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ABSTRACT  
Benchmarks provide an experimental basis for evaluating 
software engineering processes or techniques in an objective and 
repeatable manner. We present the FAULTBENCH benchmark, as a 
contribution to current benchmark materials, for evaluation and 
comparison of techniques that prioritize and classify alerts 
generated by static analysis tools.  Alert prioritization and 
classification addresses the problem in many static analysis tools 
of numerous alerts that are not an indication of a fault or 
unimportant to the developer.  We utilized FAULTBENCH to 
evaluate three versions of the AWARE adaptive ranking model to 
prioritize and classify static analysis alerts. Individual 
FAULTBENCH subjects have different best prioritization and 
classification techniques. Using a single subject to evaluate a 
prioritization and classification technique could provide incorrect 
results.  Together, FAULTBENCH subjects provide a precise and 
general evaluation of alert prioritization and classification 
techniques.   

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification – 
Reliability, D.2.5 [Software Engineering]: Testing and 
Debugging – Testing tools  

General Terms 
Measurement, Reliability, Experimentation, Verification. 

Keywords 
Automated static analysis, alert ranking, benchmark creation 

1. INTRODUCTION 
Several open questions in software engineering involve evaluating 
processes and techniques to improve aspects of the software 
development lifecycle. Empirical analysis of research theories are 
a component for acceptance of the theory within a research 
community [18]. Benchmarks provide an experimental basis for 
evaluating software engineering theories, represented by software 
engineering techniques, in an objective and repeatable manner 
[18]. A benchmark is defined as “a procedure, problem, or test 
that can be used to compare systems or components to each other 

or to a standard” [8]. Benchmarks represent the research problems 
of interest and solutions of importance in a research area through 
definition of the motivating comparison, task sample, and 
evaluation measures [17].  The task sample can contain programs, 
tests, and other artifacts dependent on the benchmark’s motivating 
comparison. A benchmark controls the task sample reducing 
result variability, increasing repeatability, and providing a basis 
for comparison between techniques [17].  Additionally, successful 
benchmarks promote collaboration within a research community 
[17]. 

Several benchmarks in the realm of software fault detection have 
emerged in recent years [14-16] containing subject programs of 
various sizes, in multiple languages, and with real or seeded 
faults. Current benchmarks provide meaningful points of 
comparison; however, they lack a detailed, repeatable process. 
Our goal is to supplement prior benchmarks by gathering a set of 
small, real, and faulty Java programs from a variety of domains 
and providing a process for evaluation of the following software 
fault detection problem: how to identify which anomalies 
generated by static analysis tools are program faults. 

Static analysis tools can identify anomalies in source code early in 
the development process [8].  These tools produce reports listing 
possible program faults, which we call alerts.  Inspection of each 
alert by a developer is required to determine if the alert is an 
indication of a fault.  When an alert is not an indication of a fault 
or is deemed unimportant to the developer (e.g. the alert indicates 
a programmer mistake inconsequential to program functionality), 
we call the alert a false positive [1].  Static analysis tools may 
generate an overwhelming number of alerts [10], the majority of 
which are likely to be false positives [6].  Alert prioritization 
techniques can increase the usability of static analysis tools by 
presenting developers with alerts likely to indicate important 
faults first.  Additionally, alerts classification techniques can 
divide static analysis alerts into two groups: alerts likely to 
indicate important faults and alerts likely to be false positives. 

The goal of our research is to propose the FAULTBENCH benchmark 
to the software fault detection community for comparison and 
evaluation of static analysis alert prioritization and classification 
techniques. The literature in the realm of static analysis alert 
prioritization and classification is moving towards a definition for 
conducting and evaluating research [9, 10, 12, 14, 20, 22]. 
FAULTBENCH provides a basis for comparison of static analysis 
alert prioritization and classification techniques and contributes 
subject programs; an analysis procedure; and evaluation metrics.  
The current version of FAULTBENCH contains six, open-source, 
subject programs written in Java.  We validate the selection of 
FAULTBENCH subject programs by comparing three versions of the 
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AWARE [5]  adaptive ranking model (ARM) alert prioritization and 
classification technique on static analysis alerts generated by the 
FINDBUGS [6]  static analysis tool.  FINDBUGS is a popular open 
source static analysis tool. We describe how we created 
FAULTBENCH, and present the process of evaluating and comparing 
alert prioritization and classification techniques. We invite 
researchers in the static analysis community to critique and 
improve the current benchmark.   

The rest of the paper is structured as follows: Section 2 presents 
related work, Section 3 describes the FAULTBENCH creation and 
analysis procedure, Section 4 describes the FAULTBENCH case 
study, Section 5 presents the case study results, and Section 6 
concludes and presents future work. 

2. RELATED WORK 
This section describes the related work in the areas of benchmark 
creation and the ranking of static analysis alerts. 

2.1 Current Fault Detection Benchmarks 
There are several benchmarks in the realm of software fault 
detection.  The SIEMENS [7] benchmark was created by researchers 
at Siemens Corporate Research and contains multiple versions of 
small programs each containing a single fault and a suite of test 
cases.  The benchmarks were created to evaluate control- and 
data-flow test adequacy criteria and were later used by Rothermel 
et al. [16] to evaluate regression test case prioritization.  The 
SIEMENS benchmark has small, C programs with seeded faults.  

BUGBENCH [14] is a benchmark containing seventeen buggy, open 
source, C/C++ applications ranging from seven thousand lines of 
code (KLOC) to 1028 KLOC in various domains.  A Java 
benchmark was created to evaluate the CHORD race condition 
detection static analysis tool [15] and contains twelve concurrent 
programs ranging from 2.5 KLOC to 650 KLOC.  PROMISE [3]  is a 
repository for data sets and tools from empirical research in 
predictive modeling, and half of the 60 data sets are in the area of 
fault prediction.  However, most of the data sets provide metrics 
about projects without the project source.  Some data sets refer to 
large, open source projects and the remainders refer to 
commercial products.  Other static analysis researchers [9, 10, 12, 
20] have used large open source projects (e.g. Apache’s httpd1, 
Wine2, Sun’s JDK 1.6.03, Columba4) or commercial programs to 
evaluate alert ranking and classification techniques.  While large 
open-source programs provide confidence and scale in the 
techniques they evaluate, the size of the sample evaluated (one to 
three programs) is a threat to external validity (e.g. the 
generalization of the results).  Additional studies and subjects 
address the threats to external validity, and increase the 
generalization of experimental results [16].  Commercial 
examples show scalability of the technique in an industrial setting 
at the cost of repeatability and comparison.  

These current benchmarks are insufficient for our needs for 
several reasons.  First, current benchmarks are lacking a detailed, 
repeatable process for use and evaluation of static analysis alert 
prioritization and classification techniques.  Additionally, the 
current benchmarks are mostly for the C and C++ programming 
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languages.  Finally, alert prioritization research, especially when 
adaptive ranking is used, requires the removal of faults by a 
researcher unfamiliar with the program, which is difficult to do 
with large projects and a high quantity of alerts. Therefore, we 
want to create a benchmark of relatively small, real, and faulty 
Java programs from a variety of domains. 

2.2 Static Analysis Alert Prioritization 
Kim and Ernst [9, 10] describe two static analysis alert 
prioritization techniques where the lifetime of a static analysis 
alert is measured from data mined from source code repositories.  
The lifetime of an alert is the time between alert creation and alert 
closure. One technique prioritizes static analysis alert types by the 
average lifetime of alerts sharing the same type in the repository 
[9].  Alert types with shorter lifetimes have a higher ranking (e.g. 
alerts fixed quickly are likely important) than alert types with 
longer lifetimes. The second technique weights alerts types by the 
number of alerts closed by fault- and non-fault-fixes, where a 
fault-fix is a source code change where the developer fixes a fault 
or problem and a non-fault-fix is a change where a fault or 
problem is not fixed like a feature addition [10]. The history based 
warning prioritization presented by Kim and Ernst [10] improves 
the alert precision by over 100% when compared to the alert 
precision of alerts prioritized by tool severity.  However, the 
precision ranged from 17%-67%, which might be due to alert 
closures not having a causal relationship with the root cause of a 
fault-fix. Additionally, both prioritization techniques work best 
for fine-grained (e.g. many distinct alert types), homogeneous 
alert types.  A homogeneous alert type means that all alerts 
sharing that type are all either true or false positives.  We utilize 
the idea of alert type homogeneity in our ranking. 

Williams and Hollingsworth [20] created a static analysis tool 
which evaluates how often the return values of method calls are 
checked in source code.  A method is flagged with an alert when 
the return value for the method is inconsistently checked in calling 
methods.  Williams and Hollingsworth use the HISTORYAWARE 
prioritization technique to prioritize methods by the percentage of 
time the return values of the methods are checked in the software 
repository and the current version of the code. The results show a 
statistically significant reduction of the false positive rate when 
using the HISTORYAWARE prioritization technique on two case 
studies involving httpd and Wine applications.    

Kremenek et al. [12] show that static analysis alerts in a similar 
alert locations tend to be homogeneous.  On average, 88% of 
methods, 52% of files, and 13% of the directories with two or 
more alerts contained homogeneous alert populations.  Kremenek 
et al. created a FEEDBACK-RANK algorithm whereby the 
developer’s feedback is used to prioritize the remaining alerts.  
The static analysis tools used by Kremenek et al. take advantage 
of understanding where a static analysis tool checked for an alert, 
but did not find a potential fault [13].  We also use the developer’s 
feedback to drive the adaptive ranking of un-inspected static 
analysis alerts, and our version of the code locality ranking factor 
was inspired by Kremenek et al. 

Boogerd and Moonen [4] present the ELAN technique to prioritize 
static analysis alerts by their execution likelihood, which is “the 
probability that a given program point will be executed at least 
once in an arbitrary program run.”  The prioritization is a measure 
of alert severity relative to the program under analysis.  While the 
results showed that the prioritization technique did rank alerts by 



execution likelihood, the analysis did not investigate if the 
prioritization identified more alerts of interest to the developer.   

3. BENCHMARK CREATION 
The goal of contributing the FAULTBENCH benchmark is to create a 
(1) suite of subject programs and alert oracles; and (2) repeatable 
procedures for evaluating static analysis alert prioritization and 
classification techniques.  We have created a benchmark of Java 
programs from various domains, ranging from 1,276 – 14,120 
lines of code (LOC) and static analysis alert oracles from alerts 
generated by FINDBUGS. FINDBUGS uses code scans, control-flow, 
and data-flow analysis to detect common bug patterns in the 
source code that are possible faults [6].  FINDBUGS detects 331 
distinct alerts at three priority levels. We used the FINDBUGS 

Eclipse5 plug-in to generate static analysis alerts on the subject 
programs with-in the Eclipse workbench.  We configured 
FINDBUGS to report alerts at all priority and detector effort levels, 
which maximizes the number of alert detectors used by FINDBUGS.   

Below, we define the FAULTBENCH purpose and describe how 
FAULTBENCH fulfills properties for successful benchmarks.  In 
addition, we provide the steps for choosing subject programs and 
for the process of evaluating alert prioritization and classification 
techniques with FAULTBENCH.   

3.1 Definition of FAULTBENCH  for Prioritizing 
and Classifying Static Analysis Alerts 
We define FAULTBENCH in terms of the three components 
presented by Sim et al. [17]: motivating comparison, task sample, 
and performance measures.   

3.1.1 Motivating Comparison 
The motivating comparison advocated by Sim et al. [17] describes 
why the results of comparing two tools or techniques are 
important for furthering the research surrounding the comparison. 
The motivating comparison of FAULTBENCH is to find the static 
analysis alert prioritization or classification technique with the 
best rate of static analysis fault detection.  Static analysis is an 
effective means of fault removal [21] and is cost effective with the 
detection of three to four potential field failures [19].  However, a 
large number of static analysis alerts, especially false positive 
alerts, leads to rejection of the tool [4].  Specifically, we can use 
FAULTBENCH to answer the following research questions: 

• [Q1]: Can alert prioritization improve the rate of fault 
detection when compared to the tool’s output? 

• [Q2]: How does the rate of fault detection compare between 
alert ranking techniques? 

• [Q3]: Can alert categorization correctly predict true positive 
(TP) and false positive (FP) alerts? 

3.1.2 Task Sample 
The task sample consists of (1) six real Java subject programs 
ranging from 1,276 – 14,120 lines of code (LOC); (2) the set of 
FINDBUGS [6] alerts identified as TP or FP in the context of the 
subject programs (alert oracle); (3) a set of source code changes 
to fix each TP alert; and (4) the experimental control alert 
prioritizations: OPTIMAL, TOOL, and  RANDOM.  Section 3.3 
describes the subject program selection process for FAULTBENCH.  

                                                                 
5 Eclipse is an open source integrated development environment.  Eclipse 
may be found at: http://eclipse.org 

The descriptions for creating the remaining task sample data are 
described in Section 3.4, FAULTBENCH Initialization. 

3.1.3 Performance Measures 
FAULTBENCH evaluates techniques that predict which alerts 
generated by static analysis tools are program faults. Alert 
prioritization techniques order alerts such that alerts likely to be 
indications of important faults are at the top of an alert list.  Alert 
classification techniques divide static analysis alerts into two 
groups: alerts likely to indicate important faults and alerts likely to 
be false positives.  Alert prioritization can classify alerts when a 
prioritization technique ranks alerts on a divisible numerical scale. 

Alert prioritization evaluation uses the Spearman rank 
correlation, which evaluates alert orderings by measuring the 
distance between the rank of alerts in two orderings.  Users of the 
benchmark compare alert rankings generated by a prioritization 
technique with an OPTIMAL ordering of alerts.  An alert ranking 
highly correlated with OPTIMAL at a statistically significant level 
suggests that the prioritization technique correctly ranks alerts 
such that alerts likely to indicate faults are higher in an alert list. 

Alert classification techniques predict if alerts are true or false 
positives. If we classify an alert as a true positive when the alert is 
a true positive, then we have correctly classified the alert and we 
call that classification a true positive classification (TPC).  
Additionally, if we classify an alert as a false positive when the 
alert is not an indication of a fault we have correctly classified a 
negative prediction, which we call a true negative classification 
(TNC).  A false positive classification (FPC) is when the 
prioritization model predicts that an alert is a true positive (a 
positive classification) when the alert is actually not an indication 
of a fault.  A false negative classification (FNC) is when the 
prioritization model predicts that an alert is a false positive (a 
negative classification) when the alert is actually a fault.  We are 
focusing on the classification of alerts identified by the static 
analysis tool; therefore, we are not considering software faults not 
found by static analysis tools.  Figure 1 is a classification table. 

 

The following metrics [10, 20, 22] are used to evaluate the 
classification and prioritization of static analysis alerts: 

• Precision: the percentage of TPC that are actually faults.  The 
precision calculation is presented in Equation 1. 
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Figure 1: Classification Table (adapted from [22] 
Zimmermann et al. used the term defect where we use the 

term fault) 
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• Recall: the percentage of TPC out of all possible faults.  The 
recall calculation is presented in Equation 2. 

 
• Accuracy: the percentage of correct classifications. The 

accuracy calculation is presented in Equation 3 
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• Area under the curve: the area under the curve of the 

cumulative percentage of true positive alerts detected after 
each inspection.  An example is in Figure 5.  

3.2 Desiderata for Benchmarks 
Sim et al. [17] describe seven properties of successful 
benchmarks: accessibility, affordability, clarity, relevance, 
solvability, portability, and scalability.  Lu et al. [14] also provide 
five benchmark selection criteria: representative, diverse, 
portability, accessibility, and fairness. The following subsections 
describe how FAULTBENCH meets these desiderata. 

• Accessibility: A benchmark should be easy to obtain and use.  
Each of the FAULTBENCH subjects is available online through 
various open source licenses.  The subject programs, generated 
alerts, fault fixes, and evaluation materials related to 
FAULTBENCH are publicly available at 
http://agile.csc.ncsu.edu/faultbench. 

• Affordability: A benchmark’s cost (e.g. human, software, and 
hardware resources) should be comparable to the value of the 
results.  To complete the benchmark for a single ranking 
technique takes 8-10 hours on a single computer.  Additional 
time is required for evaluating further techniques.   

• Clarity: A benchmark’s documentation should be clear and 
concise.  The FAULTBENCH documentation is provided at 
http://agile.csc.ncsu.edu/faultbench for evaluation and 
comparison of other alert prioritization and classification 
techniques to ensure repeatability and disclosure. 

• Relevance/Representative: A benchmark must contain 
representative subjects and performance measures related to 
the motivating comparison. FAULTBENCH contains Java 
programs from various domains created by developers of 
varying levels of experience.  The performance measures are 
standard in the area of software fault detection and static 
analysis alert prioritization [20, 22]. 

• Solvability: Completing the task sample and obtaining correct 
metrics is not difficult.  The task samples vary in size and 
number of FINDBUGS static analysis alerts.  FINDBUGS identified 
55 alert types in the task sample from the 331 possible alert 
types. Additionally, an analysis program is provided as part of 
the benchmark materials 

• Portability: A benchmark should be useable by different alert 
prioritization and classification techniques without bias. Each 
task sample is a stand alone Java project containing required 
libraries.  Because all of the programs are written in Java, 
platform portability is assumed. 

• Scalability/Fairness: A benchmark should be scalable to 
varying alert prioritization and classification techniques and 
not have bias towards a specific technique. Currently, 
FAULTBENCH is contains Java subject programs and can only 

evaluate prioritization and classification of alerts generated by 
Java static analysis tools. FAULTBENCH supplements other 
benchmarks in C and C++ and the authors encourage 
expansion to the benchmark as demonstrated in Section 3.3. 

3.3 FAULTBENCH  Subject Selection 
The goal of FAULTBENCH is to provide a benchmark to the 
software fault detection community for comparison and 
evaluation of static analysis alert prioritization and classification 
techniques.  Therefore, the subject programs in the benchmark 
must meet the following criteria: open source; small (less than 15 
KLOC), of various domains, written in Java; and compliable with 
Java 1.4.2 or Java 1.5. To find possible subject programs, we 
investigated the benchmarks presented in the related work section.  
None of the subjects in those benchmarks met our criteria for 
selection.  Next, we investigated programs analyzed by the static 
analysis, style checker tool PMD6.  The PMD website maintains a 
page reporting results from running PMD on SourceForge7 
projects.  We investigated the 15 smallest programs (based on the 
number of analyzed non-commented source LOC) for inclusion 
into our benchmark and selected 11 as possible subjects.  The un-
chosen projects did not contain source releases or no longer 
existed as projects.  Then, we searched for small components of 
commonly-used libraries and applications, like Apache and 
Eclipse.  One subject was identified when satisfying the library 
requirements of an earlier subject.  The final potential subject 
comes from a student project associated with the authors’ research 
group.  Table 1 presents the set of possible subject programs. 

The set of subjects were further refined through an analysis of six 
characteristics: domain; number of developers; LOC; number of 
FINDBUGS alerts; maturity; and alert distribution.  First, we 
quantified each of the characteristics.  For the categorical 
characteristics (e.g. domain and maturity), we assigned a 
numerical value to each category.  The alert distribution is a value 
describing how many unique alert types FINDBUGS identified in a 
subject program. The alert distribution is the sum of the number of 
alerts of the same type in a subject divided by the number of 
subjects that contain at least one alert of the that type which is 
then divided by the number of alerts the subject contains.  The 
calculation for alert distribution is presented in Equation 4. 

 
Boehm and Turner [2] use polar charts (also called radar charts) to 
provide a visualization of agile and plan-driven risks in a software 
development project. Similarly, we can visualize the 
characteristics of our possible benchmark subjects’ polar charts.  
Each of the characteristics becomes an axis on the polar chart.  
Figure 2 presents the polar charts for the six selected FAULTBENCH 

subjects. In Figure 2, the scale of each axis is normalized. The 
subjects in FAULTBENCH should have different shapes, which are 
representative of a variety of subject characteristics. Benchmark 
selection is quantifiable by taking the area of the polar charts.  
However, when taking the area of polar charts, the order of the six 
axes matter, starting clockwise from the top as shown in Figure 2.  
                                                                 
6 http://pmd.sourceforge.net/ 
7 SourceForge is a repository for open source projects: 
http://sourceforge.net 
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We reduced the number of subjects to use in the evaluation of the 
ARM to six by taking the areas of the polar charts, ordering the 
subjects by area, and taking every other subject starting with the 
subject having the largest area.  Initially, there were seven 
subjects, but mflow had complicated alert open and closure 
patterns due to interrelated alert types requiring removal from the 
current version of FAULTBENCH.  Table 1 contains the areas of the 
polar charts for the potential benchmark subjects.  Additionally, 
the six subjects chosen for the benchmark are shaded in grey. 

3.4 FAULTBENCH  Subject Initialization 
After FAULTBENCH subject selection, the remaining task sample 
data (alert oracle, source code changes, and experimental control 
prioritizations) are defined. 

3.4.1 Alert Oracle 
The first author inspected the source code associated with each 
static analysis alert and determined if the alerts generated by 
FINDBUGS were indications of faults in the subject programs. The 
evaluated alerts provide an oracle for comparing alert 
prioritization and classification techniques.  Table 2 presents the 

number of TP and FP alerts for each of the benchmark subjects.  

 
3.4.2 Source Code Changes 
Adaptive prioritization and classification techniques modify the 
ranking of uninspected alerts from developer feedback about an 
alert being an indication of an important fault or a false positive. 
Modification of an alert’s ranking occurs after each inspection or 
a set of inspections. An alert closure occurs when static analysis 

Table 1: Potential FAULTBENCH  benchmark subjects 

Subject Version License Domain # Dev # 
LoC 

# 
Alerts 

Maturity Alert 
Dist. 

Area 

commons 2005.05.30 GNU LGPL 1 - software dev 2 5560 70 5 - Production 0.38 173,497.0 
commons-
logging 

1.1.1 Apache 2.0 1 - software dev 12 5426 126 5 - Production 0.34 324,513.6 

csvobjects 0.5beta GNU GPL 2 - data format 1 1577 7 5 - Production 0.64 5,477.5 
importscrubber 1.4.3 Apache Software 

License 
1 - software dev 2 1653 35 4 - Beta 0.31 26,545.7 

itrust Fall 2007 Educational 3 - web 5 14120 110 3 - Alpha 0.61 703,277.0 
javaserver 5.1 Artistic 6 -communication 1 1752 31 5 - Production 0.39 24,348.0 
jbook 1.4 GNU GPL 7 - educational 1 1276 52 5 - Production 0.28 29,400.9 
jdom 1.1 Apache-style 2 - data format 3 8422 55 5 - Production 0.19 211,638.6 
junit-addons 1.4 Apache Software 

License 
1 - software dev 1 4856 109 4 - Beta 0.45 231,488.3 

kaprekar 3.0 GNU GPL, MPL 1.1 5 - math 1 1869 33 4 - Beta 0.21 27,576.4 
mflow 0.1 GNU GPL 6 - communication 1 4172 86 3 - Alpha 0.33 157,283.6 
org.eclipse. 
core.runtime 

3.3.1.1 Eclipse Public License 1 - software dev 100 2791 98 5 - Production 0.30 239,546.9 

schemalizer 0.16 GNU LGPL 2 - data format 1 2524 29 3 - Alpha 0.17 32,826.6 
xmlwriter 2.2.2 BSD License 2 - data format 2 953 6 5 - Production 0.70 3,318.1  
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Figure 2: Polar Charts for Potential Benchmark Subjects 

Table 2: Benchmark subjects with alert counts 
Subject TP 

Alerts 
FP 

Alerts 
% TP 
Alerts 

csvobjects 3 4 42.9% 
importscrubber 11 24 31.4% 
iTrust 10 100 9.1% 
jbook 26 26 50.0% 
jdom 9 46 16.4% 
mflow 13 73 15.1% 
org.eclipse.core.runtime 8 90 8.2% 
Average 11 51 24.7%  



tools no longer identify the alert in the source code, usually due to 
a fault fix directly or indirectly associated with the alert 
description.  Alert closures also occur due to configuration 
changes and file deletions.  Alert suppression is an explicit action 
taken by the developer to indicate that an alert is a false positive.   

The evaluation of adaptive prioritization and classification 
techniques requires fixing true positive alerts. However, static 
analysis alerts are not orthogonal; several alert types are 
interrelated and a change to one may open or close another of a 
complementary type, which may affect prioritization and 
classification techniques.  An alert fix should minimize the 
number of alert opens and closures when fixing an alert.  For 
example, suppose a method opens and closes a file stream within 
a try block with an empty catch block, as shown in Figure 3.  
FINDBUGS would report two alerts: 1) 
OS_OPEN_STREAM_EXCEPTION_PATH at line 3 reporting that the file 
stream is not closed when there is an exception and 2) 
DE_MIGHT_IGNORE at line 8 reporting that the exception is 
ignored.  Fixing the alert at line 3, by closing the stream in the 
exception block, will also close the alert at line 8.  When 
evaluating the ranking, we only care about closed alerts identified 
as TP in the baseline.  If an alert identified as FP was closed as 
part of an alert fix, we do not count the alert in our metrics.  

 
Additionally, new alerts may be opened when fixing TP alerts, as 
shown in the example code in Figure 4.  FINDBUGS reports an 
ES_COMPARING_PARAMETER_STRING_WITH_EQ at line 2, meaning 
that checking the equality of a and a constant string does not use 
the .equals()  method.  If the alert at line 2 is fixed, a new alert 
of the same type is opened at line 5 for a similar problem.  When 
inspecting alerts, we ignored alerts opened as part of another fix.  
Only alerts present in the baseline were inspected and evaluated. 

3.4.3 Experimental Controls 
The OPTIMAL ordering of static analysis alerts has all TP alerts at 
the top of the alert list.  The OPTIMAL ordering is generated by a 
greedy analysis of the TP alerts.  Alerts are initially sorted 
hierarchically in the context of the subject program (e.g. by 
project, source folder, class, method, line number, alert type, and 
description), which provides a repeatable ordering for alerts.  To 

reduce potential bias, prioritization techniques should use the 
same hierarchical alert ordering to break ties when alerts share the 
same rank. Alerts are added to the OPTIMAL ordering by the 
number of TP alerts that are closed when making an alert change. 
When two alerts close the same number of TP alerts, first the 
number of FP alerts closed is a tiebreaker, followed by the 
hierarchical ordering of alerts.  At a minimum, the optimal curve 
will fix one TP alert at each inspection until all TP alerts are fixed. 

The TOOL ordering of alerts is created from the tool’s alert log 
information.  The RANDOM ordering of alerts is generated via a 
random number generator8.  Cases where more than one alert is 
closed must be considered when creating the OPTIMAL, RANDOM, 
and TOOL rankings.  The ranking of an uninspected closed alert is 
a fraction of the number of alerts closed during an inspection.  If 
there were three alerts (a, b, and c) closed at inspection 3, then the 
inspected alert (a) would have a ranking of 3, the uninspected alert 
first in the ordered listing (b) would have a ranking of 3.33 and 
other uninspected alert (c) would have a ranking of 3.66.  For an 
alert inspected prior to a closure via a tangential change (suppose 
alert b was inspected at inspection 2), the original inspection (2) is 
maintained as the rank for that alert (b). 

3.5 FAULTBENCH  Process 
We present the steps for evaluating adaptive alert prioritization 
and classification techniques with FAULTBENCH.  Non-adaptive 
alert prioritization and classification techniques would only need 
to evaluate the ranked or classified alerts without fixing or 
suppressing alerts.  For adaptive alert prioritization and 
classification techniques, the state of the alerts after each 
inspection is recorded.  The project, source folder, file, method, 
alert type, line number, and description identify an alert.  An alert 
may be in one of three states: uninspected, TP, or FP.  The 
FAULTBENCH process is as follows: 

1. Run a static analysis tool against a clean version of the 
subject program.  (If the static analysis can run 
automatically, turn on the option.) 

2. Record the original state of the alert set. 
3. Prioritize or classify the generated alerts with an alert 

prioritization or classification technique. 
4. Starting at the top of the ranked or classified list of alerts, 

inspect each alert,   
a. If the alert oracle indicates the alert is a fault, then fix 

the alert with the specified change.  If the static analysis 
tool does not run automatically, then rerun static 
analysis. 

b. If the alert oracle indicates the alert is a false positive, 
then suppress the alert. 

5. After each alert inspection, record the state of the alert set.   
6. After all alert inspections, evaluate the results via the 

evaluation metrics provided in Section 3.1.3. 

3.6 Benchmark Limitations 
The subject programs in FAULTBENCH satisfy the seven desiderata 
for benchmarks described by Sim et al. [17].  However, each of 
the subject programs is relatively small, and may not be 
representative of larger programs.  Additionally, the subject 
programs are all written in Java.  Therefore, results obtained on 
via FAULTBENCH may not be applicable to alert ranking in other 
programming languages. 

                                                                 
8 A random sequence generator may be found at http://random.org. 

1 public void load() { 
2   try { 
3     BufferedReader in = 
4       new BufferedReader(new   
5       FileReader(file)); 
6     //do something with contents 
7     in.close(); 
8   } catch (IOException e) { 
9   } 
10 }  

Figure 3: Code Example – Additional Alert Closure 

1 public void compare(String a) { 
2   if (a == “”) { 
3     //do something 
4   } 
5   if (a == “null”) { 
6     //do something else 
7   } 
8 }  

Figure 4: Code Example – Alert Opening 



4. BENCHMARK CASE STUDY 
We assess the suitability of the subjects selected for FAULTBENCH 
by evaluating three variants of the AWARE adaptive ranking model 
(ARM) static analysis alert prioritization and classification 
technique. 

4.1 AWARE Adaptive Ranking Model (ARM ) 
AWARE-ARM adaptively prioritizes and classifies static analysis 
alerts by the likelihood an alert is an indication of an important 
fault.  Alerts are ranked on the continuum, [-1,1] where: 

• A ranking in [-1,0) implies the alert is likely a false positive, 
• A ranking in (0,1] implies the alert is likely a fault, and  
• A ranking of 0 means there is not enough information to 

determine if the alert is likely a true or false positive. 
An alert population (p) is a subset of all alerts, which share a 
characteristic (e.g. alert type, code location).  Static analysis alerts 
are ranked by their characteristics, called ranking factors, that 
demonstrate some causality with the likelihood an alert is an 
indication of a fault. The alert type [5, 10] and alert location [12] 
are the ranking factors in the current version of AWARE-ARM.    
These ranking factors are discussed in Section 4.1.3. 

4.1.1 Baseline Context 
The baseline context represents information about the size of the 
alert populations relative to the total number of alerts in a subject. 
Alert populations tend to be homogeneous [5, 12], and by 
increasing the ranking of large populations, we can quickly 
categorize many alerts as TP or FP (similar to information gain in 
[12]).  The baseline context is the number of alerts in a population 
divided by the number of alerts for the project.  The formula for 
calculating the baseline context is presented in Equation 5. 

alertstotal

alerts
BC p

p #

#
=  (5) 

4.1.2 Developer Context 
The developer context represents information about what the 
developer has done to close and suppress alerts while using 
automated static analysis during development.  Alert populations 
containing more than one alert tend to be homogeneous [5, 12]. 
Therefore, we utilize the developer’s feedback about the alerts to 
predict the likelihood that other, similar alerts, are faults.  The 
development context is the difference between closed and 
suppressed alerts divided by the number of inspected alerts in the 
population as demonstrated in Equation 6. 
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4.1.3 Alert Ranking Factors 
The following subsections describe the calculations of the alert 
type accuracy (ATA) and code locality (CL) alert ranking factors.  
The coefficients to the baseline (βBC) and developer (βDC) context 
for a population have a value of 0.5 implying that the baseline and 
developer context contribute equally to an alert ranking factor. 

Alert Type Accuracy (ATA):  ATA is the likelihood an alert (a) 
is a fault based on the type of the alert (e.g. null pointer, unclosed 
stream, etc.) [10, 11].  ATA is the weighted combination of the 
baseline and developer context of the alert’s type.  The ATA 
calculation is described in Equation 7. 

( ) ( ) ( )typeDCtypeBC DCBCaATA ∗+∗= ββ  (7) 

 
Code Locality (CL): CL is the likelihood an alert (a) is a fault 
based on the location of the alert (e.g. at the source folder, class, 
or method level).  CL is the weighted combination of the baseline 
and developer context of the alert’s location.  The contribution of 
each location is calculated by normalizing the counts of non-
singleton source folder, methods, and classes from Table 2b of 
[12].  The coefficients for the contributions of the source folder, 
classes, and methods are 0.06, 0.25, and 0.69, respectively and are 
represented by the coefficients γsf, γc, and γm.  We are only 
interested in the non-singleton populations because any action 
taken on an alert can be used to predict if the other alerts in the 
population are likely to be faults [12].  Singleton populations do 
not provide any predictive data.  The calculation for CL is 
described in Equation 8. 
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4.1.4 Alert Ranking 
The overall alert ranking calculation is the combination of alert 
ranking factors divided by the number of ranking factors. Three 
versions of AWARE-ARM prioritization and classification 
techniques are presented in Table 3.   

Table 3: Experimental treatments for benchmark evaluation 
Treatment Description or Formula 
ATA ( ) ( )aATAaR =  

CL ( ) ( )aCLaR =  

ATA + CL ( ) ( ) ( )
2

aCLaATA
aR

+=  
 

4.1.5 ARM Limitations 
Similarly to [9, 10, 12], out ranking technique works best when 
the populations of interest are fine-grained (e.g. many alert types 
and locations) and homogeneous.  Further research is required to 
determine how to prioritize static analysis alerts with non-
homogeneous populations. 

4.2 Case Study Specifics 
Static analysis alerts were ranked and presented to the developer 
via the AWARE [5] Eclipse plug-in.  AWARE gathers static analysis 
alerts generated from FINDBUGS and ranks the alerts using one of 
the ranking functions presented in Table 3.  AWARE maintains alert 
closures and suppressions used to modify the ranking of the alerts.  
We used Eclipse version 3.3.1.1 for all of the benchmark subjects 
except iTrust.  For iTrust, we used the Eclipse IDE for Java EE 
Developers version 3.3.1.1.  Each version of AWARE contains one 
of the three versions of the AWARE-ARM prioritization and 
classification techniques.  Table 4 presents the AWARE version for 
each of the ranking techniques. 

Table 4: AWARE  Version for Ranking Techniques 
Ranking Technique AWARE  Version 

ATA 1.7.1.1 
CL 1.7.2.0 

ATA + CL 1.7.3.0  
 



5. CASE STUDY RESULTS 
FAULTBENCH provides data to answer the following research 
questions:  

• [Q1]: Can alert prioritization improve the rate of fault 
detection when compared to the tool’s output? 

• [Q2]: How does the rate of fault detection compare between 
alert ranking techniques? 

• [Q3]: Can alert categorization correctly predict true positive 
(TP) and false positive (FP) alerts? 

Question 1 and 2 are answered by using the area under the curve 
metric and the Spearman rank correlation, while question 3 is 
answered using the precision, recall, and accuracy metrics. 

5.1 Q1: Improving Fault Detection Rate 
We plot the cumulative percentage of faults detected against the 
number of inspections and measure the area under the curve to 
evaluate Question 1.  Figure 5 provides an example of these plots 
for the jdom subject program.  When TP alerts are fixed, the 
percentage of detected faults increases. There are plateaus in the 
ranking curve when a FP alert is suppressed at an inspection.  A 
large plateau means there were a number of suppressions.  A good 
ranking will minimize the large plateaus until most or all of the 
TP alerts have been identified. 
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Figure 5: Area Under the Fault Detection Rate Curve for jdom 
 
Table 5 presents the area under the fault detection rate curve 
metrics for each of the ranking techniques and benchmark 
subjects. The first question compares alert prioritization 
techniques to the TOOL ordering of alerts.  In the absence of 
prioritization, developers only have the static analysis tool’s 
output for investigation.  If the tool’s ordering performs well, then 
alert prioritization is not needed. However, all prioritization 
techniques except on csvobjects and iTrust  perform better 
than the tool ordering.  On average, all prioritization techniques 

have a larger area under the curve (53.94% - 72.57%) than the 
TOOL ordering (50.42%) of alerts. 

Table 6 presents the Spearman rank correlation values between 
the alert prioritization techniques and OPTIMAL. A positive 
correlation implies that the specified ranking is similar to the 
OPTIMAL ranking while a negative correlation implies that the 
specified ranking is opposite OPTIMAL.  The closer the correlation 
is to 1 or -1, the stronger the match or opposition of the specified 
ranking. Cells containing one star (*) have correlations significant 
at the 0.05 level, while cells containing two stars (**) have 
correlations significant at the 0.01 level.     

 
The TOOL experimental control ranking has a moderately strong 
correlation (e.g. correlation value > 0.600) with OPTIMAL for four 
of the subject programs.  The strong correlation is likely due to a 
similar ordering of the FP alerts, and is not necessarily an 
indication of the fault detection capabilities of the TOOL ordering. 
For example, the TOOL ordering for jdom  has a correlation of 
0.724; however, the area under the fault detection curve for TOOL 

is at least 20% less than ATA, CL, and ATA+CL as seen in Table 5. 

5.2 Q2: Comparing Prioritizations 
Table 5 presents the area under the fault detection rate curve 
metrics for each of the prioritization techniques on FAULTBENCH 
subjects. The average area under an optimal curve is 90.0%.  The 
ATA ranking is closer to OPTIMAL than CL ranking.  Additionally, 
the average ATA  area is 30% larger than CL’s average area.  
ATA+CL splits the difference between ATA ’s and CL’s ranking. 

Table 6 presents the Spearman rank correlation values between 
the alert prioritization technique and OPTIMAL.  The correlations 
between the alert prioritization techniques and OPTIMAL are 
similar to the patterns observed in the area under the curve 
measurement in Table 5.  However, the ATA correlation with 
OPTIMAL is typically stronger, indicating that ATA is the better 
prioritization technique.   

Table 5: Area under the fault detection curve for ranking techniques 

Subject Optimal Random ATA CL ATA + CL Tool 
csvobjects 78.57% 59.52% 50.00% 21.43% 30.39% 54.76% 
importscrubber 84.29% 71.82% 66.10% 40.91% 66.62% 36.23% 
iTrust 95.5% 48.91% 74.36% 68.09% 67.36% 75.09% 
jbook 78.55% 49.83% 46.26% 62.57% 74.19% 39.87% 
jdom 91.82% 71.66% 86.16% 63.54% 85.35% 46.89% 
org.eclipse.core.runtime 96.81% 68.61% 82.53% 67.09% 82.78% 49.67% 
Average 87.58% 61.73% 72.57% 53.94% 67.88% 50.42% 

Table 6: Spearman rank correlation 
 ATA CL ATA + 

CL 
TOOL 

csvobjects 0.321 -0.643 -0.393 0.607 
importscrubber 0.512** -0.026 0.238 0.203 
iTrust 0.418** 0.264** 0.261** 0.772** 
jbook 0.798** 0.389** 0.599** -0.002 
jdom 0.675** 0.288* 0.457** 0.724** 
org.eclipse. 
core.runtime 

0.395** 0.325** 0.246* 0.691** 

 



5.3 Q3: Categorizing Alerts 
Table 7 presents the average precision, recall, and accuracy 
metrics before each inspection when adaptively categorizing static 
analysis alerts.  We only consider the precision, recall, and 
accuracy metrics for uninspected alerts because we are trying to 
predict if the uninspected alerts are TPs or FPs.  A ranking greater 
than 0 is a prediction that the alert is a TP while a ranking less 
than 0 is a prediction that an alert is a FP.  We then assess the 
ranking’s classification using the alert oracle and the rank, as 
shown in Table 8. 

Table 8: Alert Classification Assessment 
 Alert Oracle Ranking 
True Positive (TPC) TP > 0 
True Negative (TNC) FP < 0 
False Positive (FPC) FP > 0 
False Negative (FNC) TP < 0  

 
If the alert falls in the TPC or TNC categories, the ranking 
correctly classified the alert as TP or FP.  As we learn more about 
the alerts from the developers, we expect the precision, recall, and 
accuracy to increase; however, the precision and recall tended to 
be 0 because after all TP alerts were identified, there was no 
longer a numerator in the precision and recall equations. The 
average accuracy is a better measure of how the classification 
techniques performed.  ATA had the best average accuracy, and 
correctly predicted if an alert is a TP or FP 76% of the time.   

5.4 Benchmark Evaluation 
FAULTBENCH contains six programs of varying sizes from several 
domains.  The programs with more than 50 static analysis alerts 
had more statistically significant results when comparing alert 
prioritizations with OPTIMAL using the Spearman rank correlation, 
than the smaller programs.  Additionally, if jbook  or iTrust 
were the only subject used to evaluate alert prioritization 
techniques the ATA+CL and TOOL rankings were the best rankings, 
respectively, when with a larger sample, ATA  was the best 
prioritization technique.  The same discrepancy applies when 
evaluating the classification accuracy of ATA+CL on 
org.eclipse.core.runtime . 

The results of the Spearman rank correlation suggest there is bias 
in the creation of the OPTIMAL order because the TOOL ordering 
has a moderately strong correlation (> 0.600) with OPTIMAL for 
four of the subject projects.  OPTIMAL defaults to an ordering of 
alerts by project, source folder, file, method, alert type, line 
number, and description in the case of a tie.  The above ordering 
is very similar to the TOOL ordering for FINDBUGS due to the use of 
the Visitor pattern [6].  There are several optimal orderings of 
alerts, and a semi-randomized ordering may have less bias to the 
FINDBUGS-TOOL ordering of alerts. 

5.5 Case Study Limitations 
We consider the three threats to the validity of our case study 
[16]: construct validity, internal validity, and external validity.  

5.5.1 Construct Validity 
Construct validity concerns our measurements. The measurements 
are straight forward and standard for ranking and classification 
analysis.  

5.5.2 Internal Validity 
Internal validity concerns the causal relationship between the 
dependent and independent variables.  The main concern is with 
the tooling. In AWARE, possible inconsistencies in our 
measurements could occur when comparing the static analysis 
alerts due to line and source code changes during fault fix.  We 
consider static analysis alerts to be the same if they share several 
characteristics including the line number and a hash of the source 
line. The source hash can change via refactoring and the line 
number can change through addition or deletion of surrounding 
code.  If both of these characteristics change, we can no longer 
track the alert.  When fixing alerts in the case study, only one of 
the two characteristics was modified in the source change for 
surrounding alerts.  An additional complication is duplicate alerts.  
An alert is a duplicate when there are two alerts of the same type 
on the same line of code.  The alert display combines the alerts 
into one listing.  Therefore, suppression of the listing, leads to 
suppression of both alerts.  Additional internal validity concerns 
come from the program used to analyze the inspection records. 
The alert comparison problems described above apply to the 
analysis program. 

5.5.3 External Validity 
External validity concerns how we can generalize our results.  
Using FAULTBENCH mitigates some of the concerns about 
generalizing the prioritization and classification results due to the 
varying domains of the subject programs and a larger sample size.  
Additionally, each of the subject programs is an open source 
application with real faults. However, the programs are relatively 
small, and there are concerns about scale.   

6. CONCLUSIONS AND FUTURE WORK 
The literature in the realm of static analysis alert prioritization and 
classification is moving towards a definition of how to conduct 
static analysis alert prioritization research [9, 10, 12, 14, 20, 22].  
We present FAULTBENCH to supplement the current benchmarks in 
other languages (e.g. BUGBENCH [14]) and larger Java benchmarks 
in specific sub-domains (e.g. CHORD subjects [15] for race 
detection). FAULTBENCH is available for use and critique at 
http://agile.csc.ncsu.edu/faultbench. 

Table 7: Average precision, recall, and accuracy metrics of un-inspected alerts at before each inspection 

Subject Average Precision Average Recall Average Accuracy 
 ATA  CL  ATA +CL  ATA  CL  ATA +CL  ATA  CL  ATA +CL  
csvobjects 0.32 0.50 0.39 .038 .048 0.38 0.58 0.34 0.46 
import-scrubber 0.34 0.20 0.18 0.24 0.28 0.45 0.62 0.43 0.56 
iTrust 0.05 0.02 0.05 0.16 0.15 0.07 0.97 0.84 0.91 
jbook 0.22 0.27 0.23 0.65 0.48 0.61 0.68 0.62 0.66 
jdom 0.06 0.09 0.06 0.31 0.07 0.29 0.88 0.86 0.88 
org.eclipse.core.runtime 0.05 0.04 0.03 0.17 0.05 0.11 0.92 0.94 0.95 
Average 0.17 0.19 0.16 0.42 0.25 0.32 0.76 0.67 0.74  



We evaluated three alert prioritization techniques against the six 
subjects in FAULTBENCH. Evaluation of the prioritization 
techniques against individual benchmark subjects produced 
varying results. On jbook  the ATA+CL prioritization had a larger 
area under the fault detection curve; however, ATA prioritization 
had a higher rate of fault detection on average.  In addition, the 
TOOL ordering performed better than the alert prioritization 
techniques for csvobjects .  Individually, the benchmark 
subjects provide varying results, but together, a larger sample of 
subject programs provides a better understanding of how alert 
prioritization and classification techniques work and increase the 
generalization of experimental conclusions.    

We present FAULTBENCH to foster collaboration and 
communication within the static analysis alert ranking 
community.  We will continue to evolve the benchmark.  
Additionally, we will continue to investigate static analysis alert 
ranking techniques, by analyzing the contributions of the ranking 
factors via FAULTBENCH, and modifying the ranking calculations 
accordingly. 
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