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Abstract 
 

To formally and precisely capture the security 
properties that access control should adhere to, access 
control models are usually written, bridging the rather 
wide gap in abstraction between policies and 
mechanisms. In this paper, we propose a new general 
approach for property verification for access control 
models via model checking.  The approach defines a 
standardized structure for access control models, 
providing for both property verification and automated 
generation of test cases.  The approach expresses 
access control models in the specification language of 
a model checker and expresses generic access control 
properties in the property language. Then the 
approach exploits the model checker to verify these 
properties for the access control models and generate 
test cases for the system implementations of the 
models. 
 
1. Introduction 

Access control systems are among the most critical 
of network security components. It is common that a 
system’s privacy and security are compromised due to 
the misconfiguration of access control policies instead 
of the failure of cryptographic primitives or protocols. 
This problem becomes increasingly severe as software 
systems become more and more complex, and are 
deployed to manage a large amount of sensitive 
information and resources that are organized into 
sophisticated structures. Identifying discrepancies 
between policy specifications and their intended 
function is crucial because correct implementation and 
enforcement of policies by applications is based on the 
premise that the policy specifications are correct. As a 
result, policy specifications must undergo rigorous 
verification and validation to ensure that the policy 
specifications truly encapsulate the desires of the 
policy authors.  

To formally and precisely capture the security 
properties that access control should adhere to, access 
control models are usually written, bridging the rather 
wide gap in abstraction between policies and 
mechanisms: users see access control models as an 
unambiguous and precise expression of requirements; 

vendors and system developers see access control 
models as design and implementation requirements.  

In this paper, we propose a new general approach to 
property verification for access control models via 
model checking. The approach first expresses access 
control models in the specification language of a 
model checker and expresses generic access control 
properties in temporal logic formulas. Then the 
approach exploits the model checker to verify these 
properties for the access control models and generate 
test cases to check the conformance of the models and 
their implementations. 

 
2. Approach 

Our approach expresses access control models in 
the specification language of a model checker (Section 
2.1), expresses generic access control properties in 
temporal logic formula, and verifies these properties 
with the model checker (Section 2.2). Test cases, 
consisting of input data and expected results, are 
generated following verification (Section 2.3).  One 
goal of the techniques in our approach is to reduce 
overall software assurance costs by integrating 
verification with test generation.  
 
2.1. Model Specification 
     Our approach specifies access control models with 
Finite State Machines (FSMs), which range from 
completely synchronous to completely asynchronous 
ones, and from detailed to abstract ones. The only data 
types in the specification are finite– booleans, scalars, 
fixed arrays, and static data types that can be 
constructed [1]. The specified model in an FSM 
describes the transition states of the FSM. In general, 
any expression in the propositional calculus can be 
used to define the transition relation of states; 
however, the flexibility of the expression is 
accompanied by the risk of a logical contradiction, 
which makes specifications vacuously true or makes 
the system unimplementable. Fundamentally, there are 
three basic types of FSM expressions for specifying 
access control models in terms of the sequence of the 
state transitions: 
Synchronous. An access control model is expressed 
by defining the value of access control constraints in 



the next state (i.e., after each transition), given the 
value of constraints in the current states (i.e., before 
transition). 
Asynchronous. An access control model is expressed 
by a collection of concurrency states. This type of 
model is for access control systems whose 
authorization decisions are triggered from more than 
one clock region such as mutual exclusion, 
communication protocols, and asynchronous circuits. 
Direct specification. An access control model is 
specified directly in terms of propositional formulas. 
The set of possible initial states is specified as a 
formula in the current state variables. A state is initial 
if it satisfies the formula. The transition relation is 
directly specified as a propositional formula in terms 
of the current and next values of the state variable. 
Any current state/next state pair is in the transition 
relation if and only if it satisfies the formula.  
 
2.2. Property Specification and Verification 

From the separation of duty and safety point of 
view, the state transitions of access control properties 
can be categorized by three types of constraints, 
namely static, dynamic, and historical constraints. We 
next illustrate how these constraints (together with 
their models) can be specified and verified by our 
approach. 
 
2.2.1. Static Constraints. Static constraints regulate 
the access permission by static system states or 
conditions such as rules, attributes, and system 
environments (time and locations for access). Popular 
access control models with these types of properties 
include Role-Based Access Control (RBAC) [2] and 
Multi-level access control [3]. These types of models 
can be specified by asynchronous or direct 
specification expressions of an FSM. The transition 
relation of authorization states is directly specified as a 
propositional formula in terms of the current and next 
values of the state variables. Any current state/next 
state pair is in the transition relation if and only if it 
satisfies the formula, as demonstrated in the following 
direct specification of an FSM: 
{ 
    VARIABLES 
         access_state : boolean;  /* 1 as grant, 0 as deny*/ 
        ………. 
     INITIAL  
        access_state  = 0; 
     TRANS /* transit to next access state */ 
        next (access_state) = 
         ( (constraint_1 & constraint_2 & …… constraint_n) | 
         (constraint_a & constraint_b & …… constraint_m) ……..) 
} 
where the system state of access authorization is 
initialized as the deny state and moved to the grant state 

for any access request that complies with the 
constraints of the rule corresponding with each 
constraint predicate (i.e., constraint_i….& 
constraint_n), and stay in the deny state otherwise. The 
properties of the static constraints can be verified by 
verifying the properties expressed in the following 
temporal logic formula: 
AG (constraint_1 & constraint_2 & …. constraint_n)    
AX (access_state = 1) 
AG (constraint_a & constraint_b & …. constraint_m)   
AX (access_state = 1) …… 
AG ! ( (constraint_1 & ….constraint_n) | (constraint_a & …. 
constraint_m) |… )   AX (access_state = 0) 
which simply means that all access requests that 
comply with specified constraints for the rules should 
be granted for access, and all non-complied ones 
should be denied.  
 
2.2.2. Dynamic Constraints. Dynamic constraints 
regulate the access permission by dynamic system 
states or conditions such as specified events or system 
counters. An access control model with these types of 
properties specifies that accesses are permitted only by 
a certain subject to a certain object with certain 
limitations (e.g., object x can be accessed only no more 
than i times simultaneously by user group y). For 
example, if a user’s role is a cashier, he or she cannot 
be an accountant at the same time when handling a 
customer’s checks. This type of model can be specified 
with asynchronous or direct specification 
expressions of an FSM, which use a variable 
semaphore to express the dynamic properties of the 
authorization decision process. Another example of 
dynamic constraint states is enforcing a limited number 
of concurrent accesses to an object. The authorization 
process for a user thus has four states: idle, entering, 
critical, and exiting. A user is normally in the idle state. 
The user is moved to the entering state when the user 
wants to access the critical object. If the limited 
number of access times is not reached, the user is 
moved to the critical state, and the number of the 
current access is increased by 1. When the user 
finishes accessing the critical object, the user is moved 
to the exiting state, and the number of the current 
access is decreased by 1. Then the user is moved from 
the exiting state to the idle state. The authorization 
process can be modeled as the following 
asynchronous FSM specification: 
{ 
   VARIABLES      
        count, access_limit : INTEGER;  
        request_1 : process_request (access_limit);  
        request_2 : process_request (access_limit); 
        ……. 
        request_n: process_request (access_limit);  
  /*max number of user requests allowed by the system*/ 
        access_limit := k; 
        count := 0; 



    process_request  (access_limit) { 
         VARIABLES 
            permission : {start, grant, deny}; 
              state : {idle, entering, critical, exiting};        
          INITIAL_STATE (permission) = start; 
          INITIAL_STATE (state) := idle; 
          NEXT_STATE (state) := CASE { 
                 state == idle : {idle, entering}; 
                 state == entering & ! (count > access_limit) : 
                                                                                 critical; 
                 state == critical : {critical, exiting}; 
                 state == exiting : idle; 
                 OTHERWISE: state; }; 
          NEXT_STATE (access_limit) := CASE { 
              state == entering : access_limit + 1; 
                state == exiting : access_limit -1; 
               OTHERWISE: DO_NOTHING;         }; 
          NEXT_STATE  (permission) = CASE { 
                state == entering: grant;                                        
                OTHERWISE: deny; } 
      } 
} 
The state variables of the preceding example are used 
as the asynchronous states for the concurrent access of 
the limited number of access request. The specification 
of the dynamic constraints is verified by verifying the 
following properties expressed in temporal logic 
formula: 
AG ! (state == entering | state == idle | state == critical | state == 
exiting))  G (access = grant) 
AG (state == idle | state == critical | state == exiting)  
G (access = deny) 
where temporal logic formula AG (p  G q) indicates 
that “if condition p is true at time t, condition q is 
true at all times later than t. 
 
2.2.3. Historical Constraints. Historical constraints 
regulate the access permission by historical access 
states or recorded and predefined series of events. The 
representative access control policies for this type of 
access control models are N-person [4], Chinese Wall 
[5], and Workflow [6] access control policies. This 
type of models can be best described by synchronous 
or direct specification expressions of an FSM. For 
example, the following synchronous FSM 
specification specifies a Chinese Wall access control 
model where there are two Conflict of Interested group 
of objects:  
{ 

  VARIABLES  
       access {grant, deny}; 
       act {rd, wrt}; 
       object {none, COI1, COI2}; 
       state {1, 2, 3} 

       INITIAL_STATE(state) := 1; 
       INITIAL_STATE(object) := none; 
       NEXT_STATE(state) := CASE { 
            state == 1 & act == rd & object == COI1: 2;  
            state == 1 & act == rd & object == COI2: 3; 
            state == 2 & act == rd & object == COI1: 2; 
            state == 2 & act == rd & object == COI2: 2; 
            state == 3 & act == rd & object == COI1: 3; 
            state == 3 & act == rd & object == COI1: 3; 
            OTHERWISE: 1; }; 
     NEXT_STATE(access) := CASE { 
             state == 2 & act == rd & object == COI1: grant; 
             state == 3 & act == rd & object == COI2: grant; 

             OTHERWISE: deny; }; 
        NEXT_STATE (act) = act; 
        NEXT_STATE (object) = object; 
}  
 
 
The properties of the dynamic constraints can be 
verified by verifying the following temporal logic 
formula: 
AG ((state == 2 & act == rd & object == COI1) | (state == 3 & act == 
rd & object == COI2))  AX (access = grant) 
AG ! ((state == 2 & act == rd & object == COI1) | (state == 3 & act == 
rd & object == COI2))  AX (access = deny) 
 
2.3. Test Generation 

In addition to supporting property verification, the 
model checking technique was adopted because it fits 
well with a variety of test generation techniques, such 
as fault-based mutation testing [7] and combinatorial 
testing [8].  Mutation testing allows us to test for the 
presence of hypothesized faults, or faults that they 
subsume, and combinatorial testing makes it possible 
to rule out complex interactions that may lead to 
failures.  As testing must always be conducted once a 
policy is implemented to assure correct 
implementation, automated generation of test cases can 
reduce total costs, thus making formal specification 
easier to integrate into the development process.  
Model checking is ideal for this integration because it 
can solve the oracle problem for testing (determining 
expected results for a particular set of test input data), 
in addition to formal verification of properties.  A case 
study of this technique for software is given in [9]. 

Even with highly automated tools such as model 
checkers, real-world development budgets rarely allow 
the development and exploration of formal models, 
because the cost must be balanced against the cost of 
releasing code with errors that would not be caught in 
testing.  But testing typically consumes 50% or more 
of a development budget.  Generating test cases from 
formal specifications makes it cost-effective to allocate 
a portion of the testing budget to produce a formal 
specification, which can then be used to confirm 
desired properties and generate test cases.  

To produce test cases that guarantee combinatorial 
coverage to an interaction level t, we produce a t-way 
covering array for input parameters used in the policy.  
Informally, a covering array can be viewed as a table 
of input data where each column is an input parameter 
and values in each column are parameter values, so 
that each row represents a test.  All possible t-way 
combinations of parameter values are guaranteed to be 
covered at least once. If t = 2, this procedure results in 
the familiar “pairwise” testing, but using new 
algorithms [10], we are able to produce covering 
arrays up to strength t = 6.   



Two specification claims are generated for each 
covering array row, one for result grant, and one for 
result deny.   Values vij are taken from row i, column j 
of the covering array, for all rows.    
AG (p1 = v11 & ... & pn = vn1)   AX  !(access_state = grant) …… 
AG (p1 = v12 & ... & pn = vn2)  AX  !(access_state = grant)…… 
AG (p1 = v11 & ... & pn = vn1)  AX  !(access_state = deny)…… 

For a covering array with n rows, a total of 2n 
specification claims will thus be produced, one grant 
and one deny for each row of the covering array. In the 
claims, possible results grant or deny are negated. For 
each claim, if this set of values cannot in fact lead to 
the particular result, the model checker indicates that 
this is true.  If the claim is false, the model checker 
indicates so and provides a counterexample with a 
trace of parameter input values and states that will 
prove it to be false. The model checker thus filters the 
claims that we have produced so that a total of n test 
inputs is generated.  In effect, each one is a test case, 
i.e., a set of input parameter values and expected 
result.  It is then simple to map these values into test 
cases in the syntax needed for the system under test.  
When interaction testing is done today, t is nearly 
always 2 (i.e., pairwise testing), because higher 
strength interactions require exponentially more test 
cases.  Thus higher strength interaction testing requires 
fully automated generation of test input data and 
expected results, which is made possible through 
model checking. 

This technique makes it possible to produce two 
complementary types of test cases. In addition to 
combinatorial test cases, fault-based testing can be 
automated. By inserting particular faults in the 
specification, then generating counterexamples using 
the model checker, we can produce test cases that will 
detect these faults or faults that are subsumed by them.   
 

3. Related Work 
 There exist several verification techniques for 

applying model checking on access control policies but 
few general verification techniques for applying model 
checking on access control models and generating test 
cases as our proposed approach. Zhang et al. [11] 
models rule-based policies in their RW language based 
on propositional logic and conduct model checking on 
the policies. Kikuchi et al. [12] model both an application 
system and its policy with the input language of an 
explicit state model checker and conduct model checking. 
Schaad et al. [13] use NuSMV to verify RBAC policies 
for workflows against properties of separation of duties. 
Different from these existing approaches, our proposed 
approach is targeted at access control models and their 
generic properties, and is more general and applicable in a 
larger scope of models and properties. In addition, our 

approach provides test generation besides property 
verification. 

 
4. Conclusion 

To verify properties for access control models, we 
propose a new general approach that expresses access 
control models in the specification language of a 
model checker and generic access control properties in 
its property language as temporal logic formula. Then 
the approach exploits the verification process of the 
model checker to verify the specified models against 
the specified properties. Our approach is able to 
support the verification of three common types of 
generic access control properties: static, dynamic, and 
historical constraints. In addition, the approach also 
supports automated generation of test cases to check 
the conformance of the models and their 
implementations.  
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