
North Carolina State University Computer Science Technical Report TR-2007-6

Impalpable Constraints: Framing Requirements for Formal Methods

Travis D. Breaux and Annie I. Antón
North Carolina State University
{tdbreaux, aianton}@ncsu.edu

Abstract

Regulated software systems require a precise and
unambiguous system specification that strictly
conforms to the intent of policies and regulations.
Formal methods for verification and validation can be
used to show that specifications are consistent and
complete. However, small and medium sized projects
often lack access to the expertise and training required
to apply such methods. Towards improving access to
formal methods, we introduce a frame-based approach
to model requirements that aligns a configurable
natural language representation of requirements with
a corresponding first-order predicate logic model. The
natural language representation supports domain
experts and other stakeholders who create, modify or
interpret regulatory requirements, whereas the logic
model supports machine manipulation of these
requirements for automated reasoning. In this paper,
we present:1) the frame-based theory; 2) a case study
design and associated metrics for evaluating different
models in this theory; 3) the results of a case study in
the domains of aviation, healthcare and privacy; 4)
constraint patterns that were acquired using this
approach and that can be re-used to increase
consistency in stating requirements; and 5) a prototype
that implements the frame-based theory for
specification of regulatory requirements.

1. Introduction
Requirements engineers must transcribe conceptual

phenomena that describe the environment into natural
language statements that designers and developers can
use to build systems [14, 26]. As a communication
medium, natural language provides a range of
expression that allows stakeholders to share ideas that
are largely unrefined or under-specified. This allows
stakeholders to broadly envision their understanding of
a system without overburdening themselves with
excessive details early on. The quality of requirements
depends upon removing ambiguities and resolving
conflicts [2]. However, the freedom of natural
language that benefits the early development phases
can negatively impact requirements quality as the

number of project requirements and stakeholders
increase. To illustrate, consider the following four
security requirements from the U.S. Federal HIPAA1
Privacy Rule [25], labeled A-D, below:

(A) The covered entity may disclose patient
information to a foreign government entity for
public health activities.

(B) The covered entity, who has an agreement with
the patient to restrict disclosures, may not
disclose patient information.

(C) The health care provider may disclose patient
information to an employer for public health
activities.

(D) Patient information may be disclosed to a foreign
government entity by a covered entity for public
health activities.

Each of these requirements affects the design of
patient information systems in the U.S. We identified
over 300 such requirements in the HIPAA Privacy
Rule and these do not account for the various other
potentially conflicting requirements found in state
laws. Adept requirements engineers will identify three
issues: (1) requirement D is redundant because it
simply re-topicalizes requirement A (e.g., the topic is
patient information, instead of the covered entity); (2)
requirement B is a potential conflict with requirements
A, C, and D; and (3) requirements A, C and D all share
the same purpose: for public health activities.

We have shown that the Semantic Parameterization
process yields logical expressions that a machine can
use to automatically reason about and detect these
three problems [3, 4, 6]. This process requires
engineers to have expertise and training to consistently
map each requirement into first-order logic; for small
development teams with limited budgets, this
expectation is too costly. According to a 2006 Ernst &
Young survey of nearly 1200 corporate and IT
executives, over half said compliance with regulations
is the primary driver of information security from
2005-2007 [8]. To support this continuing need,
developers and regulators need formal tools that are

1 U.S. Public Law 104-191, 110 Stat. (1996)

North Carolina State University Computer Science Technical Report TR-2007-6

accessible and that provide increased assurance that
systems conform to the law.

To this end, we introduce a frame-based theory that
formally describes variability and context-sensitivity in
NL requirements. Variability concerns alternative ways
to specify formal requirements models whereas
context-sensitivity affects our ability map between
natural language requirements and formal models
using parsers and generators. Requirements engineers
can apply this theory to scenarios and requirements to
acquire consistent and expressive constraint patterns
using our declarative, frame-based markup. We apply
this theory in two applications: (1) a tool suite used to
conduct case studies with the markup; and (2) a
prototype NL interface to specify formal requirements.
We used the tool suite to conduct the case studies that
are presented in this paper.

This paper is organized as follows: Section 2
discusses related work; Section 3 introduces the formal
frame-based theory and metrics for evaluating
correctness; Section 4 discusses the case study design;
the resulting validation from an exploratory study
appears in Section 5; Section 6 discusses theoretical
and practical contributions, including the constraint
patterns and our prototype; and Section 7 concludes
with plans for future work.

2. Related Work
Frames were proposed in the late 1960s and mid-

70s as a linguistic and conceptual structure to model
knowledge about the world [10, 18, 23]. In general, a
frame corresponds to a concept that has one or more
slots; each slot describes a stereotypical property of
that concept. Slots are assigned an atomic value or
another frame, called a sub-frame. Sometimes, slots
have default values. Frames correspond naturally to
objects in object-oriented programming and patterns or
templates in requirements engineering. In this paper, a
pattern is a frame with one or more sub-frames.
Templates are “shallow” frames because slots in
templates are only assigned atomic values; thus they
never contain sub-frames.

In requirements engineering, frames, patterns and
templates have been employed to formalize constraints
on requirements. Fillmore’s case frames or case roles
specifically model the properties of actions [10], such
as the actor who performs the action or the object upon
which the action is performed. Case frames have been
used to model scenarios [20] and goals [4, 17], the
latter of which are limited to simple action statements.
In addition to case frames, other approaches have
employed patterns or templates to model deontic [3, 4]
and temporal constraints [16, 24]. Breaux et al.
identified patterns to formalize permissions and
obligations [3, 4] and proposed a template-based

method to generate a controlled subset of NL [4]. The
more expressive frame-based approach in this paper
extends that work. Konrad et al. [16] and Smith et al.
[7, 24] employ patterns and templates, respectively, to
align temporal constraints with NL.

While the frame-based theory in this paper exposes
case frames, deontic and temporal constraints in NL
texts, we focus on its ability to identify new domain-
specific constraints on requirements. In this paper, we
show how the theory is used to demarcate phrases in
NL documents that contain requirements, in which
some phrases represent concepts (frames) and other
phrases link these concepts together as roles (slots).
Similar to Reubenstein et. al [22], we also align our
declarative frame-based theory with a denotational
semantics for generating logical expressions.

In natural language processing, work to identify a
generalized formal semantics for NL includes case
grammars [10], transformational grammars [15] and
phrase-structure grammars [12]. These grammars are
driven by explicit theories of NL syntax and are
intended to express a broader scope of NL than is
required for requirements. Despite any correlation
between syntax and semantics, we rely instead on
human judgment to demarcate phrases in a statement
based on the reader’s comprehension of semantic
relationships between phrases. Our approach is light-
weight, by design; it does not require extensive
linguistic knowledge or elaborate grammar rules.

3. Frame-based Requirements Model
The frame-based requirements model describes a

controlled set of NL requirements. We illustrate the
model using a declarative markup that is applied to
requirement (B) in Section 1. Each frame is a word or
phrase enclosed in brackets. Curly brackets denote
optional frames that can be removed from a source
sentence without making the sentence grammatically
incorrect; otherwise the frame is required and denoted
using square brackets. Optional frames are used to
elaborate or refine knowledge expressed in a
requirement statement. Each frame has a sequence of
one or more slots comprised of words and sub-frames.
For example, in Figure 1 the frame “[restrict
[disclosures]]” from line 6 contains two slots: the word
“restrict” and the sub-frame “[disclosures].”

The case frame in Figure 1 is comprised of the actor
(covered entity) on line 2, the modal-action frame
(may) on line 10, the act (disclose) on line 11 and the
object of the act (information) on line 12. The spacing
is used to denote association: for example, the
agreement has two optional sub-frames “{with…}”
and “{to…}” that elaborate or refine knowledge about
the agreement. The markup language has an associated

North Carolina State University Computer Science Technical Report TR-2007-6

parser based on the context-free grammar in Appendix
A. The parser generates programmable frames based
on the syntactic theory presented in Section 3.1. After
presenting the formal model in detail, we introduce
metrics for checking consistency and correctness in a
frame-based model.

1 [
2 [[the] {covered} entity
3 {who [has
4 [[an] agreement
5 {with [[the] patient]}
6 {to [restrict [disclosures]]}
7]
8]}
9]
10 [may {not}
11 [disclose
12 [{patient} information]
13]
14]
15]

Figure 1: Requirement with Frame Markup

3.1. Syntactic Theory
A frame-based requirements model satisfies two

separate theories that describe a frame’s syntactic and
semantic features. The syntactic features concern how
NL statements are composed from words using frames,
whereas the semantic features concern how logical
expressions are generated from a composition of
frames using a denotational semantics. The term model
refers to an instance of this theory; engineers can
construct different models of the same requirements
using the theory. This paper presents the syntactic
theory in detail, while the semantic theory will be
addressed in a follow up paper. The syntactic theory is
comprised of a frame, composition and model as
formally defined below.

Definition 1: A frame describes a NL phrase or
sentence through a finite sequence of n slots 〈s1, s2, …,
sn〉 in which each slot represents a fixed or variable
portion of the phrase. For each slot s in a frame, we
define the following three functions: label (s) that
maps s to a finite string of characters that describe the
slot; variable (s) that maps s to a possibly empty set of
frames, called a variable; and required (s) that is true
only if slot s is required for grammatical correctness. In
Figure 1, for example, removing the required frames
“the” or “an” would yield a grammatically incorrect
sentence. Each frame is a member of one or more
variables. A principal variable T, called the top
variable, contains only frames that correspond to
whole sentences.

Definition 2: A composition is an interpretation of
one or more frames that yields a single sentence
through a set of selections over variables. In any
phrase, English conjunctions (and, or) map directly to
the set of selections using disjunctive normal form: the
set contains alternate selections in which each
selection is a conjunction of frames. A composition is
the pair 〈f, σ〉 that consists of a top frame f ∈ T
corresponding to a sentence and a selection function σ
that maps each slot s to a subset of the permutations of
variable (s). If the slot variable is empty, σ maps that
slot to the empty set.

For example, Figure 1 has a corresponding
composition in which a top frame in T is bounded by
the open and closing square brackets on lines 1 and 15,
respectively. The top frame has exactly two slots, each
with a separate variable whose selection corresponds to
lines 2-9 and 10-14, respectively. The first slot variable
is selected for the “covered entity” frame on line 2,
which is just one of many possible actors who may not
disclose patient information. The selection function σ
maps that first slot variable to the set containing a
singleton set that contains only the “covered entity”
frame. Natural language statements are generated by
performing an in-order traversal of a composition;
special syntactic consideration is given to include
correct punctuation and handle logical connectives.

Definition 3: A model is a set of frames that
describe a controlled set of NL requirements. Models
differ for several reasons, most notably because the
markup can be applied in different ways to the same
text. These primarily differences affect the degree of
variability, which is logarithmically proportional to the
number of possible statements a model can generate.
For example, consider statement S0, below:

S0: [may {not} [disclose [{patient} information]]]

The model derived from S0 will generate the following
four phrases, depending on whether an optional slot (in
bold) is included:

1. may disclose information
2. may disclose patient information
3. may not disclose information
4. may not disclose patient information

Frame models derived from markup are initially
limited in their expressive power because each slot
variable has only a few alternative frames from which
to choose. Variables that appear in recurrent frames
can be unified to increase a model’s expressiveness.
Moreover, our experiences to date suggest that
building models from successive case studies will also
make them more expressive.

North Carolina State University Computer Science Technical Report TR-2007-6

3.2. Technical Correctness
Context-free grammars for natural language are

evaluated for their generative qualities including
generality, selectivity and understandability – factors
that affect the variety and grammatical correctness of
statements that are generated by the grammar [1]. In
addition to these, we employ three metrics that
compare two frame models by appealing to the
semantics of the frame theory. The metrics assume that
both models were derived from the same sample text.
We evaluate a candidate frame in one model by
comparing it to another frame, called an oracle, which
is assumed to be correct by definition. The following
metrics have been implemented in our tool suite to
remove inter-rater bias:

Internal Demarcation. If a word or phrase in the
oracle frame is contained in a sub-frame but the
candidate frame does not demarcate the word or phrase
as a separate sub-frame, this is an internal demarcation
error. Consider the following frames:

O1: [The {covered} entity]
C1: [The covered entity]

The oracle frame O1 contains the additional sub-frame
“{covered}” that is not demarcated in the candidate
frame C1; thus the absence of this sub-frame is scored
as an internal demarcation error.

Logical Demarcation. If the English conjunctions
(and, or) in the oracle frame are replaced by the
corresponding logical operators but not in the
candidate frame, this is a logical demarcation error.
Furthermore, it is an error to map a frame to a logical
conjunction in the oracle frame and to a disjunction in
the candidate frame, and vice versa. Consider:

O2: [obtain | inspect [copies]]
C2: [obtain {and inspect} [copies]]

The oracle frame O2 maps the English conjunction
“and” to a logical disjunction “|”, whereas the
candidate frame C2 incorrectly offsets the phrase “and
inspect” as an optional sub-frame. These errors are
commonly due to ambiguities in English conjunctions;
the conjunction “and” can mean either logical-or or
logical-and depending on the intended interpretation.

Dissociation. If a phrase in the oracle frame is
demarcated in two disjoint candidate frames (e.g., one
frame is not the ancestor of the other), then this is
scored as a dissociation error. For example, the frames
O3 and C3 follow from the phrase “Patients generally
should request corrections…”

O3: [should [request [corrections]] {if […]}]
C3: [should [request [corrections {if […]}]]]

The condition frame “{if […]}” in O3 applies to the
recommendation frame “[should…]”; that is, “the actor

should request, if…” The candidate frame C3,
however, associates the condition as an optional slot in
the sub-frame “[corrections …]” The association in C3
means “to correct, if…” because the condition applies
to the act of corrections, not to the recommendation to
request corrections, as in O3. Thus this difference is
scored as a dissociation error. Logical demarcation
errors due to optional sub-frames (see O2 and C2) are
one other source of dissociation errors. A third source
is context sensitivity, which we now discuss.
3.3. Context Sensitivity

Context sensitivity in natural language produces
two types of dissociation errors in the context-free
markup. These errors require that phrases be copied or
moved between frames to ensure the markup is
context-free. Three operations can be applied to a
frame: cut, copy and paste, denoted by the operators \, /
and *, respectively, and followed by a frame number.
In the cut and copy operations, the frame number is
assigned to that frame. In a paste operation, the frame
number identifies the frame from a cut or copy
operation. Consider Figure 2 in which lines 4-10
describe a right that is held by an individual.

The first type of dissociation error concerns the
copy of patient information (lines 6-8) that is the object
of both the verb inspect and obtain. However, due to
the logical disjunction (line 5), a context-free markup
only associates the copy as the object of the verb
obtain. To correct this error, we copy (/1) the frame on
lines 6-8 and paste (*1) it into the slot on line 5. The
second type of dissociation error concerns the HIPAA
exception for psychotherapy notes (line 12-14) that is
applied to the patient information (line 7). However, by
appearing after the temporal constraint (line 11), a
context-free markup cannot properly associate the
exception with the patient information. To correct this
error, we cut (\2) the frame on lines 12-14 and paste
(*2) it into the slot on line 7. All paste operations into
the same frame are logically conjunctive.

1 [
2 [[the] individual]
3 [has
4 [[a] right
5 [to [inspect [*1] | obtain
6 [/1 [a] copy {of
7 [{patient} information {*2}]
8 }]
9]
10]
11 {for [as [long [as…]]]}
12 {\2 except [for
13 [{psychotherapy} notes]
14]}
15]
16]

Figure 2: Resolving Context-sensitivity

North Carolina State University Computer Science Technical Report TR-2007-6

A third type of dissociation error is due to context
sensitivity concerns words that perform an anaphoric
function [1] and affect how extensional knowledge is
expressed in natural language. For example, the
determiner “the” and the pronoun “it” refers to an
entity that has been previously identified in a statement
or broader context. We use a fourth operator (^), called
note, to identify when these extensional references are
shared between frames. The formal semantics for note
operations are not realized in the syntactic theory, but
are later used when generating logical expressions. In
our case study (see Section 5), these four operations
were sufficient to reduce all the context-sensitive
phrases to context-free.

4. Case Study Design
The frame-based requirements model was validated

in two studies using a single case study design. We
present this design so that others can employ the
design in future evaluations of similar frame theories.
We provide an overview of the design before
discussing each step in detail. In the study:

1. Each participating analyst is given a standard set
of instructions2 and examples that define the frame
model and explain how to apply the markup from
Appendix A to a sample text.

2. The markup text is parsed by the tool to acquire
the frames identified by the participant and then
the parsed frames are organized using a SORT
algorithm.

3. Technical errors are identified in the SORT results
using the three metrics from Section 3.2 for
evaluating frame models.

4. After the technical errors are corrected by the
participant, the participant unifies the frame
variables using the new SORT results from the
corrected markup.

In addition to providing an informal definition of a
frame, the instructions include four rules for applying
the markup:

(1) Each frame describes a phrase that can be
replaced with an alternate phrase to yield a new
grammatically correct sentence; many of these frames
have associated concept names.

(2) Frames are optional if they can be removed from
a phrase or sentence without making the sentence
grammatically incorrect. Example 1 illustrates the use
of concept names and an optional beneficiary frame:

2 http://www4.ncsu.edu/~tdbreaux/frm-instruct.pdf

Example 1.

(3) Frames that comprise lists are separated by
logical connectives “&” for conjunction and “|”
disjunction. In natural language, these lists are joined
by zero or more commas and semi-colons followed by
an English conjunction (and, or). English conjunctions
are ambiguous: the word “and” does not always mean
logical-and, but sometimes it means logical-or.
Example 2 shows logical disjunction; logical
conjunction is symmetric.

Example 2.

(4) Frames are context-free, meaning a frame that
depends on another frame must be a sub-frame in that
other frame. These dependencies are limited to the
intensional meaning or the concepts expressed between
frames, and not the extensional meaning or the actual
entities being described. Example 3 shows that because
the beneficiary depends on the action “disclose,” the
beneficiary frame should be a sub-frame of the action
frame (as illustrated in Example 1). The participants
may use the cut, copy and paste operations to remove
context-sensitivity.

Example 3.

After participants markup the sample text, they use
a parser to check for missing brackets: each open
bracket should have a corresponding closing bracket.
The process of identifying missing brackets may cause
a frame to become associated with a different context,
thus it is critical that the participant analyst be the
person to perform this corrective step.

The SORT algorithm sorts frames into partitions
based on the following equivalence rule: two frames
are equivalent if both frames have the same number of
required slots. For each of these slots in the frame, the
corresponding pair of slots in both frames are
equivalent, if either both slots are variables; or both
slot labels are the same strings. The assumption is that
each frame in a partition is a candidate for membership
in the same frame variable.

actor action

beneficiary

[[The agency] may [disclose information {to third-parties}]].

doctors, physicians or nurses

comma-separated disjunction

[doctors | physicians | nurses]

correct transcription

beneficiary

… [disclose information] {to third-parties}…

action

North Carolina State University Computer Science Technical Report TR-2007-6

The SORT results are reported in record sets (see
Figure 3), one record for each partition. Each record
contains a description of the partition frame and, for
each candidate frame, the descriptions of both the
candidate frame and the context frame that contains the
candidate as one of its slots. The partition is sorted by
context to assist participants in identifying shared
variables by comparing context descriptions. Figure 3
shows a partial record from the HIPAA study in
Section 5. The record describes the frame “to [0]”
where the “0” represents the location of a required slot,
shared between all candidate frames.

Frame: to [0]
Candidate Frames Context Frames
to [[the] records] access [to [0]]
to [[the] information] access [to [0]]
to [[the] entity] accessible {to [0]} {on-site}
to [[the] summary] agrees [to [0]]
to [inspect [[a] copy]] request [access] {to [0]}
to [take [[an] action]] unable [to [0]]

Figure 3: Example Record Generated by SORT

Because markup is applied to the sample text using
an unrestricted text editor, it is possible for the
participant analysts to alter the sample text to improve
the likelihood that frames will be assigned to the same
partition during SORT. To counteract this threat to
validity, we apply the diff algorithm [13] to compare
the modified text (with markup removed) to the
original sample text. This test is performed before
SORT and after the completion of the markup and any
corrections motivated by fixing unbalanced brackets.

Next, the analyst grades their results to identify
technical errors using the metrics from Section 3.2.
Because analysts generally evolve their own markup
conventions as they see new phrases in a single study,
they can often identify their own inconsistencies in the
SORT results using these metrics. By marking these
errors, analysts can return to the markup text and make
corrections to improve their SORT results. A higher
number of frames and increased convergence of frames
into the same partitions generally indicates an
improvement in the model.

After correcting technical errors, the participating
analyst identifies which frames share a common
variable, a process called unification. Because frames
correspond to phrases, unifying two variables means
that all phrases represented by the unified variable are
valid alternatives or sub-phrases in any frame that
contains either of the two variables. For example, in
Figure 3, the slots in the first and fourth contexts
“access [to [0]]” and “agrees [to [0]]” that contain the
frame “to [0]” both describe the object of the access
and the agreement, respectively. Unifying the two slot

variables for these frames allows composing new
statements, such as “access to the summary” and
“agrees to the records.” However, the other candidate
frames do not share the same semantics for this slot.
For example, the fifth context (request access) uses this
slot to define the purpose of the request (e.g., to
inspect) and not the object (e.g., the access) as before.

The SORT algorithm eases the unification process
by organizing frames into comparable sets, but it is not
a complete solution. Rather, unification is an iterative
activity and the analyst may over-unify slot variables
based on observations that are limited to a single text.
As a future verification step, we intend to generate
exemplary statements from a frame model and test
these using grammar checkers to identify cases of
over-unification. Like software testing, however, the
state-space limits ensuring complete test coverage for
an entire frame model.

5. Validation Results
The case study design was first applied in an

exploratory study, as defined by Perry et al [21]. In the
exploratory study, one analyst applied a single frame
model to identify and compare regulatory constraints in
the domains of aviation, health care and privacy. The
data from this study was used to generalize constraint
patterns that we present later in this section. The
following U.S. federal and state regulations were
analyzed in this study:
1. ETOPS: §121.374 Continuous Airworthiness

Maintenance Program for Two-Engine Planes; in
the Extended Operations of Multi-Engine Airplanes
regulation [9].

2. HIPAA: §164.524 Access of Patients to Health
Information; in the Privacy Rule of the Health
Information Portability and Accountability Act [25].

3. MGDPA: Section 3, Access to Government Data,
Chapter 13 of the Minnesota State Statutory Rules
[19].
The ETOPS document describes procedures that

must be in place to certify two-engine planes before
they fly routes longer than one hour. The HIPAA and
MGDPA documents both concern information privacy.
Whereas the HIPAA study is specific to healthcare
information in industry, the MGDPA study generally
concerns information for the Minnesota state
government. The ETOPS, HIPAA and MGDPA
studies required 1.9, 3.3 and 4.4 hours to complete,
respectively. Table 1 compares these studies by the
number of: words in each text, SORT partitions, total
frames and top-level frames, total variables and unified
variables, and context-sensitive (C-S) cuts, copies and
pastes.

North Carolina State University Computer Science Technical Report TR-2007-6

Table 1: Case Study in Three Domains

Property ETOPS HIPAA MGDPA
Words 1323 1727 1858
Partitions 457 374 514
Frames 1400 1822 1928
– Top-Level 46 29 52
Variables 758 649 1038
– Unified 213 117 211
C-S Cuts 15 1 4
C-S Copies 21 11 32
C-S Pastes 26 12 64

In each study, the total number of frames comprised
the total number of case frames plus one frame for
each word in the text. Because the number of words
dominates the number of frames, there is a linear
correlation in the number of words, partitions, frames
and variables. The numbers in the remaining properties
do not share this correlation, however, which we
discuss in the following sub-sections in the context of
top-level frames and context-sensitivity.
5.1. Top-level Frames

 In both the ETOPS and HIPAA studies, the top-
level frames solely used patterns that were classified as
rules. Each rule is either a stakeholder action that is
permitted, called a right, or a required action, called an
obligation [6]. In both studies, we observed a
hierarchical paragraph structure, commonly used in
U.S. federal regulations, and a specialized refinement
pattern (see Figure 4). The refinement pattern provides

a syntactic device to directly associate alternatives
(other specialized rights or obligations) with a general
or abstract rule. For example, in Figure 4 below, the
general rule “must act on a request” appears in lines 2-
4 followed by the refinement pattern “{as follows

[…]}” in lines 5-14. The alternative refinements, on
lines 7-9 and 10-12 are separated by a logical
disjunction (vertical bar) at the start of line 10.

Legal professionals refer to a term-of-art as “a word
or phrase having a specific, precise meaning in a given
specialty, apart from its general meaning in ordinary
contexts” [11]. In U.S. Federal regulations, each term-
of-art has a definition that includes alternative names
for the term and case roles that relate the term to
associated actions that use the term in practice. In
HIPAA, the term “covered entity” is defined both by
its specializations, such as “health care provider” or
“health plan,” and also by roles that the entity is
involved in, such as treating patients or billing
individuals for services. Eight of the 52 top-level
frames in the MGDPA study were definitions. In
contrast, the ETOPS and HIPAA texts, consistent with
other federal regulations, organize these definitions in
a separate section from the rules.

Because the top-level frames were so consistent
between studies (e.g., all were rules or definitions
modeled by case frames), we developed a partially
automated procedure for unification, by recursively:
(1) applying the SORT algorithm to the top variable;
frames that were equivalent had their slot variables
unified; and (2) repeating step (1) on each unified
variable. The procedure terminates when all equivalent
frames have had their variables unified. For the three
studies, the procedure unified between 18-28% of all
variables. We believe more sophisticated approaches
will yield higher percentages, thus increasing the re-
usability of a single frame-based model with other
texts in the same domain.
5.2. Context-Sensitive Differences

The number of context-sensitive operations that
were required to derive the different frame models is
noteworthy. The ETOPS, HIPAA and MGDPA studies
each incurred a unique operation, on average, once
every 38, 151 and 30 frames, respectively. The higher
frequency in ETOPS and MGDPA is due to linguistic
conventions used in these documents. In ETOPS, an
introductory rule refers to a list of objects that were
distributed as section headers; thus organizing
subsequent rules by using the refinement pattern
similar to Figure 4. This stylistic device required 11 cut
and paste operations to reconstruct the introductory
rule in a context-free markup.

The larger number of context-sensitive operations in
the MGDPA study, however, is partly due to
undeclared terms-of-art. Consider Figure 5, in which
the concept of intellectual property is elaborated in
lines 6-19. We assume the frames for “{entire}”

1 [
2 [[the] {covered} entity]
3 [must
4 [act {on [[a] request]}]
5 {as [follows
6 [
7 {if […]}
8 [it]
9 [must […]]
10 | {if […]}
11 [it]
12 [must […]]
13]
14]}
15]
16]

Figure 4: Frame-based Refinement Constraint in
HIPAA §164.524

North Carolina State University Computer Science Technical Report TR-2007-6

and “{developed [with…]}” would be copied into the
slots “{*1}” and “{*2}”, respectively.

The context that contains the frame “data” that does
not appear in Figure 5 describes a right to charge the
public for disclosing the data; the frame in lines 2-21 is
a condition on that data. Assuming the description in
lines 6-19 were replaced with a term-of-art (e.g.
intellectual property), the unfamiliar reader would be
able to understand that some situations permit the
government to charge for disclosures without
necessarily understanding the term, itself. In the
situation where the reader needs to act on or implement
this right, extra effort is only then required to reference
a definition in another section to understand the term.
By replacing explanatory phrases such as the one in
Figure 5 with terms-of-art, the regulatory rules become
more concise and less prone to variations in the syntax;
thus improving readability. In addition, due to the
copy-paste operations associated with disjunctions that
appear in these explanatory phrases, using a term-or-art
decreases the likelihood of demarcation and
dissociation errors during formal transcription.

6. Contributions
The frame-based theory yields both theoretical and

practical contributions in the form of regulatory
constraint patterns and a natural language interface to
specify requirements, respectively.
6.1. Regulatory Constraint Patterns

 Informally, binary constraints represent meaningful
relationships between a domain, or the set of things
that we wish to restrict, and a range that describes the

things that restrict the domain. For example, the phrase
“the requested access” constrains the set of accesses
(the domain) by those that have been requested (the
range). By breaking similar phrases into frames and
slots, we can reason about which phrases comprise a
binary constraint and, furthermore, by which values we
should define their domain and range.

We present regulatory constraints in two categories
as follows: in Table 2, refinement constraints elaborate
the domain by listing its specializations; and in Table
3, exceptions remove elements from consideration in a
domain. For each constraint in Tables 2 and 3, the
number of constraint frame appearances across the
ETOPS (E), HIPAA (H) and MGDPA (M) texts are
followed by the constraint phrase. In the Constraint
column, the first word describes the domain and the
subsequent bracketed phrase is the constraint. The
italicized words in the constraint frame slots describe
the range or unified slot variable. The frequency with
which constraints appear in different regulations is
indicative of their generalizability across different
regulated domains. For example, many constraints,
such as “including” are common across these studies;
others, such as “in whole or in part” are relevant only
to domain-specific activities, such as access to parts of
records, data or information.

Table 2: Refinement Constraints

H E M Constraint Pattern
26 5 0 rule {as [applicable {to [act]}]}
11 50 4 rule {as [follows [rule]]}
9 1 6 rule {as [necessary {to [act]}]}
4 6 2 rule {in [a manner {to [act]}]}

17 0 1 action {in [whole | part]}
111 80 65 thing {including [a thing]}
115 45 87 rule {[the] {following}

 elements [rule*]]}
31 7 32 rule {to [[the] extent

 {possible | of [an action]}]}

Table 3: Exception Constraints

H E M Constraint
29 18 21 rule {except [as [acted upon]]}
11 12 7 thing {except [for [a thing]}
2 5 3 thing {excluding [a thing]}
4 1 1 rule {in lieu of [acting]}

44 39 45 rule {unless [an action]}
21 56 18 rule {without [action | acting]}

In addition to domains and ranges, each of these
constraints has a formal semantics. For example, policy
writers provide examples within rules to illustrate the
range of interpretations for that rule. The constraint
“including” in Table 2 achieves this goal without

1 [data
2 [that
3 [has
4 [{commercial} value]
5 & is
6 [[a] {substantial & discrete} portion
7 {of [[an] {/1 entire} formula {*2}
8 | {*1} pattern {*2}
9 | {*1} compilation {*2}
10 | {*1} program {*2}
11 | {*1} device {*2}
12 | {*1} method {*2}
13 | {*1} technique {*2}
14 | {*1} process {*2}
15 | {*1} database {*2}
16 | {*1} system
17 {/2 developed [with …]}
18]}
19]
20]
21]
22]

Figure 5: Using Elaboration vs. a Concept Name in
the MGDPA study.

North Carolina State University Computer Science Technical Report TR-2007-6

necessarily excluding interpretations (compared to the
constraint “excluding” in Table 3). On the other hand,
the constraints “as applicable,” “as necessary,” “in a
manner” and “to the extent” in Table 2 all limit the
interpretations of rules using other actions (except for
the range “possible” which is always limited by
circumstance). In Table 3, the exceptions either define
conditions in which rules are not applied or concepts to
which other concepts are excluded. In the special
constraint “in lieu of,” applying the rule removes any
requirement to perform the mentioned action.
Similarly, the constraint “without” in Table 3 precludes
any need to initiate the action or acting. In both cases,
these actions may be required by a rule elsewhere in
the regulation; presenting a potential conflict.

Full comprehension of regulatory requirements
requires engineers to associate constraints with the
correct domain and range of interpretation. These
patterns highlight a few of the relevant semantics in
understanding regulations, however, the act of
applying these constraints still carries considerable
responsibility. Additional analysis over applications of
these constraints can lead to transparent practices that
engineers and auditors can use to mutually assure
systematic compliance with regulations.
6.2. Natural Language Interface

The frame-based theory has been implemented in a
prototype that provides a natural language interface to
requirements specification. The Eclipse-based
prototype allows users to configure requirements
statements using a frame model. If the model has a
corresponding denotational semantics, the prototype
will generate a first-order predicate logic expression
for each statement. The goal is to map these
expressions into other formalisms that themselves have
established inference and analysis support.

Figure 6 shows a screenshot from the prototype. A
user first loads a requirements document formatted in
HTML into the upper-left view; the sections in the
document appear in the outline along the right side.
The user then selects a statement within the document
to model in the lower-left view. This lower view
allows the user to select frames, starting with frames in
the top variable (at the statement-level) and proceeding
with subsequent required and optional slots in each
selected frame. Each slot has a label which contains an
abstract description of the slot. The user navigates slots
using the arrow keys: left and right arrows select slots
adjacent to the current selection (in printed order),
either the next or last slot in the given frame or its
context; the up and down arrows select alternate
frames for the slot. Holding the ALT key presents
optional slots relevant to a selected frame.

Figure 6: User Selects Frame in the Prototype

The prototype presents some interesting issues that
we hope to study in future work, including the time-to-
select vs. the time-to-type a requirement and the
analyst’s natural expectation to select specific phrases
in a particular order when composing a requirement.
Both of these issues share specific trade-offs. If the
frame model is particularly robust, the analyst must
navigate larger lists of alternative frames when filling a
slot; too many alternatives may be distracting. On the
other hand, a robust frame model would be more likely
to provide variations in constructing semantically
equivalent statements but with different topicalizations;
thus accommodating users with different viewpoints on
the same requirement.

7. Summary and Future Work
This paper introduces a frame-based theory that can

be used to model and analyze domain descriptions and
identify constraints on requirements; the theory has
been applied to regulatory texts in a cross-domain
study. In addition, a Frame-based Requirements
Model, developed using this theory, can be given a
denotational semantics to align NL requirements with
first-order predicate logic. Thus, a unique contribution
of this work is that it offers a significant step forward
in bridging the gap between natural language
requirements and more formal requirements modeling.
In contrast to other requirements models, such as goals,
our frame-based model provides finer granularity in
specifying constraints and greater precision because
the model strictly conforms to the text of domain
descriptions. The increased granularity can lead to
constraint discovery in new domains, as shown in
Section 6.1. This greater precision in specification is
especially critical in regulatory domains because it is
imperative to ensure traceability when requirements
models are assigned a formal semantics: if the
semantics are misaligned with the intent of the

North Carolina State University Computer Science Technical Report TR-2007-6

regulation, inferences on those models may lead to
non-compliant system behavior. We are currently
investigating new ways to generalize frame models
using unification and alternative frame-based
approaches to specify formal requirements. In tandem,
we are evaluating the need for different logics to
express formal constraints and requirements. Finally,
we are finishing a separate study to compare multiple
participants using a single regulatory text.

Appendix A
The frame markup uses a context-free grammar

presented below in Bachus-Naur Form with regular
expression operators *, +, and ? to denote lists of zero
or more, one or more, or zero or one, respectively. The
capitalized words and brackets are terminal symbols: in
practice, AND is ampersand, OR is vertical bar, COPY
is slash, CUT is backslash, PASTE is asterisk,
NUMBER is one or more digits 0-9 and TEXT is any
printable character except for [,], {, }, &, |.

〈s〉 := 〈frame〉*
〈frame〉 := [〈content〉] | { 〈content〉 } | TEXT
〈content〉 := 〈op〉? 〈frame〉+ 〈alt〉*
〈alt〉 := AND 〈content〉 | OR 〈content〉
〈op〉 := 〈code〉 NUMBER
〈code〉 := COPY | CUT | PASTE

Acknowledgements
This work was supported, in part, by NSF ITR grant

#0325269 and the IBM CAS PhD fellowship. We
thank the members of the NCSU Privacy Place reading
group for their comments.

References
[1] J. Allen, Natural Language Understanding,

Benjamin/Cummings Pub. Co. , New York, NY, 1995.
[2] B.W. Boehm, Software Engineering Economics,

Prentice Hall, 1981.
[3] T.D. Breaux, A.I. Anton, “Deriving Semantic Models

from Privacy Policy Goals,” IEEE 6th Int’l Work.
Policies for Dist. Sys. Nets., Stockholm, Sweden, 2005,
pp. 67-76.

[4] T.D. Breaux, A.I. Anton, “Analyzing Goal Semantics
for Rights, Permissions and Obligations,” IEEE 13th
Int’l Conf. Req’ts Engr., Paris, France, 2005, pp. 177-
186.

[5] T.D. Breaux, A.I. Anton, “Mining Rule Semantics to
Understand Legislative Compliance,” ACM Work.
Privacy in Elec. Soc., 2005, pp. 51-54.

[6] T.D. Breaux, M.W. Vail, A.I. Anton, “Towards
Compliance: Extracting Rights and Obligations to Align
Requirements and Regulations,” IEEE 14th Int’l Conf.
Req’ts Engr., 2006, pp. 49-58.

[7] R.L. Cobleigh, G.S. Avrunin, L.A. Clarke, “User
Guidance for Creating Precise and Accessible Property
Specifications,” ACM SIGSOFT 14th Int’l Sym. Found.
Soft. Engr., Portland, OR, Nov. 2006, pp. 208-218.

[8] Ernst and Young, Global Information Security Survey,
2006.

[9] “Extended Operations of Multi-Engine Airplanes;
Final Rule,” 14 CFR Parts 1, 21, 25, 33, 121, 135.
Federal Register, vol. 72, no. 9, Jan. 16, 2007, pp.
1807-1887.

[10] C.J. Fillmore, “The Case for Case,” In E. Bach and R.
Harms (eds.), Universals in Linguistic Theory, Holt,
Rhinehart, Winston, NY, 1967, pp. 1-90.

[11] B.A. Garner (ed.), Black’s Law Dictionary, 8th ed.,
Thompson West, St. Paul, MN, 2008.

[12] G. Gazdar, Generalized Phrase Structure Grammar,
Havard Univ. Press, Cambridge, MA, 1985.

[13] J.W. Hunt, M.L. McIlroy, “An Algorithm for
Differential File Comparison,” Bell Laboratories
Computing Science Technical Report #41, Bell
Laboratories, Murray Hill, NJ, Jul. 1976.

[14] M. Jackson, P. Zave, “Domain Descriptions,” IEEE
Symp. Req’ts Engr., San Diego, CA, 1993, pp. 56-64.

[15] B. Jacobsen, Modern Transformational Grammars,
Elsevier Sci. Pub. Co., New York, NY, 1986.

[16] S. Konrad, B.H.C Cheung, “Real-time Specification
Patterns,” IEEE 27th Int’l Conf. Soft. Engr., Shanghai,
China, May 2005, pp. 372-381.

[17] S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, J.
Mylopoulos, “On Goal Variability Acquisition and
Analysis,” IEEE 14th Int’l Req’ts Engr. Conf.,
Minneapolos, MN, 2006, pp. 76-85.

[18] M. Minksy, “A Framework for Representing
Knowledge,” In P. Wilson (ed.) The Psychology of
Computer Vision, McGraw-Hill, 1975, pp. 211-277.

[19] “Minnesota Government Data Practices Act,” Chapter
13, Minnesota Statutes, State of Minnesota, 2006.

[20] A. Ohnishi, C. Potts, “Grounding Scenarios in Frame-
based Action Semantics,” 7th Workshop on Req’ts
Found. for Soft. Quality, Interlaken, Switzerland,
2001, pp. 177-182.

[21] D.E. Perry, S.E. Sim, S. Easterbrook, “Case Studies for
Software Engineers,” Int’l Conf. Soft. Engr., Tutorials
Notes, Apr. 2005, pp. 96-159.

[22] H.B. Reubenstein, R.C. Waters, “Requirements
Apprentice: Automated Assistance for Requriements
Acquisition,” IEEE Trans. Soft. Engr., 17(3), 1991, pp.
226-240.

[23] R.C. Schank, R.P. Abelson, Scripts, Plans, Goals and
Understanding: An Inquiry into Human Knowledge
Discovery. Lawrence Erlbaum Assoc., Hillsdale, NJ,
1977.

[24] R.L. Smith, G.S. Avrunin, L.A. Clarke, L.J. Osterweil,
“PROPEL: An Approach Supporting Property
Elucidation,” 24th Int’l Conf. Soft. Engr., Orlando, FL,
May 2002, pp. 11-21.

[25] “Standards for Privacy of Individually Identifiable
Health Information.” 45 CFR Part 160, Part 164
Subpart E. Federal Register, vol. 68, no. 34, Feb. 20,
2003, pp. 8334 – 8381.

[26] P. Zave, M. Jackson, “Four Dark Corners of
Requirements Engineering.” ACM Trans. on Soft.
Enger. Methods., 6(1), pp. 1-30, 1997.

