
Automated Test Generation for Access Control Policies

via Change-Impact Analysis

Evan Martin

North Carolina State University

Raleigh, NC, USA

eemartin@ncsu.edu

Tao Xie

North Carolina State University

Raleigh, NC, USA

xie@csc.ncsu.edu

Abstract

Access control policies are increasingly written in speci-

fication languages such as XACML. To increase confidence

in the correctness of specified policies, policy developers

can conduct policy testing with some typical test inputs (in

the form of requests) and check test outputs (in the form of

responses) against expected ones. Unfortunately, manual

test generation is tedious and manually generated tests are

often not sufficient to exercise various policy behaviors. In

this paper we present a novel framework and its support-

ing tool called Cirg that generates tests based on change-

impact analysis. Our experimental results show that Cirg

can effectively generate tests to achieve high structural cov-

erage of policies and outperforms random test generation in

terms of structural coverage and fault-detection capability.

1. Introduction

Access control mechanisms control which principals

such as users and processes have access to which resources

in a system. To facilitate managing access control, policy

languages such as XACML [1] and Ponder [7] have been

increasingly used to specify access control policies for a

system. After policies are specified, a software component

called a Policy Decision Point (PDP) evaluates a request

against specified access control policies, and returns a re-

sponse that either permits or denies the request based on the

policies. Assuring the correctness of policy specifications is

becoming an important and yet challenging task, especially

as software systems become larger and more complex, and

are deployed to manage a large amount of sensitive infor-

mation and resources.

Software testing aims at efficiently detecting errors in

software through dynamic execution. Errors in policy spec-

ifications may also be discovered by leveraging existing

techniques for software testing and applying them to pol-

icy testing. In policy testing, test inputs are access requests

and test outputs are access responses. The execution of test

inputs occurs as requests are evaluated by the PDP against

the access control policies under test. Policy authors can in-

spect request-response pairs to check whether they are ex-

pected. Access control policies are often tested with man-

ually defined access requests so that policy authors may

check the PDP’s responses against expected ones. Because

it is tedious for developers to manually generate test inputs

for policies and manually generated tests are often not suf-

ficient for achieving high policy structural coverage, in this

paper we present a novel framework that automatically gen-

erates tests for access control policies by leveraging change-

impact analysis. We have implemented the framework in a

tool called Cirg (Change-Impact Request Generation) and

evaluated it on policies collected from various sources, most

of which are complex policies being used in real systems.

Our experimental results show that Cirg can effectively gen-

erate tests to achieve higher policy structural coverage and

higher fault-detection capability than our random test gen-

eration tool.

2. Framework

To automatically generate high-quality test suites for ac-

cess control policies, we develop a novel framework based

on change-impact analysis. Figure 1 shows the overview

of the framework. The framework receives a set of policies

under test and outputs a set of tests (in the form of request-

response pairs) for policy authors to inspect for correctness.

The framework consists of four major components: version

synthesis, change-impact analysis, request generation, and

request reduction. The key notion of the framework is to

synthesize two versions of the policy under test in such a

way that test coverage targets (e.g., certain policies, rules,

or conditions) are encoded as the differences of the two syn-

thesized versions. A change-impact analysis tool can then

be leveraged to generate counterexamples to witness these



Figure 1. An overview of the framework.

differences, thus covering the test coverage targets. Based

on the generated counterexamples, the framework generates

tests (in the form of requests). Sometimes the number of

generated tests is large and it is not feasible for develop-

ers to manually inspect their responses. To mitigate this

issue, the final step of the framework reduces the number of

generated tests by selecting tests based on policy structural

coverage.

2.1. Version Synthesis

Given the policy under test, the version synthesis com-

ponent synthesizes the policy’s versions, which are later fed

to a change-impact analysis tool. Our goal is to formulate

the inputs to the change-impact analysis tool so that specifi-

cally targeted parts of the policy under test are covered. We

provide two variants of version synthesis below called one-

to-empty and all-to-negate-one. We discuss their analysis

cost and the situations where they may not work well. Al-

though the framework has been developed to support multi-

ple policies, to simplify illustration we describe the synthe-

sis variants with the case of a single policy p that contains n

rules. To further illustrate the framework, we provide a con-

crete example XACML [1] policy in Figure 2. An XACML

policy encodes rules in an XML syntax. Each rule has a

set of constraints found in the Target elements that must

be satisfied by a request in order for that rule to be applied.

This example policy has two rules: the first one denies ac-

cess requests for “dissemination” of the “demo:5” resource

and the second one permits all other access requests. The

first rule is defined by the Rule element on Line 2 and the

Target element on Lines 3–21. The second rule is defined

by the Rule element on Line 23. When multiple rules can

be applied on a request, the decision of the first applicable

rule will be returned (as specified by the “first-applicable”

rule combining algorithm on Line 1).

1<Policy Id="demo" RuleCombAlgId="first-applicable">

2 <Rule RuleId="1" Effect="Deny">

3 <Target>

4 <Subjects> <AnySubjects /> </Subjects>

5 <Resources>

6 <Resource>

7 <ResourceMatch MatchId="equal">

8 <AttrValue>demo:5</AttrValue>

9 <ResourceAttrDesignator AttrId="objectid" />

10 </ResourceMatch>

11 </Resource>

12 </Resources>

13 <Actions>

14 <Action>

15 <ActionMatch MatchId="equal">

16 <AttrValue>dissemination</AttrValue>

17 <ActionAttrDesignator AttrId="actionid" />

18 </ActionMatch>

19 </Action>

20 </Actions>

21 </Target>

22 </Rule>

23 <Rule RuleId="2" Effect="Permit" />

24</Policy>

Figure 2. An example XACML policy

one-to-empty: For each rule r in p, the two synthesized

versions are an empty policy and a policy that contains only

r. If r is a permitting rule, the synthesized empty policy is

an empty denying policy. If r is a denying rule, the syn-

thesized empty policy is an empty permitting policy. The

reason for this mechanism is as follows. Comparing a per-

mitting rule r with an empty permitting policy will not help

generate requests to cover r because no counterexamples

are generated for these two versions. Similarly, compar-

ing a denying rule r with an empty denying policy will not

help generate requests to cover r. This synthesis process

is applied n times. So there are n pairs of policy versions

synthesized for p. Consider the example policy written in

XACML in Figure 2. The first pair of policy versions syn-

thesized for this policy is an empty permitting policy and

the original policy with Line 23 removed (i.e., the remain-

ing rules). Applying change-impact analysis on each pair

has low cost because each version contains only a single

rule. Note that this variant does not take into account the in-

teractions among different rules unlike the all-to-negate-one

variant below.

all-to-negate-one: For each rule r in p, the two synthe-

sized versions are p and p where the decision of r is negated.

This process is applied n times so there are n pairs of pol-

icy versions synthesized for p. Again, consider the example

policy in Figure 2. The first pair of policy versions synthe-

sized for this policy is the original policy and the original

policy with the effect on Line 2 changed to “Permit”. Ap-

plying change-impact analysis on each pair has higher cost

than the one-to-empty variant because the analysis com-

plexity is heavily dependent on the size of the two versions

rather than the differences between the two versions. Note

that this variant takes into account interactions among dif-

ferent rules. This variant should be at least as good as the

one-to-empty variant in terms of achieving policy structural



coverage and fault detection but it will have a higher com-

putational cost, especially for large, complex policies.

The preceding two variants are specifically developed

for achieving high rule coverage. Because the coverage

of a rule implies the coverage of the policy that contains

the rule, our two variants also indirectly target at achieving

high policy coverage. In principle, we can develop variants

of version synthesis for achieving high condition coverage

by negating each condition one at a time.

2.2. Change-Impact Analysis

Given two versions of a policy, a change-impact analy-

sis tool outputs counterexamples that illustrate semantic dif-

ferences between the two policies. More specifically, each

counterexample represents a request that evaluates to a dif-

ferent response when applied to the two policy versions.

For example, a particular request r evaluates to permit for

policy p but the same request evaluates to deny for policy

p′. Change-impact analysis is usually performed on ma-

ture policies that are undergoing maintenance or updates to

avoid accidental injection of anomalies. In our case, we

exploit the functionality of change-impact analysis to auto-

matically generate access requests by iteratively manipulat-

ing the inputs to a change-impact analysis tool.

2.3. Request Generation

Given two policies, a change-impact analysis tool out-

puts counterexamples that are evaluated to different re-

sponses against these two policies. We generate requests

based on these counterexamples. Some change-impact

analysis tools may produce abstract counterexamples,

which are not immediately ready to be translated into a con-

crete request. For example, a change-impact analysis tool

may produce an abstract counterexample for the policy in

Figure 2 like if ((resource == demo:5) && (action

== dissemination)), deny becomes permit. Then we

need to solve the constraint and derive one request (or op-

tionally more requests) for the constraint. Other change-

impact analysis tools may produce counterexamples at the

concrete level, being the same as the level of requests. Our

implementation leverages a change-impact analysis tool

that produces counterexamples at the concrete level so we

do not need to refer to a constraint solver to map from coun-

terexamples to requests.

2.4. Request Reduction

The number of generated requests can be large for com-

plex policies. Then it is infeasible for developers to inspect

each request-response pair; therefore, we need to reduce the

number of requests for inspection without incurring sub-

stantial loss in fault-detection capability. In particular, we

select a subset of the request set such that the subset and

superset achieve the same coverage. We have defined the

request reduction problem [17] similar to the test minimiza-

tion problem for program testing [10]:

Given: request set QS, a set of requirements r1, r2, ..., rn

that must be satisfied to provide the desired test coverage of

the policies, and subsets of QS, Q1, Q2,..., Qn, one associ-

ated with each of the ris such that any one of the request qj

belonging to Qi can be used to test ri.

Problem: Find a representative set of requests from QS that

satisfies all of ris.

In the problem statement, the ris can represent policy

structural coverage requirements, such as covering a certain

policy, a certain rule, and a certain condition. In a repre-

sentative set of requests that satisfies all of the ris, at least

one request satisfies each ri. We say a representative set is

minimal if removing any request from the set causes the set

not to be a representative set.

3. Implementation

This section presents the Cirg (Change-Impact Request

Generation) tool that implements the framework and dis-

cusses technical challenges faced during the tool imple-

mentation. The tool consists of four major modules: the

policy handler (for measurement support, version synthe-

sis, and mutation), a script generator and program invoker

(for change-impact analysis), a request generator (for re-

quest generation), and a request reducer (for request re-

duction). Our implementation operates on policies spec-

ified in the eXtensible Access Control Markup Language

(XACML) [1]. XACML is a language specification stan-

dard designed by OASIS. Developers can use XACML to

express domain-specific access control policies, access re-

quests, and access responses. It offers a large set of built-

in functions, data types, and combining logic. It also pro-

vides standard extension interfaces for defining application-

specific features.

Policy Handler. The policy handler is used primarily

to manipulate policies for experimentation and testing pur-

poses. The policy handler is built on top of Sun’s open

source XACML implementation [2]. The policy handler is

responsible for selecting which policy elements of the pol-

icy under test to encode to XACML during version synthe-

sis. These modified policies are the inputs to the change-

impact analysis tool. The policy handler performs policy

mutation for mutation testing in order to measure fault-

detection capability [16]. Mutation testing allows us to

compare several techniques of request generation and se-

lection in terms of fault-detection capability. In addition,



the policy handler plays the role of the PDP and is respon-

sible for metric collection. During the experiment, the pol-

icy handler evaluates requests against policies in order to

determine the responses. The coverage metrics and mutant-

killing ratio described in Section 4.1 are also collected by

the policy handler.

Script Generator and Program Invoker. The script

generator and program invoker create executable scripts

and programmatically executes the change-impact analysis

tool, respectively. The change-impact analysis tool, Mar-

grave [8], is a software tool suite written in PLT Scheme

for analyzing access control policies written in XACML.

We leverage Margrave’s API to implement a request gener-

ation engine that efficiently achieves high policy structural

coverage by exploiting its ability to perform change-impact

analysis. Margrave represents XACML policies as multi-

terminal binary decision diagrams (MTBDDs), which are

a decision diagram that maps bit vectors over a set of vari-

ables to a finite set of results. The generated script uses Mar-

grave’s API to perform change-impact analysis on given

policies. The script is dynamically generated as needed and

subsequently executed by our Margrave invoker. The execu-

tion of Margrave can be expensive depending on the size of

the policies being compared and how much the policies vary

semantically. The outputs from the Scheme script are the

results of the change-impact analysis. The outputs are an

enumeration of all counterexamples or requests whose de-

cisions change from Deny to Permit or vice versa. These

outputs are used to drive the request generator.

Request Generator. The request generator parses

Margrave’s outputs and converts them into requests en-

coded as XACML. The request generator also generates

RequestCtx objects on demand. These RequestCtx ob-

jects are the runtime representation of the request evaluated

by the policy handler to generate the response.

Request Reducer. Our previous work [17] developed

the request reducer for greedily removing a request from a

request set if and only if the request does not increase any of

the coverage metrics that are achieved by previously eval-

uated requests in the request set. More specifically, from a

request set, we evaluate each request against the policy in

order to both compute the response and measure the cover-

age. If the coverage increases during the evaluation of the

request, then that request is added to the reduced request set;

otherwise, it is removed. Note that this greedy algorithm

may not produce a minimal representative set. In practice,

it does, however, often produce a representative set whose

size is near the size of a minimal representative set.

4. Experiment

This section presents the experiment that we conducted

to evaluate our test generation approach via change-impact

Table 1. Policies used in the experiment.

policy # pol set # pol # rule # cond # mutants

conference 0 1 15 0 66

default-2 1 13 13 12 130

mod-fedora 1 12 12 10 120

continue-a 111 266 298 0 3565

pluto 0 1 21 0 89

analysis. We first describe the experiment’s objective and

measures as well as the experiment instrumentation. We

then present and discuss the experimental results. Finally

we discuss threats to validity.

4.1. Objective and Measures

The objective of the experiment is to investigate the fol-

lowing questions:

1. Can change-impact analysis be used to effectively gen-

erate tests that achieve high policy structural coverage?

2. Can change-impact analysis be used to effectively gen-

erate tests that have high fault-detection capability?

3. How does test generation via change-impact analy-

sis compare to the existing random test generation in

terms of policy structural coverage and fault-detection

capability?

To help answer these questions, we collect several

performance metrics used to compare the presented test-

generation techniques. These metrics are measured for each

policy under test and each test-generation technique.

Policy coverage. The number of policies involved in

evaluating the request set divided by the total number of

policies.

Rule coverage. The number of rules involved in evalu-

ating the request set divided by the total number of rules.

Condition coverage. The number of true or false condi-

tions involved in evaluating the request set divided by two

times of the total number of conditions.

Mutant-killing ratio. Given a request set, the policy

under test, and the set of generated mutants, the mutant-

killing ratio is the number of mutants killed by the request

set divided by the total number of mutants.

Test count. The size of the request set or the number of

tests generated by the chosen test-generation technique. For

testing access control policies, a test is synonymous with a

request.

Reduced-test count. Given a policy and the generated

set of requests, the reduced test count is the size of the re-

duced request set based on policy structural coverage.



An ideal test-generation technique should have high val-

ues for the first four metrics (policy coverage, rule cover-

age, condition coverage, and mutant-killing ratio) and low

values for the last two metrics (test count and reduced-test

count). A low test count is highly desirable because the

request-response pairs may need to be inspected manually

to verify that the policy specification exhibits the intended

policy behavior. Intuitively a set of requests that achieve

high policy structural coverage are more likely to reveal

faults. This notion is easy to understand because a fault in

a policy rule that is never covered by a request would never

contribute to a response and thus a fault in the rule cannot

possibly be revealed. We leverage our work [16] on policy

mutation testing to obtain the mutant-killing ratio and use it

as a measure of fault-detection capability.

4.2. Instrumentation

We compare three test-generation techniques, namely,

a random test-generation technique [17] and two test gen-

eration techniques based on the two variations of version

synthesis. Furthermore, we apply a greedy test reduction

algorithm on each set of generated tests resulting in a re-

duced test set thus a total of six request sets are evaluated

for each policy. We used five XACML policies collected

from four different sources as subjects in our experiment.

Table 1 summarizes the statistics of each policy including

the subject names, the numbers of policies, rules, and condi-

tions in the policy and the number of mutants generated for

each subject. Among these five subjects, the conference

policy is a slightly modified version of the policy used by

Zhang et al. [19]. The most complex policy, continue, is

an example policy used by Fisler et al. [8]. The continue

policy is a policy for a real web application for supporting

conference submissions, reviews, discussion and notifica-

tions. The default-2 and mod-fedora policies approxi-

mate the access control of an earlier version of Fedora1. Fe-

dora is an open source software that gives organizations a

flexible service-oriented architecture for managing and de-

livering digital content. Finally, the pluto policy is used

for the ARCHON2 system. ARCHON is a digital library

that federates physics collections with varying degrees of

meta data richness.

4.3. Results

Table 2 summarizes the number of generated tests and

reduced tests for each policy and each test-generation tech-

nique. We observe significant reductions in request set sizes

for each of the request generation techniques. On average,

we observe 80.8%, 82.8%, and 80.5% reductions in request

1http://www.fedora.info
2http://archon.cs.odu.edu/

Table 2. Number of tests generated.
random one-to-empty all-to-negate-one

policy gen red gen red gen red

conference 50 2 43 15 21 15

default-2 50 7 36 12 64 10

mod-fedora 50 10 31 13 110 13

continue-a 50 29 1456 257 - -

pluto 50 0 170 1 - -

set size for the random, one-to-empty, and all-to-negate-

one techniques, respectively. The all-to-negate-one gener-

ation technique did not execute within a reasonable amount

of time for continue-a and pluto due to the high runtime

costs associated with change-impact analysis. This result

suggests that the all-to-negate-one approach to version syn-

thesis suffers from scalability issues. The central issue is

the high memory and computational costs of change-impact

analysis when the policy versions generate large MTBDD’s.

While the number of rules in the policy versions provide an

indication to the complexity of the MTBDD, the number

of constraints in each rule and number of attribute id-value

pairs is a better measure. Although the pluto policy

Table 3 summarizes the structural coverage metrics for

each policy and each request set. We do not show the mini-

mized request sets because they, by definition, have equiva-

lent coverage as their superset. Each row of the table corre-

sponds to a particular policy and each column group corre-

sponds to a request set. Within each column group, we show

the policy, rule, and condition coverage percentages. The

character “-” indicates that there are no policy elements of

that type and thus coverage cannot be computed. Most test

generation techniques achieve close to 100% policy cov-

erage for all subjects because it is the most coarse mea-

sure of structural coverage. We observe an average 39.5%

and 64.7% improvement over the random technique in rule

coverage for the one-to-empty and all-to-negate-one tech-

niques, respectively. The most interesting policies are the

continue-a and pluto policies. The randomly generated re-

quests do not achieve sufficient rule coverage whereas the

one-to-empty generation technique does. The pluto policy

is complex enough that randomly generated requests fail to

apply to any policy elements (i.e., they are not covered).

The one-to-empty technique does better but due to its fail-

ure to account for rule interactions, it also performs poorly

on rule coverage.

Figure 3 illustrates the mutant-killing ratios for the entire

request set and the corresponding reduced request set, re-

spectively. The data is grouped by policy and seeks to com-

pare the request generation techniques in terms of fault de-

tection capability. We observe that, on average, the one-to-

empty and all-to-negate-one request generation techniques

outperform the random technique by 34.1% and 21.1% in



Table 3. Measured policy, rule, and condition coverage.
random one-to-empty all-to-negate-one

policy pol % rule % con % pol % rule % con % pol % rule % con %

conference 100 13.33 - 100 100 - 100 100 -

default-2 100 100 75 100 100 50 100 100 50

mod-fedora 100 58.33 70 100 100 50 100 100 60

continue-a 99.62 4.70 - 100 69.13 - - - -

pluto 0 0 - 100 4.76 - - - -

0

10

20

30

40

50

60

70

80

90

100

conference default-2 mod-fedora continue-a pluto

M
u

ta
n

t-
K

il
li

n
g

 R
a

ti
o

random one-to-empty all-to-negate-one

0

10

20

30

40

50

60

70

80

90

100

conference default-2 mod-fedora continue-a pluto

M
u

ta
n

t-
K

il
li

n
g

 R
a

ti
o

min-random min-one-to-empty min-all-to-negate-one

(a) entire request set (b) reduced request set

Figure 3. Mutant-killing ratios of generated request set

terms of fault-detection capability, respectively. The results

indicate that change-impact analysis can be used to gener-

ate tests with higher fault-detection capability than random

techniques. Furthermore, on average we can reduce the size

of the request set by 80% while only incurring a 2.5% loss

in fault-detection capability. This result is illustrated by

comparing the near identical mutant-killing ratios for the

entire request set and reduced request set in Figures 3 (a)

and (b).

In summary, we found that change-impact analysis can

be used to generate tests that achieve high policy struc-

tural coverage after we carefully synthesize the inputs to

a change-impact analysis tool. Furthermore, the test gener-

ation techniques based on change-impact analysis achieve

higher policy structural coverage and higher fault-detection

capability than the random technique. We also found a high

correlation between structural coverage and fault-detection

capability. The fact that the mutant-killing ratio for all-to-

negate-one decreases between the entire request set and re-

duced request set indicates that the structural coverage, as

it is defined now, is an insufficient selection criterion. Our

current policy structural coverage corresponds to statement

or branch coverage in program testing. We expect that we

can achieve higher fault-detection capability when adopting

stronger policy structural coverage criteria such as one that

corresponds to path coverage in program testing. We plan

to explore this direction and further synthesize versions for

achieving stronger policy structural coverage.

4.4. Threats to Validity

The threats to external validity primarily include the de-

gree to which the subject policies, policy mutator, cover-

age metrics, and test sets are representative of true practice.

These threats could be reduced by further experimentation

on a wider type and larger number of policies. The threats

to internal validity are instrumentation effects that can bias

our results such as faults in Sun’s XACML implementation,

faults in Margrave’s Scheme API, Margrave’s limitations,

as well as faults in our own implementations.

5. Related Work

Several test generation tools for software programs were

developed based on static verification tools. Beyer et al. [4]

developed a test generation tool for C programs based on

BLAST [11]. Csallner and Smaragdakis [6] developed the

CnC test generation tool that generates tests based on coun-

terexamples produced by the ESC/Java [15] static verifica-

tion tool. Different from these preceding approaches, our

approach is to generate tests for policy specifications rather



than software programs. In addition, our approach gen-

erates tests by feeding synthesized versions to a change-

impact analysis tool unlike most preceding tools that insert

synthesized assertions into code and feed the code to a static

verification tool.

A number of researchers have developed tools that gen-

erate tests for specifications by synthesizing inputs to a

model checker and exploiting the counterexamples gen-

erated by the model checker. For example, Gargantini

and Heitmeyer [9] insert assertions to execution branches

of specifications, feed them to a model checker, and use

model-checker-generated counterexamples to derive test se-

quences. Ammann et al. [3] mutate both specifications and

properties, use a model checker to generate counterexam-

ples for the mutated specifications and properties, and de-

rive tests out of the counterexamples. Our approach gener-

ates tests by synthesizing inputs to a change-impact analysis

tool rather than a model checker. In addition, our approach

targets at a special type of specifications: access control pol-

icy specifications written in XACML.

There are several verification tools for verifying prop-

erties against XACML policies [1]. Hughes and Bul-

tan [12] translated XACML policies to the Alloy lan-

guage [13] and check their properties using the Alloy An-

alyzer. Zhang et al. [20] developed a model-checking al-

gorithm and tool support to evaluate access control poli-

cies written in RW languages, which can be converted to

XACML [19]. Fisler et al. [8] developed the Margrave tool,

which uses multi-terminal binary decision diagrams [5] to

verify user-specified properties and perform change-impact

analysis. These existing approaches assume that policies

are specified using a simplified version of XACML. In addi-

tion, most of these approaches require users to specify a set

of properties to be verified; however, policy properties often

do not exist in practice. Our approach is developed based

on Margrave’s change-impact analysis feature. In general,

test generation for policies can also be conducted by synthe-

sizing properties to exploit the preceding policy verification

tools that require properties.

6. Conclusion

We have developed a novel framework and its supporting

tool called Cirg that automatically generates tests for access

control policies based on a change-impact analysis tool such

as Margrave [8]. Because the number of generated tests is

often high for complex policies, Cirg reduces the size of the

generated test set based on policy structural coverage so that

developers can inspect the tests with reasonable efforts. We

have conducted an experiment that assesses Cirg on a set of

policies collected from various sources. The experimental

results show that Cirg can generate tests for complex poli-

cies to achieve high policy structural coverage. The results

also show that Cirg can generate tests that have a higher

policy structural coverage and higher fault-detection capa-

bility than the existing random test generation. Previous

research [14, 18] synthesizes inputs to a model checker or

a test generator in particular ways so that it can be lever-

aged to generate regression tests for multiple program ver-

sions. Within our knowledge, we are the first to go for

the reverse direction: synthesizing versions as inputs to a

change-impact analysis tool in particular ways so that it can

be leveraged to generate tests for a single version. We be-

lieve that our general idea has the potential to expand its

application scope to go beyond the domain of access con-

trol policies.

References

[1] OASIS eXtensible Access Control Markup Language (XACML). http:

//www.oasis-open.org/committees/xacml/, 2005.
[2] Sun’s XACML implementation. http://sunxacml.sourceforge.

net/, 2005.
[3] P. E. Ammann, P. E. Black, and W. Majurski. Using model checking to gen-

erate tests from specifications. In Proc. 2rd IEEE International Conference

on Formal Engineering Methods, pages 46–54, 1998.
[4] D. Beyer, A. J. Chlipala, and R. Majumdar. Generating tests from counterex-

amples. In Proc. 26th International Conference on Software Engineering,

pages 326–335, 2004.
[5] E. Clarke, M. Fujita, P. McGeer, J. Yang, and X. Zhao. Multi-terminal binary

decision diagrams: An efficient data structure for matrix representation. In

Proc. International Workshop on Logic Synthesis, pages 149–169, 1993.
[6] C. Csallner and Y. Smaragdakis. Check ’n’ Crash: Combining static checking

and testing. In Proc. 27th International Conference on Software Engineering,

pages 422–431, 2005.
[7] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder policy specifi-

cation language. In Proc. International Workshop on Policies for Distributed

Systems and Networks, pages 18–38, 2001.
[8] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verifi-

cation and change-impact analysis of access-control policies. In Proc. 27th

International Conference on Software Engineering, pages 196–205, 2005.
[9] A. Gargantini and C. Heitmeyer. Using model checking to generate tests from

requirements specifications. In Proc. 7th ESEC/FSE, pages 146–162, 1999.
[10] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for controlling the

size of a test suite. ACM Trans. Softw. Eng. Methodol., 2(3):270–285, 1993.
[11] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In

Proc. 29th ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, pages 58–70, 2002.
[12] G. Hughes and T. Bultan. Automated verification of access control policies.

Technical Report 2004-22, Department of Computer Science, University of

California, Santa Barbara, 2004.
[13] D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodularity mechanism.

In Proc. 8th ESEC/FSE, pages 62–73, 2001.
[14] B. Korel and A. M. Al-Yami. Automated regression test generation. In Proc.

1998 ACM SIGSOFT International Symposium on Software Testing and Anal-

ysis, pages 143–152, 1998.
[15] K. R. M. Leino, G. Nelson, and J. B. Saxe. ESC/Java user’s manual. Technical

Report 2000-002, Compaq Systems Research Center, Palo Alto, CA, October

2000.
[16] E. Martin and T. Xie. A fault model and mutation testing of access control

policies. In Proc. 11th International Conference on World Wide Web, 2007.
[17] E. Martin, T. Xie, and T. Yu. Defining and measuring policy coverage in

testing access control policies. In Proc. 8th International Conference on In-

formation and Communications Security, pages 139–158, 2006.
[18] L. Xu, M. S. Dias, and D. J. Richardson. Generating regression tests via

model checking. In Proc. 28th International Computer Software and Appli-

cations Conference, pages 336–341, 2004.
[19] N. Zhang, M. Ryan, and D. P. Guelev. Synthesising verified access control

systems in XACML. In Proc. ACM Workshop on Formal Methods in Security

Engineering, pages 56–65, 2004.
[20] N. Zhang, M. Ryan, and D. P. Guelev. Evaluating access control policies

through model checking. In Proc. 8th International Conference on Informa-

tion Security, pages 446–460, 2005.


