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ABSTRACT

Benchmarks provide an experimental basis for evalga
software engineering processes or techniques iobgttive and
repeatable manner. We present theLTBENCH benchmark, as a
contribution to current benchmark materials, fomleation and
comparison of techniques that prioritize and cfgsslerts
generated by static analysis tools. Alert pripation and
classification addresses the problem in many statalysis tools
of numerous alerts that are not an indication ofaalt or
unimportant to the developer. We utilizedULTBENCH to
evaluate three versions of th&saARE adaptive ranking model to
prioritize and classify static analysis alerts. iWmlal
FAULTBENCH subjects have different best prioritization and
classification techniques. Using a single subjectevaluate a
prioritization and classification technique couldyide incorrect
results. TogetherrAULTBENCH subjects provide a precise and
general evaluation of alert prioritization and seléisation
techniques.

Categories and Subject Descriptors

D.2.4 [Software Engineering: Software/Program Verification —
Reliability, D.2.5 [Software Engineerind: Testing and
Debugging -Testing tools

General Terms
Measurement, Reliability, Experimentation, Verifica.

Keywords
Automated static analysis, alert ranking, benchneaglation

1. INTRODUCTION

Several open questions in software engineering\wevevaluating
processes and techniques to improve aspects ofsdftevare
development lifecycle. Empirical analysis of reshatheories are
a component for acceptance of the theory withinesearch
community [18]. Benchmarks provide an experimemiasis for
evaluating software engineering theories, represkhy software
engineering techniques, in an objective and repéatemanner
[18]. A benchmarkis defined as “a procedure, problem, or test
that can be used to compare systems or comporeeateh other
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or to a standard” [8]. Benchmarks represent theareh problems
of interest and solutions of importance in a researea through
definition of the motivating comparison, task saepland

evaluation measures [17]. The task sample caramoptograms,
tests, and other artifacts dependent on the ben&tsmaotivating

comparison. A benchmark controls the task samptiiqiag

result variability, increasing repeatability, antbyiding a basis
for comparison between techniques [17]. Additibnauccessful
benchmarks promote collaboration within a reseammmunity

[17].

Several benchmarks in the realm of software faetection have
emerged in recent years [14-16] containing subjeograms of
various sizes, in multiple languages, and with realseeded
faults. Current benchmarks provide meaningful poindf
comparison; however, they lack a detailed, repéatabocess.
Our goal is to supplement prior benchmarks by gathea set of
small, real, and faulty Java programs from a varatdomains
and providing a process for evaluation of the folltg software
fault detection problem: how to identify which aralas
generated by static analysis tools are prograntsfaul

Static analysis tools can identify anomalies inrsewcode early in
the development process [8]. These tools prodeperts listing
possible program faults, which we calerts Inspection of each
alert by a developer is required to determine & Hiert is an
indication of a fault. When an alert is not anigadion of a fault
or is deemed unimportant to the developer (e.gatée indicates
a programmer mistake inconsequential to progranotiomality),
we call the alert dalse positive[1]. Static analysis tools may
generate an overwhelming number of alerts [10],rtfagority of
which are likely to be false positives [6]. Aleptioritization
techniques can increase the usability of statidyarsatools by
presenting developers with alerts likely to indécamportant
faults first.  Additionally, alerts classificatiotechniques can
divide static analysis alerts into two groups: tlelikely to
indicate important faults and alerts likely to lbaésé positives.

The goal of our researchtis propose theauLTBENCHbenchmark
to the software fault detection community for corigmm and
evaluation of static analysis alert prioritizatiand classification
techniques The literature in the realm of static analysisral
prioritization and classification is moving towaraslefinition for
conducting and evaluating research [9, 10, 12, 2@, 22].
FAULTBENCH provides a basis for comparison of static analysis
alert prioritization and classification techniquasd contributes

subject programs; an analysis proceduagid evaluation metrics

The current version OFAULTBENCH contains six, open-source,
subject programs written in Java. We validate shkection of

FAULTBENCH subject programbky comparing three versions of the



AWARE [5] adaptive ranking modekgm) alert prioritization and
classification technique on static analysis algdgserated by the
FINDBUGS [6] static analysis tool. FINDBUGS is a popular open
source static analysis tool. We describe how weaterk
FAULTBENCH, and present the process of evaluating and congpari
alert prioritization and classification technique®/e invite
researchers in the static analysis community tdiqoe and
improve the current benchmark.

The rest of the paper is structured as followstiBe@ presents
related work, Section 3 describes #LTBENCH creation and
analysis procedure, Section 4 describes RRBLTBENCH case
study, Section 5 presents the case study results,Szction 6
concludes and presents future work.

2. RELATED WORK
This section describes the related work in thesaoddbenchmark
creation and the ranking of static analysis alerts.

2.1 Current Fault Detection Benchmarks
There are several benchmarks in the realm of sodétwault

detection. TheieMENS[7] benchmark was created by researchers

at Siemens Corporate Research and contains muitgpions of
small programs each containing a single fault arstiite of test
cases. The benchmarks were created to evaluateokoand
data-flow test adequacy criteria and were lated useRothermel
et al. [16] to evaluate regression test case pdation. The
siIEMENSbenchmark has small, C programs with seeded faults

BUGBENCH[14] is a benchmark containing seventeen buggynope

source, C/C++ applications ranging from seven tanddines of
code (KLOC) to 1028 KLOC in various domains. A dav
benchmark was created to evaluate t#®RD race condition
detection static analysis tool [15] and containelt& concurrent
programs ranging from 2.5 KLOC to 650 KLO@romisg[3] is a
repository for data sets and tools from empiricedearch in
predictive modeling, and half of the 60 data setsithe area of
fault prediction. However, most of the data setsvigle metrics
about projects without the project source. Sonte dats refer to
large, open source projects and the remaindersr réde
commercial products. Other static analysis reseasc[9, 10, 12,
20] have used large open source projects (e.g. Hgmdttpd,
Win€?, Sun’s JDK 1.6.%) Columb4) or commercial programs to
evaluate alert ranking and classification technsqu&Vvhile large
open-source programs provide confidence and saalethe
techniques they evaluate, the size of the sampkiated (one to
three programs) is a threat to external validityg.(ethe
generalization of the results). Additional studesd subjects
address the threats to external validity, and &mee the
generalization of experimental results [16]. Conuiz
examples show scalability of the technique in atustrial setting
at the cost of repeatability and comparison.

These current benchmarks are insufficient for oeeds for
several reasons. First, current benchmarks akin@ detailed,
repeatable process for use and evaluation of saatitysis alert
prioritization and classification techniques. Atfghally, the
current benchmarks are mostly for the C and C+{gnamming

L http://httpd.apache.org/

2 http://lwww.winehg.org/

8 http://java.sun.com/javase/

4 http://columba.sourceforge.net/

languages. Finally, alert prioritization researebpecially when
adaptive ranking is used, requires the removal afit§ by a
researcher unfamiliar with the program, which iffidlilt to do
with large projects and a high quantity of aleffberefore, we
want to create a benchmark of relatively small},raad faulty
Java programs from a variety of domains.

2.2 Static Analysis Alert Prioritization

Kim and Ernst [9, 10] describe two static analysikert

prioritization techniques where the lifetime of @t analysis
alert is measured from data mined from source cegesitories.
The lifetime of an alert is the time between ateeation and alert
closure. One technique prioritizes static analgsist types by the
average lifetime of alerts sharing the same typthénrepository
[9]. Alert types with shorter lifetimes have a Iy ranking (e.g.
alerts fixed quickly are likely important) than dleypes with

longer lifetimes. The second technique weightstalgpes by the
number of alerts closed by fault- and non-faulefix where a
fault-fix is a source code change where the dezlfiges a fault
or problem and a non-fault-fix is a change wherdaalt or

problem is not fixed like a feature addition [1The history based
warning prioritization presented by Kim and Ernsd][ improves

the alert precision by over 100% when comparedht® dlert

precision of alerts prioritized by tool severityHowever, the
precision ranged from 17%-67%, which might be doealert

closures not having a causal relationship withrtw cause of a
fault-fix. Additionally, both prioritization techgues work best
for fine-grained (e.g. many distinct alert typebpmogeneous
alert types. A homogeneous alert type means thaalerts

sharing that type are all either true or false fpeess. We utilize
the idea of alert type homogeneity in our ranking.

Williams and Hollingsworth [20] created a staticabysis tool
which evaluates how often the return values of oetballs are
checked in source code. A method is flagged wittalart when
the return value for the method is inconsistentigaked in calling
methods. Williams and Hollingsworth use tRESTORYAWARE
prioritization technique to prioritize methods letpercentage of
time the return values of the methods are cheakeble software
repository and the current version of the code. rEsalts show a
statistically significant reduction of the falsesfive rate when
using theHISTORYAWARE prioritization technique on two case
studies involving httpd and Wine applications.

Kremenek et al. [12] show that static analysistalér a similar
alert locations tend to be homogeneous. On ave@gfo of
methods, 52% of files, and 13% of the directoriethvwwo or
more alerts contained homogeneous alert populatisimiemenek
et al. created aFEEDBACK-RANK algorithm whereby the
developer’'s feedback is used to prioritize the iamg alerts.
The static analysis tools used by Kremenek etalik fadvantage
of understanding where a static analysis tool cbedhkr an alert,
but did not find a potential fault [13]. We alsseuthe developer’s
feedback to drive the adaptive ranking of un-ingpecstatic
analysis alerts, and our version of the code lpcadinking factor
was inspired by Kremenek et al.

Boogerd and Moonen [4] present theN technique to prioritize
static analysis alerts by their execution likelidpavhich is “the
probability that a given program point will be exged at least
once in an arbitrary program run.” The prioritinatis a measure
of alert severity relative to the program underlgsia. While the
results showed that the prioritization technique: i@ink alerts by



execution likelihood, the analysis did not inveatey if the
prioritization identified more alerts of interestthe developer.

3. BENCHMARK CREATION

The goal of contributing theauLTBENCH benchmark is to create a
(1) suite of subject programs and alert oraglead (2)repeatable
proceduresfor evaluating static analysis alert prioritization and
classification techniques. We have created a beadh of Java
programs from various domains, ranging from 1,2764-120
lines of code (LOC) and static analysis alert @adrom alerts
generated byINDBUGS. FINDBUGS uses code scans, control-flow,
and data-flow analysis to detect common bug pattémthe
source code that are possible faults [6JNDBUGS detects 331
distinct alerts at three priority levels. We usédgk FINDBUGS
Eclips€ plug-in to generate static analysis alerts on shiject
programs with-in the Eclipse workbench. We confegl
FINDBUGS to report alerts at all priority and detector effievels,
which maximizes the number of alert detectors UgeENDBUGS.

Below, we define therFAULTBENCH purpose and describe how
FAULTBENCH fulfills properties for successful benchmarks. In
addition, we provide the steps for choosing subpecgrams and
for the process of evaluating alert prioritizatiaamd classification
techniques withlFAULTBENCH.

3.1 Definition of FAULTBENCH for Prioritizing
and Classifying Static Analysis Alerts

We define FAULTBENCH in terms of the three components
presented by Sim et al. [17]: motivating comparjgask sample,
and performance measures.

3.1.1 Motivating Comparison

The motivating comparison advocated by Sim etlal] flescribes
why the results of comparing two tools or techniguare
important for furthering the research surrounding comparison.
The motivating comparison GfaULTBENCH is to find the static
analysis alert prioritization or classification beique with the
best rate of static analysis fault detection. iStahalysis is an
effective means of fault removal [21] and is cd&aive with the
detection of three to four potential field failujfd®]. However, a
large number of static analysis alerts, especitdlge positive
alerts, leads to rejection of the tool [4]. Speeeily, we can use
FAULTBENCHto answer the following research questions:

¢ [Q1l]: Can alert prioritization improve the rate déult
detection when compared to the tool’s output?

* [Q2]: How does the rate of fault detection comphedween
alert ranking techniques?

¢ [Q3]: Can alert categorization correctly prediatetrpositive
(TP) and false positive (FP) alerts?

3.1.2 Task Sample
The task sample consists of (1) six real Java stigegrams

ranging from 1,276 — 14,120 lines of code (LOC) ffZe set of
FINDBUGS [6] alerts identified as TP or FP in the contekitloe

subject programsalert oracle) (3) a set of source code changes

to fix each TP alert; and (4) the experimental oantlert
prioritizations: opPTIMAL, TooL, and RANDOM. Section 3.3
describes the subject program selection processafarrBENCH.

5 Eclipse is an open source integrated developmearitonment. Eclipse
may be found at: http://eclipse.org

The descriptions for creating the remaining tasksa data are
described in Section 3.AAULTBENCH Initialization.

3.1.3 Performance Measures

FAULTBENCH evaluates techniques that predict which alerts
generated by static analysis tools are programtsfadllert
prioritization techniques order alerts such that alerts likelypeo
indications of important faults are at the top ofadert list. Alert
classification techniques divide static analysis alerts into two
groups: alerts likely to indicate important fawdisd alerts likely to

be false positives. Alert prioritization can cifigslerts when a
prioritization technique ranks alerts on a divisibumerical scale.

Alert prioritization evaluation uses theSpearman rank
correlation which evaluates alert orderings by measuring the
distance between the rank of alerts in two orderingsers of the
benchmark compare alert rankings generated by aitpration
technique with aroPTIMAL ordering of alerts. An alert ranking
highly correlated withopTIMAL at a statistically significant level
suggests that the prioritization technique coryectinks alerts
such that alerts likely to indicate faults are leigin an alert list.

Alert classification techniques predict if alerte arue or false
positives. If we classify an alert as a true pesitivhen the alert is
a true positive, then we have correctly classifteel alert and we
call that classification atrue positive classification(TPc).
Additionally, if we classify an alert as a falsesfiive when the
alert is not an indication of a fault we have cotiseclassified a
negative prediction, which we callteue negative classification
(TNg). A false positive classification (R is when the
prioritization model predicts that an alert is aetrpositive (a
positive classification) when the alert is actualbt an indication
of a fault. Afalse negative classification (RN is when the
prioritization model predicts that an alert is dséapositive (a
negative classification) when the alert is actuallfault. We are
focusing on the classification of alerts identifibg the static
analysis tool; therefore, we are not considerirfgrsoe faults not
found by static analysis tools. Figure 1 is agifation table.

Figure 1: Classification Table (adapted from [22]
Zimmermann et al. used the term defect where we ughe

term fault)
Faults are observed.
True False
2 True False
_ % Positive Positive Positive | Precision
3 0 (TP-C) (FP-C)
e False True
Q Negative | Negative | Negative
= (FN-C) | (TN-C)
Recall Accuracy

The following metrics [10, 20, 22] are used to eedd the
classification and prioritization of static analysilerts:

« Precision the percentage of FRhat are actually faults. The
precision calculation is presented in Equation 1.

. TP,
precision = ———

TP, +FP, )



¢ Recall the percentage of FPout of all possible faults. The
recall calculation is presented in Equation 2.

TP,

recall = ——
TP, +FN,

@)

¢ Accuracy: the percentage of correct classifications. The
accuracy calculation is presented in Equation 3

TP +TN,

accuracy =
TP, +TN, +FP, +FN,_

@)

¢ Area under the curve the area under the curve of the
cumulative percentage of true positive alerts detbafter
each inspection. An example is in Figure 5.

3.2 Desiderata for Benchmarks

Sim et al. [17] describe seven properties of swsfoés
benchmarks: accessibility, affordability, clarityrelevance,
solvability, portability, and scalability. Lu et §14] also provide
five benchmark selection criteria: representativeiverse,
portability, accessibility, and fairness. The feliog subsections
describe howAULTBENCH meets these desiderata.

« Accessibility: A benchmark should be easy to obtain and use.
Each of therAuLTBENCH subjects is available online through
various open source licenses. The subject progrgemerated
alerts, fault fixes, and evaluation materials esatto
FAULTBENCH are publicly available at
http://agile.csc.ncsu.edu/faultbench.

« Affordability: A benchmark’s cost (e.g. human, software, and
hardware resources) should be comparable to the \aflthe
results. To complete the benchmark for a singlekiray
technique takes 8-10 hours on a single computetditidnal
time is required for evaluating further techniques.

¢ Clarity: A benchmark’'s documentation should be clear and
concise. TheFAULTBENCH documentation is provided at
http://agile.csc.ncsu.edu/faultbench ~ for  evaluatiomand
comparison of other alert prioritization and cléeation
techniques to ensure repeatability and disclosure.

¢ Relevance/Representative: A benchmark must contain
representative subjects and performance measulaedédo
the motivating comparison.FAULTBENCH contains Java
programs from various domains created by develompdrs
varying levels of experience. The performance messare
standard in the area of software fault detectiod atatic
analysis alert prioritization [20, 22].

« Solvability: Completing the task sample and obtaining correct
metrics is not difficult. The task samples varysize and
number ofFINDBUGS static analysis alertssiInDBUGSIdentified
55 alert types in the task sample from the 331 iptesslert
types. Additionally, an analysis program is proddes part of
the benchmark materials

« Portability: A benchmark should be useable by different alert
prioritization and classification techniques withduias. Each
task sample is a stand alone Java project contpirgquired
libraries. Because all of the programs are writtenJava,
platform portability is assumed.

e Scalability/Fairness: A benchmark should be scalable to
varying alert prioritization and classification teggues and
not have bias towards a specific technique. Cuyrent

FAULTBENCH is contains Java subject programs and can only pyp://sourceforge.net

evaluate prioritization and classification of ategenerated by
Java static analysis tool&AULTBENCH supplements other
benchmarks in C and C++ and the authors encourage
expansion to the benchmark as demonstrated in0OBe2:13.

3.3 FAULTBENCH Subject Selection

The goal of FAULTBENCH is to provide a benchmark to the
software fault detection community for comparisomda
evaluation of static analysis alert prioritizatiand classification
techniques. Therefore, the subject programs inbirechmark
must meet the following criteria: open source; $rtlass than 15
KLOC), of various domains, written in Java; and @liable with
Java 1.4.2 or Java 1.5. To find possible subjeognams, we
investigated the benchmarks presented in the celatek section.
None of the subjects in those benchmarks met aterier for
selection. Next, we investigated programs analyzethe static
analysis, style checker tool PMIDThe PMD website maintains a
page reporting results from running PMD on Sourcg€o
projects. We investigated the 15 smallest progrdrased on the
number of analyzed non-commented source LOC) folugion
into our benchmark and selected 11 as possiblesisbj The un-
chosen projects did not contain source releasesootonger
existed as projects. Then, we searched for smoatiponents of
commonly-used libraries and applications, like Apacand
Eclipse. One subject was identified when satigfyihe library
requirements of an earlier subject. The final pté subject
comes from a student project associated with thieoasi research
group. Table 1 presents the set of possible supjegrams.

The set of subjects were further refined througlamalysis of six
characteristics: domain; number of developers; L@@nber of
FINDBUGS alerts; maturity; and alert distribution.  First,ew
quantified each of the characteristics. For theegarical
characteristics (e.g. domain and maturity), we gredd a
numerical value to each category. The alert dhistion is a value
describing how many unique alert typespBucGs identified in a
subject program. The alert distribution is the safrthe number of
alerts of the same type in a subject divided by nbhenber of
subjects that contain at least one alert of the tyy@e which is
then divided by the number of alerts the subjectt@ios. The
calculation for alert distribution is presentedcEquation 4.

s al erts subject type
subjects,,

AD 4

s =

alerts

subject

Boehm and Turner [2] use polar charts (also cabeldr charts) to
provide a visualization of agile and plan-drivesks in a software
development project. Similarly, we can visualize e th
characteristics of our possible benchmark subjgmbéar charts.
Each of the characteristics becomes an axis ormpdther chart.
Figure 2 presents the polar charts for the sixcsetEFAULTBENCH
subjects. In Figure 2, the scale of each axis isnabzed. The
subjects inFAULTBENCH should have different shapes, which are
representative of a variety of subject characiessBBenchmark
selection is quantifiable by taking the area of pwar charts.
However, when taking the area of polar chartsptider of the six
axes matter, starting clockwise from the top aswshim Figure 2.

® http://pmd.sourceforge.net/

" SourceForge is a repository for open source pmject



Table 1: PotentialFAULTBENCH benchmark subjects

Subject Version License Domain # DeVv L§C AI:rts Maturity ADIIeSrtt Area
commons 2005.05.300 GNU LGPL 1 - software deV 7 5560 70 5 - Production 0.38 173,497.0
commons- 111 Apache 2.0 1 - software dev 12 5426 126 ®dirction 0.34 324,513.6
logging
csvobjects 0.5beta GNU GPL 2 - data format 1 1577 7 5 - Production| 0.64 5,477.5
importscrubber| 1.4.3 Apache Software 1 - software dev 2 1653 35 4 - Beta 0.31 26,545.7

License

itrust Fall 2007 Educational 3 -web 5 14120 | 110 3 - Alpha 0.61 | 703,277.0

javaserver 5.1 Artistic 6 -communication 1 1792 31 5 - Production 0.39 24,348.0

jbook 14 GNU GPL 7 - educational 1 1276 52 5 - Production| 0.28 29,400.9

jdom 1.1 Apache-style 2 - data format 3 8422 55 5 - Production| 0.19 | 211,638.6

junit-addons 14 Apache Software 1 - software dev 1 4856 109 4 - Beta 0.45 231,488.3

License

kaprekar 3.0 GNU GPL, MPL 1.1 5 - math 1 1869 38 - Béta 0.21 27,576.4

mflow 0.1 GNU GPL 6 - communication 1 417 86 3lpha 0.33 157,283.§

org.eclipse. 3.3.1.1 Eclipse Public License | 1 - software dev 100 2791 98 5 - Production| 0.30 | 239,546.9

core.runtime

schemalizer 0.16 GNU LGPL 2 - data format 1 2524 29 3-Alpha 0.17 32,826.6

xmlwriter 222 BSD License 2 - data format 2 953 g 5 - Production 0.70 3,318.1
We reduced the number of subjects to use in thiiatan of the number of TP and FP alerts for each of the bendhmarjects.
ARM to six by taking the areas of the polar chaadtglering the . .
subjects by area, angd taking every othgr subjectirsg WitﬁJ the Table _2: Benchmark subjects with alert counts
subject having the largest area. Initially, thewvere seven Subject TP FP % TP
subjects, butmflow had complicated alert open and closure : Alerts | Alerts Alerts
patterns due to interrelated alert types requirgrgoval from the ,CSVObleCtS 3 4 42.9%
current version ofAULTBENCH. Table 1 contains the areas of the | IMPortscrubber 11 24 31.4%
polar charts for the potential benchmark subjectslditionally, iTrust 10 100 9.1%
the six subjects chosen for the benchmark are shiadgrey. jbook 26 26 50.0%

jdom 9 46 16.4%

3.4 FAULTBENCH Subject Initialization mflow 13 73 15.1%
After FAULTBENCH subject selection, the remaining task sample | ©rg.eclipse.core.runtime 8 90 8.2%
data (alert oracle, source code changes, and exgrtal control Average 11 51 24.7%

prioritizations) are defined.

3.4.1 Alert Oracle

The first author inspected the source code assaciatth each
static analysis alert and determined if the alegserated by
FINDBUGS were indications of faults in the subject prograifise

comparingertal
prioritization and classification techniques. TaBl presents the

evaluated alerts provide

an oracle for

3.4.2 Source Code Changes

Adaptive prioritization and classification techn@ggumodify the
ranking of uninspected alerts from developer feelbgbout an
alert being an indication of an important faulteofalse positive.
Modification of an alert’s ranking occurs after kdanspection or
a set of inspections. Aalert closureoccurs when static analysis

cswobjects

Domain
0.1

importscrubber

iTrust

# Alerts

# Alerts

# Alerts

org.eclipse.core.runtime

Domain

# Alerts

Figure 2:

Polar Charts for Potential Benchmark Subpgcts



tools no longer identify the alert in the sourceéeousually due to
a fault fix directly or indirectly associated witthe alert
description.  Alert closures also occur due to igurhtion
changes and file deletions. Aletppressions an explicit action
taken by the developer to indicate that an aleatfilse positive.

The evaluation of adaptive prioritization and cifisation
techniques requires fixing true positive alerts.widwer, static
analysis alerts are not orthogonal; several algged are
interrelated and a change to one may open or elosether of a
complementary type, which may affect prioritizatioand
classification techniques. An alert fix should mize the
number of alert opens and closures when fixing lent.a For
example, suppose a method opens and closes ardéitarswithin
a try block with an empty catch block, as shownFigure 3.
FINDBUGS would report two alerts: 1)
OS OPEN_STREAM_EXCEPTION PATH at line 3 reporting that the file
stream is not closed when there is an exception apd
DE_MIGHT_IGNORE at line 8 reporting that the exception is
ignored. Fixing the alert at line 3, by closing tetream in the
exception block, will also close the alert at liB@¢e When
evaluating the ranking, we only care about clodedsidentified
as TP in the baseline. If an alert identified &was closed as
part of an alert fix, we do not count the alerbim metrics.

public void load() {
try {
BufferedReader in =
new BufferedReader(new
FileReader(file));
//do something with contents
in.close();
} catch (IOException e) {
}
0}
Figure 3: Code Example — Additional Alert Closure

P OOO~NOOTWNE

Additionally, new alerts may be opened when fixiFRg alerts, as
shown in the example code in Figure 4INDBUGS reports an
ES COMPARING_PARAMETER STRING WITH_EQ at line 2, meaning
that checking the equality @f and a constant string does not use
the.equals() method. If the alert at line 2 is fixed, a newral

of the same type is opened at line 5 for a singtablem. When
inspecting alerts, we ignored alerts opened asgianhother fix.
Only alerts present in the baseline were inspeatedevaluated.

public void compare(String a) {
if (a == un) {

//do something

}
if (@ =="null”) {
//do something else
}
}

O~NO U WNPEP

Figure 4: Code Example — Alert Opening

3.4.3 Experimental Controls

The opPTIMAL ordering of static analysis alerts has all TP alait
the top of the alert list. ThepTiMAL ordering is generated by a
greedy analysis of the TP alerts. Alerts are atijti sorted
hierarchically in the context of the subject progrde.g. by
project, source folder, class, method, line numhbkart type, and
description), which provides a repeatable ordeforgalerts. To

reduce potential bias, prioritization techniqueowdti use the
same hierarchical alert ordering to break ties wdderts share the
same rank. Alerts are added to tbeTivAL ordering by the
number of TP alerts that are closed when makinglam change.
When two alerts close the same number of TP alérss, the
number of FP alerts closed is a tiebreaker, foltbwsy the
hierarchical ordering of alerts. At a minimum, thatimal curve
will fix one TP alert at each inspection until &P alerts are fixed.

The TooL ordering of alerts is created from the tool’s tleg
information. TheranDOM ordering of alerts is generated via a
random number generafor Cases where more than one alert is
closed must be considered when creatingdi|eMAL, RANDOM,
andTooL rankings. The ranking of an uninspected closed &

a fraction of the number of alerts closed duringrepection. If
there were three alerts (a, b, and c) closed peai®on 3, then the
inspected alert (a) would have a ranking of 3,uhiespected alert
first in the ordered listing (b) would have a rarkiof 3.33 and
other uninspected alert (c) would have a rankin§.66. For an
alert inspected prior to a closure via a tangermtfi@nge (suppose
alert b was inspected at inspection 2), the orlgimspection (2) is
maintained as the rank for that alert (b).

3.5 FAULTBENCH Process

We present the steps for evaluating adaptive gleoritization
and classification techniques witthULTBENCH. Non-adaptive
alert prioritization and classification techniquesuld only need
to evaluate the ranked or classified alerts withixing or
suppressing alerts. For adaptive alert prioritirat and
classification techniques, the state of the alafger each
inspection is recorded. The project, source folfier, method,
alert type, line number, and description identifyadert. An alert
may be in one of three states: uninspected, TPFRar The
FAULTBENCH process is as follows:

1. Run a static analysis tool against a clean versibrihe
subject program. (If the static analysis can
automatically, turn on the option.)

run

2. Record the original state of the alert set.

3. Prioritize or classify the generated alerts with alert
prioritization or classification technique.

4. Starting at the top of the ranked or classified dif alerts,

inspect each alert,

a. |If the alert oracle indicates the alert is a fathgn fix
the alert with the specified change. If the statialysis
tool does not run automatically, then rerun static
analysis.

b. If the alert oracle indicates the alert is a falesitive,
then suppress the alert.

5. After each alert inspection, record the state efalert set.
6. After all alert inspections, evaluate the resulia the
evaluation metrics provided in Section 3.1.3.

3.6 Benchmark Limitations

The subject programs mULTBENCH satisfy the seven desiderata
for benchmarks described by Sim et al. [17]. Hosveeach of
the subject programs is relatively small, and mayt e
representative of larger programs. Additionalle tsubject
programs are all written in Java. Therefore, tssabtained on
via FAULTBENCH may not be applicable to alert ranking in other
programming languages.

8 A random sequence generator may be found at/rétpdbm.org.



4. BENCHMARK CASE STUDY

We assess the suitability of the subjects selefciedauLTBENCH
by evaluating three variants of th@ARE adaptive ranking model
(ARM) static analysis alert prioritization and classfion
technique.

4.1 AwWARE Adaptive Ranking Model (ARM)
AWARE-ARM adaptively prioritizes and classifies static asay
alerts by the likelihood an alert is an indicatiohan important
fault. Alerts are ranked on the continuum, [-Whlere:

« Aranking in [-1,0) implies the alert is likely al§e positive,

e Aranking in (0,1] implies the alert is likely aufla, and

e A ranking of O means there is not enough infornmatio
determine if the alert is likely a true or falsesjtive.

An alert population(p) is a subset of all alerts, which share a

characteristic (e.g. alert type, code locationfati€ analysis alerts

are ranked by their characteristics, calleahking factors that

demonstrate some causality with the likelihood #rtas an

indication of a fault. The alert type [5, 10] arlérallocation [12]

are the ranking factors in the current versionA®faARE-ARM.

These ranking factors are discussed in Sectio.4.1.

4.1.1 Baseline Context

The baseline context represents information abweitsize of the
alert populations relative to the total numberlefta in a subject.
Alert populations tend to be homogeneous [5, 12jd dy
increasing the ranking of large populations, we a@arickly
categorize many alerts as TP or FP (similanformation gainin
[12]). The baseline context is the number of alérta population
divided by the number of alerts for the projectheTformula for
calculating the baseline context is presented imagn 5.

_ #alerts,
total # alerts

b ®)
4.1.2 Developer Context

The developer context represents information ahebat the
developer has done to close and suppress alerte whking
automated static analysis during development. tAlepulations
containing more than one alert tend to be homogen§s, 12].
Therefore, we utilize the developer’s feedback albe alerts to
predict the likelihood that other, similar alertge faults. The
development context is the difference between dosad
suppressed alerts divided by the number of insgealtrts in the
population as demonstrated in Equation 6.

_ #closed, —#sup pressed,

(6)

P #closed +#sup pressed,

4.1.3 Alert Ranking Factors

The following subsections describe the calculatiohshe alert

type accuracyATA) and code localitydL) alert ranking factors.
The coefficients to the baselin@s€) and developerfpc) context

for a population have a value of 0.5 implying ttre baseline and
developer context contribute equally to an alenkiiag factor.

Alert Type Accuracy (ATA): ATA is the likelihood an alert (a)
is a fault based on the type of the alert (e.gl. pihter, unclosed
stream, etc.) [10, 11]. ATA is the weighted conation of the

baseline and developer context of the alert's typghe ATA

calculation is described in Equation 7.

ATA(a) = (IBBC DBClype)+ (IBDC DDClype) (7)

Code Locality (CL): CL is the likelihood an alert (a) is a fault
based on the location of the alert (e.g. at thecsotolder, class,
or method level). CL is the weighted combinatidrihe baseline
and developer context of the alert’s location. Thatribution of
each location is calculated by normalizing the d¢suof non-
singleton source folder, methods, and classes ffafile 2b of
[12]. The coefficients for the contributions ofetlsource folder,
classes, and methods are 0.06, 0.25, and 0.6%cteagdy and are
represented by the coefficientg, y., andy,. We are only
interested in the non-singleton populations becaarse action
taken on an alert can be used to predict if thero#iferts in the
population are likely to be faults [12]. Singletpopulations do
not provide any predictive data. The calculatiamr CL is
described in Equation 8.

- ( BC D((st DBcsf ) + (ysf DBCsf ) + (ysf DBCsf ))) +

CL(a)= (8
( DC D((ysf DDCsf ) + (ysf DDCsf ) + (ysf DDCsf )))

4.1.4 Alert Ranking
The overall alert ranking calculation is the conabion of alert
ranking factors divided by the number of rankingtéas. Three
versions of AWARE-ARM prioritization and classification
techniques are presented in Table 3.

Table 3: Experimental treatments for benchmark evalation

Treatment | Description or Formula
ATA R(a)=ATA(a)

CL R (a) = CL(a)

ATA +CL R(a)= —ATA(a)2+ CL{a)

4.1.5 ARM Limitations

Similarly to [9, 10, 12], out ranking technique \srbest when
the populations of interest are fine-grained (engny alert types
and locations) and homogeneous. Further researndyiired to
determine how to prioritize static analysis alemdth non-

homogeneous populations.

4.2 Case Study Specifics

Static analysis alerts were ranked and presentéldetaleveloper
via theAwARE [5] Eclipse plug-in. AWARE gathers static analysis
alerts generated fromNDBUGS and ranks the alerts using one of
the ranking functions presented in TableASvARE maintains alert
closures and suppressions used to modify the rgridithe alerts.
We used Eclipse version 3.3.1.1 for all of the Ihemark subjects
except iTrust. For iTrust, we used the Eclipse HOEJava EE
Developers version 3.3.1.1. Each versiomwfRE contains one
of the three versions of thewaRe-ArRM prioritization and
classification techniques. Table 4 presentsathere version for
each of the ranking techniques.

Table 4: AwarRe Version for Ranking Techniques

Ranking Technique AWARE Version
ATA 1.7.1.1
CL 1.7.2.0
ATA +CL 1.7.3.0




Table 5: Area under the fault detection curve for enking techniques

Subject Optimal Random ATA CL ATA + CL Tool
csvobjects 78.57% 59.52% 50.00% 21.43% 30.39% 54.76
importscrubber 84.29% 71.82% 66.10% 40.91% 66.62% 6.23%
iTrust 95.5% 48.91% 74.36% 68.09% 67.36% 75.09%
jbook 78.55% 49.83% 46.26% 62.57% 74.19% 39.87%
jdom 91.82% 71.66% 86.16% 63.54% 85.35% 46.89%
org.eclipse.core.runtime 96.81% 68.61% 82.53% %5.09 82.78% 49.67%
Average 87.58% 61.73% 72.57% 53.94% 67.88% 50.42%

5. CASE STUDY RESULTS

FAULTBENCH provides data to answer the following research

questions:

¢« [Q1l]: Can alert prioritization improve the rate déult
detection when compared to the tool’s output?

¢ [Q2]: How does the rate of fault detection comphedween
alert ranking techniques?

¢ [Q3]: Can alert categorization correctly prediatetrpositive
(TP) and false positive (FP) alerts?

Question 1 and 2 are answered by usingatiea under the curve

metric and theSpearman rank correlatignwhile question 3 is

answered using tharecision recall, andaccuracymetrics.

5.1 Q1: Improving Fault Detection Rate

We plot the cumulative percentage of faults detketgainst the
number of inspections and measure the area undecutve to
evaluate Question 1. Figure 5 provides an examflbese plots

for thejdom subject program. When TP alerts are fixed, the

percentage of detected faults increases. Therplareaus in the
ranking curve when a FP alert is suppressed ahgpection. A
large plateau means there were a number of sup@messA good
ranking will minimize the large plateaus until mastall of the
TP alerts have been identified.
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Figure 5: Area Under the Fault Detection Rate Curvefor j dom

Table 5 presents the area under the fault detectts curve
metrics for each of the ranking techniques and Heack
subjects. The first question compares alert priation
techniques to theooL ordering of alerts.
prioritization, developers only have the static lgsia tool's
output for investigation. If the tool’s orderingniorms well, then
alert prioritization is not needed. However, alliopitization
techniques except arsvobjects andiTrust perform better
than the tool ordering. On average, all priortima techniques

have a larger area under the curve (53.94% - 72.3R&%% the
TooL ordering (50.42%) of alerts.

Table 6 presents the Spearman rank correlationesahbetween
the alert prioritization techniques andPTIMAL. A positive
correlation implies that the specified ranking imitar to the
OPTIMAL ranking while a negative correlation implies thhe
specified ranking is oppositePTIMAL. The closer the correlation
is to 1 or -1, the stronger the match or oppositibthe specified
ranking. Cells containing one star (*) have cofielss significant
at the 0.05 level, while cells containing two sti%) have
correlations significant at the 0.01 level.

Table 6: Spearman rank correlation

ATA cL ATA+ | TOOL
cL

csvobjects 0.321 -0.643 -0.393 0.607
importscrubber 0.512*| -0.026 0.238 0.203
iTrust 0.418* | 0.264* | 0.261* | 0.772**
jbook 0.798** | 0.389** | 0.599** | -0.002
jdom 0.675** | 0.288* 0.457** | 0.724*
org.eclipse. 0.395* | 0.325** | 0.246* 0.691**
core.runtime

In the absence of

The TooL experimental control ranking has a moderately stron
correlation (e.g. correlation value > 0.600) withriMAL for four

of the subject programs. The strong correlatiolikedy due to a
similar ordering of the FP alerts, and is not neagl an
indication of the fault detection capabilities b&trooL ordering.
For example, thaooL ordering forjdom has a correlation of
0.724; however, the area under the fault deteatiome fortooL

is at least 20% less thama, cL, andATA+CL as seen in Table 5.

5.2 Q2: Comparing Prioritizations

Table 5 presents the area under the fault detectiom curve
metrics for each of the prioritization techniques FRULTBENCH
subjects. The average area under an optimal car96.0%. The
ATA ranking is closer t@oPTIMAL thancL ranking. Additionally,
the averageata area is 30% larger thaoL's average area.
ATA+CL splits the difference betweema’s andcL’s ranking.

Table 6 presents the Spearman rank correlationesahbetween
the alert prioritization technique arwbTIMAL. The correlations
between the alert prioritization techniques aoHTIMAL are
similar to the patterns observed in the area urber curve
measurement in Table 5. However, thea correlation with
OPTIMAL is typically stronger, indicating thatra is the better
prioritization technique.



Table 7: Average precision, recall, and accuracy ntécs of un-inspected alerts at before each inspdon

Subject Average Precision Average Recall Average Aaracy

ATA cL ATA +CL__| ATA cL ATA +CL_| ATA cL ATA +CL
csvobjects 0.32 0.50 0.39 .038 .048 0.38 0.58 0.34| 0.46
import-scrubber 0.34 0.20 0.18 0.24 0.28 0.45 0.62 | 0.43 0.56
iTrust 0.05 0.02 0.05 0.16 0.15 0.07 0.97 0.84 0.91
jbook 0.22 0.27 0.23 0.65 0.48 0.61 0.68 0.62 0.66
jdom 0.06 0.09 0.06 0.31 0.07 0.29 0.88 0.86 0.88
org.eclipse.core.runtime 0.05 0.04 0.03 0.17 0.05| .110 0.92 0.94 0.95
Average 0.17 0.19 0.16 0.42 0.25 0.32 0.76 0.67 0.74

5.3 Q3: Categorizing Alerts

Table 7 presents the average precision, recall, @wliracy
metrics before each inspection when adaptivelygoateing static
analysis alerts. We only consider the precisicecall, and
accuracy metrics for uninspected alerts becausarevdrying to
predict if the uninspected alerts are TPs or FRsanking greater
than 0 is a prediction that the alert is a TP whileanking less
than 0 is a prediction that an alert is a FP. Wantassess the
ranking’s classification using the alert oracle ahé rank, as
shown in Table 8.

Table 8: Alert Classification Assessment

Alert Oracle Ranking
True Positive (TP TP >0
True Negative (TN) FP <0
False Positive (RH FP >0
False Negative (FN TP <0

If the alert falls in the TP or TN categories, the ranking
correctly classified the alert as TP or FP. Asle@n more about
the alerts from the developers, we expect the gimti recall, and
accuracy to increase; however, the precision aadllreended to
be 0 because after all TP alerts were identifibére was no
longer a numerator in the precision and recall ggns The
average accuracy is a better measure of how tissifitation
techniques performedATa had the best average accuracy, and
correctly predicted if an alert is a TP or FP 76Rthe time.

5.4 Benchmark Evaluation

FAULTBENCH contains six programs of varying sizes from sdvera
domains. The programs with more than 50 statidyaisaalerts
had more statistically significant results when paning alert
prioritizations withopTIMAL using the Spearman rank correlation,
than the smaller programs. Additionally,jlifook or iTrust

were the only subject used to evaluate alert pization
techniques theTta+cL andTooL rankings were the best rankings,
respectively, when with a larger sampleta was the best
prioritization technique. The same discrepancyliappwhen
evaluating the classification accuracy oATA+CL on
org.eclipse.core.runtime

The results of the Spearman rank correlation sugbese is bias
in the creation of th@PTIMAL order because theooL ordering
has a moderately strong correlation (> 0.600) wifTIMAL for
four of the subject projectsopTIMAL defaults to an ordering of
alerts by project, source folder, file, method,ralgpe, line
number, and description in the case of a tie. diha&ve ordering
is very similar to theooL ordering forFINDBUGS due to the use of
the Visitor pattern [6]. There are several optiroadlerings of
alerts, and a semi-randomized ordering may hawehé&s to the
FINDBUGS-TOOL ordering of alerts.

5.5 Case Study Limitations
We consider the three threats to the validity of oase study
[16]: construct validity, internal validity, and texnal validity.

5.5.1 Construct Validity

Construct validity concerns our measurements. Teasarements
are straight forward and standard for ranking alagsification
analysis.

5.5.2 Internal Validity

Internal validity concerns the causal relationshigtween the
dependent and independent variables. The mainecors with
the tooling. In AWARE, possible inconsistencies in our
measurements could occur when comparing the statidysis
alerts due to line and source code changes duainlg fix. We
consider static analysis alerts to be the sameelf share several
characteristics including the line number and antafshe source
line. The source hash can change via refactorirdy the line
number can change through addition or deletionuofosinding
code. If both of these characteristics changecare no longer
track the alert. When fixing alerts in the casgdgt only one of
the two characteristics was modified in the souwbange for
surrounding alerts. An additional complicatiordiglicate alerts.
An alert is a duplicate when there are two aleftthe same type
on the same line of code. The alert display coewitihe alerts
into one listing. Therefore, suppression of ttating, leads to
suppression of both alerts. Additional internalidity concerns
come from the program used to analyze the inspectgords.
The alert comparison problems described above applyhe
analysis program.

5.5.3 External Validity

External validity concerns how we can generalize msults.
Using FAULTBENCH mitigates some of the concerns about
generalizing the prioritization and classificatim@sults due to the
varying domains of the subject programs and a tasgmple size.
Additionally, each of the subject programs is areropsource
application with real faults. However, the prograans relatively
small, and there are concerns about scale.

6. CONCLUSIONS AND FUTURE WORK

The literature in the realm of static analysis tgbeforitization and
classification is moving towards a definition ofvhdo conduct
static analysis alert prioritization research [0, 12, 14, 20, 22].
We presentAULTBENCH to supplement the current benchmarks in
other languages (e.guGBENCH[14]) and larger Java benchmarks
in specific sub-domains (e.gcHORD subjects [15] for race
detection). FAULTBENCH is available for use and critique at
http://agile.csc.ncsu.edu/faultbench.



We evaluated three alert prioritization technigagainst the six
subjects in FAULTBENCH. Evaluation of the prioritization
techniques against individual benchmark subjectsdyred

varying results. Ofbook theATA+cL prioritization had a larger
area under the fault detection curve; howewen prioritization

had a higher rate of fault detection on average.addition, the
TooL ordering performed better than the alert prioatian

techniques forcsvobjects Individually, the benchmark
subjects provide varying results, but togetherargdr sample of
subject programs provides a better understandingoof alert

prioritization and classification techniques workdaincrease the
generalization of experimental conclusions.

We present FAULTBENCH foster collaboration and
communication within the static analysis alert ragk
community.  We will continue to evolve the benchkiar
Additionally, we will continue to investigate statanalysis alert
ranking techniques, by analyzing the contributiohshe ranking
factors viarauLTBENCH, and modifying the ranking calculations
accordingly.
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