
North Carolina State University Technical Report TR-2007-07

The Role of Law in Requirements Engineering

Paul N. Otto and Annie I. Antón
Department of Computer Science
North Carolina State University

{pnotto, aianton}@ncsu.edu

Abstract

Legal texts, such as regulations and legislation, are
increasingly playing an important role in requirements
engineering and system development. Monitoring
systems for requirements and policy compliance has
been recognized in the requirements engineering
community as a key area for research. Similarly,
regulatory compliance is critical in systems that are
governed by regulations and law, especially given that
non-compliance can result in both financial and
criminal penalties. Working with legal texts can be
very challenging, however, because they contain
numerous ambiguities, cross-references, domain-
specific definitions and acronyms, and are frequently
amended via new regulations and case law.
Requirements engineers and compliance auditors must
be able to identify relevant regulations, extract
requirements and other key concepts, and monitor
compliance throughout the software lifecycle. This
paper surveys research efforts over the past 50 years in
handling legal texts for systems development. These
efforts include the use of symbolic logic, logic
programming, first-order temporal logic, deontic logic,
defeasible logic, goal modeling, and semi-structured
representations. This survey can aid requirements
engineers and auditors to better specify, monitor, and
test software systems for compliance.

1. Introduction
The need for system developers to monitor systems

for both requirements and policy compliance has been
identified as a challenging and important problem in
the requirements engineering community [35]. In fact,
according to a survey of nearly 1,200 senior
information security professionals, compliance has
been the primary driver of information security policy
for the past two years [15]. Requirements engineers,
developers, and auditors currently face two major
problems in assessing legal compliance: (a)
determining the applicable regulations, and (b) creating
the policies necessary to achieve compliance with those

regulations [20]. Methodologies for monitoring
compliance with requirements and policies are
currently not available to developers [35]. And yet,
stakeholders need to better understand the regulations
that govern the systems for which they are responsible
and they require precise answers to specific queries
about what is allowed or not allowed [4, 30].

For requirements engineers, access to specific laws
and regulations has become easier with the push
towards online access to all government legislation and
regulations. However, organizations must still identify
the regulations relevant to their specific systems before
they can even begin to assess their compliance with the
law. Once the relevant regulations are identified,
extracting requirements from legal texts is still a
difficult and error-prone process [40]. In addition,
organizations must still engage in traditional software
engineering activities (e.g. analysis, modeling,
development) as well as traditional security activities
(e.g. policy enforcement and auditing) in order to
properly implement compliance processes [13].

This paper surveys research efforts over the past 50
years in modeling and using legal texts for system
development. Our survey identifies the strengths and
weaknesses of each approach, and based on our
analysis of the literature to date as well as our own
prior experiences in analyzing policy and regulations
[12, 17, 32], we propose a broad set of requirements
for tool support that would aid requirements engineers
and compliance auditors. It is our hope that these
requirements will prompt serious consideration by the
requirements engineering community, as it is within
this community that we believe significant progress can
be made to address the challenges related to legal
compliance in software systems.

The remainder of this paper is organized as follows.
Section 2 discusses the nature of regulations, noting the
various characteristics that make legal texts difficult to
work with. Section 3 analyzes various efforts from the
past 50 years in modeling regulations, extracting key
concepts, and using legal texts in system development.
Based on our extensive review of prior work, Section 4

North Carolina State University Technical Report TR-2007-07

proposes a set of broad requirements for a
comprehensive system to assist requirements engineers
and auditors with regulatory compliance tasks. Finally,
Section 5 discusses our analysis and outlines future
work needed to realize such a system.

2. The Nature of Regulations
There are certain characteristics of regulations that

make them both useful and difficult to apply to design
methodologies. Regulations tend to be very structured
and hierarchical documents. However, agencies at the
federal, state, and local level can all specify new
regulations, and these regulations may complement,
overlap, or even contradict one another due to differing
objectives and changes over time [21]. As a result,
some areas of law undergo constant changes, whereas
other areas are relatively stable [6]. In addition,
amendments and revisions to the same piece of
regulation can lead to internal contradictions [4].

Depending on the field of law under consideration,
there may also be the complicating influence of case
law. Prior research has noted the coexistence of two
forms of law: statutory law, or the specific regulations
in force; and case law, or the interpretation of those
rules by the courts [37]. The amount and influence of
case law on any given regulation varies widely. Some
areas of law (e.g. tax law) are well-settled and have a
large body of case law; as such it is possible to classify
most cases as ‘routine’ [19]. Other areas, such as
information security and data privacy law, are still
emerging fields and are therefore subject to greater
fluctuation in the law’s requirements. Regulations in
these fields are relatively new and, as a result, very
little case law exists to guide requirements engineers in
interpreting the law.

In addition to case law, regulations are often
accompanied by other guiding documents on how to
interpret and use the law. Such supplemental references
may include previous administrative rulings, reference
handbooks, or other published guides to interpreting
the regulation [20]. The ambiguity associated with
regulations has forced government agencies to provide
these detailed reference materials and instructive
handbooks to aid understanding and compliance efforts
[23]. For example, the U.S. Department of Health and
Human Services publishes a summary of the Health
Insurance Portability and Accountability Act (HIPAA)1
Privacy Rule and guidance documents for
implementing the HIPAA Security Rule. Some of these
supplemental guides are created by organizations

1 Health Insurance Portability and Accountability Act of 1996,

42 U.S.C.A. 1320d to d-8 (West Supp. 1998).

separate from the government agencies that actually
promulgated the regulations [24]. This large, diverse
set of documentation can be crucial for software
developers who are attempting to identify regulatory
compliance requirements early in the design process.
However, requirements engineers must be careful when
using these supplemental documents, as they do not
have the same legal standing and may even contain
misinterpretations of the original regulatory text.

Another important characteristic of regulations is
the frequent references to other sections within a given
legal text and even to other pieces of law. Much of the
prior work in computer science that examines
regulations has noted the difficulty of handling these
numerous cross-references within regulations (e.g. [7,
12, 20]). These cross-references force requirements
engineers to spend additional time reading and
understanding legal texts, before they can even begin to
extract key concepts or apply the regulations to system
design. May et al. employ a methodology to derive
formal models from regulations that they applied to the
HIPAA Privacy Rule [28]. In their study (discussed in
Section 3.6), they assume that external and ambiguous
references are satisfied by default [28]. This contradicts
our own study of the HIPAA Privacy Rule (discussed
in Section 3.3) [12], in which we discovered that cross-
references introduce important constraints from other
sections that restrict which rules apply in different
situations and/or contexts.

If references to other sections of a particular
regulation or other external laws are unaccounted for,
software engineers are prone to make interpretations
and inferences that are inconsistent with the law. Such
assumptions will inevitably lead to overlooking
important exceptions or priorities and ultimately to
non-compliance. Traceability within the context of
regulatory systems takes on a far greater significance
than we already afford it in the requirements
engineering community because legal traceability is
supercharged, so to speak, with priorities and
exceptions that govern special cases (e.g. which
information can be accessed, when such access is
allowed, etc). Thus, the ability to manage cross-
references and maintain traceability from the
originating law, regulation, and/or policy to the
relevant software requirements must be addressed in
any system for supporting requirements engineering
and compliance auditors.

Regulations typically specify a large number of
relevant definitions and acronyms, further complicating
the job of requirements engineers and system designers
[20]. Along with cross-references, such extensive
definitions necessitate a significant amount of domain

North Carolina State University Technical Report TR-2007-07

knowledge before the regulations are comprehensible
and usable. When spread across multiple regulations
that may have overlapping, inconsistent, or
contradictory terms, the domain-specific lexicon
significantly raises the barrier to entry for developers
hoping to build regulatory compliance into their
software systems.

A more fundamental problem in dealing with
regulations is the fact that regulations and law are
laden, often by design, with ambiguities. For example,
§164.306(a)(2) in HIPAA requires organizations to
“protect against any reasonably anticipated threats or
hazards to the security or integrity” of protected health
information; the section does not define what
constitutes reasonable anticipation. Researchers have
frequently noted the difficulty in identifying and
resolving such ambiguities in legal documents (e.g. [1,
12, 24, 37]). A simple dichotomy of ambiguities is
those that are intentional –– to allow the law to be
generalized –– and those that are unintentional (i.e.
errors) [1]; the example from §164.306(a)(2) likely
represents an intentional ambiguity. Various efforts
provide more detailed categorizations, including high-
level classifications (e.g. implication-coimplication,
disjunctive-conjunctive, ambiguity of reference) [1],
and specific types of ambiguities uncovered during
empirical analysis (e.g. conjunctions, under-
specifications) [12]. Just as courts must struggle to
interpret the law when ambiguities are present, so must
users, be they requirements engineers or policymakers,
make crucial interpretation decisions during
requirements gathering and software design.

3. Survey of Work with Regulations
We now examine various approaches for modeling

regulations, extracting key concepts from legal texts,
and creating compliance checking systems.

3.1. Symbolic Logic
One of the earliest attempts to model legislation

involved the use of symbolic logic, also known as
mathematical logic. The approach attempted to balance
the benefits of natural language with the rigor of
symbolic logic [1], serving as a precursor for later
efforts to provide both human- and machine-readable
interpretations. Allen’s technique employed six key
logical connectives: implication, conjunction,
coimplication, exclusive disjunction, inclusive
disjunction and negation [1]. By identifying the logical
connectives, one could largely eliminate the unintended
ambiguities present in legislative texts by using a more
mathematical representation. This effort, while
noteworthy in its systematic legal representation, did
not leverage the processing and data manipulation

capabilities of computers; it sought to answer specific
queries and make legalistic determinations, rather than
shape requirements gathering or systems development.

3.2. Logic Programming
Numerous approaches to representing legal text as

computer programs began in the late 1970s, largely
based on logic programming techniques. These
knowledge representation efforts were based on the
premise that a model of legal texts should closely
parallel the language of those texts [9]. As such, most
of these approaches used Prolog –– a logic
programming language targeted for knowledge
representation and expert systems –– to represent the
legal rules extracted from laws and regulations.
Specific efforts included: TAXMAN, modeling the
United States Internal Revenue Code [29]; representing
the British Nationality Act as a logic program [37];
modeling the Income Tax Act of Canada [38];
representing the United Kingdom welfare law as a logic
program [7]; ESPLEX, a logic system for representing
legal rules [9]; and capturing the Indian Central Civil
Service Pension Rules in logic [36]. Each of these logic
programming techniques would aid requirements
engineers in understanding legal texts and answering
specific queries during requirements elicitation.

Logic programming representations of legal texts
afford certain advantages to system developers and
policymakers alike. Logical representations of
regulations enable users to identify unintended
ambiguities in the text [37]. This allows requirements
engineers to pinpoint specific ambiguities and resolve
those issues before system development commences. It
allows policymakers to address these ambiguities in
future amendments to the law. Developers can use
expert systems to make specific queries when issues
arise regarding compliance or design decisions. Such
targeted queries enable developers to resolve known
compliance issues with the relevant regulation(s).

Several characteristics of these expert systems limit
the generalizability or applicability of this research to
current regulations. The logic programming approach
has mainly focused on either well-settled areas of law
or regulations with minimal accompanying case law.
Most of the projects considered themselves case studies
and, to the best of our knowledge, no final product or
working expert system ever resulted from the research.
The goal was often to answer specific queries or handle
what-if scenarios; none of these early efforts used the
modeled regulations to influence system development
or check for compliance. These logic programming
approaches had no degree of automation: for each new
piece of regulation, the user would be required to
manually extract the legal rules and encode them in

North Carolina State University Technical Report TR-2007-07

logical clauses. Finally, the research efforts referenced
above make no mention of providing traceability
between the representation and the original legal text.
As previously discussed, this lack of traceability
creates compliance vulnerabilities as the law evolves
via case law or new regulations. These drawbacks
make logic programming techniques problematic and
very limiting for software developers who need to
extract requirements and system design elements
directly from regulations.

A more recent variation on the logic programming
efforts employs event calculus to track the changes in
legal texts over time [26]. The approach uniquely
captures the frequent changes associated with legal
texts, enabling users to model and understand how the
law changed across revisions [26]. Martinek and
Cybulka create a knowledge base maintaining
information for when changes are made to regulatory
texts [26]; this provides a limited measure of
traceability for developers evaluating changes over
time. The approach provides a unique look at the
dynamic nature of legal texts, but does not address the
same aforementioned shortcomings facing other logic
programming implementations.

3.3. Deontic Logic
Another logic-based approach to modeling

regulations involves the use of deontic logic to capture
the rights and obligations present in the law. The
impetus for this approach is that “the law is like a
programming language controlling a society … [where]
observations must be made, calculations performed,
records kept and messages transmitted” [39].
Extracting specific rights and obligations from legal
rules permits the creation of a knowledge base, as was
possible with the logic programming efforts, to model
the key elements of regulations and answer directed
user queries. The major deontic logic efforts include:
LEGOL, a formal LEGally Orientated Language for
capturing obligations [39]; ON-LINE, an ONtology-
based Legal INformation Environment for capturing
and analyzing legal texts as legal knowledge [41]; work
establishing the legal importance of monitoring
permissions as well as obligations [10]; and systems for
automated extraction of normative references from
legal texts [8, 33].

Deontic logic approaches have not yet met users’
needs for working with regulations and ensuring
compliance. By extracting the rights and obligations,
deontic logic systems disambiguate regulations and
make them more palatable for system designers. Early
work established the utility of such an approach, but
the user was still required to manually encode the law
into the deontic operators for rights and obligations

[39, 41]. The ON-LINE system was only able to deal
with small sections of legislation at a time and the
usability of the ontology-based approach proved
problematic during usability testing [41]. More recent
efforts include automated extraction of normative
references (e.g. specific rights and obligations) detailed
in a legal text, and addressed the problem of the law’s
evolution by tracking changes over time [8, 33]. This
provides for some degree of traceability, as the system
maintains information on each extracted section
including its type, number, date, section and subpart
headers, and the normative references [33]. However,
these more recent projects were not completed, and
there are few examples to illustrate the effectiveness of
this approach. While these research efforts established
deontic logic as a worthwhile approach to extract key
information from regulations, they did not result in
usable tools for developers to influence system design
or monitor compliance.

A more recent deontic logic implementation
involves the explicit extraction and balancing of rights
and obligations from regulations [12]. The research
focuses on providing requirements monitoring and
compliance support for system developers and
maintainers [11]. Semantic parameterization entails
identifying the ambiguities within a legal text and
balancing the extracted rights and obligations [11].
This decomposition of regulations enables the user to
identify both explicit and implied rights and obligations
[11]; capturing these implied rights and obligations is
not addressed by the other deontic logic approaches.
The process, however, requires manual extraction of
the rights, obligations, delegations, and constraints.
Unlike most other approaches, Breaux and Antón
maintain traceability across all artifacts (e.g. from
HIPAA section and paragraph number, to the
corresponding software requirements and access
control rules). This approach has only been tested on a
part of the HIPAA Privacy Rule; as such, its scalability
and applicability to other domains is not yet validated.

3.4. Defeasible Logic
Defeasible logic provides an alternative logic-based

approach to modeling regulations. Defeasible logic is a
form of non-monotonic skeptical reasoning, wherein
there are strict rules, defeasible rules, and defeaters.
Strict rules always hold, while defeasible rules hold
true unless an exception, or defeater, exists for the rule.
Given the existence of overlapping and conflicting
legal texts at different levels of government, defeasible
logic appears to be a natural fit for modeling
regulations [3]. The practical use of defeasible logic in
routine legal practice is emphasized as a key advantage
for system developers and users of regulations [19];

North Carolina State University Technical Report TR-2007-07

defeasible logic can aid in both decision support and
legal reasoning [4].

Proponents of defeasible reasoning have also noted
that deontic logic will not capture all eight fundamental
legal conceptions [18]: right, no-right, privilege, duty,
power, disability, immunity, and liability [16]. Hohfeld
presented these fundamental legal conceptions as the
basic elements needed to understand any legal relation,
noting specifically that ‘rights’ and ‘duties’
(obligations) were insufficient to address the
complexities in many areas of law [18].

Antoniou et al.’s approach has yielded an
operational implementation of a defeasible logic
system [3], but there remain several disadvantages to
such an approach for modeling regulations and
monitoring compliance. For example, numerous
features need to be added to any ‘pure’ defeasible logic
implementation (e.g. representing hierarchies,
arithmetic and temporal operators, and capturing
underlying legal knowledge) to model all the nuances
of the law [3]. The computational complexity of a
defeasible logic system is in dispute: early research
touted low complexity as a major advantage [4],
whereas more recent research indicated that
approximating a model was necessary due to concerns
about complexity [19]. Again, these efforts in
defeasible logic make no mention of maintaining
traceability and provide no examples of directly
modeling regulations. Antoniou’s research group [3, 4]
is now focused on the semantic web rather than legal
texts; with the lack of follow-up on other approaches,
the viability of defeasible logic systems remains
uncertain. There is currently no system available to
leverage defeasible reasoning in requirements
engineering and compliance monitoring.

3.5. First-Order Temporal Logic
Barth et al. proposed using first-order temporal

logic to extract key concepts –– context, roles, type of
information –– rather than precisely modeling the
regulation [5]. The approach, which is based on the
conceptualization of privacy using the contextual
integrity framework [31], only captures the privacy-
related elements of regulations such as parts of HIPAA
[5]. The use of formal logic is reminiscent of other
logic-based approaches, but the narrower focus on
privacy limits the applicability of this approach to other
regulations. Preliminary results show that the
contextual integrity framework captures most privacy
elements from the regulations tested to date; however,
Barth et al. do not disclose what percentage of privacy
elements originally present in the legal text were
extracted using their framework [5].

The research establishes the framework’s viability in
assessing compliance between privacy policies and the
privacy provisions of regulations. However, a major
limitation of this approach for the requirements
engineer is that Barth et al. make no mention of
maintaining traceability between the extracted concepts
and the original regulatory text. Although this approach
may be capable of aiding developers in evaluating
system requirements and design against privacy
regulations, its narrow framework does not appear to
extend to other legal texts. Unlike many of the earlier
research projects discussed in this section, this
framework may soon be available to other researchers
for validation and extension.

3.6. Access Control
Another approach to modeling regulations employs

access control techniques to capture the privacy-related
elements of legal texts. May et al. propose an
“auditable privacy system” that includes
conceptualizations for transfer, actions, creation, rights
establishment, notification and logging [28].
Leveraging the similarity between legal privacy texts
and APIs in specifying rules on accessing protected
information, they derive privacy-focused access control
rules directly from regulations [28]. This translation
into access control rules captures regulatory conditions
and obligations as allow/deny operations. Those
conditions and obligations that cannot be represented
as access control rules are cast instead as external
environmental flags [28].

The auditable privacy system implementation
fulfills some key requirements engineering tasks, but its
narrow focus keeps it from adequately supporting the
complex needs of requirements engineers working with
legal texts. May et al. use formal methods in
representing legal texts, thus enabling model checking
and verification operations. Such formalism supports
queries on the regulatory model, so that developers and
policymakers alike can analyze a given legal text and
evaluate compliance and design issues [28]. However,
their regulatory model abstracts away many key aspects
and characteristics of legal texts; for example, the
assumption that external and ambiguous references are
satisfied by default. In addition, the model omits many
low-level system requirements (e.g. password
procedures) specified by HIPAA [28]. The narrow
privacy focus, coupled with the inadequate support for
key elements of legal texts, makes this approach
unsatisfactory for requirements engineers who need to
extract requirements from legal texts and monitor
compliance.

North Carolina State University Technical Report TR-2007-07

3.7. Markup-Based Representations
Given the hierarchical nature of legal texts, some

researchers are attempting to capture regulations with
semi-structured markup languages, such as Standard
Generalized Markup Language (SGML) and Extensible
Markup Language (XML). Such markup-based
representations can mimic the structure of regulations
and also maintain annotations and other metadata
regarding each section, part, or even sentence of the
original legal text [20]. A markup-based representation
also enables the system to easily capture and display
information on definitions, acronyms, and cross-
references within the regulation(s), thereby addressing
several of the key requirements for using legal texts
during system development. A semi-structured
representation can be combined with well-established
information retrieval techniques and first-order
predicate logic to aid users in both locating and
analyzing relevant regulation sections [24]. In addition,
some newer legal texts are already being represented in
XML; augmenting these existing representations is a
relatively easy task [30]. Research efforts in this area
include: SGML modeling of decisions of the Supreme
Court of Canada [34]; REGNET, an XML framework
for representing regulations [20, 21, 23, 24, 25]; and an
overview of several XML models for representing legal
texts [30].

Markup-based representations hold promise for
providing requirements engineers with the necessary
framework for leveraging regulations in system
development. The work in SGML was an isolated
effort now superseded by research utilizing XML, a
simplified derivative of SGML that is easier to process.
The REGNET project, based on an XML framework,
has generated over 25 published papers describing the
system and its use in tasks such as: representing
regulations [20], providing similarity analysis between
different regulations [23], and helping policymakers in
drafting new regulations [25]. The REGNET project
includes a parser to automatically transform regulations
into XML and uses other tools to semi-automatically
generate conceptual tags for the markup [20].
REGNET provides the foundation for verifying
compliance with a specific regulation, but has only
been tested in limited domain areas (e.g. accessibility
and environmental regulations) and the prototype
system is not yet available to end users or other
researchers. In addition, in its current form REGNET
does not provide a precise model of the regulations
[20].

Finally, the research evaluating several different
markup-based approaches does not provide details on
the underlying representations; instead it focuses on

techniques for ranking the different XML models being
reviewed [30]. Thus, while markup-based approaches
benefit from mimicking the hierarchical, semi-
structured nature of regulations, previous research
approaches do not offer developers any available tools
to shape requirements engineering and design efforts
around regulatory compliance. The REGNET
prototype system shows the most promise in assisting
with compliance efforts, but comparing and drafting
regulations, rather than extracting system requirements,
has become the main focus of this work.

3.8. Goal Modeling
The SecureTropos approach involves extracting and

representing the goals, soft goals, tasks, resources and
social relationships for defining obligations [27]. It
then uses these concepts to model the relationships for:
actors, dependencies, trust, delegation, and goal
refinement [27]. SecureTropos has been used to assess
a university’s compliance with the Italian Data
Protection Act [27]. Whereas the focus of the research
is on applying requirements engineering principles to
security requirements, the broader context examines
how an organization can assess its compliance with
standards from a particular regulation.

The SecureTropos approach requires a manual
extraction of the concepts. As with previously
discussed approaches, traceability is not addressed, and
we have yet to find any examples of the mapping
between the extracted concepts and their presence in
the original regulation. SecureTropos may enable
developers to better design systems to be compliant
with the fundamental concepts of a specific security
regulation, but its scalability and applicability to a
broader range of legal texts is as yet unproven. Finally,
SecureTropos does not currently provide users with the
ability to answer specific legal queries or identify
changes in the law over time.

3.9. Reusable Requirements Catalog
Toval et al. recently created a reusable catalog of

legal requirements that were derived from specific legal
texts regarding security and personal data protection
[40]. The Personal Data Protection (PDP) Catalog
enables requirements engineers to incorporate legal
requirements into the development lifecycle and build
compliance into new systems [40]. By providing
reusable legal requirements, analysts can more easily
uncover ambiguities and inconsistencies, and the
quality of the catalog increases with each usage [40].

This initial foray into applying requirements
engineering methodologies to legal requirements
provides some interesting insight, but does not satisfy
the comprehensive set of requirements engineering

North Carolina State University Technical Report TR-2007-07

needs that we address in this paper. For example, Toval
et al. highlight traceability as particularly important in
requirements engineering, yet they provide no evidence
of maintaining traceability between the derived
requirements and the source in the legal text, and much
less the traceability required by all the cross references
to other texts. Although their process appears to be a
manual effort, Toval et al. fail to mention the length of
the regulations they processed or how much time they
spent extracting requirements from the law. Thus, it is
difficult to properly evaluate the efficiency and efficacy
of their approach. In addition, a legal requirements
catalog requires updates each time the law changes.
Finally, the PDP Catalog would not address the
problem of overlapping or conflicting regulations; the
ability to manage and resolve these conflicts is an
essential part of the requirements engineering process
for systems governed by laws and regulations.

4. Supporting RE in Legal Contexts
Given our experiences to date [2, 12, 17] and our

thorough survey of efforts to support the analysis of
legal texts discussed herein, we identify several key
elements for any system to support the analysis of
regulatory texts for requirements specification, system
design, and compliance monitoring.

Identification of Relevant Regulations
Our discussion in Section 1 focused on the need to

identify relevant regulations, extract the requirements
for a given system, and answer specific legal queries to
test for compliance. Identifying relevant regulations
may not appear to be a problem facing requirements
engineers, but our experience to date shows that it is a
key consideration during requirements elicitation.
Oftentimes, analysts only discover additional relevant
laws or regulations when they are midway through a
careful analysis of a particular legal text. Much as the
reader of this paper may see a citation and check the
list of references to locate and read that paper,
requirements engineers similarly identify external
regulations or laws that constrain the very law they are
examining at any given point in time. This is not a
trivial activity. The referenced regulation may have a
completely different set of definitions and terminology,
requiring further interpretation and careful analysis.

Classification of Regulations with Metadata
Some classification of regulations is necessary for

developers and auditors to sort through the large corpus
of legal texts and identify those with relevance to the
project or system at hand. To this end, the idea of
tagging regulations with metadata, as proposed by [20]
and others can lead to a categorization of regulations
over time. For example, a regulatory section such as

HIPAA §164.310 can be annotated as generally
describing security, or specifically detailing physical
safeguards; in another categorization, it could be
tagged as containing low-level system requirements.
With each new regulatory text tagged, the corpus
becomes more accessible and easily navigated. Making
use of the supplemental documents to identify similar
and related regulations will also aid in the regulation
identification problem.

Prioritization of Regulations and Exceptions
A system for handling regulations should address

the nature of legal texts in its underlying approach. One
key requirement is to handle the hierarchical nature of
regulations. Oftentimes exceptions take precedence
over the normative regulatory requirement. To properly
assist requirements engineering efforts within this
context, a support system should understand and
manage the relationships between overlapping or
contradictory regulations. This will enable analysts and
auditors to make determinations about which
regulations override others, depending on jurisdiction.
This becomes particularly important when considering
the effects of globalization. For example, various
nations’ regulations on personal data protection may
differ or contradict one another; thus, users need
mechanisms for resolving those situations. In addition,
it is important to accommodate case law as well as
other guiding documents. This information can again
be captured as metadata; sections further explained or
disambiguated by supplemental texts can be annotated
with the more detailed information.

Management of Evolving Regulations and Law
It is critical for requirements engineers and

compliance auditors to be able to manage the evolution
of regulations over time. Given the frequent revisions
to legal texts as previously discussed, requirements
engineers need to be able to capture these changes and
maintain an up-to-date view of the relevant regulations
requiring analysis at any given time. It may be
necessary to compare changes, and understand the
impact of their scope, at distinct time periods to
understand how requirements have evolved and how
compliance efforts are impacted by modifications in the
law. Thus the system must not only maintain
traceability between regulations and requirements, but
must also track the point in time at which that link was
established. For legal analysis and the future
development of case law, such metadata may be critical
for verifying compliance. Analysts may be forced to
update requirements or concepts as regulations change,
and therefore they will require methods for tracking the
status of development efforts vis-à-vis the changes in
legal texts over time.

North Carolina State University Technical Report TR-2007-07

Traceability Between References and Requirements
As previously discussed, traceability support for

both external and internal references is critical to
ensure requirements engineers are able to accurately
capture the full meaning of any given regulatory text.
In Section 2 we discussed the prevalence of cross-
references within regulations; external references also
occur frequently in legal texts. Thus, it is imperative to
maintain traceability between any section with a
reference and the legal text being referenced. This is
especially important given that external references
often establish legally binding priorities among
requirements and allowable information accesses, uses,
disclosures, and removals. Navigating across these
references, as well as from specific regulatory
statements to the derived requirements, will improve
analysts’ understanding of the legal text and is essential
for gathering all requirements and concepts expressed
by a particular piece of regulation.

Data Dictionary and Glossary to Ensure Consistency
The use of consistent definitions and terminology is

important in the design of any software system, and of
paramount importance in the context of regulatory
compliance. A data dictionary for all domain-specific
definitions and acronyms is needed to support analysts,
policymakers and auditors in establishing a unified
glossary for the system specification, design documents
and compliance audit artifacts. In dealing with
regulations, requirements engineers often deal with
unfamiliar and complex terms, making a thorough
glossary even more important [14]. Given that multiple
regulations may share similar words with different
interpretations, users must be able to view any word’s
definition given the context of a specific regulation.
These definitions should then be referenced in the
creation of a system-wide glossary, once again
traceability between the original legal terms and the
system glossary must be maintained.

Semi-automated Navigation and Searching
Analysts need to be able to access regulations in a

machine- and human-readable state. Previous
requirements engineering research emphasized the
relevance of such access in highly-regulated domains
such as health care [14]. Some tasks, such as extracting
concepts and adding metadata, need to be supported by
semi-automated processes; use of semi-automated
annotation tools is an active research topic (e.g. Semio
Tagger [20] and CERNO [22]). In addition, users must
be able to view the original regulatory text at any time,
and traceability needs to be maintained between any
machine-readable or logic-based format and the
original natural language representation. Analysts must
be able to easily search and navigate regulatory texts at

many levels with varying levels of granularity. Given
the complexity of regulations, users may need to search
for specific terms, for more general concepts, or even
scan entire sections of legal texts to clarify their
understanding or support requirements engineering
efforts.

Annotation of Regulatory Statements
As discussed in Section 2, legal and regulatory texts

are laden with ambiguities. Some ambiguities in the
law may be intentional, but analysts still need to
establish an interpretation of the law in these cases, as
well as maintain traceability with the section being
interpreted. Analysts must be able to attach auxiliary
annotations to ambiguous sections to flag them for
further analysis in collaboration with the proper
stakeholders (e.g. the organization’s legal counsel).
Ideally, analysts should be able to track interpretations
across legal texts such that users will be able to view all
assumptions upfront and differentiate the
interpretations according to the context and conditions
associated with any given situation. The ability to link
legislation and software requirements with
supplemental documentation will aid analysts by
providing them with additional support for
disambiguating texts for requirements extraction.

Queries Comparing Legal Concepts and Compliance
As supported by a wide range of approaches [1, 7,

9, 28, 29, 36, 37, 38], it should be possible to perform
directed queries on the regulatory model. These queries
enable analysts to support disambiguation and auditing
efforts. Specific legal queries can allow analysts and
auditors to identify all applicable regulations, discover
all uses of a particular term or concept, and compare
different regulations. Auditors may also wish to query
the system to determine whether a particular regulation
has been addressed in a system’s design, or whether
any requirements correspond to a given section.

5. Discussion and Future Work
We now outline some limitations in this survey’s

analysis and discuss future work toward a system for
managing regulations.

This survey has largely focused on work within the
computer science and artificial intelligence domains. It
is possible that there has been work with regulations in
other engineering domains that can be applied to the
tasks facing requirements engineers and auditors in
devising a system for using regulations. It would also
be useful to examine how system developers are
currently handling legal texts. Empirical studies of
specific organizations would likely reveal additional
requirements in dealing with regulations. One such
study could focus on a particular domain and examine

North Carolina State University Technical Report TR-2007-07

how requirements engineers and system developers
identify and handle relevant regulations. Another study
could focus on a particular regulation to pinpoint what
elements of a legal text are used and how the regulation
is managed in terms of the project.

Other concepts studied in requirements engineering
are likely to be relevant for systems managing
regulations. Future work should consider how
requirements engineering research on viewpoints and
frameworks can be applied to regulatory compliance
systems. Research into natural language processing
may also provide insight into parsing legal texts.

We are currently examining how to mine legal texts
to create hierarchies of stakeholders, data objects, and
events. We are also conducting an empirical study of a
requirements specification to check for compliance.
Our study begins with the previously-derived
requirements and is working back to establish
traceability with regulatory texts. We expect to uncover
additional issues in monitoring compliance by working
backwards from requirements specifications to the
regulatory text and anticipate discovering additional
requirements for our regulatory system.

6. Conclusion
This paper discusses the role of law in requirements

engineering and attempts to bring attention to this
important domain within the requirements engineering
community. The characteristics of regulations make
them both necessary and challenging to use during
system development. Our survey examines the past 50
years of work in modeling regulations, extracting key
concepts from regulatory texts, and monitoring
compliance. In addition, we discuss what is required to
effectively support analysts that must deal with
regulatory texts in specifying system requirements as
well as auditors in determining legal compliance.

7. Acknowledgements
This work was funded through NSF Cyber Trust

grant #0430166. We also thank Laurie Jones and
Travis Breaux for their comments and feedback.

8. References
[1] L.E. Allen. "Symbolic Logic: A Razor-Edged Tool

for Drafting and Interpreting Legal Documents,"
Yale Law Journal 66(6), pp. 833-879, May 1957.

[2] A.I. Antón et al. "The Role of Policy and
Stakeholder Privacy Values in Requirements
Engineering," Proc. of the 5th IEEE Int'l Symp. on
Req'ts Eng., pp. 138-145, August 2001.

[3] G. Antoniou et al. "On the Modelling and Analysis
of Regulations," Proc. of the 10th Australasian
Conf. on Info. Sys., pp. 20-29, December 1999.

[4] G. Antoniou, D. Billington, M.J. Maher. "On the
Analysis of Regulations using Defeasible Rules,"
Proc. of the 32nd Hawaii Int’l Conf. on Sys. Sci.,
pp. 1-7, January 1999.

[5] A. Barth et al. "Privacy and Contextual Integrity:
Framework and Applications," Proc. of the 2006
IEEE Symp. on Security and Privacy, May 2006.

[6] T.J.M. Bench-Capon. "Support for Policy Makers:
Formulating Legislation with the Aid of Logical
Models," Proc. of the 1st Int'l Conf. on AI and Law,
pp. 181-189, May 1987.

[7] T.J.M. Bench-Capon et al. "Logic Programming for
Large Scale Applications in Law: A Formalisation
of Supplementary Benefit Legislation," Proc. of the
1st Int'l Conf. on AI and Law, pp. 190-198, May
1987.

[8] C. Biagioli et al. "Automatic Semantics Extraction
in Law Documents," Proc. of the 10th Int'l Conf. on
AI and Law, pp. 133-140, June 2005.

[9] C. Biagioli, P. Mariani, D. Tiscornia. "ESPLEX: A
Rule and Conceptual Based Model for
Representing Statutes," Proc. of the 1st Int'l Conf.
on AI and Law, pp. 240-251, May 1987.

[10] G. Boella, L. van der Torre. "Permissions and
Obligations in Hierarchical Normative Systems,"
Proc. of the 9th Int'l Conf. on AI and Law, pp. 109-
118, May 2003.

[11] T.D. Breaux, A.I. Antón. "An Algorithm to
Generate Compliance Monitors from Regulations,"
Technical Report TR-2006-9, March 2006.

[12] T.D. Breaux, M.W. Vail, A.I. Antón. "Towards
Regulatory Compliance: Extracting Rights and
Obligations to Align Requirements with
Regulations," Proc. of the 13th IEEE Int'l Conf. on
Req'ts Eng., September 2006.

[13] M. Casassa Mont, R. Thyne, P. Bramhall.
"Privacy Enforcement with HP Select Access for
Regulatory Compliance," Technical Report HPL-
2005-10, January 2005.

[14] L.M. Cysneiros. “Requirements Engineering in the
Health Care Domain,” Proc. Of the IEEE Joint Int’l
Conf. on Req’ts Eng., pp. 350-356, September
2002.

[15] Ernst & Young. “2006 Global Information
Security Survey,” November 2006.

[16] G. Governatori, A. Rotolo, G. Sartor.
"Temporalised Normative Positions in Defeasible
Logic," Proc. of the 10th Int'l Conf. on AI and Law,
pp. 25-34, June 2005.

North Carolina State University Technical Report TR-2007-07

[17] Q. He et al. “Ensuring Compliance Between
Policies, Requirements and Software Design,”
Proc. of the 4th IEEE Int’l Workshop on Info.
Assurance, April 2006.

[18] W.N. Hohfeld. “Some Fundamental Legal
Conceptions as Applied in Judicial Reasoning,”
Yale Law Journal 23(1), pp. 16-59, November
1913.

[19] B. Johnston, G. Governatori. "Induction of
Defeasible Logic Theories in the Legal Domain,"
Proc. of the 9th Int'l Conf. on AI and Law, pp. 204-
213, June 2003.

[20] S. Kerrigan, K.H. Law. "Logic-Based Regulation
Compliance-Assistance," Proc. of the 9th Int'l
Conf. on AI and Law, pp. 126-135, June 2003.

[21] S. Kerrigan et al. "Information Infrastructure for
Regulation Management and Compliance
Checking," Proc. of the Nat’l Conf. on Digital
Gov’t Research, pp. 167-170, February 2001.

[22] N. Kiyavitskaya et al. “Annotating
Accommodation Advertisements using CERNO,”
Proc. of the 14th ENTER Conf., January 2007.

[23] G.T. Lau, K.H. Law, G. Wiederhold. "Similarity
Analysis on Government Regulations," Proc. of the
9th ACM SIGKDD Int'l Conf. on Knowledge
Discovery and Data Mining, pp. 111-117, August
2003.

[24] G.T. Lau et al. "An E-Government Information
Architecture for Regulation Analysis and
Compliance Assistance," Proc. of the 6th Int'l Conf.
on Elec. Comm., pp. 461-470, October 2004.

[25] G.T. Lau, K.H. Law, G. Wiederhold. "Legal
Information Retrieval and Application to E-
Rulemaking," Proc. of the 10th Int'l Conf. on AI
and Law, pp. 146-154, June 2005.

[26] J. Martinek, J. Cybulka. "Dynamics of Legal
Provisions and its Representation," Proc. of the
10th Int'l Conf. on AI and Law, pp. 20-24, June
2005.

[27] F. Massacci, M. Prest, N. Zannone. "Using a
Security Requirements Engineering Methodology in
Practice: The compliance with the Italian Data
Protection Legislation," Technical Report DIT-04-
103, 2004.

[28] M.J. May, C.A. Gunter, I. Lee. “Privacy APIs:
Access Control Techniques to Analyze and Verify
Legal Privacy Policies,” Proc. of the 19th
Computer Security Foundations Workshop, July
2006.

[29] L.T. McCarty. "The TAXMAN Project: Towards
a Cognitive Theory of Legal Argument," Computer
Science and Law, B. Niblett Ed., Cambridge Press:
New York, pp. 23-43, June 1980.

[30] M.-F. Moens. "Combining Structured and
Unstructured Information in a Retrieval Model for
Accessing Legislation," Proc. of the 10th Int'l Conf.
on AI and Law, pp. 141-145, June 2005.

[31] H. Nissenbaum. "Privacy as Contextual Integrity,"
Washington Law Review 79(1), pp. 119-157,
February 2004.

[32] P.N. Otto, A.I. Antón, D.L. Baumer. "The
ChoicePoint Dilemma: How Data Brokers Should
Handle the Privacy of Personal Information,"
Technical Report TR-2006-18, July 2006.

[33] M. Palmirani, R. Brighi, M. Massini. "Automated
Extraction of Normative References in Legal
Texts," Proc. of the 9th Int'l Conf. on AI and Law,
pp. 105-106, June 2003.

[34] D. Poulin, G. Huard, A. Lavoie. "The Other
Formalization of Law: SGML Modelling and
Tagging," Proc. of the 6th Int'l Conf. on AI and
Law, pp. 82-88, June 1997.

[35] W.N. Robinson. "Implementing Rule-Based
Monitors within a Framework for Continuous
Requirements Monitoring," Proc. of the 38th
Hawaii Int’l Conf. on Sys Sci., January 2005.

[36] M.J. Sergot, A.S. Kamble, K.K. Bajaj. "Indian
Central Civil Service Pension Rules: A Case Study
in Logic Programming Applied to Regulations,"
Proc. of the 3rd Int'l Conf. on AI and Law, pp. 118-
127, June 1991.

[37] M.J. Sergot et al. "The British Nationality Act as a
Logic Program," Comm. of the ACM 29(5), pp.
370-386, February 1986.

[38] D.M. Sherman. "A Prolog Model of the Income
Tax Act of Canada," Proc. of the 1st Int'l Conf. on
AI and Law, pp. 127-136, May 1987.

[39] R. Stamper. "LEGOL: Modelling Legal Rules by
Computer," Computer Science and Law, B. Niblett
Ed., Cambridge Press: New York, pp. 45-71, June
1980.

[40] A. Toval, A. Olmos, M. Piattini. “Legal
Requirements Reuse: A Critical Success Factor for
Requirements Quality and Personal Data
Protection,” Proc. Of the IEEE Joint Int’l Conf. on
Req’ts Eng., pp. 95-103, September 2002.

[41] A. Valente, J. Breuker. "ON-LINE: An
Architecture for Modelling Legal Information,"
Proc. of the 5th Int'l Conf. on AI and Law, pp. 307-
315, May 1995.

