much time elapses, if any, between their retire- When alternate paths meet, snapshots from both sides
must bemergedso that instructions that follow see a con-

ment. Each instruction starting fromcan now retire only) Cs
after the a number of cycles has elapsed, as determined b);lstent state of the pipeline. Also, the merged state must
the information inS,,. Hence, instructions can retire at or inherit the worst-case behavior from either side. Another
after the number of cycles recordéat it in the snapshot, requirement is that pipeline e.fl‘ects res.ulting from anoma-
but never beforeFrom Figure 4, we see that two instruc- 0US behavior [12, 13] must still be retained post-merge. In
tions following ¢ can retire at the same time, but no ear- this section, we present a merge technique that h_andles all
lier than 1 cycle afterg. The next instruction can only re- of the_ above effe_cts c_orrectly. We shall refer_ to this merge
tire 2 cycles after the previous instructions have retired, —t€chnique asdrain-retire mergé (DRM). Section 10 will
present a proof showing that timing anomalies are retained

and so on. i , proof she
A similar process is employed for thesuestage of the atter applying :

pipeline. We use the reservation stations to control whatin 9.1. Merging Two Snapshots

structions are issued, when and into what execution unit. Merging more than two snapshots is a simple extension
From Figure 7, we see that an instruction that wishes to US€of the same techniques_ The a|gorithm to perform a merge
an execution unit (say the integer multiplier), cannot gain of two snapshots (DRM) is illustrated in Figure 8. It pro-
access to it before cycle04, and once it has been given ceeds by simultaneously retrieving snapshots from the top
access, another instruction cannot obtain it until theiprev of each stack, extracting information and comparing it-pair

Figure 8. Snapshot Merge Algorithm (DRM)

ous instruction exits (which, in this case, will be cytl®). wise before composing a merged state and storing it in a
This process ensures that structural dependencies betweeRew snapshotq,,).
instructions on either side of the snapshot are still ret@in Remark: We pick the older “starting pointj) from the

Similarly, instructions that depend on certain register two snapshots and also the older “last snapshat;J. This
values to be ready cannot proceed with their execution untilis to ensure that the state of the processor is correct wigen th
the cycle stored in that register’s reservation statione®m merged snapshot state is restored within the processor.

To understand how this algorithm works, consider ex- instructions
amples of snapshots shown in Figure 9. Snapshot “A” has a f g h i b c d j
three instructionsd b, ¢) while snapshot “B” has fourf, '
g, h andi). Instructionsd andj are not part of the snap-
shot. They are the first instructions that follow the snapsho
To perform the merge, we go through the following steps:

(cycles)

1. Start from the first (earliest) instruction in both snap-
shots.

2. Combine all instructions at the same cycle (level) into
the new, merged snapshot. Hencgf, g andh will be
combined so that they retire during the same cycle.

3. Compare instructions in both snapshots to find the
snapshot with the longer number of cycles until the
next retire occurs. From the figure, we see thahdc
from “A’ retire later thani from “B”.

NN A W=

instruction retire time

A U B (optimistic)
Figure 11. Incorrect Merge Results
Figure 11, we would always retireat cycle2 and not ac-
count for the fact that “A” could carry over some worse be-
havior where instructionsandc retire one cycle later.

While this alternate method may result in fewer cycles
for the WCET, it does not safely capture effects due to the
o _ _ execution of alternate paths and the influence they may have

4. Set the retire time for all instructions on both paths t0 4, gach other. The problem arises because we are searching
the longer delay. Hencé, c and will now retire at ¢4 paths that show worst-case behaviocally. If effects
cycle3. from one part of the program affect the worst-case behav-

5. Repeat for all remaining instructions/retire times in jor of instructions that are at a large distance, then usiig t
both snapshots. incorrect merge technique will result in wrong WCET esti-

Figure 10 shows the results of applying the DRM merge mates.
algorithm. After the merged snapshot is restored, we fol- Consider the situation shown in Figure 12. Let paths
low the instruction stream immediately after the join point and Pz be the paths that produced snapshots “A” and “B”,
Also, for the sake of obtaining the WCET of the program, respectively. Let the result of merging them be as depicted
we must pick the longer path and its WCET for our analysis. in Figure 11. Let us further assume thiat has the larger
If the path that provided snapshot “BPg) is longer, then ~ WCET. As explained before, only instructions frapg will
we use its instructions and WCET. The problem of finding exist in the pipeline when this newly merged snapshot is
the WCET for the entire program is then reduced to find- encountered. Now let us assume that there exists a timing
ing the longest path in short sections of code and using theiranomaly in this section of the program and the source of
WCETS for future calculations. this anomaly is at point (I). Let us also assume that only cer-

As explained in Section 8, restarting execution at a snap-tain instructions in patt#4 (point (Il) in the figure) depend
shot means restarting from an instruction that originates directly on the instructions that form the anomaly. Instruc
from before the particular snapshat.g, instructiong in tion b in Figure 11 has its retire time increased due to this
Figure 5). If Pp is the longer path, then belongs to the anomaly. Let other instructions following the merge (point
mix of instructions that constituteBg. Even if Py is very () in the figure) depend indirectly (due to instructions a
short andg happens to lie before the branch condition, we (I1)) onthe anomaly. PatF is not affected by the anomaly.
must pick the longer path to execute through the pipeline to If we use the retire times shown in Figure 11, then the effects
reach the merged state, which will eventually pass throughof the anomaly will not be felt post-merge, because we do
Py in this case. Hence, at any point in time, only instruc- not carry over the time dilation effects that resulted inan i
tions from one pathR, or Pg) will execute through the crease in (say)'s retire time.This would have otherwise di-

pipeline. lated the execution/retire times for instructions at p@ii}.
_ Hence, by using the overly aggressive, incorrect merge we
9.2. Incorrect Merge Technique may not be handling worst-case pipeline effects (in pasticu

Figure 11 shows an incorrect way of performing the lar tlmlng anomalieS) Correctly. There exists a dIStInC‘I;-pO

merge. In contrast to Figure 10, each instruction now re- Sibility that future instructions (post-merge) will not ex
tires at its original time. If we used the information from cute based on the worst-case behavior. Such incorrect merge

instructions D Source of)
o a f g h i b ¢ d j Anomaly
E 01 Path Pi . & " Path Py
2 i g ‘ Effect of
8 4 Anomaly
=20 s am
2 6 i 7" Snapshot B
o i 9 0 T D
g 7 / Y Effect of
£ Snapshot A

()
AUB Anomaly
Figure 10. Merge Results Figure 12. Effects of Incorrect Merge

techniques can result in an underestimation of the WCET Path X Path Y
estimates.

9.3. Merging Reservation Stations | | snanshots
The steps to perform a merge for reservation stations are @ 1 S59P
shown in Figure 13. While merging reservation stations for
the execution units, we pick the later of the two entry cycles
. - merged
as well as the later exit cycle. This ensures that the worst- snapshot

case behavior of the program is carried forward post-merge. Figure 15. Anomaly Effects on Merge

be predicted easily. They prevent accurate modeling of out-
of-order processors and thus prevent us from obtaining ac-
curate estimates of worst-case execution times for such pro
cessors. Instead, we show how such effects can be safely
Ermergea_tes stationexit cycle = bounded. Hence, any pipeling stqte merge algorithm mgst
max(E, .exitcycle, E,.exitcycle): ensure t.hat 'Fhe effects in the pipeline due to such anomalies
} are retainedi.e., the merge must not remove these anoma-
lies from the pipeline and subsequent analysis.
Assumptions We are only interested in pipeline effects
in this work. Hence, any architectural/execution artithett
} results in changes to the passage of instructions throwgh th
pipeline is considered. The causes could be interag, (
return mergedres station: data _dependencies) or externald, cache hits/misses) to
} the pipeline. The causes for the effects could have occurred
]))] at a much earlier stage or justimmediately before time dila-
Figure 13. Merging Reservation Stations tion in the pipeline. Effects on other parts of the processor

]]) ~___including caches and branch predictors, are not yet consid-
The merge for register reservation stations is similar in graq here as they are subject to future work.

that amax of the reservation station entries from both paths

is stored as the new value for that particular register. This Theorem 1. Correctness of Merging Two Snapshots: The

ensures that instructions that execute post-merge cannobDRM merge algorithm (Figure 8) retains all worst-case

gain access to the register values until the cycle which is pipeline timing effects, including timing anomalies.

stored in the reservation station for that particular regis

While the register values might be written earlier (from an proof. (1) Consider the situation shown in Figure 15. It

alternate path), they cannot be used until the reservaizens - shows two alternate paths (X and Y with WCETs, and

tion allows it. Cy respectively), each of (possibly) different lengths. A

9.4. Merge for More than Two Snapshots snapshot is captured at the beginning ($8y.nc») when
The DRM algorithm can be extended to merge more than the two paths diverge. Two snapshots are captured{say

two snapshots. In such situations, we can call it recungivel @ndSy), one for each path, before the paths meet. These
as shown in Figure 14. two snapshots are “merged” using the DRM algorithm to

obtain the new, single snapshot (say) that is used to ini-
tialize the state of the processor before execution praceed
¢ is the potentialtime dilation produced during the exe-
returndrm _merge(S,, S,) ; cution Qf pathX du_e tp pipeline effects (such as timing
return mergen(mergen(s....S,_1), Sy) : gnomalles). Such dilation could Ie_ad t.o one of the follow-
} ing three cases related to the retire time of some instruc-
tions in X:
e Case 1 ¢ causes some instructions to retiager, i.e.,
it increases the execution times for some (or all) in-

mergereservationstations(S,.RES,S;.RES){
for each (executiomnitentry E)
Erergea-resstationentry.cycle =
max(E,.entry.cycle Ey.entry.cycle);

for each (registerentry R)
Rynerged-registeccycle =
max(R,.cycleRy.cycle);

mergen(sS;...S,) {
if(only two snapshotsS,, S,)

Figure 14. Merge for Multiple Snapshots

10. Proof of Correctness structions, thus resulting in an increase(iy. These
The term “timing anomaly” refers to an anomaly in instructions also enter and leave their respective reser-

the execution of code in dynamically scheduled proces- vation stations later than they would have otherwise.

sors [12]. It was later generalized by others [3, 13, 25]. It They also produce results (and write them to register

denotes counter-intuitive results in timingsg, a cache hit files) later.

may result in longer execution times than a miss for a given e Case 2 ¢ causes some instructions to retearlier,

path due to overlapped structural resource conflicts. These i.e. it decreased the execution times for some (or all)

anomalous effects show up as pipeline effects, where exe- instructions, thus resulting in a decreas€’in. Hence,

cution times for instructions are dilated in ways that canno they are able to enter/exit reservation stations, as well

as produce results (to be written into registers) earlier
than before.
e Case 3 ¢ does affect the retire times or reservation

L ¢
ol |
stateion usage for any instructions in the snapsteot, I___ (il - _t.Rm

it neither increased nor decreaség . without anomaly w1th anomaly .

Figure 17. Case 1 (a) (i) t}, is less than tﬁ;}

L

(I1) Consider the case of an arbitrary instructibr{part of
path X)) with its original reservation station times ([Entry, tRZ. value would have been picked anyways. This is due to
exit]) denoted a$F, €]y, its retire timet£ which is part of the fact that we are trying to estimate the worst-case behav-
snapshotSx. Let RF;, be the time when the instruction ior of the program. We can also conclude that the pipeline
writes its results (if any) into the register. HendeF}, is effect would be contained withi8y,..,., and S,, in this

the time stored in the reservation station associated Wéh t case because the retire time for the instructions affeated a
register that was written into bl. Let Sx also be affected not part of the worst-case behavior of the path

by an anomaly. Hence, the time(s)ofnd the WCET ofX Remark: This situation can only occuttff < t (i tobe-
are now, gin with as shown in Figure 17. ifff was larger, then it
would default to case Il (a) (i).
Evell = (B0 s 3) @0
/ —
tk; = o (4) Case 1:(b) ¢ increased the WCET oX . Hence,
RF, = RF,+¢ (5)
Cx = Cx=¢ (6) Cx=Cx+¢ (9)
As part of the DRM processk, its reservation sta- (i) If C% > Cy (Figure 16), then the WCET for the

tion state and its retire tim&%) will be compared with in- entire construct will now b@’ Hence, the effects af
structions from the snapshot on the the alternate pathwill be included in the estimation of the total, increased
(Sy). Let [E, €]y and RFYy;, be the state of the reser- WCET of the program. Again, this is regardless of whether
vation stations andfl, be the retire time tha{E, e, Cx >CyorCx < Cy.

and t; are being compared with (from the other snap- (i) If C, < Cy (Figure 17) then the WCET for the en-
shot), where{i} represents the sequence of correspond-tire construct will now beCy. This result means that the

ing instructions from the other snapshot. effects ofp would never have affected the WCET estima-
tion of the program anyways as$ was always the longer
() Case 1:(a) ¢ increased the retire times fok. path.
Hence, Remark: This result is only possible fx < Cy to
start with, else we would default to case Il (b) (i).
[E.el, = [E+d e+l (7)
th = ti+¢ (8 (v) case 2:(a) ¢ decreased the retire times fdr.

Hence,

L ' t =1t —¢ (10)
= I_-_,tR{i} = . I_-_ER{i}
' Lt, i : -
' k] I— tR . [] tk I— tR .
' I_tR e = _I }tb -—4

without anomaly with anomaly
(i) If tj, > t{%, then the merged snapshét() will store Figure 18. Case 2 (a) () ¢}, is less than t{},
t}. as the retire cycle for all instructiorisU {i}. Hence, we
see (Figure 16) that the increase in time to retire for an ar- (i) If ¢}, < t (i1 then the merged snapshat() will store
bitrary instructionk results in changes to the snapshot (in- tf} as the retire cycle for all instructiorisU {i}. If t <
structions retire later), thus ensuring that the pipelifiect
propagates beyong,, .

without anomaly with anomaly
Figure 16. Case 1 (a) (i) t), is greater than t{ }

, then this change due 0 did not matter anyways, as
. . k:’s retire time was not contributing to the worst-case state
Remark: Ig’hese effects d,, will materialize regardless to be seen by future instructions. If, on the other hafid>
of whethert;” < t (seen in Figure 16) af’ > t{ I tRi (as shown in Figure 18), then the effect of the anomaly
(ii) If £, <ty then the merged snapsh6t() will store js that it changed the worst-case behavior of instructians i
tf, as the retire cycle for all instructiorisU {i}. We see pathX. The significance of this effect is that instructions in
here (Figure 17) that the increase in the retire timeior the other path will contribute to the worst-case state that i
did not affect the snapshot. The retire time foft) would carried forward beyond,,,, and the worst-case retire cycle
neverhave affected the merged snapshot because the largeis nowt{ b which is less than the originaf’.

R
t g

by S
=2 _l }rb

without anomaly with anomaly
Figure 19. Case 2 (a) (i) t}, is greater than tﬁ;}

R
E L.t

(]
LtRk

(ii) If ¢5, > tf;}, then the merged snapshét,() will store
t}, as the retire cycle for all instructiorisU {:}. Hence, we
see that the decrease in retire time foresults in changes
to the snapshot. Instructions previously retired‘ahow re-
tire earlier (at},) as seen in Figure 19. Thus the pipeline ef-
fect will propagate beyond,,,.

Remark: This condition holds only #? > tf;}; other-
wise, we would default to case IV (a) (i).

Case 2:(b) ¢ decreased the WCET df. Hence,

Cy=Cx—¢ (11)

(i) If C% < Cy (Figure 18), then the WCET for the en-
tire construct will now be”,. If Cx > Cy, then¢ has al-
ready affected the WCET of the program. Whérg would
have been chosen originally for the WCET of the construct
in Figure 15,Cy is now chosen. Of course, 'y < Cy,
then the anomaly limits its effects betwe® .., andsS,,.

It does not affect the WCET for the two alternate paths be-
causeC'y would have been chosen anyways.

(i) If C% > Cy (Figure 19), then the WCET for the en-
tire construct will now be”y, . Hence g has resulted in a re-
duction of the WCET of the program from the origir@k .

Remark: This condition is true only if'x > Cy, else
we revert to the situation in 1V (b) (i).

(V) Case 3:(a) ¢ did not affect the retire times of
any instructions in the snapshot. Hence,

th =t (12)

iz
e i___tR,{i}

.l

H i_-_t,R{i} =

without anomaly with anomaly
Figure 20. Case 3 (a) neither ¢, nor tf;}

change

The effects ofp are completely encapsulated within the
boundary between the two snapshats.(betweenSy,.qpch

Case 3: (b) ¢ did not change the execution time of
X (Figure 20). Hence,

Oy =Cx (13)
(V1) Case 1:¢ increased the [Entry,exit] fdt. Hence,
[E,el), = [E+ ¢,e + ¢k (14)

(i) If e, > e(4y, then the merged reservation station state
will have an entry cycle ofnax(E;,, E;) and an exit cy-
cle of max(ey, eq;3) = e;,. Hence, we see that instruc-
tions may gain access to the execution unit later than they
would have (ifE;, > E;;). They are also not allowed to va-
cate the unit until latere(,). These effects are due to the in-
crease in time by.

(ii) If e}, < eg;y, the merged reservation station state
will have an entry cycle ofnax(E;, E;) and an exit cy-
cle of max(ej,, eg;;) = eg;y. We see that the exit times for
the merged state is not affected by this change. This is sim-
ilar to the situation in I, Case (1)(a)(ii) where the effect
of the anomaly would not have propagated since the reser-
vation station state of the path comprisihgloes not re-
flect the worst-case behavior. Depending on whethigr
or Ey;y is greater, the instruction may or may not gain ac-
cess to the reservation station earlier.

Case 2:¢ decreased the [Entry,exit] far. Hence,

[E,el, = [E—¢,e — ¢l (15)

(i) If €}, < eqsy, the merged reservation station state will
have an entry cycle ahax(E;, Ey;) and an exit cycle of
max(ey, eq;) = eqqy- If ex < egyy, then the change did not
matter sincek’s reservation station state was not contribut-
ing to the worst-case state of the merged snapshot. If, on the
other handg;. > ey;;, then the effect of the anomaly was to
modify the worst-case behavior of instructions in the path.
Instructions from the other path (with their corresponding
state of reservation stations) will contribute to the worst
case behavior for the task. Hence, the effect of the anomaly
is seen. Instructions that execute post-merge gain acaess t
execution units earlier than they would have, thus reducing
overall execution time and, hence, retaining the origifial e
fect of the anomaly.

Instructions that are a part of the snapshot also gain ac-
cess to the reservation stations at a later time, depending o
whetherE;, or Ey;, is greater.

(ii) If e}, > egqy, the effect of the anomaly was to re-
duce the time taken for instructions to be issued to exe-

and Sx). Hence, we need not consider the anomaly as cution units. The state of the merged reservation station

it will not affect the execution of future instructions (be-

will be, [max(E}, Eg;y), e,]. Without reservation sta-

yond the merge point) because the effects of the anomaly ortions, instructions would have been able to exit from the
the pipeline have been dissipated/absorbed before the inexecution units aty. Due to the presence of reserva-

structions in snapshobfx reach the retire stage (Fig-
ure 20).

tion stations, they now exit at timg, < e. Hence, the
effect of the anomaly in reducing the execution time is car-
ried forward beyond the merge.

(VIl) Case 1:¢ increased th& F' entry fork. Hence,

RF] = RF, + ¢ (16)

() If RE], > RFy;, thenthe merged register reservation
station state will store the valu®&F}. Hence, we see that
instructions that depend on the register corresponsing-to R
will gain access to the execution utater than they would
have due to the increase in time by

(i) If RF}, < RFy;, the merged register reservation sta-
tion state will will store the valueRF;,. This is simi-
lar to the situation in I, Case (1)(a)(ii) and VI Case (1) (a)
(i), where the effects of the anomaly would not have prop-
agated since the register reservation station state ofetie p
comprisingk does not reflect the true worst-case behav-
ior.

Case 2:¢ decreased th& F' for k. Hence,

RF| = RFy — ¢ (17)

() If RF}, < RF(;, the merged register reservation sta-
tion state will have a cycle oRFy;,. If RFy, < RFy;,
then the change did not matter sirice register reservation
station state was not contributing to the worst-case state o
the merged snapshot. If, on the other haRd;, > RFy;,
then the effect of the anomaly was to modify the worst-case
behavior of instructions in the path. Instructions from the
other path (with their corresponding state of reservattan s
tions) will contribute to the worst-case behavior for thekta

Hence, the effect of the anomaly is seen. Instructions that

Proof. The DRM algorithm is effectively applied recur-
sively to perform merges on multiple snapshots. The
“drm_merge” algorithm is called onwo snapshots at a
time to obtain a merged state, which is then merged with
the next snapshot and so on. We have shown above that
pipeline effects are not lost when merging two snapshots
at a time. Since merging multiple snapshots occurs two at a
time, we can infer that the pipeline effects will be retained
across merging multiple snapshots if the said effects alter
the worst-case behavior of the paths. Hence, the proof hold
true for merging an arbitrary number of snapshots. [

11. Merging Register Files

To perform a merge on the register file state (“RF” from
Figure 5) we use a simple technique on each register:

o Ifthe register value isinchangedcross the snapshots,
then the merged state will retain that value in the reg-
ister;

If the register value igifferent then set the merged
value to a Not-A-Number{ aN) [16]. This is to han-
dle values that are input-dependent which will not be
known until run-time. This is safe due to the conserva-
tive semantics of any operation of NaN that, by def-
inition, results in a conservative value (NaN unless
trivial arithmetic rules apply, such as multiplication
with zero) and in conservative temporal requirements
(worst-case number of cycles for this operation under
the given operands).

Performing the above checks/modifications on every reg-

execute post-merge are allowed to access the data writterster in the register file in both snapshots, we are able to eas

into the register file earlier than they would have, thus re-
ducing overall execution time hence retaining the original
effect of the anomaly.

(i) If RE], > RFy;, the effect of the anomaly was to

ily construct a new “merged” state for the register filate:

a merge on register files deals with the actual register val-
ues. This is different from merging reservation statiorns fo
register files (Section 9.3).

reduce the time taken for instructions to gain access to the The ability to extract and/or write back register file state
data (they depend on) from the register file. The state of thecan be realized by simple modifications of existing mi-

merged register reservation station will beF; . Without
register reservation stations, instructions would havenbe
able to read the required data valuesrdiy. Due to the

croarchitecture featurese., the Precise Event-Based Sam-
pling (PEBS) with user-selected access to selected shadow
buffers [27] present in the Intel X86 architecture. Our de-

presence of reservation stations, they now get the requirediign makes buffers used in this and other architecturattech

inputs (from the register) aRF;, < RF}. Hence, the ef-
fect of the anomaly in reducing the execution time is car-
ried forward beyond the merge.

Cases () — (VII) we proved that pipeline effects due to
timing anomalies (or whatever other reasons) will be re-
tained post-merge if the merge is based on the DRM al-
gorithm. If the pipeline effects resulted in increases or de
creases (execution time/retire cyckdsl), then these effects

are carried over if these effects changed the worst-case be

havior of the path. Hence, this proof holds for merging any
two snapshots

nigues uniformly available to the user.

12. Implementation

The CheckerModeénfrastructure has been implemented
on an enhance8impleScalaprocessor simulation frame-

work [6]. It has the ability to model a variety of processor

configurations (SMT, CMPetc). We had previously [16]
enhanced the simulator by adding the ability to start/stop
execution at given arbitrary program counter (PC) values
as well as the ability to capture timing information for the
given range of PCs. We have now further enhanced it to in-
clude the process of capturing the state of the processer dur

Theorem 2. Correctness of Merging Multiple Snapshots: ing theissuestage i.e., using the concept of reservation sta-
The algorithm in Figure 14 is correct with respect to pre- tions introduced in this paper). We also have the ability to
serving worst-case timing effects in the pipeline when merg capture and merge snapshots and to reset the state of the the
ing multiple snapshots. pipeline to a given snapshot as detailed in this paper.

13. Related Work tual processor execution itself. This, coupled with the fac

Accurate knowledge of worst-case execution times thatour pipeline analysis is able to retain all pipelineets
(WCETSs) is critical for hard real-time systems. WCETs (including timing anomalies) while retaining the ability t
must be known or safely boundedpriori so that schedu- ~ Capture accurate worst-case execution times, means that we
lability analysis can proceed. Methods to estimate WCETs do not face the same problems with timing anomalies that
range from dynamic analysis [5, 31, 33] to static analysis other techniques have. Our analysis and merge techniques
methods [4, 7, 8,10, 17, 18, 20, 22, 28]. Recently, some hy-aré able to deal with out-of-order pipelines at a finer granu-
brid methods [4, 9, 15] as well as hardware-related methodslarity (instruction level) without the overheads of moagli
have been proposed [1, 2, 12]. Dynamic methods may pro-Of significant micro-architectural changes.
duce unsafe results _/vh_ilg static anq hybrid methods tend14_ Future Work
to be extremely pessimistic and typically overestimate the
WCETSs so that the bound is not tight. Many methods are in-
capable of handling advanced micro-architectural feature
such as OOO execution. Our work is able to fill this gap and
contributes to high confidence in embedded systems desig
for time-critical software.

Our work is closest to Lundqvistt. al.[12, 13] who use
symbolic execution with tightly integrated path and timing
analysis to obtain WCET estimates for modern architec- 15. Conclusion

tures. Their work is similar to ours in that they use the con- | this paper, we outlined a sophisticated pipeline analy-

cept of “unknown” values to represent register values and g scheme that is able to estimate the worst-case behdvior o
addresses that are input dependent. They also capture pras ot order pipelines in aafemanner. We also show that

cessor state at branches and perform “merge” operations oy e 4re aple to correctly deal with timing anomalies. We are
previously captured state. However, their work differsmiro g6 tg conduct our analysis in ways that are minimally inva-
ours in significant ways. Their analysis is based on per- gjye yjth respect to the processor. More specifically, we sug
forming static timing analysis within an architectural Sim gaqt minor changes to existing micro-architectural fezgur
ulator usingin-order execution. They still require detailed 5 extends contemporary monitoring techniques already
modeling of the pipeline and other functional units within - 5 osent in hardware. This work, when integrated with our
the processor. Their merge mechanism requires intricatecpeckermMode infrastructure, utilizes interactions betwe
knowledge of instruction flow through the pipeline —which 5 q\vare and software to make contemporary processors
instruction occupies/releases what resoureés,Our ap- yregictable and analyzable. Such processors may now be
proach avoids such costly and often impossible modeling Ofsafely used in real-time systems, thus moving the state-of-

complicated pipeline structures using reservation Statio he_art forward. We believe that this work will enhance the
This technique avoids the detailed modeling of structural design choices that are available to designers of embed-
and data hazards, but is still abledocurately accountfor 4o ang real-time systems, particularly on the high-end of
their worst-case effects in the pipelin fact, the inabil- o505 tational requirements. To the best of our knowledge,
ity to accurately model state-of-the-art processor pisli ¢ gnaiysis methods presented in this paper are the first of
is the core issue why the process of timing analysis for suchiqir kind that deal with out-of-order processing and tim-
processors is extremely difficult. We avoid larger overtsead ing anomalies.

by introducing minor modifications to existing processor

features that assist timing analysis. Anotherimportaobpr ~ References

lem with modeling is that processor vendors might be re- [1] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and
luctant to share exact details about internal architettga F. Mueller. Virtual simple architecture (VISA): Exceeding
tails required for accurate conventional static WCET analy the complexity limit in safe real-time systems. Inter-
sis. With our method, the vendors themselves can build the ~ national Symposium on Computer Architectysages 250—
“checker mode” into their processors so that analysis canbe 261, June 2003.

performed without risk of divulging their intellectual gve [2] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and
erty. F. Mueller. Enforcing safety of real-time schedules on
contemporary processors using a virtual simple architectu
(visa). InIEEE Real-Time Systems Symposipages 114—
125, Dec. 2004.

We intend to focus on dynamic branch prediction. While
we have been able to capture, merge and restore pipeline
state for OOO processors, we intend to find good solu-
ions to do the same for dynamic branch prediction schemes
rfll, 14]. We will also study how the snapshot capture/merge
mechanisms discussed in this paper can be integrated with
fixed-point analysis techniques for loops.

One other serious issue with analyzing dynamically
scheduled processors was also pointed out by Lundqvist et.
?ollus ;?Sélggn;?gcgnggf tizsptti((::gtifft?\(giacsiuz? 2232%9 [3] C. Berg. Plru cache domino effects. In F. Mueller,

. . . . editor, 6th Intl. Workshop on Worst-Case Execution Time
processors leading to large ov.eres'.umatlons in safely Boun (WCET) Analysisnumber 06902 in Dagstuhl Seminar Pro-
ing WCETSs. We have shown in this and related work [16] ceedings. Internationales Begegnungs- und Forschungszen
that problems associated with timing anomalies can be han- trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany,
dled in our framework because we do not intend to create 2006. <http://drops.dagstuhl.de/opus/volltexte/2006/672
models for processor behavior. Instead, we resort to the ac- [date of citation: 2006-01-01].

(4]

G. Bernat, A. Colin, and S. Petters. Wcet analysis of prob
bilistic hard real-time systems. IEEE Real-Time Systems
SymposiumDec. 2002.

[5] V. Braberman, M. Felder, and M. Marre. Testing timing be-

(6]

(7]

[8] J. Engblom Processor Pipelines and Static Worst-Case Exe- [27]

[9] A. Hamann, M. Jersak, K. Richter, and R. Ernst.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

havior of real-time software. 1997.

D. Burger, T. Austin, and S. Bennett. Evaluating future
microprocessors: The simplescalar toolset. Technical Re-
port CS-TR-96-1308, University of Wisconsin - Madison,
CS Dept., July 1996.

K. Chen, S. Malik, and D. I. August. Retargetable statict

ing analysis for embedded software. Pmoceedings of the
International Symposium on System Synthesis (| $3%)-

ber 2001.

cution Time AnalysisPhD thesis, Dept. of Information Tech-
nology, Uppsala University, 2002.

Design
space exploration and system optimization with symta/s -
symbolic timing analysis for systems. IEEE Real-Time
Systems Symposiupages 469-478, Dec. 2004.

A. Hergenhan and W. Rosenstiel. Static timing analp$is

embedded software on advanced processor architectures. 11130]

DATE, pages 552-559, 2000.

D. Jimenez. Reconsidering complex branch predictors.
2003.

T. Lundgvist and P. Stenstrom. An integrated path amd t
ing analysis method based on cycle-level symbolic execu-
tion. Real-Time System&7(2/3):183—-208, Nov. 1999.

T. Lungvist. A WCET Analysis Method for Pipelined Mi-
croprocessors with Cache MemorieBhD thesis, Chalmers
University, 2002.

S. McFarling. Combining Branch Predictors. Techniga-
port TN-36, June 1993.

S. Mohan and J. Helander. Temporal analysis for adgptin
concurrent applications to embedded systemsadecepted

at ECRT$2008.

S. Mohan and F. Mueller. Hybrid timing analysis of mod-
ern processor pipelines via hardware/software interastio
In IEEE Real-Time Embedded Technology and Applications
Symposiumpage (accepted), 2008.

S. Mohan, F. Mueller, W. Hawkins, M. Root, C. Healy, and
D. Whalley. Parascale: Expoliting parametric timing araly
sis for real-time schedulers and dynamic voltage scaling. |
IEEE Real-Time Systems Symposipages 233-242, Dec.
2005.

S. Mohan, F. Mueller, D. Whalley, and C. Healy. Timing
analysis for sensor network nodes of the atmega processor
family. In IEEE Real-Time Embedded Technology and Ap-
plications Symposiunpages 405-414, Mar. 2005.

T. Mowry and C.-K. Luk. Predicting data cache misses in
non-numeric applications through correlation profilinga |
MICRO-3Q pages 314-320, Dec. 1997.

F. Mueller. Timing analysis for instruction cach&seal-Time
Systemsl18(2/3):209-239, May 2000.

S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity
effective superscalar processors. I8CA pages 206-218,
1997.

P. Puschner and C. Koza. Calculating the maximum ex-
ecution time of real-time programs.Real-Time Systems
1(2):159-176, Sept. 1989.

[23] H. Ramaprasad and F. Mueller. Bounding preemption de-

lay within data cache reference patterns for real-timegask
In IEEE Real-Time Embedded Technology and Applications
Symposiumpages 71-80, Apr. 2006.

H. Ramaprasad and F. Mueller. Tightening the bounds on
feasible preemption points. IEEE Real-Time Systems Sym-
posium pages 212—-222, Dec. 2006.

J. SchneiderCombined Schedulability and WCET Analysis
for Real-Time Operating SystemPhD thesis, Universitaet
des Saarlandes, 2002.

Smith, J. E. A study of branch prediction strategies. In
Proc. 8" International Symposium on Computer Architec-
ture, pages 135-148, Minneapolis, 1981.

B. Sprunt. Pentium 4 performance monitoring features.
2002.

S. Thesing, J. Souyris, R. Heckmann, F. Randimbivalajo
M. Langenbach, R. Wilhelm, and C. Ferdinand. An Abstract
Interpretation-Based Timing Validation of Hard Real-Time
Avionics. InProceedings of the International Performance
and Dependability Symposium (IPDSyne 2003.

J. Turley. Embedded processors by the numbers, 1999.

X. Vera, B. Lisper, and J. Xue. Data caches in multitagki
hard real-time systems. IEEE Real-Time Systems Sympo-
sium Dec. 2003.

] J. Wegener. Verifying timing constraints of real-tirsgs-

tems by means of evolutionary testinReal-Time Systems
15:275-298(24), 1998.

J. Wegener and F. Mueller. A comparison of static arialys
and evolutionary testing for the verification of timing con-
straints.Real-Time System21(3):241-268, Nov. 2001.

J. Wegener, H. Sthamer, B. F. Jones, and D. E. Eyresingest
real-time systems using genetic algorithn®oftware Qual-
ity Journal, 6(2):127-135, June 1997.

R. White. Bounding Worst-Case Data Cache Performance
PhD thesis, Dept. of Computer Science, Florida State Uni-
versity, Apr. 1997.

