
On Establishing a Benchmark for Evaluating Static
Analysis Alert Prioritization and Classification Techniques

Sarah Heckman
North Carolina State University

890 Oval Drive
Raleigh, NC 27695-8206

+1 919 513-5082

sarah_heckman@ncsu.edu

Laurie Williams
North Carolina State University

890 Oval Drive
Raleigh, NC 27695-8206

+1 919 513-4151

williams@csc.ncsu.edu

ABSTRACT
Benchmarks provide an experimental basis for evaluating
software engineering processes or techniques in an objective and
repeatable manner. We present the FAULTBENCH benchmark, as a
contribution to current benchmark materials, for evaluation and
comparison of techniques that prioritize and classify alerts
generated by static analysis tools. Alert prioritization and
classification addresses the problem in many static analysis tools
of numerous alerts that are not an indication of a fault or
unimportant to the developer. We utilized FAULTBENCH to
evaluate three versions of the AWARE adaptive ranking model to
prioritize and classify static analysis alerts. Individual
FAULTBENCH subjects have different best prioritization and
classification techniques. Using a single subject to evaluate a
prioritization and classification technique could provide incorrect
results. Together, FAULTBENCH subjects provide a precise and
general evaluation of alert prioritization and classification
techniques.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
Reliability, D.2.5 [Software Engineering]: Testing and
Debugging – Testing tools

General Terms
Measurement, Reliability, Experimentation, Verification.

Keywords
Automated static analysis, alert ranking, benchmark creation

1. INTRODUCTION
Several open questions in software engineering involve evaluating
processes and techniques to improve aspects of the software
development lifecycle. Empirical analysis of research theories are
a component for acceptance of the theory within a research
community [18]. Benchmarks provide an experimental basis for
evaluating software engineering theories, represented by software
engineering techniques, in an objective and repeatable manner
[18]. A benchmark is defined as “a procedure, problem, or test
that can be used to compare systems or components to each other

or to a standard” [8]. Benchmarks represent the research problems
of interest and solutions of importance in a research area through
definition of the motivating comparison, task sample, and
evaluation measures [17]. The task sample can contain programs,
tests, and other artifacts dependent on the benchmark’s motivating
comparison. A benchmark controls the task sample reducing
result variability, increasing repeatability, and providing a basis
for comparison between techniques [17]. Additionally, successful
benchmarks promote collaboration within a research community
[17].

Several benchmarks in the realm of software fault detection have
emerged in recent years [14-16] containing subject programs of
various sizes, in multiple languages, and with real or seeded
faults. Current benchmarks provide meaningful points of
comparison; however, they lack a detailed, repeatable process.
Our goal is to supplement prior benchmarks by gathering a set of
small, real, and faulty Java programs from a variety of domains
and providing a process for evaluation of the following software
fault detection problem: how to identify which anomalies
generated by static analysis tools are program faults.

Static analysis tools can identify anomalies in source code early in
the development process [8]. These tools produce reports listing
possible program faults, which we call alerts. Inspection of each
alert by a developer is required to determine if the alert is an
indication of a fault. When an alert is not an indication of a fault
or is deemed unimportant to the developer (e.g. the alert indicates
a programmer mistake inconsequential to program functionality),
we call the alert a false positive [1]. Static analysis tools may
generate an overwhelming number of alerts [10], the majority of
which are likely to be false positives [6]. Alert prioritization
techniques can increase the usability of static analysis tools by
presenting developers with alerts likely to indicate important
faults first. Additionally, alerts classification techniques can
divide static analysis alerts into two groups: alerts likely to
indicate important faults and alerts likely to be false positives.

The goal of our research is to propose the FAULTBENCH benchmark
to the software fault detection community for comparison and
evaluation of static analysis alert prioritization and classification
techniques. The literature in the realm of static analysis alert
prioritization and classification is moving towards a definition for
conducting and evaluating research [9, 10, 12, 14, 20, 22].
FAULTBENCH provides a basis for comparison of static analysis
alert prioritization and classification techniques and contributes
subject programs; an analysis procedure; and evaluation metrics.
The current version of FAULTBENCH contains six, open-source,
subject programs written in Java. We validate the selection of
FAULTBENCH subject programs by comparing three versions of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEM ‘08, October 9-10, 2008, Kaiserslautern, Germany
Copyright 2008 ACM 1-58113-000-0/00/0004…$5.00.

AWARE [5] adaptive ranking model (ARM) alert prioritization and
classification technique on static analysis alerts generated by the
FINDBUGS [6] static analysis tool. FINDBUGS is a popular open
source static analysis tool. We describe how we created
FAULTBENCH, and present the process of evaluating and comparing
alert prioritization and classification techniques. We invite
researchers in the static analysis community to critique and
improve the current benchmark.

The rest of the paper is structured as follows: Section 2 presents
related work, Section 3 describes the FAULTBENCH creation and
analysis procedure, Section 4 describes the FAULTBENCH case
study, Section 5 presents the case study results, and Section 6
concludes and presents future work.

2. RELATED WORK
This section describes the related work in the areas of benchmark
creation and the ranking of static analysis alerts.

2.1 Current Fault Detection Benchmarks
There are several benchmarks in the realm of software fault
detection. The SIEMENS [7] benchmark was created by researchers
at Siemens Corporate Research and contains multiple versions of
small programs each containing a single fault and a suite of test
cases. The benchmarks were created to evaluate control- and
data-flow test adequacy criteria and were later used by Rothermel
et al. [16] to evaluate regression test case prioritization. The
SIEMENS benchmark has small, C programs with seeded faults.

BUGBENCH [14] is a benchmark containing seventeen buggy, open
source, C/C++ applications ranging from seven thousand lines of
code (KLOC) to 1028 KLOC in various domains. A Java
benchmark was created to evaluate the CHORD race condition
detection static analysis tool [15] and contains twelve concurrent
programs ranging from 2.5 KLOC to 650 KLOC. PROMISE [3] is a
repository for data sets and tools from empirical research in
predictive modeling, and half of the 60 data sets are in the area of
fault prediction. However, most of the data sets provide metrics
about projects without the project source. Some data sets refer to
large, open source projects and the remainders refer to
commercial products. Other static analysis researchers [9, 10, 12,
20] have used large open source projects (e.g. Apache’s httpd1,
Wine2, Sun’s JDK 1.6.03, Columba4) or commercial programs to
evaluate alert ranking and classification techniques. While large
open-source programs provide confidence and scale in the
techniques they evaluate, the size of the sample evaluated (one to
three programs) is a threat to external validity (e.g. the
generalization of the results). Additional studies and subjects
address the threats to external validity, and increase the
generalization of experimental results [16]. Commercial
examples show scalability of the technique in an industrial setting
at the cost of repeatability and comparison.

These current benchmarks are insufficient for our needs for
several reasons. First, current benchmarks are lacking a detailed,
repeatable process for use and evaluation of static analysis alert
prioritization and classification techniques. Additionally, the
current benchmarks are mostly for the C and C++ programming

1 http://httpd.apache.org/
2 http://www.winehq.org/
3 http://java.sun.com/javase/
4 http://columba.sourceforge.net/

languages. Finally, alert prioritization research, especially when
adaptive ranking is used, requires the removal of faults by a
researcher unfamiliar with the program, which is difficult to do
with large projects and a high quantity of alerts. Therefore, we
want to create a benchmark of relatively small, real, and faulty
Java programs from a variety of domains.

2.2 Static Analysis Alert Prioritization
Kim and Ernst [9, 10] describe two static analysis alert
prioritization techniques where the lifetime of a static analysis
alert is measured from data mined from source code repositories.
The lifetime of an alert is the time between alert creation and alert
closure. One technique prioritizes static analysis alert types by the
average lifetime of alerts sharing the same type in the repository
[9]. Alert types with shorter lifetimes have a higher ranking (e.g.
alerts fixed quickly are likely important) than alert types with
longer lifetimes. The second technique weights alerts types by the
number of alerts closed by fault- and non-fault-fixes, where a
fault-fix is a source code change where the developer fixes a fault
or problem and a non-fault-fix is a change where a fault or
problem is not fixed like a feature addition [10]. The history based
warning prioritization presented by Kim and Ernst [10] improves
the alert precision by over 100% when compared to the alert
precision of alerts prioritized by tool severity. However, the
precision ranged from 17%-67%, which might be due to alert
closures not having a causal relationship with the root cause of a
fault-fix. Additionally, both prioritization techniques work best
for fine-grained (e.g. many distinct alert types), homogeneous
alert types. A homogeneous alert type means that all alerts
sharing that type are all either true or false positives. We utilize
the idea of alert type homogeneity in our ranking.

Williams and Hollingsworth [20] created a static analysis tool
which evaluates how often the return values of method calls are
checked in source code. A method is flagged with an alert when
the return value for the method is inconsistently checked in calling
methods. Williams and Hollingsworth use the HISTORYAWARE
prioritization technique to prioritize methods by the percentage of
time the return values of the methods are checked in the software
repository and the current version of the code. The results show a
statistically significant reduction of the false positive rate when
using the HISTORYAWARE prioritization technique on two case
studies involving httpd and Wine applications.

Kremenek et al. [12] show that static analysis alerts in a similar
alert locations tend to be homogeneous. On average, 88% of
methods, 52% of files, and 13% of the directories with two or
more alerts contained homogeneous alert populations. Kremenek
et al. created a FEEDBACK-RANK algorithm whereby the
developer’s feedback is used to prioritize the remaining alerts.
The static analysis tools used by Kremenek et al. take advantage
of understanding where a static analysis tool checked for an alert,
but did not find a potential fault [13]. We also use the developer’s
feedback to drive the adaptive ranking of un-inspected static
analysis alerts, and our version of the code locality ranking factor
was inspired by Kremenek et al.

Boogerd and Moonen [4] present the ELAN technique to prioritize
static analysis alerts by their execution likelihood, which is “the
probability that a given program point will be executed at least
once in an arbitrary program run.” The prioritization is a measure
of alert severity relative to the program under analysis. While the
results showed that the prioritization technique did rank alerts by

execution likelihood, the analysis did not investigate if the
prioritization identified more alerts of interest to the developer.

3. BENCHMARK CREATION
The goal of contributing the FAULTBENCH benchmark is to create a
(1) suite of subject programs and alert oracles; and (2) repeatable
procedures for evaluating static analysis alert prioritization and
classification techniques. We have created a benchmark of Java
programs from various domains, ranging from 1,276 – 14,120
lines of code (LOC) and static analysis alert oracles from alerts
generated by FINDBUGS. FINDBUGS uses code scans, control-flow,
and data-flow analysis to detect common bug patterns in the
source code that are possible faults [6]. FINDBUGS detects 331
distinct alerts at three priority levels. We used the FINDBUGS

Eclipse5 plug-in to generate static analysis alerts on the subject
programs with-in the Eclipse workbench. We configured
FINDBUGS to report alerts at all priority and detector effort levels,
which maximizes the number of alert detectors used by FINDBUGS.

Below, we define the FAULTBENCH purpose and describe how
FAULTBENCH fulfills properties for successful benchmarks. In
addition, we provide the steps for choosing subject programs and
for the process of evaluating alert prioritization and classification
techniques with FAULTBENCH.

3.1 Definition of FAULTBENCH for Prioritizing
and Classifying Static Analysis Alerts
We define FAULTBENCH in terms of the three components
presented by Sim et al. [17]: motivating comparison, task sample,
and performance measures.

3.1.1 Motivating Comparison
The motivating comparison advocated by Sim et al. [17] describes
why the results of comparing two tools or techniques are
important for furthering the research surrounding the comparison.
The motivating comparison of FAULTBENCH is to find the static
analysis alert prioritization or classification technique with the
best rate of static analysis fault detection. Static analysis is an
effective means of fault removal [21] and is cost effective with the
detection of three to four potential field failures [19]. However, a
large number of static analysis alerts, especially false positive
alerts, leads to rejection of the tool [4]. Specifically, we can use
FAULTBENCH to answer the following research questions:

• [Q1]: Can alert prioritization improve the rate of fault
detection when compared to the tool’s output?

• [Q2]: How does the rate of fault detection compare between
alert ranking techniques?

• [Q3]: Can alert categorization correctly predict true positive
(TP) and false positive (FP) alerts?

3.1.2 Task Sample
The task sample consists of (1) six real Java subject programs
ranging from 1,276 – 14,120 lines of code (LOC); (2) the set of
FINDBUGS [6] alerts identified as TP or FP in the context of the
subject programs (alert oracle); (3) a set of source code changes
to fix each TP alert; and (4) the experimental control alert
prioritizations: OPTIMAL, TOOL, and RANDOM. Section 3.3
describes the subject program selection process for FAULTBENCH.

5 Eclipse is an open source integrated development environment. Eclipse
may be found at: http://eclipse.org

The descriptions for creating the remaining task sample data are
described in Section 3.4, FAULTBENCH Initialization.

3.1.3 Performance Measures
FAULTBENCH evaluates techniques that predict which alerts
generated by static analysis tools are program faults. Alert
prioritization techniques order alerts such that alerts likely to be
indications of important faults are at the top of an alert list. Alert
classification techniques divide static analysis alerts into two
groups: alerts likely to indicate important faults and alerts likely to
be false positives. Alert prioritization can classify alerts when a
prioritization technique ranks alerts on a divisible numerical scale.

Alert prioritization evaluation uses the Spearman rank
correlation, which evaluates alert orderings by measuring the
distance between the rank of alerts in two orderings. Users of the
benchmark compare alert rankings generated by a prioritization
technique with an OPTIMAL ordering of alerts. An alert ranking
highly correlated with OPTIMAL at a statistically significant level
suggests that the prioritization technique correctly ranks alerts
such that alerts likely to indicate faults are higher in an alert list.

Alert classification techniques predict if alerts are true or false
positives. If we classify an alert as a true positive when the alert is
a true positive, then we have correctly classified the alert and we
call that classification a true positive classification (TPC).
Additionally, if we classify an alert as a false positive when the
alert is not an indication of a fault we have correctly classified a
negative prediction, which we call a true negative classification
(TNC). A false positive classification (FPC) is when the
prioritization model predicts that an alert is a true positive (a
positive classification) when the alert is actually not an indication
of a fault. A false negative classification (FNC) is when the
prioritization model predicts that an alert is a false positive (a
negative classification) when the alert is actually a fault. We are
focusing on the classification of alerts identified by the static
analysis tool; therefore, we are not considering software faults not
found by static analysis tools. Figure 1 is a classification table.

The following metrics [10, 20, 22] are used to evaluate the
classification and prioritization of static analysis alerts:

• Precision: the percentage of TPC that are actually faults. The
precision calculation is presented in Equation 1.

CC

C

FPTP

TP
precision

+
= (1)

Figure 1: Classification Table (adapted from [22]
Zimmermann et al. used the term defect where we use the

term fault)
 Faults are observed.
 True False

Positive
True

Positive
(TP-C)

False
Positive
(FP-C)

Precision

M
o

d
el

p

re
d

ic
ts

 a
le

rt
s

Negative
False

Negative
(FN-C)

True
Negative
(TN-C)

Recall

Accuracy

• Recall: the percentage of TPC out of all possible faults. The
recall calculation is presented in Equation 2.

• Accuracy: the percentage of correct classifications. The

accuracy calculation is presented in Equation 3

CCCC

CC

FNFPTNTP

TNTP
accuracy

+++
+

= (3)

• Area under the curve: the area under the curve of the

cumulative percentage of true positive alerts detected after
each inspection. An example is in Figure 5.

3.2 Desiderata for Benchmarks
Sim et al. [17] describe seven properties of successful
benchmarks: accessibility, affordability, clarity, relevance,
solvability, portability, and scalability. Lu et al. [14] also provide
five benchmark selection criteria: representative, diverse,
portability, accessibility, and fairness. The following subsections
describe how FAULTBENCH meets these desiderata.

• Accessibility: A benchmark should be easy to obtain and use.
Each of the FAULTBENCH subjects is available online through
various open source licenses. The subject programs, generated
alerts, fault fixes, and evaluation materials related to
FAULTBENCH are publicly available at
http://agile.csc.ncsu.edu/faultbench.

• Affordability: A benchmark’s cost (e.g. human, software, and
hardware resources) should be comparable to the value of the
results. To complete the benchmark for a single ranking
technique takes 8-10 hours on a single computer. Additional
time is required for evaluating further techniques.

• Clarity: A benchmark’s documentation should be clear and
concise. The FAULTBENCH documentation is provided at
http://agile.csc.ncsu.edu/faultbench for evaluation and
comparison of other alert prioritization and classification
techniques to ensure repeatability and disclosure.

• Relevance/Representative: A benchmark must contain
representative subjects and performance measures related to
the motivating comparison. FAULTBENCH contains Java
programs from various domains created by developers of
varying levels of experience. The performance measures are
standard in the area of software fault detection and static
analysis alert prioritization [20, 22].

• Solvability: Completing the task sample and obtaining correct
metrics is not difficult. The task samples vary in size and
number of FINDBUGS static analysis alerts. FINDBUGS identified
55 alert types in the task sample from the 331 possible alert
types. Additionally, an analysis program is provided as part of
the benchmark materials

• Portability: A benchmark should be useable by different alert
prioritization and classification techniques without bias. Each
task sample is a stand alone Java project containing required
libraries. Because all of the programs are written in Java,
platform portability is assumed.

• Scalability/Fairness: A benchmark should be scalable to
varying alert prioritization and classification techniques and
not have bias towards a specific technique. Currently,
FAULTBENCH is contains Java subject programs and can only

evaluate prioritization and classification of alerts generated by
Java static analysis tools. FAULTBENCH supplements other
benchmarks in C and C++ and the authors encourage
expansion to the benchmark as demonstrated in Section 3.3.

3.3 FAULTBENCH Subject Selection
The goal of FAULTBENCH is to provide a benchmark to the
software fault detection community for comparison and
evaluation of static analysis alert prioritization and classification
techniques. Therefore, the subject programs in the benchmark
must meet the following criteria: open source; small (less than 15
KLOC), of various domains, written in Java; and compliable with
Java 1.4.2 or Java 1.5. To find possible subject programs, we
investigated the benchmarks presented in the related work section.
None of the subjects in those benchmarks met our criteria for
selection. Next, we investigated programs analyzed by the static
analysis, style checker tool PMD6. The PMD website maintains a
page reporting results from running PMD on SourceForge7
projects. We investigated the 15 smallest programs (based on the
number of analyzed non-commented source LOC) for inclusion
into our benchmark and selected 11 as possible subjects. The un-
chosen projects did not contain source releases or no longer
existed as projects. Then, we searched for small components of
commonly-used libraries and applications, like Apache and
Eclipse. One subject was identified when satisfying the library
requirements of an earlier subject. The final potential subject
comes from a student project associated with the authors’ research
group. Table 1 presents the set of possible subject programs.

The set of subjects were further refined through an analysis of six
characteristics: domain; number of developers; LOC; number of
FINDBUGS alerts; maturity; and alert distribution. First, we
quantified each of the characteristics. For the categorical
characteristics (e.g. domain and maturity), we assigned a
numerical value to each category. The alert distribution is a value
describing how many unique alert types FINDBUGS identified in a
subject program. The alert distribution is the sum of the number of
alerts of the same type in a subject divided by the number of
subjects that contain at least one alert of the that type which is
then divided by the number of alerts the subject contains. The
calculation for alert distribution is presented in Equation 4.

Boehm and Turner [2] use polar charts (also called radar charts) to
provide a visualization of agile and plan-driven risks in a software
development project. Similarly, we can visualize the
characteristics of our possible benchmark subjects’ polar charts.
Each of the characteristics becomes an axis on the polar chart.
Figure 2 presents the polar charts for the six selected FAULTBENCH

subjects. In Figure 2, the scale of each axis is normalized. The
subjects in FAULTBENCH should have different shapes, which are
representative of a variety of subject characteristics. Benchmark
selection is quantifiable by taking the area of the polar charts.
However, when taking the area of polar charts, the order of the six
axes matter, starting clockwise from the top as shown in Figure 2.

6 http://pmd.sourceforge.net/
7 SourceForge is a repository for open source projects:
http://sourceforge.net

CC

C

FNTP

TP
recall

+
= (2)

subject

type

typesubject

s alerts

subjects

alerts

AD

∑

=

,

(4)

We reduced the number of subjects to use in the evaluation of the
ARM to six by taking the areas of the polar charts, ordering the
subjects by area, and taking every other subject starting with the
subject having the largest area. Initially, there were seven
subjects, but mflow had complicated alert open and closure
patterns due to interrelated alert types requiring removal from the
current version of FAULTBENCH. Table 1 contains the areas of the
polar charts for the potential benchmark subjects. Additionally,
the six subjects chosen for the benchmark are shaded in grey.

3.4 FAULTBENCH Subject Initialization
After FAULTBENCH subject selection, the remaining task sample
data (alert oracle, source code changes, and experimental control
prioritizations) are defined.

3.4.1 Alert Oracle
The first author inspected the source code associated with each
static analysis alert and determined if the alerts generated by
FINDBUGS were indications of faults in the subject programs. The
evaluated alerts provide an oracle for comparing alert
prioritization and classification techniques. Table 2 presents the

number of TP and FP alerts for each of the benchmark subjects.

3.4.2 Source Code Changes
Adaptive prioritization and classification techniques modify the
ranking of uninspected alerts from developer feedback about an
alert being an indication of an important fault or a false positive.
Modification of an alert’s ranking occurs after each inspection or
a set of inspections. An alert closure occurs when static analysis

Table 1: Potential FAULTBENCH benchmark subjects

Subject Version License Domain # Dev #
LoC

Alerts

Maturity Alert
Dist.

Area

commons 2005.05.30 GNU LGPL 1 - software dev 2 5560 70 5 - Production 0.38 173,497.0
commons-
logging

1.1.1 Apache 2.0 1 - software dev 12 5426 126 5 - Production 0.34 324,513.6

csvobjects 0.5beta GNU GPL 2 - data format 1 1577 7 5 - Production 0.64 5,477.5
importscrubber 1.4.3 Apache Software

License
1 - software dev 2 1653 35 4 - Beta 0.31 26,545.7

itrust Fall 2007 Educational 3 - web 5 14120 110 3 - Alpha 0.61 703,277.0
javaserver 5.1 Artistic 6 -communication 1 1752 31 5 - Production 0.39 24,348.0
jbook 1.4 GNU GPL 7 - educational 1 1276 52 5 - Production 0.28 29,400.9
jdom 1.1 Apache-style 2 - data format 3 8422 55 5 - Production 0.19 211,638.6
junit-addons 1.4 Apache Software

License
1 - software dev 1 4856 109 4 - Beta 0.45 231,488.3

kaprekar 3.0 GNU GPL, MPL 1.1 5 - math 1 1869 33 4 - Beta 0.21 27,576.4
mflow 0.1 GNU GPL 6 - communication 1 4172 86 3 - Alpha 0.33 157,283.6
org.eclipse.
core.runtime

3.3.1.1 Eclipse Public License 1 - software dev 100 2791 98 5 - Production 0.30 239,546.9

schemalizer 0.16 GNU LGPL 2 - data format 1 2524 29 3 - Alpha 0.17 32,826.6
xmlwriter 2.2.2 BSD License 2 - data format 2 953 6 5 - Production 0.70 3,318.1

csvobjects

0

0.05
0.1

0.15
Domain

Dev

LoC

Alerts

Maturity

Alert Dist.

importscrubber

0

0.05

0.1
Domain

Dev

LoC

Alerts

Maturity

Alert Dist.

iTrust

0

0.1

0.2

0.3
Domain

Dev

LoC

Alerts

Maturity

Alert Dist.

jbook

0

0.1

0.2
Domain

Dev

LoC

Alerts

Maturity

Alert Dist.

jdom

0

0.05

0.1

0.15
Domain

Dev

LoC

Alerts

Maturity

Alert Dist.

org.eclipse.core.runtime

0

0.5

1
Domain

Dev

LoC

Alerts

Maturity

Alert Dist.

Figure 2: Polar Charts for Potential Benchmark Subjects

Table 2: Benchmark subjects with alert counts
Subject TP

Alerts
FP

Alerts
% TP
Alerts

csvobjects 3 4 42.9%
importscrubber 11 24 31.4%
iTrust 10 100 9.1%
jbook 26 26 50.0%
jdom 9 46 16.4%
mflow 13 73 15.1%
org.eclipse.core.runtime 8 90 8.2%
Average 11 51 24.7%

tools no longer identify the alert in the source code, usually due to
a fault fix directly or indirectly associated with the alert
description. Alert closures also occur due to configuration
changes and file deletions. Alert suppression is an explicit action
taken by the developer to indicate that an alert is a false positive.

The evaluation of adaptive prioritization and classification
techniques requires fixing true positive alerts. However, static
analysis alerts are not orthogonal; several alert types are
interrelated and a change to one may open or close another of a
complementary type, which may affect prioritization and
classification techniques. An alert fix should minimize the
number of alert opens and closures when fixing an alert. For
example, suppose a method opens and closes a file stream within
a try block with an empty catch block, as shown in Figure 3.
FINDBUGS would report two alerts: 1)
OS_OPEN_STREAM_EXCEPTION_PATH at line 3 reporting that the file
stream is not closed when there is an exception and 2)
DE_MIGHT_IGNORE at line 8 reporting that the exception is
ignored. Fixing the alert at line 3, by closing the stream in the
exception block, will also close the alert at line 8. When
evaluating the ranking, we only care about closed alerts identified
as TP in the baseline. If an alert identified as FP was closed as
part of an alert fix, we do not count the alert in our metrics.

Additionally, new alerts may be opened when fixing TP alerts, as
shown in the example code in Figure 4. FINDBUGS reports an
ES_COMPARING_PARAMETER_STRING_WITH_EQ at line 2, meaning
that checking the equality of a and a constant string does not use
the .equals() method. If the alert at line 2 is fixed, a new alert
of the same type is opened at line 5 for a similar problem. When
inspecting alerts, we ignored alerts opened as part of another fix.
Only alerts present in the baseline were inspected and evaluated.

3.4.3 Experimental Controls
The OPTIMAL ordering of static analysis alerts has all TP alerts at
the top of the alert list. The OPTIMAL ordering is generated by a
greedy analysis of the TP alerts. Alerts are initially sorted
hierarchically in the context of the subject program (e.g. by
project, source folder, class, method, line number, alert type, and
description), which provides a repeatable ordering for alerts. To

reduce potential bias, prioritization techniques should use the
same hierarchical alert ordering to break ties when alerts share the
same rank. Alerts are added to the OPTIMAL ordering by the
number of TP alerts that are closed when making an alert change.
When two alerts close the same number of TP alerts, first the
number of FP alerts closed is a tiebreaker, followed by the
hierarchical ordering of alerts. At a minimum, the optimal curve
will fix one TP alert at each inspection until all TP alerts are fixed.

The TOOL ordering of alerts is created from the tool’s alert log
information. The RANDOM ordering of alerts is generated via a
random number generator8. Cases where more than one alert is
closed must be considered when creating the OPTIMAL, RANDOM,
and TOOL rankings. The ranking of an uninspected closed alert is
a fraction of the number of alerts closed during an inspection. If
there were three alerts (a, b, and c) closed at inspection 3, then the
inspected alert (a) would have a ranking of 3, the uninspected alert
first in the ordered listing (b) would have a ranking of 3.33 and
other uninspected alert (c) would have a ranking of 3.66. For an
alert inspected prior to a closure via a tangential change (suppose
alert b was inspected at inspection 2), the original inspection (2) is
maintained as the rank for that alert (b).

3.5 FAULTBENCH Process
We present the steps for evaluating adaptive alert prioritization
and classification techniques with FAULTBENCH. Non-adaptive
alert prioritization and classification techniques would only need
to evaluate the ranked or classified alerts without fixing or
suppressing alerts. For adaptive alert prioritization and
classification techniques, the state of the alerts after each
inspection is recorded. The project, source folder, file, method,
alert type, line number, and description identify an alert. An alert
may be in one of three states: uninspected, TP, or FP. The
FAULTBENCH process is as follows:

1. Run a static analysis tool against a clean version of the
subject program. (If the static analysis can run
automatically, turn on the option.)

2. Record the original state of the alert set.
3. Prioritize or classify the generated alerts with an alert

prioritization or classification technique.
4. Starting at the top of the ranked or classified list of alerts,

inspect each alert,
a. If the alert oracle indicates the alert is a fault, then fix

the alert with the specified change. If the static analysis
tool does not run automatically, then rerun static
analysis.

b. If the alert oracle indicates the alert is a false positive,
then suppress the alert.

5. After each alert inspection, record the state of the alert set.
6. After all alert inspections, evaluate the results via the

evaluation metrics provided in Section 3.1.3.

3.6 Benchmark Limitations
The subject programs in FAULTBENCH satisfy the seven desiderata
for benchmarks described by Sim et al. [17]. However, each of
the subject programs is relatively small, and may not be
representative of larger programs. Additionally, the subject
programs are all written in Java. Therefore, results obtained on
via FAULTBENCH may not be applicable to alert ranking in other
programming languages.

8 A random sequence generator may be found at http://random.org.

1 public void load() {
2 try {
3 BufferedReader in =
4 new BufferedReader(new
5 FileReader(file));
6 //do something with contents
7 in.close();
8 } catch (IOException e) {
9 }
10 }

Figure 3: Code Example – Additional Alert Closure

1 public void compare(String a) {
2 if (a == “”) {
3 //do something
4 }
5 if (a == “null”) {
6 //do something else
7 }
8 }

Figure 4: Code Example – Alert Opening

4. BENCHMARK CASE STUDY
We assess the suitability of the subjects selected for FAULTBENCH
by evaluating three variants of the AWARE adaptive ranking model
(ARM) static analysis alert prioritization and classification
technique.

4.1 AWARE Adaptive Ranking Model (ARM)
AWARE-ARM adaptively prioritizes and classifies static analysis
alerts by the likelihood an alert is an indication of an important
fault. Alerts are ranked on the continuum, [-1,1] where:

• A ranking in [-1,0) implies the alert is likely a false positive,
• A ranking in (0,1] implies the alert is likely a fault, and
• A ranking of 0 means there is not enough information to

determine if the alert is likely a true or false positive.
An alert population (p) is a subset of all alerts, which share a
characteristic (e.g. alert type, code location). Static analysis alerts
are ranked by their characteristics, called ranking factors, that
demonstrate some causality with the likelihood an alert is an
indication of a fault. The alert type [5, 10] and alert location [12]
are the ranking factors in the current version of AWARE-ARM.
These ranking factors are discussed in Section 4.1.3.

4.1.1 Baseline Context
The baseline context represents information about the size of the
alert populations relative to the total number of alerts in a subject.
Alert populations tend to be homogeneous [5, 12], and by
increasing the ranking of large populations, we can quickly
categorize many alerts as TP or FP (similar to information gain in
[12]). The baseline context is the number of alerts in a population
divided by the number of alerts for the project. The formula for
calculating the baseline context is presented in Equation 5.

alertstotal

alerts
BC p

p #

#
= (5)

4.1.2 Developer Context
The developer context represents information about what the
developer has done to close and suppress alerts while using
automated static analysis during development. Alert populations
containing more than one alert tend to be homogeneous [5, 12].
Therefore, we utilize the developer’s feedback about the alerts to
predict the likelihood that other, similar alerts, are faults. The
development context is the difference between closed and
suppressed alerts divided by the number of inspected alerts in the
population as demonstrated in Equation 6.

pp

pp
p pressedclosed

pressedclosed
DC

sup##

sup##

+
−

= (6)

4.1.3 Alert Ranking Factors
The following subsections describe the calculations of the alert
type accuracy (ATA) and code locality (CL) alert ranking factors.
The coefficients to the baseline (βBC) and developer (βDC) context
for a population have a value of 0.5 implying that the baseline and
developer context contribute equally to an alert ranking factor.

Alert Type Accuracy (ATA): ATA is the likelihood an alert (a)
is a fault based on the type of the alert (e.g. null pointer, unclosed
stream, etc.) [10, 11]. ATA is the weighted combination of the
baseline and developer context of the alert’s type. The ATA
calculation is described in Equation 7.

() () ()typeDCtypeBC DCBCaATA ∗+∗= ββ (7)

Code Locality (CL): CL is the likelihood an alert (a) is a fault
based on the location of the alert (e.g. at the source folder, class,
or method level). CL is the weighted combination of the baseline
and developer context of the alert’s location. The contribution of
each location is calculated by normalizing the counts of non-
singleton source folder, methods, and classes from Table 2b of
[12]. The coefficients for the contributions of the source folder,
classes, and methods are 0.06, 0.25, and 0.69, respectively and are
represented by the coefficients γsf, γc, and γm. We are only
interested in the non-singleton populations because any action
taken on an alert can be used to predict if the other alerts in the
population are likely to be faults [12]. Singleton populations do
not provide any predictive data. The calculation for CL is
described in Equation 8.

() () () ()()()
() () ()()()sfsfsfsfsfsfDC

sfsfsfsfsfsfBC

DCDCDC

BCBCBC
aCL

∗+∗+∗∗
+∗+∗+∗∗

=
γγγβ

γγγβ
 (8)

4.1.4 Alert Ranking
The overall alert ranking calculation is the combination of alert
ranking factors divided by the number of ranking factors. Three
versions of AWARE-ARM prioritization and classification
techniques are presented in Table 3.

Table 3: Experimental treatments for benchmark evaluation
Treatment Description or Formula
ATA () ()aATAaR =

CL () ()aCLaR =

ATA + CL () () ()
2

aCLaATA
aR

+=

4.1.5 ARM Limitations
Similarly to [9, 10, 12], out ranking technique works best when
the populations of interest are fine-grained (e.g. many alert types
and locations) and homogeneous. Further research is required to
determine how to prioritize static analysis alerts with non-
homogeneous populations.

4.2 Case Study Specifics
Static analysis alerts were ranked and presented to the developer
via the AWARE [5] Eclipse plug-in. AWARE gathers static analysis
alerts generated from FINDBUGS and ranks the alerts using one of
the ranking functions presented in Table 3. AWARE maintains alert
closures and suppressions used to modify the ranking of the alerts.
We used Eclipse version 3.3.1.1 for all of the benchmark subjects
except iTrust. For iTrust, we used the Eclipse IDE for Java EE
Developers version 3.3.1.1. Each version of AWARE contains one
of the three versions of the AWARE-ARM prioritization and
classification techniques. Table 4 presents the AWARE version for
each of the ranking techniques.

Table 4: AWARE Version for Ranking Techniques
Ranking Technique AWARE Version

ATA 1.7.1.1
CL 1.7.2.0

ATA + CL 1.7.3.0

5. CASE STUDY RESULTS
FAULTBENCH provides data to answer the following research
questions:

• [Q1]: Can alert prioritization improve the rate of fault
detection when compared to the tool’s output?

• [Q2]: How does the rate of fault detection compare between
alert ranking techniques?

• [Q3]: Can alert categorization correctly predict true positive
(TP) and false positive (FP) alerts?

Question 1 and 2 are answered by using the area under the curve
metric and the Spearman rank correlation, while question 3 is
answered using the precision, recall, and accuracy metrics.

5.1 Q1: Improving Fault Detection Rate
We plot the cumulative percentage of faults detected against the
number of inspections and measure the area under the curve to
evaluate Question 1. Figure 5 provides an example of these plots
for the jdom subject program. When TP alerts are fixed, the
percentage of detected faults increases. There are plateaus in the
ranking curve when a FP alert is suppressed at an inspection. A
large plateau means there were a number of suppressions. A good
ranking will minimize the large plateaus until most or all of the
TP alerts have been identified.

0.00

0.20

0.40

0.60

0.80

1.00

0 4 8 12 16 20 24 28 32 36 40 44 48 52

Inspection

P
re

ce
n
t
o
f
F
au

lt
s

D
et

ec
te

d

Optimal Random ATA CL ATA + CL Tool

Figure 5: Area Under the Fault Detection Rate Curve for jdom

Table 5 presents the area under the fault detection rate curve
metrics for each of the ranking techniques and benchmark
subjects. The first question compares alert prioritization
techniques to the TOOL ordering of alerts. In the absence of
prioritization, developers only have the static analysis tool’s
output for investigation. If the tool’s ordering performs well, then
alert prioritization is not needed. However, all prioritization
techniques except on csvobjects and iTrust perform better
than the tool ordering. On average, all prioritization techniques

have a larger area under the curve (53.94% - 72.57%) than the
TOOL ordering (50.42%) of alerts.

Table 6 presents the Spearman rank correlation values between
the alert prioritization techniques and OPTIMAL. A positive
correlation implies that the specified ranking is similar to the
OPTIMAL ranking while a negative correlation implies that the
specified ranking is opposite OPTIMAL. The closer the correlation
is to 1 or -1, the stronger the match or opposition of the specified
ranking. Cells containing one star (*) have correlations significant
at the 0.05 level, while cells containing two stars (**) have
correlations significant at the 0.01 level.

The TOOL experimental control ranking has a moderately strong
correlation (e.g. correlation value > 0.600) with OPTIMAL for four
of the subject programs. The strong correlation is likely due to a
similar ordering of the FP alerts, and is not necessarily an
indication of the fault detection capabilities of the TOOL ordering.
For example, the TOOL ordering for jdom has a correlation of
0.724; however, the area under the fault detection curve for TOOL

is at least 20% less than ATA, CL, and ATA+CL as seen in Table 5.

5.2 Q2: Comparing Prioritizations
Table 5 presents the area under the fault detection rate curve
metrics for each of the prioritization techniques on FAULTBENCH
subjects. The average area under an optimal curve is 90.0%. The
ATA ranking is closer to OPTIMAL than CL ranking. Additionally,
the average ATA area is 30% larger than CL’s average area.
ATA+CL splits the difference between ATA ’s and CL’s ranking.

Table 6 presents the Spearman rank correlation values between
the alert prioritization technique and OPTIMAL. The correlations
between the alert prioritization techniques and OPTIMAL are
similar to the patterns observed in the area under the curve
measurement in Table 5. However, the ATA correlation with
OPTIMAL is typically stronger, indicating that ATA is the better
prioritization technique.

Table 5: Area under the fault detection curve for ranking techniques

Subject Optimal Random ATA CL ATA + CL Tool
csvobjects 78.57% 59.52% 50.00% 21.43% 30.39% 54.76%
importscrubber 84.29% 71.82% 66.10% 40.91% 66.62% 36.23%
iTrust 95.5% 48.91% 74.36% 68.09% 67.36% 75.09%
jbook 78.55% 49.83% 46.26% 62.57% 74.19% 39.87%
jdom 91.82% 71.66% 86.16% 63.54% 85.35% 46.89%
org.eclipse.core.runtime 96.81% 68.61% 82.53% 67.09% 82.78% 49.67%
Average 87.58% 61.73% 72.57% 53.94% 67.88% 50.42%

Table 6: Spearman rank correlation
 ATA CL ATA +

CL
TOOL

csvobjects 0.321 -0.643 -0.393 0.607
importscrubber 0.512** -0.026 0.238 0.203
iTrust 0.418** 0.264** 0.261** 0.772**
jbook 0.798** 0.389** 0.599** -0.002
jdom 0.675** 0.288* 0.457** 0.724**
org.eclipse.
core.runtime

0.395** 0.325** 0.246* 0.691**

5.3 Q3: Categorizing Alerts
Table 7 presents the average precision, recall, and accuracy
metrics before each inspection when adaptively categorizing static
analysis alerts. We only consider the precision, recall, and
accuracy metrics for uninspected alerts because we are trying to
predict if the uninspected alerts are TPs or FPs. A ranking greater
than 0 is a prediction that the alert is a TP while a ranking less
than 0 is a prediction that an alert is a FP. We then assess the
ranking’s classification using the alert oracle and the rank, as
shown in Table 8.

Table 8: Alert Classification Assessment
 Alert Oracle Ranking
True Positive (TPC) TP > 0
True Negative (TNC) FP < 0
False Positive (FPC) FP > 0
False Negative (FNC) TP < 0

If the alert falls in the TPC or TNC categories, the ranking
correctly classified the alert as TP or FP. As we learn more about
the alerts from the developers, we expect the precision, recall, and
accuracy to increase; however, the precision and recall tended to
be 0 because after all TP alerts were identified, there was no
longer a numerator in the precision and recall equations. The
average accuracy is a better measure of how the classification
techniques performed. ATA had the best average accuracy, and
correctly predicted if an alert is a TP or FP 76% of the time.

5.4 Benchmark Evaluation
FAULTBENCH contains six programs of varying sizes from several
domains. The programs with more than 50 static analysis alerts
had more statistically significant results when comparing alert
prioritizations with OPTIMAL using the Spearman rank correlation,
than the smaller programs. Additionally, if jbook or iTrust
were the only subject used to evaluate alert prioritization
techniques the ATA+CL and TOOL rankings were the best rankings,
respectively, when with a larger sample, ATA was the best
prioritization technique. The same discrepancy applies when
evaluating the classification accuracy of ATA+CL on
org.eclipse.core.runtime .

The results of the Spearman rank correlation suggest there is bias
in the creation of the OPTIMAL order because the TOOL ordering
has a moderately strong correlation (> 0.600) with OPTIMAL for
four of the subject projects. OPTIMAL defaults to an ordering of
alerts by project, source folder, file, method, alert type, line
number, and description in the case of a tie. The above ordering
is very similar to the TOOL ordering for FINDBUGS due to the use of
the Visitor pattern [6]. There are several optimal orderings of
alerts, and a semi-randomized ordering may have less bias to the
FINDBUGS-TOOL ordering of alerts.

5.5 Case Study Limitations
We consider the three threats to the validity of our case study
[16]: construct validity, internal validity, and external validity.

5.5.1 Construct Validity
Construct validity concerns our measurements. The measurements
are straight forward and standard for ranking and classification
analysis.

5.5.2 Internal Validity
Internal validity concerns the causal relationship between the
dependent and independent variables. The main concern is with
the tooling. In AWARE, possible inconsistencies in our
measurements could occur when comparing the static analysis
alerts due to line and source code changes during fault fix. We
consider static analysis alerts to be the same if they share several
characteristics including the line number and a hash of the source
line. The source hash can change via refactoring and the line
number can change through addition or deletion of surrounding
code. If both of these characteristics change, we can no longer
track the alert. When fixing alerts in the case study, only one of
the two characteristics was modified in the source change for
surrounding alerts. An additional complication is duplicate alerts.
An alert is a duplicate when there are two alerts of the same type
on the same line of code. The alert display combines the alerts
into one listing. Therefore, suppression of the listing, leads to
suppression of both alerts. Additional internal validity concerns
come from the program used to analyze the inspection records.
The alert comparison problems described above apply to the
analysis program.

5.5.3 External Validity
External validity concerns how we can generalize our results.
Using FAULTBENCH mitigates some of the concerns about
generalizing the prioritization and classification results due to the
varying domains of the subject programs and a larger sample size.
Additionally, each of the subject programs is an open source
application with real faults. However, the programs are relatively
small, and there are concerns about scale.

6. CONCLUSIONS AND FUTURE WORK
The literature in the realm of static analysis alert prioritization and
classification is moving towards a definition of how to conduct
static analysis alert prioritization research [9, 10, 12, 14, 20, 22].
We present FAULTBENCH to supplement the current benchmarks in
other languages (e.g. BUGBENCH [14]) and larger Java benchmarks
in specific sub-domains (e.g. CHORD subjects [15] for race
detection). FAULTBENCH is available for use and critique at
http://agile.csc.ncsu.edu/faultbench.

Table 7: Average precision, recall, and accuracy metrics of un-inspected alerts at before each inspection

Subject Average Precision Average Recall Average Accuracy
 ATA CL ATA +CL ATA CL ATA +CL ATA CL ATA +CL
csvobjects 0.32 0.50 0.39 .038 .048 0.38 0.58 0.34 0.46
import-scrubber 0.34 0.20 0.18 0.24 0.28 0.45 0.62 0.43 0.56
iTrust 0.05 0.02 0.05 0.16 0.15 0.07 0.97 0.84 0.91
jbook 0.22 0.27 0.23 0.65 0.48 0.61 0.68 0.62 0.66
jdom 0.06 0.09 0.06 0.31 0.07 0.29 0.88 0.86 0.88
org.eclipse.core.runtime 0.05 0.04 0.03 0.17 0.05 0.11 0.92 0.94 0.95
Average 0.17 0.19 0.16 0.42 0.25 0.32 0.76 0.67 0.74

We evaluated three alert prioritization techniques against the six
subjects in FAULTBENCH. Evaluation of the prioritization
techniques against individual benchmark subjects produced
varying results. On jbook the ATA+CL prioritization had a larger
area under the fault detection curve; however, ATA prioritization
had a higher rate of fault detection on average. In addition, the
TOOL ordering performed better than the alert prioritization
techniques for csvobjects . Individually, the benchmark
subjects provide varying results, but together, a larger sample of
subject programs provides a better understanding of how alert
prioritization and classification techniques work and increase the
generalization of experimental conclusions.

We present FAULTBENCH to foster collaboration and
communication within the static analysis alert ranking
community. We will continue to evolve the benchmark.
Additionally, we will continue to investigate static analysis alert
ranking techniques, by analyzing the contributions of the ranking
factors via FAULTBENCH, and modifying the ranking calculations
accordingly.

7. ACKNOWLEDGMENTS
This research is funded by an IBM PhD Fellowship awarded to
the first author. We would like to thank the RealSearch reading
group, particularly Andy Meneely, for their feedback. We would
like to thank Ben Smith for suggesting the benchmark name.

8. REFERENCES
[1] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y.

Zhou, "Evaluating Static Analysis Defect Warnings On
Production Software," Proceedings of the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, San Diego, CA, USA, June
13-14, 2007, pp. 1-8.

[2] B. W. Boehm and R. Turner, Balancing Agility and
Discipline: A Guide for the Perplexed: Addison-Wesley,
2003.

[3] G. Boetticher, T. Menzies, and T. Ostrand, "PROMISE
Repository of Empirical Software Engineering Data,"
http://promisedata.org/ repository, West Virginia University,
Department of Computer Science, 2007.

[4] C. Boogerd and L. Moonen, "Prioritizing Software
Inspection Results using Static Profiling," Proceedings of the
6th IEEE Workshop on Source Code Analysis and
Manipulation, Philadelphia, PA, USA, September 27-29,
2006, pp. 149-160.

[5] S. S. Heckman, "Adaptively Ranking Alerts Generated from
Automated Static Analysis," in ACM Crossroads. vol. 14, no.
1, 2007, pp. 16-20.

[6] D. Hovemeyer and W. Pugh, "Finding Bugs is Easy,"
Proceedings of the 19th ACM Conference on Object-
Oriented Programming, Systems, Languages, and
Applications, Vancouver, British Columbia, Canada, October
24-28, 2004, pp. 132-136.

[7] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand,
"Experiments on the Effectiveness of Dataflow- and
Controlflow-Based Test Adequacy Criteria," Proceedings of
the 19th International Conference on Software Engineering,
Sorrento, Italy, May 16-21, 1994, pp. 191-200.

[8] IEEE, "IEEE Standard 610.12-1990, IEEE Standard Glossary
of Software Engineering Terminology," 1990.

[9] S. Kim and M. D. Ernst, "Prioritizing Warning Categories by
Analyzing Software History," Proceedings of the

International Workshop on Mining Software Repositories, to
appear, Minneapolis, MN, USA, May 19-20, 2007.

[10] S. Kim and M. D. Ernst, "Which Warnings Should I Fix
First?," Proceedings of the 6th Joint Meeting of the
European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, Dubrovnik, Croatia, September 3-7, 2007, pp.
45-54.

[11] S. Kim, T. Zimmermann, J. E. James Whitehead, and A.
Zeller, "Predicting Faults from Cached History,"
Proceedings of the 29th International Conference on
Software Engineering, Minneapolis, MN, USA, May 23-25,
2007, pp. 489-498.

[12] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler,
"Correlation Exploitation in Error Ranking," Proceedings of
the 12th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Newport Beach, CA,
USA, 2004, pp. 83-93.

[13] T. Kremenek and D. Engler, "Z-Ranking: Using Statistical
Analysis to Counter the Impact of Static Analysis
Approximations," Proceedings of the 10th International
Static Analysis Symposium, San Diego, California, 2002.

[14] S. Lu, Z. Li, F. Oin, L. Tan, P. Zhou, and Y. Zhou,
"BugBench: Benchmarks for Evaluating Bug Detection
Tools," Proceedings of the Workshop on the Evaluation of
Software Defect Detection Tools, Chicago, Illinois, 2005.

[15] M. Naik and A. Aiken, "Effective Static Race Detection for
Java," Proceedings of the ACM SIGPLAN 2006 Conference
on Programming Language Design and Implementation,
Ottawa, Canada, June 10-16, 2006, pp. 308-319.

[16] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
"Prioritizing Test Cases For Regression Testing," IEEE
Transactions on Software Engineering, vol. 27, no. 10, pp.
929-948, October, 2001.

[17] S. E. Sim, S. Easterbrook, and R. C. Holt, "Using
Benchmarking to Advance Research: A Challenge to
Software Engineering," Proceedings of the 25th
International Conference on Software Engineering, Portland,
Oregon, USA, May 3-10, 2003, pp. 74-83.

[18] W. F. Tichy, "Should Computer Scientists Experiment
More?," in Computer. vol. 31, no. 5, 1998, pp. 32-40.

[19] S. Wagner and M. A. Florian Deissenboeck, Johann
Wimmer, Markus Schwalb, "An Evaluation of Two Bug
Pattern Tools for Java," Proceedings of the 1st IEEE
International Conference on Software Testing, Verification,
and Validation, Lillehammer, Norway, to appear, 2008.

[20] C. C. Williams and J. K. Hollingsworth, "Automatic Mining
of Souce Code Repositories to Improve Bug Finding
Techniques," IEEE Transactions on Software Engineering,
vol. 31, no. 6, pp. 466-480, 2005.

[21] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J.
Hudepohl, and M. Vouk, "On the Value of Static Analysis
for Fault Detection in Software," IEEE Transactions on
Software Engineering, vol. 32, no. 4, pp. 240-253, April,
2006.

[22] T. Zimmermann, R. Premraj, and A. Zeller, "Predicting
Defects in Eclipse," Proceedings of the 3rd International
Workshop on Predictor Models in Software Engineering,
Minneapolis, MN, USA, May 20, 2007, p. 9.

