
Property Verification for Access Control Models via Model Checking1

Vincent C. Hu1, D. Richard Kuhn1, Tao Xie2
1Institute of Standards and Technology, 2Noth Carolina State University

vhu@nist.gov, kuhn@nist.gov, xie@csc.ncsu.edu

1 This work is supported in part by NSF grant CNS-0716579.

Abstract

To formally and precisely capture the security
properties that access control should adhere to, access
control models are usually written, bridging the rather
wide gap in abstraction between policies and
mechanisms. In this paper, we propose a new general
approach for property verification for access control
models via model checking. The approach defines a
standardized structure for access control models,
providing for both property verification and automated
generation of test cases. The approach expresses
access control models in the specification language of
a model checker and expresses generic access control
properties in the property language. Then the
approach exploits the model checker to verify these
properties for the access control models and generate
test cases for the system implementations of the
models.

1. Introduction

Access control systems are among the most critical
of network security components. It is common that a
system’s privacy and security are compromised due to
the misconfiguration of access control policies instead
of the failure of cryptographic primitives or protocols.
This problem becomes increasingly severe as software
systems become more and more complex, and are
deployed to manage a large amount of sensitive
information and resources that are organized into
sophisticated structures. Identifying discrepancies
between policy specifications and their intended
function is crucial because correct implementation and
enforcement of policies by applications is based on the
premise that the policy specifications are correct. As a
result, policy specifications must undergo rigorous
verification and validation to ensure that the policy
specifications truly encapsulate the desires of the
policy authors.

To formally and precisely capture the security
properties that access control should adhere to, access
control models are usually written, bridging the rather
wide gap in abstraction between policies and
mechanisms: users see access control models as an
unambiguous and precise expression of requirements;

vendors and system developers see access control
models as design and implementation requirements.

In this paper, we propose a new general approach to
property verification for access control models via
model checking. The approach first expresses access
control models in the specification language of a
model checker and expresses generic access control
properties in temporal logic formulas. Then the
approach exploits the model checker to verify these
properties for the access control models and generate
test cases to check the conformance of the models and
their implementations.

2. Approach

Our approach expresses access control models in
the specification language of a model checker (Section
2.1), expresses generic access control properties in
temporal logic formula, and verifies these properties
with the model checker (Section 2.2). Test cases,
consisting of input data and expected results, are
generated following verification (Section 2.3). One
goal of the techniques in our approach is to reduce
overall software assurance costs by integrating
verification with test generation.

2.1. Model Specification
 Our approach specifies access control models with
Finite State Machines (FSMs), which range from
completely synchronous to completely asynchronous
ones, and from detailed to abstract ones. The only data
types in the specification are finite– booleans, scalars,
fixed arrays, and static data types that can be
constructed [1]. The specified model in an FSM
describes the transition states of the FSM. In general,
any expression in the propositional calculus can be
used to define the transition relation of states;
however, the flexibility of the expression is
accompanied by the risk of a logical contradiction,
which makes specifications vacuously true or makes
the system unimplementable. Fundamentally, there are
three basic types of FSM expressions for specifying
access control models in terms of the sequence of the
state transitions:
Synchronous. An access control model is expressed
by defining the value of access control constraints in

the next state (i.e., after each transition), given the
value of constraints in the current states (i.e., before
transition).
Asynchronous. An access control model is expressed
by a collection of concurrency states. This type of
model is for access control systems whose
authorization decisions are triggered from more than
one clock region such as mutual exclusion,
communication protocols, and asynchronous circuits.
Direct specification. An access control model is
specified directly in terms of propositional formulas.
The set of possible initial states is specified as a
formula in the current state variables. A state is initial
if it satisfies the formula. The transition relation is
directly specified as a propositional formula in terms
of the current and next values of the state variable.
Any current state/next state pair is in the transition
relation if and only if it satisfies the formula.

2.2. Property Specification and Verification

From the separation of duty and safety point of
view, the state transitions of access control properties
can be categorized by three types of constraints,
namely static, dynamic, and historical constraints. We
next illustrate how these constraints (together with
their models) can be specified and verified by our
approach.

2.2.1. Static Constraints. Static constraints regulate
the access permission by static system states or
conditions such as rules, attributes, and system
environments (time and locations for access). Popular
access control models with these types of properties
include Role-Based Access Control (RBAC) [2] and
Multi-level access control [3]. These types of models
can be specified by asynchronous or direct
specification expressions of an FSM. The transition
relation of authorization states is directly specified as a
propositional formula in terms of the current and next
values of the state variables. Any current state/next
state pair is in the transition relation if and only if it
satisfies the formula, as demonstrated in the following
direct specification of an FSM:
{
 VARIABLES
 access_state : boolean; /* 1 as grant, 0 as deny*/
 ……….
 INITIAL
 access_state = 0;
 TRANS /* transit to next access state */
 next (access_state) =
 ((constraint_1 & constraint_2 & …… constraint_n) |
 (constraint_a & constraint_b & …… constraint_m) ……..)
}
where the system state of access authorization is
initialized as the deny state and moved to the grant state

for any access request that complies with the
constraints of the rule corresponding with each
constraint predicate (i.e., constraint_i….&
constraint_n), and stay in the deny state otherwise. The
properties of the static constraints can be verified by
verifying the properties expressed in the following
temporal logic formula:
AG (constraint_1 & constraint_2 & …. constraint_n)
AX (access_state = 1)
AG (constraint_a & constraint_b & …. constraint_m)
AX (access_state = 1) ……
AG ! ((constraint_1 & ….constraint_n) | (constraint_a & ….
constraint_m) |…) AX (access_state = 0)
which simply means that all access requests that
comply with specified constraints for the rules should
be granted for access, and all non-complied ones
should be denied.

2.2.2. Dynamic Constraints. Dynamic constraints
regulate the access permission by dynamic system
states or conditions such as specified events or system
counters. An access control model with these types of
properties specifies that accesses are permitted only by
a certain subject to a certain object with certain
limitations (e.g., object x can be accessed only no more
than i times simultaneously by user group y). For
example, if a user’s role is a cashier, he or she cannot
be an accountant at the same time when handling a
customer’s checks. This type of model can be specified
with asynchronous or direct specification
expressions of an FSM, which use a variable
semaphore to express the dynamic properties of the
authorization decision process. Another example of
dynamic constraint states is enforcing a limited number
of concurrent accesses to an object. The authorization
process for a user thus has four states: idle, entering,
critical, and exiting. A user is normally in the idle state.
The user is moved to the entering state when the user
wants to access the critical object. If the limited
number of access times is not reached, the user is
moved to the critical state, and the number of the
current access is increased by 1. When the user
finishes accessing the critical object, the user is moved
to the exiting state, and the number of the current
access is decreased by 1. Then the user is moved from
the exiting state to the idle state. The authorization
process can be modeled as the following
asynchronous FSM specification:
{
 VARIABLES
 count, access_limit : INTEGER;
 request_1 : process_request (access_limit);
 request_2 : process_request (access_limit);
 …….
 request_n: process_request (access_limit);
 /*max number of user requests allowed by the system*/
 access_limit := k;
 count := 0;

 process_request (access_limit) {
 VARIABLES
 permission : {start, grant, deny};
 state : {idle, entering, critical, exiting};
 INITIAL_STATE (permission) = start;
 INITIAL_STATE (state) := idle;
 NEXT_STATE (state) := CASE {
 state == idle : {idle, entering};
 state == entering & ! (count > access_limit) :
 critical;
 state == critical : {critical, exiting};
 state == exiting : idle;
 OTHERWISE: state; };
 NEXT_STATE (access_limit) := CASE {
 state == entering : access_limit + 1;
 state == exiting : access_limit -1;
 OTHERWISE: DO_NOTHING; };
 NEXT_STATE (permission) = CASE {
 state == entering: grant;
 OTHERWISE: deny; }
 }
}
The state variables of the preceding example are used
as the asynchronous states for the concurrent access of
the limited number of access request. The specification
of the dynamic constraints is verified by verifying the
following properties expressed in temporal logic
formula:
AG ! (state == entering | state == idle | state == critical | state ==
exiting)) G (access = grant)
AG (state == idle | state == critical | state == exiting)
G (access = deny)
where temporal logic formula AG (p G q) indicates
that “if condition p is true at time t, condition q is
true at all times later than t.

2.2.3. Historical Constraints. Historical constraints
regulate the access permission by historical access
states or recorded and predefined series of events. The
representative access control policies for this type of
access control models are N-person [4], Chinese Wall
[5], and Workflow [6] access control policies. This
type of models can be best described by synchronous
or direct specification expressions of an FSM. For
example, the following synchronous FSM
specification specifies a Chinese Wall access control
model where there are two Conflict of Interested group
of objects:
{

 VARIABLES
 access {grant, deny};
 act {rd, wrt};
 object {none, COI1, COI2};
 state {1, 2, 3}

 INITIAL_STATE(state) := 1;
 INITIAL_STATE(object) := none;
 NEXT_STATE(state) := CASE {
 state == 1 & act == rd & object == COI1: 2;
 state == 1 & act == rd & object == COI2: 3;
 state == 2 & act == rd & object == COI1: 2;
 state == 2 & act == rd & object == COI2: 2;
 state == 3 & act == rd & object == COI1: 3;
 state == 3 & act == rd & object == COI1: 3;
 OTHERWISE: 1; };
 NEXT_STATE(access) := CASE {
 state == 2 & act == rd & object == COI1: grant;
 state == 3 & act == rd & object == COI2: grant;

 OTHERWISE: deny; };
 NEXT_STATE (act) = act;
 NEXT_STATE (object) = object;
}

The properties of the dynamic constraints can be
verified by verifying the following temporal logic
formula:
AG ((state == 2 & act == rd & object == COI1) | (state == 3 & act ==
rd & object == COI2)) AX (access = grant)
AG ! ((state == 2 & act == rd & object == COI1) | (state == 3 & act ==
rd & object == COI2)) AX (access = deny)

2.3. Test Generation

In addition to supporting property verification, the
model checking technique was adopted because it fits
well with a variety of test generation techniques, such
as fault-based mutation testing [7] and combinatorial
testing [8]. Mutation testing allows us to test for the
presence of hypothesized faults, or faults that they
subsume, and combinatorial testing makes it possible
to rule out complex interactions that may lead to
failures. As testing must always be conducted once a
policy is implemented to assure correct
implementation, automated generation of test cases can
reduce total costs, thus making formal specification
easier to integrate into the development process.
Model checking is ideal for this integration because it
can solve the oracle problem for testing (determining
expected results for a particular set of test input data),
in addition to formal verification of properties. A case
study of this technique for software is given in [9].

Even with highly automated tools such as model
checkers, real-world development budgets rarely allow
the development and exploration of formal models,
because the cost must be balanced against the cost of
releasing code with errors that would not be caught in
testing. But testing typically consumes 50% or more
of a development budget. Generating test cases from
formal specifications makes it cost-effective to allocate
a portion of the testing budget to produce a formal
specification, which can then be used to confirm
desired properties and generate test cases.

To produce test cases that guarantee combinatorial
coverage to an interaction level t, we produce a t-way
covering array for input parameters used in the policy.
Informally, a covering array can be viewed as a table
of input data where each column is an input parameter
and values in each column are parameter values, so
that each row represents a test. All possible t-way
combinations of parameter values are guaranteed to be
covered at least once. If t = 2, this procedure results in
the familiar “pairwise” testing, but using new
algorithms [10], we are able to produce covering
arrays up to strength t = 6.

Two specification claims are generated for each
covering array row, one for result grant, and one for
result deny. Values vij are taken from row i, column j
of the covering array, for all rows.
AG (p1 = v11 & ... & pn = vn1) AX !(access_state = grant) ……
AG (p1 = v12 & ... & pn = vn2) AX !(access_state = grant)……
AG (p1 = v11 & ... & pn = vn1) AX !(access_state = deny)……

For a covering array with n rows, a total of 2n
specification claims will thus be produced, one grant
and one deny for each row of the covering array. In the
claims, possible results grant or deny are negated. For
each claim, if this set of values cannot in fact lead to
the particular result, the model checker indicates that
this is true. If the claim is false, the model checker
indicates so and provides a counterexample with a
trace of parameter input values and states that will
prove it to be false. The model checker thus filters the
claims that we have produced so that a total of n test
inputs is generated. In effect, each one is a test case,
i.e., a set of input parameter values and expected
result. It is then simple to map these values into test
cases in the syntax needed for the system under test.
When interaction testing is done today, t is nearly
always 2 (i.e., pairwise testing), because higher
strength interactions require exponentially more test
cases. Thus higher strength interaction testing requires
fully automated generation of test input data and
expected results, which is made possible through
model checking.

This technique makes it possible to produce two
complementary types of test cases. In addition to
combinatorial test cases, fault-based testing can be
automated. By inserting particular faults in the
specification, then generating counterexamples using
the model checker, we can produce test cases that will
detect these faults or faults that are subsumed by them.

3. Related Work
 There exist several verification techniques for

applying model checking on access control policies but
few general verification techniques for applying model
checking on access control models and generating test
cases as our proposed approach. Zhang et al. [11]
models rule-based policies in their RW language based
on propositional logic and conduct model checking on
the policies. Kikuchi et al. [12] model both an application
system and its policy with the input language of an
explicit state model checker and conduct model checking.
Schaad et al. [13] use NuSMV to verify RBAC policies
for workflows against properties of separation of duties.
Different from these existing approaches, our proposed
approach is targeted at access control models and their
generic properties, and is more general and applicable in a
larger scope of models and properties. In addition, our

approach provides test generation besides property
verification.

4. Conclusion

To verify properties for access control models, we
propose a new general approach that expresses access
control models in the specification language of a
model checker and generic access control properties in
its property language as temporal logic formula. Then
the approach exploits the verification process of the
model checker to verify the specified models against
the specified properties. Our approach is able to
support the verification of three common types of
generic access control properties: static, dynamic, and
historical constraints. In addition, the approach also
supports automated generation of test cases to check
the conformance of the models and their
implementations.

References
[1] NuSMV: a new symbolic model checker. http://nusmv.irst.itc.it/
[2] D. Ferraiolo and R. Kuhn. Role based access control. In Proc.
15th NIST-NCSC National Computer Security Conference, pp. 554–
563, 1992.
[3] D. E. Bell and L. J. LaPadula. Secure computer systems:
Mathematical foundations, 1973. MITRE Corporation.
[4] National Computer Security Center. Integrity in Automated
information System. Technical Report 79-91, Library No. S237,254,
Sept. 1991.
[5] D. F. C. Brewer and M. J. Nash. The Chinese wall security
policy. In Proc. IEEE Symposium on Security and Privacy, pp. 206–
214, 1989.
[6] Workflow Management Coalition. Workflow Management
Coalition Terminology & Glossary. http://www.wfmc.org/
Documentation number WFMC-TC-1011, February 1999.
[7] P. Ammann and P.E. Black. Abstracting Formal Specifications to
Generate Software Tests via Model Checking. In Proc. Digital
Avionics Systems Conference, pp. 10.A.6-1 - 10.A.6-10, 1999.
[8] D.R. Kuhn, D.R. Wallace, and A.J. Gallo, Jr. Software Fault
Interactions and Implications for Software Testing. IEEE Trans. on
Software Engineering, Vol. 30, No. 6, June 2004.
[9] D. R. Kuhn, V. Okun. Pseudo-exhaustive Testing For Software,
In Proc. 30th NASA/IEEE Software Engineering Workshop, April
25-27, 2006.
[10] Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, and J. Lawrence.
IPOG/IPOG-D: Efficient Test Generation for Multi-Way
Combinatorial Testing, Software Testing, Verification, and
Reliability. To appear.
[11] N. Zhang, M. D. Ryan, and D. Guelev. Evaluating Access
Control Policies Through Model Checking. In Proc. Information
Security Conference, pp. 446-460, 2005.
[12] S. Kikuchi, S. Tsuchiya, M. Adachi, and T. Katsuyama. Policy
Verification and Validation Framework Based on Model Checking
Approach. In Proc. International Conference on Autonomic
Computing, pp. 1-9, 2007.
[13] A. Schaad, V. Lotz, and K. Sohr. A model-checking approach to
analysing organisational controls in a loan origination process. In
Proc ACM Symposium on Access Control Models and Technologies,
pp. 139-149, 2006.

