Determining the Minimum Energy Consumption using Dynamic

Voltage and Frequency Scaling

*

Min Yeol Lim Vincent W. Freeh
{mlim, vwfreeh} @ncsu.edu
Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA

Abstract

While improving raw performance is of primary interest
to most users of high-performance computers, energy con-
sumption also is a critical concern. Some microprocessors
allow voltage and frequency scaling, which enables a sys-
tem to reduce CPU power and performance when the CPU
is not on the critical path. When properly directed, such
dynamic voltage and frequency scaling can produce signif-
icant energy savings with little performance penalty. Var-
ious DVFS scaling algorithms have been proposed. How-
ever, the benefit is application-dependent. We can not see if
they achieve the energy consumption as minimum as possi-
ble. So, it is important to establish the baseline of the DVF'S
scheduling for any application.

This paper determines minimum energy consumption in
voltage and frequency scaling systems for a given time de-
lay. We assume we have a set of fixed points where scaling
can occur. A brute-force solution is intractable even for a
moderately sized set (although all programs presented in
this paper can be solved with the brute-force). Our algo-
rithm efficiently chooses the exact optimal schedule satisfy-
ing the given time constraint by estimation. We evaluate our
time and energy estimates in NPB serial benchmark suite.
The results show that the running time can be reduced sig-
nificantly with our algorithm. Besides, our time and energy
estimations from the optimal schedule have reasonable ac-
curacy with 1.48% of differences at maximum.

1 Introduction

Recent advances in computing systems tend to push per-
formance at all costs. Unfortunately, the “last drop” of per-
formance tends to be the most expensive. One reason is

*This research was supported in part by IBM UPP and SUR awards.

1-4244-0910-1/07/$20.00 ©2007 IEEE.

power consumption, because power is proportional to the
product of the frequency and the square of the voltage. As
an example of the problem that is faced, several years ago it
was observed that on their current trend, the power density
of a microprocessor will reach that of a nuclear reactor by
the year 2010 [4].

To balance the concerns of power and performance, new
architectures have aggressive power controls. New micro-
processors allow frequency and voltage scaling on the fly,
which allows the application or operating system to pro-
vide dynamic voltage and frequency scaling (DVES). DVES
is a promising technique, performed in adjusting a power-
performance tradeoff because CPU is the major power con-
sumer in a single node, consuming 35-50% of the nodes’
total power [6]. We denote each possible combination of
voltage and frequency a processor state, or p-state.! While
changing p-states has broad utility, including extending bat-
tery life in small devices, the primary benefit of DVFS oc-
curs when the p-state is reduced in code regions where the
CPU is not on the critical path. In such a case, power con-
sumption will be reduced with little or no decrease in end-
user performance.

Once we scale the CPU voltage and frequency, a cubic
drop in power usage occurs. However, the performance de-
crease is at most linear with frequency reduction, which
(usually) increases overall execution time. So, the overall
energy savings can be realized only if cost is less than ben-
efit. The relationship between cost and benefit depends on
characteristics of applications. If the CPU is on a critical
path, then its execution time will be increased in propor-
tion to frequency decrease. On the other hand, if the bot-
tleneck is caused not by CPU but by other factors, such as
I/0 or network communication, then execution time will not

IThe p-state is a processor performance state which defines possible
combinations of voltage and frequency. The CPU scaling represents the
transition of p-state. In this paper, lower p-state indicates higher CPU fre-
quency, meaning faster speed.

increase as much. Therefore, applying CPU scaling judi-
ciously can result in energy savings with little or no time
delay.

DVES is a popular and effective technique for increasing
energy efficiency. However, its effectiveness is highly de-
pendent on applications. This paper attempts to establish an
optimal baseline for DVFS scaling for any application. In
this paper, we determine the minimum energy consumption
for a given time delay. Given the baseline, one can evaluate
a specific DVES technique.

The problem we address is determining the minimum
overall energy consumption using DVFS for a given delay.
We assume that we are given a finite number of program lo-
cations where shifting may occur. The locations define a set
of regions in programs. Then, we assume we know the time
and energy of each region for each p-state. Further, we sup-
pose that we have the time and energy to transition between
any two p-states. A schedule is a list of p-states—one for
each region. Our algorithm finds the schedule with the min-
imum energy from those under the given time limit. There
are a potentially large number of schedules: O(F %) where
F' is the number of available p-states and R is the number
of regions.

In our approach, we build time and energy models and
use empirically obtained data. Then, we design a schedul-
ing algorithm in which the optimal schedule with minimum
energy consumption within given time delay is determined
with precise estimation. For evaluation of our approach,
we use programs from the NAS serial benchmark suite.
Our results verify that our time and energy estimations are
highly accurate. In addition, we show that our algorithm
is efficient—obtaining huge reduction in running time over
the brute-force method.

In section 2, we describe related work in power-aware
computing research. Section 3 and Section 4 describe our
approach and implementation respectively. The section 5
provides the evaluation of our approach and the verification
of our scheduling estimates. Then, we close with the sum-
mary, point out limitations of our approach.

2 Related work

For decades, performance improvement for both systems
and applications has been the only major consideration in
HPC research areas. Consequently, it resulted in the ad-
vent of large scale power consuming clusters, which causes
substantial energy cost. Hence, much research for power
awareness in HPC community has been introduced recently.
The paper [13] introduces a dynamic compilation technique
of HPC applications to reduce power consumption. This
work focuses only on I/O optimization in order to save both
time and energy. The paper [3] shows the energy savings
impact of DVS scheduling strategies in power aware HPC

clusters.

There is a body of work to propose DVFES scheduling
algorithms for significant energy savings while causing lit-
tle or no harm to overall execution time. Prior work [1]
shows the potential time/energy tradeoff of applying the
DVS mechanism in the NAS benchmark suite. In the pa-
per [2], we also proposed a DVFS algorithm, which uses
multiple p-state per iteration. The algorithm allows us to
choose a highly promising p-state in terms of attaining
maximum profit in energy/delay tradeoff. Another recent
work [6] exploited inter-node slack time to reduce power
consumption. The algorithm automatically identifies idle
time at the end of each iteration and then steers the p-state
for energy savings. This is an effective approach, especially
in a load unbalanced job execution, such as N-Body simu-
lation. More recently, we found an adaptive way to apply
DVEFS in communication phases of MPI programs [9] be-
cause CPU is not usually on a critical path, and we have
more chances to achieve an energy savings effect. Our pre-
vious work intended to minimize the energy delay prod-
uct (EDP)

We divide programs into one or more computational re-
gions. Some work has been done in partitioning regions
either statically [7, 11] or dynamically [5, 12]. Note that the
decision for finding regions, is out of scope in our work.

2.1 Finding optimal schedule

Our problem is equivalent to the problem of finding a
path minimizing cost from the root node to the leaf node in
a tree. Each node has F' (available p-states) children. There
exist R (number of regions) levels in the tree. Given this
tree, finding the optimal path satisfying problem require-
ments requires huge computational complexity (O(F).
Branch and bound [8] is a general algorithmic method
for finding exact optimal solutions for various optimiza-
tion problems. There are several branching ways, such as
depth-first-search and breadth-first-search. The bounding is
a fast way of finding bounds (upper or lower) for the op-
timal solution within a feasible subregion. The efficiency
of the method depends critically on the effectiveness of the
branching and bounding algorithms used. The paper [14]
proposed a scheduling algorithm using it, which is evalu-
ated on architectural simulators. However, we use a branch
and bound method with three branching orders after deter-
mining the scaling regions on real benchmark applications.
We develop our algorithm with a unique branching tech-
nique and bounding function to reduce the processing time
significantly.

3 Approach

The objective of this paper is to choose a DVFS sched-
ule that minimizes energy consumption while satisfying the
allowable time delay in uni-processor programs. The idea
is to explore all possible schedules for p-state transitions in
program execution. In this work, we assume that we are
given a maximum allowable time, Trimit (Trimit > 1o, To
is the execution time at the highest frequency). We next
present our time and energy model. Then, we describe our
scheduling algorithm to find the optimal schedule.

3.1 Modeling

In this section, we present our model of execution time
and energy consumption. We denote F is a set of available
p-states and R is a set of regions. Moreover, F is |F| and
R is |R|. First, we are given the time and energy for each
region for each p-state, i.e.,

Tfand Ef, Vr € RandV f € F

Second, we are given the time and energy to transition be-
tween p-states, i.e.,

TT(f; g)andET(f7 g)a vf’ g € F

where Tr(f,g) and Er(f,g) are the time and energy to
transition from p-state f to p-state g, respectively (Section 4
explains how we collect the above data.). Then, the problem
is to find a schedule (S) which is a list of p-states:

S=(f1, fa, f3, s fR)

that satisfies the following conditions for a given delay,
Trimit:

R R

T(s) = Z T}, + Z r(fi-1, fi) < Trimit, and
=1 =2

R R R

E(S) = Z Z 7(fi—1, fi) is minimized.

i=1 =2
T(S) and E(S) are estimated values computed from the
given time and energy data and the optimal schedule. In
Section 5, we execute the program with the optimal sched-
ule and measure the actual execution time, T(S), and energy
consumption, E(S).

3.2 Scheduling algorithm

In brute-force approach, F'% schedules must be evalu-
ated to determine the schedule with minimum energy con-
sumption and at most a given time delay. In this section,
we first describe our algorithm in detail. Then, we intro-
duce p-state search ordering to improve the efficiency of
our scheduling algorithm.

3.2.1 Finding the optimal schedule

Our algorithm requires the following inputs: an allowable
time delay (Trimit), time and energy per region per p-
state (T, £%), and time and energy for all possible pairs
of p-state transitions (I, E'r). The scheduling algorithm
needs to explore a state space tree to determine the optimal
schedule. The state space tree is a tree with Zf:o F" nodes
to express F''* schedules in leaf nodes. Each internal node
has F children. An exhaustive scheduling algorithm will
visit all the nodes in the tree. Therefore, finding the optimal
schedule through the exhaustive algorithm demands a huge
computational complexity.

In our approach, we have designed a scheduling algo-
rithm that is based on the branch and bound algorithm [8].
Thus, our algorithm finds the exact optimal schedule with
the same worst case complexity as the exhaustive method.
In order to achieve the significant reduction in running
time, however, we define a branching way and two bound-
ing functions. The branching way is a best-first-search
method [10] in which we first look at the p-state with a
lower index in the p-state search list. That reduces the
chances of visiting unnecessary nodes because it is highly
probable that the remaining nodes will be pruned by the
bounding functions later. Our bounding functions are spec-
ified from observations in time and energy estimations, re-
spectively.

First, we estimate the time at the k-th level in the tree
indicated by the partial schedule, Sy, = (f1, fo, ..., fk):

k k
Se) = > T + > Tr(fir. fi)
=1 1=2

Then, we check if this partial schedule is valid in time as
defined below:

If T(Sy) + MINp(k) < Tpimi then valid

R .
2. T

i=k+1

where MINp(k) =

T'Limit is a given maximum execution time and M I Ny (k)
is the minimum execution time for the R — k remaining re-
gions. This time bounding function implies we do not need
to follow the current path in the tree because the minimal
value of our estimation already exceeds the maximum time
limit.

Next, we estimate the energy for the same schedule:

k k
BS) = Y B+ Y B

=2

fz 17fz

Then, we check if this partial schedule is valid in energy as
defined below:

If £(Sy) + MINg(k) < Epes: then valid

Region || Q1 Q2 Q3 Q4 P-State Search Order
with 5% Time Delay
R1 1] [4, 5] [0, 1, 2, 3] [6] [5,4,3,2,1,0,6]
R2 [[3. 4, 5] [0, 1, 2] [6] [4,5,2,3,1,0,6]
R3 1] [2,3,4,5] [0, 1] [6] [4,5,2,3,1,0, 6]
R4 0 [5] [0, 1,2, 3, 4] [6] [5,4,3,2,1,0,6]
R5 [[2, 3, 4] [0, 1] [5, 6] [2,3,4,1,0,5, 6]

Table 1. Analysis per region in LU benchmark

R
where MINg(k) = > min(E} |y, ¢ 7)
i=k+1

FEpest 1s @ minimum energy consumption found until this
point in the algorithm, and M I Ng (k) is the lowest possible
energy consumption for the R — k remaining regions. This
energy bounding function implies that there is no need to
look at the path in case that our estimated value is greater
than the current minimum energy.

3.2.2 P-state search ordering

At each node there are F’ children to be evaluated. The order
in which those children are evaluated can have a significant
effect on the running time. Therefore, we identify a p-state
search order per region to reduce its searching space so that
we reach the optimal schedule as fast as we can. The p-
state search order contains all available p-states in the order
where most likely selected p-state in the optimal schedule
is considered first.

There are several ways to specify the ordering. In this pa-
per, we use three ways to order p-states: ordering by time,
energy, and quadrant. By time, the p-state list is sorted from
faster to slower execution time. By energy, the p-state with
lower energy consumption is taken first. The ordering by
quadrant divides the p-state list into 4 groups by the base-
lines of allowable time delay and energy. The groups are
ranked by probability in the following order: the group with
less time and less energy (Q1), the group with more time
but less energy (Q2), the group with less time but more en-
ergy (Q3), the group with more time and more energy (Q4).
The p-states in each group is also ordered by EDP because
the p-state with lower EDP has high probability to be cho-
sen in the optimal schedule. Table 1 gives the p-state search
order per region after ordering by quadrant in the NAS LU
benchmark.

4 Implementation

For any application, we first collect the time and energy
data empirically. Next, we find the optimal schedule by ap-
plying our algorithm. Then, we verify our estimation to
validate the schedule in the actual algorithm. In this sec-
tion, we describe several technical issues in the procedure.

4.1 Time and energy data collection

We need to collect data for each program. To do so, the
target program is repeatedly executed for all p-states with-
out transitions. On each run, we measure time (TJ’Z) and
energy (&%) for each region r and each p-state f.

We also need the time (777) and energy (Er) during p-
state transitions. Our research was carried out on AMD
Athlon64 processor that is capable of DVFS. In the AMD,
the p-state is defined by a frequency identifier (FID) and
voltage identifier (VID) pair. The p-state is changed by stor-
ing the appropriate FID-VID to the model specific register
(MSR). The p-state transition has three phases. In the first
phase, the processor voltage is transitioned to the level re-
quired to support frequency transitions. Next, the processor
frequency is transitioned to the frequency associated with
OS-requested p-state. In the last phase, the processor volt-
age is transitioned to the voltage associated with the OS-
requested p-state. The overhead of changing the p-state is
dominated by the time to scale—not the overhead of the sys-
tem call. For the processor used in our implementation, the
time overhead on a p-state transition (including system call
overhead) is in the range between 280 microseconds and
5842 microseconds. It is noted that time increases as the
gap between p-states increases. This is because the maxi-
mum voltage step is prespecified, and we have more steps
to the requested voltage level. We calculate the energy con-
sumption by multiplying the time and the idle power of tar-
get p-state

The time and energy per region are context-insensitive.
These data are dependent on the current p-state for a region
exclusively, not the p-state before or after the region. There-
fore, we can compose p-state transition schedule.

4.2 Power measurement

In order to measure the energy consumption of the whole
system, we use a WattsUp Pro power meter. The meter is
directly attached between the wall power and the system’s
power connector. serial interface is used to allow the system
to monitor its own power consumption. Our meter takes
the average of 4,000 samples per second (once per 250 mi-
croseconds) at maximum electrically. However, the meter

70000

25000

60000
20000

S

50000

40000 15000

Energy (J)
Energy (J)

30000 10000

20000

5000
10000

6000

5000

4000

3000

Energy (J)

2000

1000

0 0
0 100 200 300 400 500 600 700 800 900 0

Time (sec)

(a) CG

Figure 1. Execution time vs.

only reports its measurements at one second intervals. It
causes a precision problem of power meter because the cur-
rent power usage is always emitted after 1 second at max-
imum. This makes direct energy measurements of regions
infeasible. Therefore, we store timestamps of all regions
during program executions and also generate the log for
power usages separately. From the power logs, we know
the average of power usage every a second. For each times-
tamp, we can take the latest power usage before the time
by comparing with the logs. Then, we estimate energy con-
sumption per region by multiplying the elapsed time by the
power matched in the log.

4.3 Finding regions

In our implementation, the regions in target programs are
specified statically by hand for each application. To do this,
we edit the source code of target programs. We recognize
this could be improved by automatic insertion. Further-
more, it would be selected from strong analysis for ideal
region findings.

We define a data collecting operation as an entry point of
region. The region is specified as the code section between
two consecutive operations. The operations have two exe-
cution modes:profiling and scaling. In the profiling mode,
it emits the current timestamps (by gettimeofday call) and
its program location. The location identifier is defined as a
pair of hash values of program counters in call history and
its counting value to uniquely identify an execution point.
In the scaling mode, it executes the assignment of schedule
by shifting appropriate p-state.

After inserting operations, regions are defined statically
in program context. Grouping several operations into one
region may be possible depending on the size of regions.
Because of the transition time between p-states, we do not
consider the region with the time less than 200 milliseconds.
NAS serial benchmarks we evaluated have very small code
sequence. This limits the number of static regions. For ex-
ample, only three regions are found in CG benchmark be-
cause there is a nested loop and most of time is spent in
inner loop.

50 100 150 200 250 300 350 400

Time (:

(b) EP

0
0 10 20 30 40 50 60 70 80 90 100
Time (sec)

(c) Synthetic

sec)

energy consumption from single p-state execution

We also collapse all regions in iterative sections into one
region. We can do this for the NAS benchmark because
the time and energy for a region do not change over time.
However, this is not true for all applications. But our data is
sufficient to tell when collapsing is appropriate.

The effectiveness of our approach relies on correct parti-
tioning of regions. We regard the general phase partitioning
as orthogonal and complementary research to our work. We
have already mentioned several related papers to this area in
Section 2.

5 Results

For all experiments, we used a single-node AMD
Athlon-64 system with 1 GB of main memory. The Athlon-
64 CPU supports 7 p-states (from 2000 to 800 Mhz). The
system runs the Fedora Core 3 OS and Linux kernel 2.6.8.
All applications were compiled with gcc compiler 4.0.2 or
the Intel Fortran compiler 8.1 using the O2 optimization.

We use applications from the NAS serial benchmark
suite for evaluation purpose. We test class B of these bench-
marks. We do not use FT because it takes more than 10
hours for each execution.

5.1 Detailed analysis

First, we describe the energy-time tradeoff for six NAS
benchmarks using a single p-state. Figure 1 shows the re-
sults of executing them on a single Athlon-64 processor. For
each figure, the total energy consumption at each p-state is
plotted on the y-axis and the total execution time is plotted
on the x-axis. There are 7 points. Each of them indicates
the p-state used. The higher of two points uses more energy,
and the further right of two points takes more time. There-
fore, a near-vertical slope indicates an large energy savings
with little time delay between adjacent gears, whereas a hor-
izontal slope indicates a time penalty and no energy savings.

EP is a CPU bound benchmark, so there is little ben-
efit through p-state transitions. On the other hand, CG is
a memory bound benchmark which results in large energy

Normalized Energy

Normalized Energy

Normalized Energy

Normalized Energy

0.9

1 11 12 13 14 15 16 1.7 18

Normalized Time

(a) MG (4 regions)

0.95
0.9
0.85
0.8
0.75
0.7

Normalized Energy

0.65

09 1 11 12 13 14 15 16 1.7 1.8 19

Normalized Time

(d) LU (5 regions)

1.2

*
1 105 11 115 12 125 13 135
Normalized Time

(b) CG (3 regions)

1.15
1.1
1.05

0.95
0.9
0.85
0.8
0.75

=)
\ & ~
\ &g ~
\

\ //
*\74/
o .*

o
P

0.7
0.9

1 111213 14 15 16 1.7 18 19 2
Normalized Time

(e) SP (7 regions)

Normalized Energy

Normalized Energy

1 12 14 16 18 2 22 24 26
Normalized Time

(c) BT (7 regions)

15
14
13
1.2
11

T 2

0.9
0.8
0.7

e O//A
P °
P

0.6
0.8

1 12 14 16 18 2 22 24 26
Normalized Time

(f) Synthetic (10 regions)

Figure 2. Execution time vs. energy consumption per region

0.98

0.96

0.94

0.92

0.9

0.88

Normalized Energy

0.

Normalized Time

.86
098 1 1.021.041.061.08 1.1 1.121.141.161.18 1.2

1

0.98
0.96
0.94
0.92

0.9
0.88
0.86

0.84

.8:
0.98 1 1.021.041.061.08 1.1 1.121.141.161.18 1.2

Normalized Time

Normalized Energy

1

0.99
0.98
0.97
0.96
0.95
0.94
0.93

0.92

0.95

1 1.05 1.1
Normalized Time

1.15 12

(a) MG

(b) SP

(c) Synthetic

Figure 3. Minimum energy over time

savings and little time delay. All the others are more typi-
cal applications which are in the middle of the two extreme
benchmarks. EP is not considered further.

In the Figure 2, we plot the execution time and the energy
consumption per region by normalizing the time and energy
values. For our evaluation, we figured out 1-10 regions by
the region finding method described in Section 4.3. We use
the average of time and energy values per region in case that
there is one region shown repeatedly over iteration. The
time and energy values per region have 0.68% and 2.78%
of standard deviations on average.

The figures show that time and energy tradeoffs per re-
gion can be different each other. In other words, we get
different energy savings and time penalty depending on the
characteristics of code regions. In our experiments, we
use the NAS benchmarks which are iterative with several
timesteps during execution. So, we see that many regions
have different patterns of tradeoffs because of the static par-
titioning in our implementation identifies different code sec-
tions as a separate region.

After figuring out the time and energy per region, we ap-

plied the scheduling algorithm to each benchmark. Table 2
presents overall statistics of the algorithms on each bench-
marks to reach the optimal solution. Each benchmark has
three values. The first row indicates the number of evaluated
schedules which is equal to the number of leaf nodes we vis-
ited in the state space tree. The second row corresponds to
the number of internal nodes visited while running the al-
gorithm. The last row shows the running time to get the
optimal schedule. There is a strong correlation between
nodes and running time across all benchmarks. We com-
pared the workloads of the scheduling with three different
p-state search ordering by varying the given time delay from
5% to 15%. The results reported our scheduling algorithm
can reduce the scheduling workload significantly, compared
with the number of possible schedules (F'F). Furthermore,
ordering the p-state list provides more opportunities to get
rid of node visits in the tree in most cases.

We verified our estimations of time and energy from the
scheduling algorithm. The results are shown in Table 3.
We first show the allowable time delay varying from 5% to
15%. Next, the estimated execution time and energy con-

Brute-force Ordering by time Ordering by energy Ordering by quadrant
(FF) 5% [10% | 15% 5 | 10% | 15% 5 | 10% | 15%

MG Schedules 2.401 % 103 23 37 5 5 3 3 5 4 5

(R=4) Nodes 2801 71 110 119 30 40 23 26 41 25
Time (sec) 0.059 0.005 | 0.008 | 0.008 | 0.002 0.003 0.002 0.002 0.003 0.002

CG Schedules 3.430 * 102 40 40 40 1 1 1 1 1 1

(R=3) Nodes 400 58 58 58 4 4 4 4 4 4
Time (sec) 0.005 0.003 | 0.003 | 0.003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003

BT Schedules 8.235 % 10° 94 129 132 3 2 1 3 2 1

(R=7) Nodes 960800 782 274 273 343 19 8 343 10 8
Time (sec) 14.398 0.093 | 0.027 | 0.027 | 0.102 0.002 0.001 0.091 0.002 0.001

LU Schedules 1.680 * 107 64 120 166 4 4 1 3 3 5

(R=5) Nodes 19608 183 319 296 65 121 11 64 120 19
Time (sec) 0.256 0.015 | 0.026 | 0.022 | 0.007 0.020 0.001 0.006 0.035 0.001

SpP Schedules 8.235 % 10° 96 161 167 7 3 1 4 3 1

(R=7) Nodes 960800 510 520 512 223 24 8 165 24 8
Time (sec) 14.828 0.068 | 0.061 | 0.058 | 0.071 0.003 0.001 0.068 0.003 0.001

Synthetic Schedules 2.825 % 108 73 54 55 12 7 1 4 7 2

(R=10) Nodes 3.296 * 108 1485 290 254 632 169 11 269 95 14
Time (sec) 6007.005 0.224 | 0.038 | 0.033 | 0.095 0.024 0.001 0.04 0.013 0.001

Table 2. The workload analysis of finding the best schedule

sumption are presented. These are generated by the optimal
schedule of our scheduling algorithm. Then, we measured
the real execution time and energy consumption by using
the optimal schedule. In the last two columns, we calcu-
lated the differences between our estimation and real mea-
surements in time and energy. For the accuracy of real mea-
surements, we take the median values of time and energy
after running the executions 5 times. In cases of IS and CG,
the schedules are same for all given time delay because the
minimum energy is achieved with less than 5% delay (IS
is not shown in this paper due to having only one region).
Our results show that the time and energy estimation from
our scheduling algorithm are accurate with 1.48% error at
maximum in overall benchmarks. In our experiments, we
populated the time and energy values per region by only
one program execution before performing the scheduling.

In Figure 3, we finally show the estimated minimum en-
ergy over time for all the benchmarks. We get these plots by
applying our scheduling algorithm repeatedly with a halved
time delay until the same schedule is generated. The results
show that the minimum bound of energy consumption we
can achieve, given regions.

5.2 Discussion

In our approach, the region partitioning is a critical
concern to achieve near-optimal scheduling. This is not
straightforward but we have guidelines to figure out it effec-
tively. First of all, we know the lower bound of execution
time in each region. The time should be much greater than
the maximum value of p-state transition overheads. Oth-
erwise, our time estimation will be dominated by the tran-
sition overheads, which prevents our scheduling algorithm
from estimating minimal energy consumption. Second, we

also have the upper bound in the number of regions. In real-
ity, we do not need to define large number of regions for the
scheduling. Again, note that more regions may cause more
p-state transition overheads.

In this paper, we assume that target programs are sin-
gle processor applications for now. As future work, we will
address this problem on multiple processor programs with
mutual communications, such as MPI programs. Extending
our model and estimation to deal with parallel programs re-
quires more complicated analysis because the programs in
parallel systems often use collective operations to synchro-
nize themselves at some points. The p-state transition in
one node may cause collateral delay in other nodes, which
do not guarantee to finish the job within given allowable
time delay. Thus, the state space tree has much more nodes
to be considered.

6 Conclusion

In this paper, we proposed a way to achieve the min-
imum energy consumption by applying voltage and fre-
quency scaling on the fly. The basic idea is to build the
time and energy estimation models, given regions in pro-
grams. Then, we designed an efficient scheduling algorithm
to compose the best p-state transitions for all regions while
satisfying a given time delay. Results on the NAS serial
benchmark suite showed that the running time can be re-
duced significantly with our algorithm. Our time and energy
estimations are highly accurate with 1.48% of differences at
maximum, compared by real measurements.

Our future plans include designing an automatic region
finding method so that we determine the minimum energy
consumption efficiently. Additionally, we will extend this
research on parallel programs. In this case, we have much

Time Estimated | Estimated | Measured | Measured Time Energy
Delay (sec) | Time (sec) | Energy (J) | Time (sec) | Energy (J) | Error (%) | Error (%)

5% 34.97 34.75 3218.56 34.60 3257 -0.43 1.19

MG 10% 36.43 36.11 3168.91 35.81 3158 -0.83 -0.34
15% 37.88 37.63 3142.34 37.20 3189 -1.14 1.48

5% 715.98
CG 10% 749.16 697.16 49409.77 697.01 49165 -0.00 -0.50
15% 782.34

5% 566.68 566.20 53203.87 565.87 53521 -0.06 0.60

BT 10% 593.37 592.78 52132.53 594.42 52388 0.28 0.49
15% 620.07 594.38 52070.00 594.24 52180 -0.02 0.21

5% 571.60 571.34 49035.22 572.06 49094 0.13 0.12

LU 10% 598.50 598.33 47807.41 598.25 47891 -0.01 0.17
15% 625.40 618.70 46755.73 618.52 46782 -0.00 +0.00

5% 489.24 489.07 42807.32 489.12 42878 +0.00 0.17

SP 10% 512.33 510.99 41519.96 513.80 41994 0.55 1.14
15% 535.43 525.59 41326.46 523.21 41158 -0.45 -0.41

5% 46.43 46.41 4163.49 46.11 4141 -0.65 -0.54

Synthetic | 10% 48.64 48.50 4130.29 48.18 4082 -0.66 -1.17
15% 50.85 49.18 4121.60 49.70 4114 1.06 -0.18

Table 3. Estimation verification

more complexity not only because of the number of nodes,
but also because of the communications each other. The
ultimate goal is to design and implement a system which
efficiently figure out the energy saving potential by DVFS
for all programs.

References

[1]

[2]

[3]

[4]

[5]

V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, and R. Springer.
Exploring the energy-time tradeoff in mpi programs on a power-
scalable cluster. In International Parallel and Distributed Processing
Symposium, 2005.

V. W. Freeh, F. Pan, N. Kappiah, and D. K. Lowenthal. Using mul-
tiple energy gears in mpi programs on a power-scalable cluster. In
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2005.

R. Ge, X. Feng, and K. W. Cameron. Performance-constrained dis-
tributed dvs scheduling for scientific applications on power-aware
clusters. In ACM Supercomputing conference, 2005.

R. Goering. Current physical design tools come up short. EE Times,
April 14 2000.

M. Huang, J. Renau, and J. Torellas. Positional adaptation of proces-
sors: Application to energy reduction. In International Symposium
on Computer Architecture, June 2003.

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

N. Kappiah, V. W. Freeh, and D. K. Lowenthal. Just in time dynamic
voltage scaling: Exploiting inter-node slack to save energy in mpi
programs. In ACM Supercomputing conference, 2005.

K. Kennedy and U. Kremer. Automatic data layout for distributed-
memory machines. ACM Transactions on Programming Languages
and Systems, 20(4):869-916, 1998.

A.H.Land and A. G. Doig. An automatic method for solving discrete
programming problems, 1960.

M. Y. Lim, V. W. Freeh, and D. K. Lowenthal. Adaptive, transpar-
ent frequency and voltage scaling of communication phases in mpi
programs. In ACM Supercomputing conference, 2006.

J. Pearl. Heuristics: Intelligent Search Strategies for Computer Prob-
lem Solving. Addison-Wesley, 1984.

U. Rencuzogullari and S. Dwarkadas. Dynamic adaptation to avail-
able resources for parallel computing in an autonomous network of
workstations. In Principles and Practice of Parallel Programming,
June 2001.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automati-
cally characterizing large scale program behavior. In Architectural
Support for Programming Languages and Operating Systems, Oct.
2002.

S. W. Son, G. Chen, M. Kndemir, and A. Choudhary. Dynamic com-
pilation for reducing energy consumption of i/o-intensive applica-
tions. In International workshop on Language and Compilers for
Parallel Computing, 2005.

F. Xie, M. Martonosi, and S. Malik. Bounds on power savings using
runtime dynamic voltage scaling: An exact algorithm and a linear-
time heuristic approximation. In International Symposium on Low
Power Electronics and Design, Aug. 2005.

