TinyECC: A Configurable Library for Elliptic Curve Cryptogr aphy
in Wireless Sensor Networks

An Liu, Peng Ning
Department of Computer Science
North Carolina State University
Raleigh, NC 27695
Email: {aliu3, pning @ncsu.edu

Abstract have attracted many researchers to develop protocols and al

Public Key Cryptography (PKC) has been the enabling tecﬁpmhms that can fulfill the requirements of these appiices.

nology underlying many security services and protocolgint ~ S€CUrity services such as authentication and key manage-
ditional networks such as the Internet. In the context oewirMent are critical to communication security in wirelesssgen
less sensor networks, elliptic curve cryptography (EC@k Or?etworks as _v_veII as the security of sensor network applica—
of the most efficient types of PKC, is being investigatedde pI1|ons. In traditional networks such as the_ Internet, Pukéy
vide PKC support in sensor network applications so that tffe¢fYPtography (PKC) has been the enabling technology under-
existing PKC-based solutions can be exploited. lying many security services ar_ld protocols (e.g., SSL [4] an
This paper presents the design, implementation, and evdisec [21, 22]). .However, in wireless sensor networks, PK_C
uation of TinyECC, aconfigurablelibrary for ECC opera- has not been widely adopted due to t.he. resource constraints
tions in wireless sensor networks. The primary objective 8ft Sensor platforms, particularly the limited and deplekea
TinyECC is to provide aeady-to-use, publicly availaboft- Pattery power.
ware package for ECC-based PKC operations that can be There has been intensive research aimed at developing
flexibly configured and integratddto sensor network appli- techniques that can bypass PKC operations in sensor net-
cations. TinyECC provides a number of optimization swischevork applications. For example, there has been a subdtantia
which can turn specific optimizations on or off based on damount of research on random key pre-distribution for pair-
velopers’ needs. Different combinations of the optimizzgi wise key establishment (e.g., [12, 16, 17, 27, 29]) and broad
have different execution time and resource consumptidns, ¢cast authentication (e.g., [28, 30, 38]). However, theser-al
ing developers great flexibility in integrating TinyECC ant native approaches do not offer the same degree of security
sensor network applications. This paper also reports the exr functionality as PKC. For instance, none of the random
perimental evaluation of TinyECC on several common senda@y pre-distribution schemes can guarantee key estafishm
platforms, including MICAz, TelosB, Tmote Sky, and Imotd2etween any two nodes and tolerate arbitrary node compro-
The evaluation results show the impacts of individual optinises at the same time. As another example, the aforemen-
mizations on the execution time and resource consumptiotigned broadcast authentication schemes, which are atdbas
and give the most computationally efficient and the most ston TESLA [37], require loose time synchronization, which
age efficient configuration of TinyECC. itself is a challenging task to achieve in wireless senstr ne
works. In contrast, PKC can address all these problems eas-
ily. Pairwise key establishment can always be achievedyysin
1. Introduction for example, the Diffie-Hellman (DH) key exchange proto-
col [15], without suffering from the node compromise prob-

Recent technological advances have made it possible to 0. Similarly, broadcast authentication can be providtl,w
velop wireless sensor networks consisting of a large nuibefor example, the ECDSA digital signature scheme [9], with-
|OW'COSt, |0w_power’ and multi-functional sensor nodeﬂthout requiring time Synchronization. Thus, it is desirabblex-
communicate over short distances through wireless links [@lore the application of PKC on resource constrained sensor
Such sensor networks are ideal candidates for a wide rafmgaiforms.
of applications such as monitoring of critical infrastures, There have been a few recent attempts to use PKC in wire-
data acquisition in hazardous environments, and militgry dess sensor networks [19, 26, 31, 40], which demonstrate tha
erations. The desirable features of wireless sensor nk$woit is feasible to perform limited PKC operations on the cotre

sensor platforms such as MICAz motes [2]. Elliptic Curvéon technique, we compare the execution time, ROM/RAM
Cryptography (ECC) has been the top choice among variczmsumptions, and energy consumptions with and without the
PKC options due to its fast computation, small key size, awgil’en optimization enabled on MICAz [2], TelosB [5], Tmote
compact signatures. For example, to provide equivaleni-seSky [7], and Imote2 [1]. In addition, our experiments also
rity to 1024-bit RSA, an ECC scheme only needs 160 bits @mesent the performance results and the resource usagles for
various parameters, such as 160-bit finite field operatiods anost computationally efficient configuration (i.e., fastee-
160-bit key size [10]. cution and least energy consumption) and the most storage-
Despite the recent progress on ECC implementations efficient configuration (i.e., least ROM and RAM usage) of
sensor platforms, all the previous attempts [19, 31, 40phaVinyECC on these common sensor platforms, respectively.
limitations. In particular, all these attempts were depelbas The contribution of this paper is two-fold: First, we de-
independent packages/applications without seriouslgiden velop TinyECC, a configurable library for ECC operations
ering the resource demands of sensor network applicatioimswireless sensor networks, which allows flexible inteigprat
As a result, developers may found it difficult, and sometimes ECC-based PKC in sensor network applications. Second,
impossible, to integrate an ECC implementation with the sewe perform a substantial amount of experimental evaluation
sor network applications, though the ECC implementatiarsing representative sensor platforms, including MICAg [2
may be okay on its own. For example, an ECC implementaelosB [5], Tmote Sky [7], and Imote2 [1]. The experimental
tion may require so much RAM that it is impossible to fit bothesults provide useful experience and guidance for deeetop
the sensor network application and the ECC implementatitmchoose different TinyECC optimizations for their needs.
on the same node. The remainder of this paper is organized as follows. Sec-
Moreover, various optimization techniques are availabt®n 2 discusses the design principles of TinyECC. Section 4
to speed up the ECC operations. Such optimizations, hosescribes the optimization techniques adopted by TinyECC.
ever, typically will increase the ROM and RAM consumpSection 5 discusses the implementation of TinyECC. Seétion
tions, though they may reduce the execution time and enemgsents the experimental evaluation of TinyECC on MICAz,
consumption. Itis not clear what optimizations should bedus TelosB, Tmote Sky, and Imote2. Section 7 discusses the re-
and how they should be combined to achieve the best tradetaféd work, and Section 8 concludes this papers and poifts ou
among security protection, computation overheads, and steome future research directions.
age requirements. Additional research is necessary tifyclar
these issues and facilitate the adoption of ECC-based PKCG2in Design Principles
wireless sensor networks.

In this paper, we present the design, implementation, andas mentioned earlier, the primary objective of TinyECC is
evaluation of TinyECC, @onfigurablelibrary for ECC oper- g provide aeady-to-use, publicly availaboftware package
ations in wireless sensor networksThe primary objective for ECC-based PKC operations that carflegibly configured
of TinyECC is to provide aeady-to-use, publicly available gng integratednto sensor network applications. To make sure
software package for ECC-based PKC operations that canf€ achieve this objective, we follow several principlestie t
flexibly configured and integratddto sensor network appli- design and development of TinyECC.
cations. Security: TinyECC should provide PKC schemes that

Targeted at TinyOS [6], TinyECC is written in nesC [18]have proved to be secure. To follow this principle, TinyECC
with occasional in-line assembly code to achieve furthgmy includes support for the well-studied ECC schemes
speedup for popular sensor platforms including MICAZ [2kych as ECDSA, ECDH, and ECIES, which are defined
TelosB [5], Tmote Sky [7], and Imote2 [1]. A unique feajy the Standards for Efficient Cryptography [10]. More-
ture of TinyECC is itsconfigurability. TinyECC includes al- gyer, TinyECC also includes elliptic curve parameters neco
most all known optimizations for ECC operations. Each opnended by SECG (Stands for Efficient Cryptography Group),
timization is controlled by a software switch, which canturgch asecpl60kl, secpl60r 1 andsecpl60r 2, as de-
the optimization on or off based on developers’ need. Diffefined in [11].
ent combinations of optimizations have different ROM/RAM Portability: TinyECC should run on as many sensor plat-

consumptions, execution time, and energy consumptiors Thirms as possible. Due to this reason, we choose to implement
gives the developers great flexibility in integrating TiIGE TinyECC on TinyOS [6], which is a popular, open-source OS
in their applications. for networked sensors. All the TinyECC components have
To provide guidance in using TinyECC, we perform a sgresc [18] implementations, though some modules also in-
ries of experiments with different combinations of actat ¢yde inline assembly code, which can be turned on for faster
optimizations. To understand the impact of each optimizaxecution on some sensor platforms. This allows TinyECC
LTinyECC 1.0 and its previous versions are publicly avadatht t p: 0 D& compiled and used on any sensor platform that can run
/1 di scovery. csc. ncsu. edu/ sof t war e/ Ti nyECC . TinyOS. TinyECC has been tested successfully on MICAz,

TelosB, Tmote Sky, and Imote2. culation of kG, wherek is an integer, is called acalar
Resource Awareness and Configurability: TinyECC multiplication The problem of findingk given pointskG
should accommodate the typical resource constraints on send G is called theelliptic curve discrete logarithm problem
sor nodes. Moreover, TinyECC should allow flexible configECDLP). It is computationally infeasible to solve ECDLP
ration so that it can take advantage of the available ressuréor appropriate parameters [20, 41]. The hardness of ECDLP
on a wide spectrum of sensor platforms. To follow this princallows several cryptographic schemes based on elliptic
ple, TinyECC is implemented carefully to avoid unnecessacyrves.
resource usage. Moreover, TinyECC uses a set of optimizatio TinyECC includes three well-known ECC schemes:
switches, which can be turned on or off to achieve differefit) the Elliptic Curve Diffie-Hellman (ECDH) key agreement
combinations of performance and resource consumptions. scheme, (2) the Elliptic Curve Digital Signature Algorithm
Efficiency: TinyECC should be computationally efficient ECDSA), and (3) the Elliptic Curve Integrated Encryption
to reduce the battery consumption as well as the delay int&cheme (ECIES). ECDH is a variant of the Diffie-Hellman
duced by PKC operations. We make three design decisidey agreement protocol [15] on elliptic curve groups. ECDSA
to improve the efficiency of TinyECC. The first is about thés a variant of the Digital Signature Algorithm (DSA) [35fth
type of finite fields over which the ECC operations are peoperates on elliptic curve groups. ECIES is a public-key en-
formed. ECC can be implemented over either a prime fietdyption scheme which provides semantic security agaimst a
Fp, wherep is a large prime number, or a binary extensioadversary who is allowed to use chosen-plaintext and chosen
field Fom, wherem is an integer. Since arithmetic operationsiphertext attacks [41]. ECIES is also known as the Ellip-
overFm are insufficiently supported by microprocessors, wie Curve Augmented Encryption Scheme (ECAES) or simply
choose to support prime fields, in TinyECC. Second, we the Elliptic Curve Encryption Scheme. These ECC schemes
adopt almost all existing optimizations for ECC operations allow smaller key sizes for similar security level to thesatita-
TinyECC. As mentioned earlier, these optimizations can lhges such as the original DH and DSA schemes. For each of
turned on or off to balance the efficiency and the resource the schemes, a party that would like to use the scheme needs
qguirements. Third, we include inline assembly code ineaiti to agree on some domain parameters such as the elliptic curve
parts of TinyECC for popular sensor platforms, including Mland a point on the curve, and must have a key pair consisting
CAz, TelosB, Tmote Sky, and Imote2. of a private keyd and a public keyQ = dG. The specification
Functionality: TinyECC should support the typical de-of ECDH, ECDSA, and ECIES can be found in [10, 20].
mands for PKC. To follow this principle, the current version

of TinyECC includes a digital signature scheme (ECDSA),4. Optimizations Adopted by TinyECC
key exchange protocol (ECDH), and a public key encryption

scheme (ECIES). These cover all typical uses of PKC. In this section, we briefly discuss the optimization tech-
niques adopted by TinyECC. We will omit the details, since
3. Background on ECC the focus of this paper is not these individual optimization

techniques. More information about these techniques can be

In this section, we give a brief introduction to ECC. Théound in the relevant references.
reader is referred to [20, 41] for more details.

Elliptic curve cryptography (ECC) is an approach td.1l. Optimizations for Large Integer Operations
public-key cryptography based on the algebraic structfire o
elliptic curves over finite fields [41]. Elliptic curves uséed Barrett Reduction [33]: The most straightforward way
cryptography are typically defined over two types of finitéo perform large integer modular reductions is to use divi-
fields: prime fields$=,, wherep is a large prime number, andsion [23]. A nice side effect of such a method is that it reuses
binary extension fieldé,m. For space reasons, we focus othe code of division, thus resulting in compact code size.
elliptic curves oveF, in this paper. Barrett Reduction is an alternative method for modular re-

An elliptic curve overF is defined by a cubic equationduction [33]. It converts the reduction modulo an arbitrary
y? =x3+ax+b, wherea,b e Fp are constants such thaa¥%+ integer to two multiplications and a few reductions modulo
2708 + 0 [20, 41]. An elliptic curve oveF, consists of the set integers of the form2 When used to reduce a single number,
of all pairs of affine coordinatgs, y) for x,y € Fq that satisfy Barrett reduction is slower than a normal division algarith
an equation of the above form and an infinity podiit The However, when used to reduce various numbers modulo the
points on an elliptic curve form an abelian group withas same number many times, by pre-computing some value, Bar-
the additive identity. (The formulas defining point additiorett reduction can achieve faster speed than modular reduc-
and its special case, point doubling, can be found in [20)41{ions obtained by division. Details of Barrett reductiom ¢

For any point G on an elliptic curve, the setfoundin[33].
{0,G,2G,3G,...} is a cyclic group [20, 41]. The cal- In TinyECC, since almost all the modular operations are

modulo the same prime numbpy Barrett reduction can po- dinate system are faster than those based on affine coardinat
tentially speed up the computation. However, this requfres system, respectively [20].
implementation of a separate reduction algorithm, which im TinyECC uses two additional optimizations along with pro-
plies larger code size (i.e., more ROM requirement) on sengective coordinate representation, which can further cedu
nodes. In addition, Barrett reduction also increases th®MRAboth the execution time and the program size. The first is a
consumption. Assume the target microprocessor hasia mixed point addition algorithnj20], which adds a point in
word size. Given a finite fieléf,, wherep is ak words long projective coordinate and a second point in affine coordinat
prime number, Barrett reduction requires the pre-comjmrtat This algorithm can be used in scalar multiplications toHart
of u= Lb_:J, whereb = 2% (e.g.,b = 28 on a 8-bit processor). reduce the number of modular multiplications and squares,
This numberu has to be stored and used throughout all tHeading to smaller and faster code. The seconejeated
modular reductions. Thus, to exchange for faster compufubling[20] for scalar multiplication. If consecutive point
tion, Barrett reduction requires more ROM and RAM than théoublings are to be performed, the repeated doubling algo-
traditional division-based modular reduction. rithm may be used to achieve faster performance than repeate
Hybrid Multiplication and Hybrid Squaring [19]: Stan- use of the doubling formula. Imconsecutive doublings, this
dard large integer multiplication algorithms [23] storee thalgorithm tradesn— 1 field additionsm— 1 divisions by two,
operands and the product in arrays. When such an algorithraftgl & multiplication for two field squarings (in comparison
implemented in a high-level language such as nesC, the coMith repeated applications of the plain point doubling algo
piler cannot use the registers in the microprocessor gitigie rithm) [20].
and the binary code usually needs to load the operands froml'hough reducing the execution time, the projective coordi-
memory to registers multiple times [19]. Gura et al. [19]pronate representation requires larger code size (for more com
posed a hybrid multiplication algorithm, which was inteddeplex formula) and more RAM (for storing additional vari-
for assembly code. This algorithm can maximize the utilizables) than the affine coordinate system.
tion of registers and reduce the number of memory operations Sliding Window for Scalar Multiplications [20]: Scalar
TinyECC adopts this hybrid multiplication algorithm for Ml multiplication is a basic operation used by all ECC schemes.
CAz [2], TelosB [5]/Tmote Sky [7], and Imote2 [1]. Indeed]t is in the form ofkP, wherek is an integer andP is a point
the code can be used on any sensor platforms that have prooasan elliptic curve. In the most straightforward method to
sors using the same instruction sets. The implementationcoimputekP, k is scanned from the most significant bit to the
hybrid multiplication has width 4 or 5 for MICAz, dependingeast significant bit. When each bit is scanned, the algurith
on the curve parameters, and has width 1 for TelosB/Tmateeds to compute a point doubling. When the scanned bit is
Sky and Imote2 due to the small number of registers on theth’, the algorithm also needs to perform a point additioneTh
In addition to hybrid multiplication, we also customize th&liding window method can speed up the scalar multiplicatio
hybrid multiplication algorithm for squaring operationsis- by scanningv bits at a time. Each time whenwabit window
ing the fact that the two multiplicative operands in squarins scanned, the algorithm needs to perfevipoint doublings.
are the same. This further reduces the execution time fy precomputing B, 3P, ..., and(2" — 1)P, the sliding win-

squaring at the cost of larger code size. dow method only needs to perform 1 point addition every
bits, and thus has less computational cost.
4.2. Optimizations for ECC Operations It is easy to see that the sliding window method will in-

crease both the ROM (for additional code size) and RAM (for
Projective Coordinate Systems [20]:As discussed ear- storing the pre-computed points) consumptions.
lier, an elliptic curve consists of the infinity poidt and the Shamir's Trick [20]: This optimization is only used for
set of points in the affine coordinatésy) for x,y € Fp that the verification of ECDSA signatures. The verification of
satisfy the defining equation. Alternatively, a pointon Bipe ECDSA signature requires the computation of the faf-
tic curve can be represented in a projective coordinatesystbQ, wherea, b are integers an® Q are two points on an el-
in the form of(x,y, z). liptic curve. A straightforward implementation requiregot
Point addition and point doubling are critical operatiams iscalar multiplications and a point addition. However, Shigm
ECC, which are buidling blocks for scalar multiplicatioms r trick allows us to compute the above value at a cost close
quired by all ECC schemes. These operations in affine do-one scalar multiplication. Specifically, with pre-contgd
ordinate system require modular inversion operationschwvhiP + Q, we may scan the (same) bitsafindb from the most
are much more expensive than other operations such as maignificant one to the least significant one. For each bit, we
lar multiplications. Using a projective coordinate sysf@®], need double the intermediate value, which is initializethas
modular inversions can be removed with the compensationiofinity point. If the scanned bit positions ata = 0,b; = 1),
a few modular multiplications. As aresult, the executioms (& = 1,b; = 0), or (g = 1,b; = 1), we addP, Q, or P+ Q
of point addition and point doubling based on projectivereoato the intermediate value. This reduces two scalar muttpli

tions to a bit more expensive than one such operation. number in the appropriate form must be defined as well.

Similar to the sliding window method, Shamir’s trick will
increase both the ROM (for additional code size) and RAM. Evaluation
(for storing the pre-computdel+ Q) consumptions.

Curve Specific Optimization [19]: A number of elliptic e performed a series of experiments to evaluate TinyECC
curves specified by NIST [36] and SECG [11] use pseudgn four representative sensor platforms, including MIC2 |
Mersenne primes. A pseudo-Mersenne prime is of the formajosB [5], Tmote Sky [7], and Imote2 [1].
p=2"—c, wherec < 2". Reduction modulo a pseudo- The objective of these experiments is three-fold: First, we
Mersenne prime can be performed by a few modular mulfiould like to measure the performance and resource con-
plications and additions without any division OperatiorE A Sumption of T|nyECC on a Spectrum of sensor p|atforms’
result, the time for modular reduction can be reduced S{gni’hng"]g from the low-end ones (such as MICAZ, Te|osB’ and
icantly. Thus, using elliptic curves over a pseudo-Mersenfrmote Sky) to high-end ones (such as Imote2). Second,

prime can achieve additional performance gain. we would like to understand the impact of the optimizations
) adopted by TinyECC on the performance and resource con-
5. Implementation sumption. Finally, we would like to provide detailed perfor

mance results and resource demands for the most commonly
We implemented TinyECC on TinyOS [6], an open souradesirable configurations, including the configuration fvat
operating system designed for wireless embedded sensor igles the fastest execution time and the configuration that r
works. The current version of TinyECC provides support faquires the least memory consumption. The former has the
ECDSA (digital signatures), ECDH (pairwise key establisHeast energy consumption, while the latter is the easiest on
ment), and ECIES (PKC-based encryption). Most of the cotteintegrate into sensor applications.
were written in nesC [18] for portability reasons. To best ha
ness the capabilities of the processors on the popular seréd. Methodology and Experiment Setup
platforms such as MICAz and TelosB, we also provided inline
assembly implementation of some critical operations, ssch Evaluation Methodology: Given seven optimization
large integer multiplications. switches, four sensor platforms, where Imote2 has multiple
To save implementation efforts, we ported the C code 6fPU frequencies due to dynamic voltage scaling, many possi-
large integer operations in RSAREF 2.0 [24] to nesC code bte elliptic curves, and three ECC-based PKC schemes, there
TinyOS. These include modular addition, subtraction, mudre a large number of experiments to perform if we have to ob-
tiplication, division, inverse, and exponentiation ofienas. serve the differences in performance and resource consump-
We then implemented all the elliptic curve operations ared thions in all cases.
optimization techniques discussed earlier. To simplify the scenarios, we adopt the following method-
TinyECC has been released publicly dittp:// ology in our experiments. For each optimization switch, we
di scovery. csc. ncsu. edu/ sof tware/ Ti nyECC/ . perform two sets of experiments, referred tocase Aand
Some preliminary versions have been adopted by othmrse Brespectively. In case A, we disable all the other opti-
researchers (e.g., [14, 25, 32]). As discussed earliatjrga mizations, and then obtain the performance and resource con
from the current version, we added a set of optimizatisumption metrics when the given optimization is enabled and
switches to provide flexible configuration of TinyECC so thalisabled, respectively. In case B, we enable all the other op
it can be integrated into sensor applications with differefimizations and obtain the evaluation metrics again when th
resource consumptions and performance demands. given optimization is enabled and disabled, respectivEtye
Table 1 lists the optimization switches available in the cudifferences in these metrics reflect the impact of the giveen o
rent version of TinyECC. Most optimization switches can bémization technique.
turned on or off by a simple configuration at compile time, Moreover, as discussed earlier, we also perform additional
or slight modification in the source code. A few optimizatioexperiments to examine in detail two commonly desirable
switches requires additional care. Specifically, for hglmul- configurations: the one that provides the fastest execution
tiplication and squaring techniques, a macro indicating- spiime, and the one that requires the least storage.
cific hardware platform (e.g., MICAz, Imote2) should be de- Experiment Setup: We evaluate TinyECC on the latest
fined, so that TinyECC will use the inline assembly code witGVS version of TinyOS 1.x [6]. As discussed earlier, we
the right instruction set. Moreover, when the sliding windo choose four representative sensor platforms, MICAz, Blos
method is used, an additional parameter defining the sizeTofiote Sky, and Imote2, for the experiments, since they are
the window (e.g.w = 4) must be defined. Finally, curve spepopular sensor platforms and cover the 8-bit, 16-bit an8iB2-
cific optimizations only work for pseudo-Mersenne primegrocessors. Other sensor platforms (e.g., Mica2, MicapDot
Thus, when curve specific optimization is enabled, a prinage expected to perform similarly to one of these platforms,

Table 1. TinyECC Optimization Switches

Method Optimization Switch Category Description

Barrett Reduction BARRETT large number| Turn this switch on to allow Barrett reduction.

Hybrid Multiplication HYBRID_MULT large number| Turn this switch on to allow hybrid multiplication in inlinessembly.

Hybrid Squaring HYBRID_SQR large number| Turn this switch on to allow hybrid squaring in inline asséynb

Projective Coordinate Systenth PROJECTIVE EC Turn this switch on to use projective coordinate system@hith mixed point addition and re
peated doubling.

Sliding Window Method SLIDING_WIN EC Turn this switch on to use sliding window method for scalaftiplication. A window size (e.g.
w = 4) has to be defined along with this switch.

Shamir’s Trick SHAMIR_TRICK EC Turn this switch on to allow Shamir’s trick when verifying BSA signatures. A window sizg
(e.g.w=2) has to be defined along with this switch.

Curve-Specific Optimization | CURVE.OPT EC Turn this switch on to allow curve specification optimizatioT his has to be used for the curves
defined over pseudo-Mersenne primes [11, 36].

due to their adoption of the same processors. fication, it has no effect on public key generation. Thus, we
TelosB and Tmote Sky have (almost) the same hardwas&ip SHAMIRTRICK in Figure 1. From Figure 1, we can see
The only difference is that TelosB can only run at 4 MHZhat PROJECTIVESs the most effective switch in both case
while Tmote Sky can run at 8 MHz when an external resigs and B. In case ASLIDING.WIN is the second most ef-
tor is enabled. We configure Tmote Sky to run at 8 MHz ifective switch, while in case BCURVEOPT is the second
our experiments. As a high-end sensor platform, Imote2 ugsgst effective switch. In both cas¢$YBRIDMULT andHY-
an XScale processor and supports dynamic voltage scaliB&ID-SQRhave similar effects.
To obtain a relatively complete view of Imote2, we use four Barratt Reduction: We notice thaBARRETTis not as ef-
different frequencies on Imote2 in our experiments: 13MHfective as expected. The public key generation is even slowe
104MHz, 208MHz, and 416MHz. in case A wherBARRETTis enabled, as Figure 1(a) shows.
By default, TinyECC includes all 128-bit, 160-bit andBarrett reduction requires 2 large number multiplicatiand
192-bit ECC parameters recommended by SECG [11]. 4targe number division (replaced by memory shifting). 8inc
is well-known that 160-bit ECC has the same securifjfemory operation is slow for low-end sensor platforms, the
level as 1024-bit RSA. We selected a 160-bit elliptic curvdarrett reduction is not necessarily faster than division i
secpl60r 1 [11] to evaluate the impact of individual opti- TINYECC whenrHYBRIDMULT are disabled.
mization techniques. Note that the actual selection ofe&sirv

depends on the security needs in the sensor network applica- Division | Barret feduction wio} Barrett reduction w/

tions, and is outside of the scope of this paper. MICAZ (8 MHz) 221.07 394.59 169.79

. . . . p TelosB (4 MHz) 196.50 367.68 243.04

We used the following evaluation metrics in all experi Tote Sky (8 MHZ) | 98.82 1845 15186
ments: ROM consumption (byte), RAM consumption (byte]), Tmote2 (1I3MHz) | 71.29 161.28 64.80
o ; v Tmote2 (104 MHzZ 8.97 20.22 8.16
executiontime (m§), and energy (_:onsum_ptlon (m]llljgum moies 5208 MHZ; i T ok
used thecheck_si ze. pl script in the TinyOS distribution [motez @16 MAz) | 2.39 522 2.18

to obtain the ROM and RAM sizes required by the TinyECC
components. The execution time was measured directly onth@le 2. Execution time (ms) for modular reduction
sensor nodes. To get the overall performance result, we rgiyough division and Barrett reduction
domly generated the parameters other than those defining the
curves (e.g., random message, random public and private keyrg gain more insights into this issue, we perform additional
pairs), and obtained the execution time for each data pgintfasts on the execution time of normalized division and liarre
tgking the average of 10 test instances. The energy consumRction (with and withouHYBRIDMULT) by randomly
tion was then calculated &5 x | x t based on the eXECUt'Ongenerating a 320-bit large number and computing mod with
time), the voltage{), and current drawlj on these sensor the modularp defined insecp160r 1 for 100 rounds. The
platforms [1,2,5,7]. results are given in Table 2. These results indicate that Bar
rett reduction is slower than normalized division wheM-

6.2. Evaluation Results BRID.MULT is disabled, but faster whedYBRIDMULT is
enabled for MICAz and Imote2. In other words, the Bar-
6.2.1. Impact of Individual Optimizations rett reduction optimization should be used along whth-

BRID.MULT to be helpful for these two platforms. Since
Public Key Generation: We first present the impact of indi-the hardware multiplier of TelosB/Tmote Sky is not part of
vidual optimizations on the execution time of public key gerMSP430 CPU, the use of this hardware multiplier involves
eration in ECDSA, ECIES, and ECDH, as shown in Figure lpading and reading peripheral registers. The Barrettaedu
SinceSHAMIRTRICK is only for ECDSA signature veri- tion is slower than normalized division for TelosB/TmoteySk

O Disable All BBARRETT BEHYBRID_MULT OHYBRID_SQR B CURVE_OPT EIPROJECTIVE BISLIDING_WIN(w=4) ‘

1000000

100000 -

10000 4

1000

Time (ms)

100

D Enable Al BBARRETT BHYBRID_MULT OHYBRID_SQR EICURVE_OPT EIPROJECTIVE ESLIDING_WIN(w=4) ‘

1000000

o
3
100000 &
B
8

3.
1657§.42
0

10000 ini

1000

Time (ms)

100

10

AR R S

A

A A A NSNS
AR

ASARRARENEN 0g
P 504

POBCRRRR
AR
=

e e N 1

ALY

1
Tmote Sky Imote2 Imote2 Imote2 Imote2 MICAZ TelosB
(8 MHz) (13 MHz) (104 MHz) (208 MHz) (416 MHz) (8 MHz) (4 MHz)

Tmote Sky Imote2 Imote2 Imote2 Imote2
(8 MH2) (13 MH2) (104 MHz) (208 MHz) (416 MH2)

MICAz TelosB
(8 MH2) (4 MHz)

(a) Public key gen time when all other optimizations arellisé (case A) (b) Public key gen time when all other optimizations are édhlcase B)

Figure 1. Execution time of public key generation

with hybrid multiplication. 3(d) show, disabling thEROJECTIVEswitch can save 2,396,
ECDSA: Now we present the impacts of individual opti-3,880, and 2,652 bytes in ROM for MICAz, TelosB/Tmote
mizations on the execution time of ECDSA. There are thr&ky, and Imote2, respectively. THRROJECTIVEswitch is
aspects of the execution time. Figures 2(a) and 2(b) show the most effective switch to speed up ECDSA operations, but
initialization time required to prepare for ECDSA in cases & also incurs larger ROM consumption than any other opti-
and B, respectively. Figures 2(c) and 2(d) show the sigeatunization technique.
generation time in cases A and B, respectively. Figures 2(e)SHAMIRTRICK is also an efficient option to speed up
and 2(f) show the signature verification time in cases A and BCDSA signature verification. From Figure 2(e), we can
respectively. see that the verification can be speed up by 2 times on all
In the initialization of ECDSA, TinyECC needs to precomplatforms when enablinHAMIRTRICK in case A. Both
pute i for Barrett reduction, a few points for the sliding winthe ROM size and RAM size are increased. In case A, the
dow method, and a few points for Shamir’s trick. In case A, &AM size is increased 634, 676, and 784 bytes for MICAz,
Figure 2(a) shows, only these 3 optimization techniquesg haielosB/Tmote Sky, and Imote2, respectively. Similarlye th
impact on the initialization time. For MICAz, the initiahtion ROM size of MICAz, TelosB/Tmote Sky and Imote2 is in-
of the sliding window method with window size 4 requiresreased 638, 632, and 620 bytes, respectively. In case B, dis
3,587 ms, which is longer than Shamir’s trick (1,672 ms fabling SHAMIRTRICK makes verification 1.6 times slower
window size 2) and barrett reduction (6 ms). The same sitdaut save 998, 2,068, and 876 bytes in ROM for MICAz,
tion applies to TelosB, Tmote Sky, and Imote2. If we disablBelosB/Tmote Sky, and Imote2, respectively. The RAM size
all these three techniques, the initialization time of E@DS does not decrease much because the sliding window method
close to 0. In case B, as Figure 2(b) shows, the disabling-of $&used for verification wheBHAMIRTRICK is disabled.

lected optimization technique doesn’t reduce the init&ion Now let us take a look at th6LIDING WIN option. In
time dramatically. Only the disabling of the sliding windowase A, as Figures 2(c), 2(e), 3(a) and 3(b) show, enabling
method can reduce the initialization time to half. SLIDING.WIN can improve signature generation and verifi-

In Figure 2, we can see thRROJECTIVHSs the most ef- cation 1.2 times faster at the cost of dramatic RAM increase
fective switch to improve the speed of signature generatign262, 1,328 and 1,472 bytes for MICAz, TelosB/Tmote Sky,
and verification. In case A, by enabling tRROJECTIVE and Imote2, respectively). In case B, as Figures 2(d), 2(f),
switch, the signature generation and verification of alt-plag(c) and 3(d) show, disablin§LIDING WIN can save 632,
forms can speed up at least 3 times. In case B, if we disablgs and 752 bytes of RAM usage for MICAz, TelosB/Tmote
the PROJECTIVEswitch, the signature generation and verifiSky, and Imote2 with 1.2 times slower signature genera-
cation has at least 6 times slowdown compared with enablitign and verification. Since MICAz and TelosB/Tmote Sky
all optimization techniques. are low-end sensor platforms, they have much smaller RAM

AlthoughPROJECTIVES the most efficient switch, it in- (4kB, 10kB) compared with Imote2 (256kB). Before enable-
creases the ROM usage. Figures 3(a) and 3(b) show thatitige SLIDING_WIN, we should be very careful if the applica-
when thePROJECTIVEwitch is enabled in case A, the ROMtion requires large RAM consumption. SinS8&IDING.WIN
size is increased by 1,830, 1,822, and 2,236 bytes for M$-the most RAM consuming switch in TinyECC, application
CAz, TelosB/Tmote Sky, and Imote2, respectively, while thédevelopers may disable it or reduce the window size to reserv
RAM size doesn’t change at all. In case B, as Figures 3(c) amre RAM for the applications.

B Disable All EBARRETT BHYBRID_MULT OHYBRID_SQR B Enable All EBARRETT BEHYBRID_MULT OHYBRID_SQR
B CURVE_OPT B PROJECTIVE B SLIDING_WIN(w=4) DOSHAMIR_TRICK(w=2) B CURVE_OPT EPROJECTIVE BISLIDING_WIN(w=4) DOSHAMIR_TRICK(w=2)
1000000.0000 o 1000000.0000
B = S O 10
0 o2 & SSEB08 wownowo 1
e e NS NFPIND —INOOOF o
& & 8 d gacy
.
10000.0000 % A 3 10000.0000 R
0 B =53 >
ES ;
= 100.0000 4 5 - 100.0000 [;RO o
£ £ : ; S
@ @ # i
£ | £ ’ i
= 1.0000 - S F 1.0000 / ¥
’ ’
/ 7
00100 0.0100 : ’
’ i
/ y
0.0001 kL 0.0001 . ¥l it
MICAz TelosB Tmote Sky Imote2 Imote2 Imote2 Imote2 MICAZ TelosB Tmote Sky Imote2 Imote2 Imote2 Imote2
(8 MHz) (4 MHz) (8 MHz) (13 MHz) (104 MHz) (208 MHz) (416 MHz) (8 MHz) (4 MHz) (8 MHz) (13 MHz) (104 MHz) (208 MHz) (416 MHz)
(a) Init. time when all other optimizations are disabledsgcd) (b) Init time when all other optimizations are enabled (e
[Disable All EBARRETT @HYBRID_MULT OHYBRID_SQR B Enable All EBARRETT E@HYBRID_MULT OHYBRID_SQR
EICURVE_OPT DPROJECTIVE B SLIDING_WIN(w=4) O SHAMIR_TRICK(W=2) EICURVE_OPT B PROJECTIVE @ SLIDING_WIN(W=4) ESHAMIR_TRICK(W=2)
1000000 1000000
SRRER gls
2285y o8
100000 + ~ESaDNRS 100000
SERENES
]
SRR o2
10000 8883 o8 10000
RORIRORNS
- SORRNTRS -
3 Ve 5% 34 g
1000 4 i @rne S s 1000
2 4 o8s%ess N g
S ’ RELEERS F
Y Soaos &2
100 | iV 100
i
i
10 ‘ 10
i
4
.] il N
MICAZ TelosB Tmote Sky Imote2 Imote2 Imote2 Imote2 MICAZ TelosB Tmote Sky Imote2 Imote2 Imote2 Imote2
(8 MHz) (4 MH2) (8 MH2) (13 MHz) (104 MHz2) (208 MHz) (416 MHz) (8 MHz2) (4 MHz) (8 MHz2) (13 MH2) (104 MHz) (208 MHz) (416 MHz)

(c) Sig. generation time when all other optimizations asablied (case A) (d) Sig. generation time when all other optimizations arabéed (case B)

DIDisable All EBARRETT BHYBRID_MULT OHYBRID_SQR D Enable Al EBARRETT BHYBRID_MULT OHYBRID_SQR
EICURVE_OPT EPROJECTIVE BISLIDING_WINW=4) O SHAMIR_TRICK(W=2) EICURVE_OPT EPROJECTIVE BISLIDING_WINw=4) OSHAMIR_TRICKW=2)
1000000 o 88397 1000000
100000 100000
S by g,
B8NacnsS
10000 + e 10000
ey
= SRINS o z
E 303820 TN E
3 1000 R P Sk 3 1000
g <Fonida £
F SEESSost S
TS
100 1] 100
10 10
1+ = 1
MICAz TelosB Tmote Sky Imote2 Imote2 Imote2 Imote2 MICAZ TelosB Tmote Sky Imote2 Imote2 Imote2 Imote2
(8 MH2) (4 MHz) (8 MHz) (13 MH2) (104 MH2) (208 MHz) (416 MHz) (8 MHz) (4 MH2) (8 MH2) (13 MH2) (104 MHz) (208 MH2) (416 MHz2)

(e) Sig. verification time when all other optimizations argatbled (case A) (f) Sig. verification time when all other optimizations areéled (case B)

Figure 2. ECDSA timing result

Now consider theHYBRIDMULT, HYBRIDSQR and faster for Imote2.CURVEOPT can speed up signature gen-
CURVEOPT options. In case AHYBRIDMULT, HY- eration by 2 times for MICAz, 1.9 times for TelosB/Tmote
BRID_.SQRand CURVEOPT do not have big impact on theSky, and 1.7 times for Imote2. Similarly, it can speed up
timing result. However, in case BIYBRID.MULT can speed signature verification by 2.1 times for MICAz, 1.9 times for
up signature generation by 1.6 times for MICAz, 1.2 times fdrelosB/Tmote Sky, and 1.7 times for Imote2. The reason
TelosB/Tmote Sky, and 1.2 times faster for Imote2. Simjlarlthat HYBRIDMULT, HYBRID. SQRand CURVEOPT can-
it can speed up signature verification by 1.7 times for MICAnot speed up ECDSA a lot in case A is that tRROJEC-

1.2 times for TelosB/Tmote Sky, and 1.2 times for ImoteZ.IVE option is disabled when each of these switches is en-
HYBRID.SQRcan speed up signature generation by 1.5 timabled. Thus, inverse operation is the major computation of
for MICAz, 1.2 times for TelosB/Tmote Sky, and 1.2 timesignature generation and verification. In case B, wRRO-

for Imote2, and speed up signature verification by 1.5 tim@&CTIVEis enabled, multiplication and squaring become the
for MICAz, 1.2 times for TelosB/Tmote Sky, and 1.2 timesnajor computation in ECDSA.

B Disable All B BARRETT
B CURVE_OPT DPROJECTIVE

@HYBRID_MULT
BSLIDING_WIN(w=4)

OHYBRID_SQR
O SHAMIR_TRICK(W=2)

25,000

20,000

15,000

10,000

ROM size (Byte)

5,000

0

MICAZ TelosB / Tmote Sky

Imote2

(a) ROM size w/ all other optimizations disabled (case A)

B Disable All B BARRETT
B CURVE_OPT DPROJECTIVE

@HYBRID_MULT
BSLIDING_WIN(w=4)

OHYBRID_SQR
DO SHAMIR_TRICK(W=2)

2,500

2,000

] 1.648

1,500

RAM size (Byte)

960

0@ oooo
hhhhh

B =
im
<
1,000 £ Eate
=
=1 o B
5001 nFaaawwh] [oB8oocosg 1.
mmmmmmmmmmmm E
R SemS S8 8
T o
0

MICAZ TelosB / Tmote Sky

Imote2

(b) RAM size w/ all other optimizations disabled (case A)

B Enable All EBARRETT
BICURVE_OPT EPROJECTIVE

@HYBRID_MULT
ESLIDING_WIN(w=4)

OHYBRID_SQR
OSHAMIR_TRICK(W=2)

25,000

20,000

15,000

10,000

ROM size (Byte)

5,000

0
MICAZ TelosB / Tmote Sky

(c) ROM size w/ all other optimizations enabled (case B)

B Disable All B BARRETT
B CURVE_OPT DPROJECTIVE

@HYBRID_MULT

BSLIDING_WINw=4) 0 SHAMIR_TRICK(W=2)

OHYBRID_SQR

2,500

2,000 o NN ©

1,500

1,000

RAM size (Byte)

500

T
lerer e §78

0

MICAZ TelosB / Tmote Sky

Imote2

(d) RAM size w/ all other optimizations enabled (case B)

Figure 3. Code size of ECDSA

dered differently for different platforms. For MICABRO-
JECTIVE > BARRETT~ HYBRIDSQR > CURVEOPT
~ SHAMIRTRICK ~ HYBRIDMULT > SLIDINGWIN.

For TelosB/Tmote Sky, PROJECTIVE > BARRETT =

SHAMIRTRICK > CURVEOPT =~ SLIDINGWIN > HY-

BRID_.SQR > HYBRIDMULT. For Imote2, PROJECTIVE
> BARRETT> SHAMIRTRICK > CURVEOPT > SLID-

ING_WIN > HYBRID.SQR> HYBRIDMULT.

ECIES: Let us switch our attention to the performance re-
sults of ECIES. Figures 4 and 5 show the execution time and
the storage requirements of ECIES, respectively. Sinc&EBCI
and ECDSA share the same implementation for basic elliptic
curve operations, the effects of optimization switchessare
ilar. Note thatSHAMIRTRICK is not applicable here.

In ECIES, only Barrett reduction and the sliding window
method require precomputation. As Figure 4(a) shows, the
precomputation of the sliding window method with window
size 4 costs 1,795, 2,464, 1,236, and 160 ms for MICAz,
TelosB, Tmote Sky, and Imote2 (13 MHz), respectively. In
contrast, the precomputation for Barrett reduction only re
quires 1.3, 1.7, 0.9 and 0.3 ms for MICAz, TelosB, Tmote
Sky, and Imote2 (13 MHz), respectively. This is because the
sliding window method with window size 4 needs to precom-
pute 16 points on the elliptic curve, but Barrett reductiotyo
precomputes one large numher

The PROJECTIVEoption is the most effective switch to
speed up ECIES. As Figures 4(c) and 4(e) show, in case A,
thePROJECTIVEbption can speed up encryption 3.4, 5.2 and
3.2 times, and decryption 3.2, 4.8 and 3.0 times for MICAz,
TelosB/Tmote Sky, and Imote2, respectively. Figures 4fd) a
4(f) show that, in case B;ROJECTIVEcan speed up encryp-
tion 12.5, 10.6 and 6.0 times, can speed up decryption 9.8,
8.6 and 5.1 times for MICAz, TelosB/Tmote Sky, and Imote2,
respectively.

The PROJECTIVEoption is also the most ROM consum-
ing switch in ECIES. In case A, as Figure 5(a) shows, the
PROJECTIVEoption increases ROM usage 1,032, 1,688 and
1,620 bytes for MICAz, TelosB/Tmote Sky, and Imote2, re-
spectively. In case B, as Figure 5(c) shows,RROJECTIVE
option increases ROM usage 4,198, 4,310 and 4,988 bytes for
MICAz, TelosB/Tmote Sky, and Imote2, respectively. In case
A, as Figure 5(b) shows, tHrRROJECTIVEbption does not re-
quire additional RAM usage. In case B, as Figure 5(d) shows,

Based on the timing results obtained for ECDSA, the efhe PROJECTIVEOption increase RAM usage 315, 330 and

fectiveness of these optimization switches in terms of e3s0 bytes for MICAz, TelosB/Tmote Sky, and Imote2, respec-
ecution time can be ordered as folloWRROJECTIVE> tjvely. Because sliding window method in projective coerdi
CURVEOPT > HYBRIDMULT > HYBRID.SQR> SLID- nate system requires additional RAM for z axis.

INGWIN > SHAMIRTRICK > BARRETT In terms of TheSLIDING WIN option can speed up ECIES encryption
RAM size, the optimization switches can be ordered as quy 1.2 times and speed up decryption by 1.1 times for all plat-
lows: SLIDINGWIN > SHAMIRTRICK> BARRETT> HY- forms in both casesSLIDING.WIN is also the most RAM

BRID.MULT = HYBRID.SQR= CURVEOPT = PROJEC- consuming switch as figures 5(b) and 5(d) show. For case
TIVE A, SLIDING.WIN with window size 4 increases RAM usage
In terms of ROM size, the optimization switches are oit,262, 1,328, 1,472 bytes for MICAz, TelosB/Tmote Sky, and

O Disable All BBARRETT BEHYBRID_MULT OHYBRID_SQR B CURVE_OPT EIPROJECTIVE BISLIDING_WIN(w=4) ‘ D Enable Al BBARRETT BHYBRID_MULT OHYBRID_SQR EICURVE_OPT EIPROJECTIVE ESLIDING_WIN(w=4) ‘
1000000.0000 1000000.0000
8 8 5 P
10000.0000 € < &] 10000.0000 W -
= & : 58
5 3 ~ 7 5
: E 2 s Y =
& 100.0000 = = : = - 100.0000 ’ i T Py
- 2 g : : o
H 2 g I ° S £ v ’ 7 oy
£ : S @ = £ 1 1 i 17
= 1.0000 83 T R i s 1.0000 - v - 4
u it - e o IS S o - 1 i ¥
= Sooil SRESIS Gu Tt N 8 Y 4 0]
P : Ry Sppooor] EoffgaN SoREER 0 4 i v
0.0100 1 i s 0.0100 T | i i
5 SO« Shlccsol ’ ’ ‘ 4
b n r : . |
3] - . v i
g 7 v] i
0.0001 = 00001 ¥l B | ; / | A
MICAz TelosB Tmote Sky Imote2 Imote2 Imote2 Imote2 MICAZ TelosB Tmote Sky Imote2 Imote2 Imote2 Imote2
(8 MHz) (4 MHz) (8 MHz) (13 MHz) (104 MHz) (208 MHz) (416 MHz) (8 MHz) (4 MHz) (8 MHz) (13 MHz) (104 MHz) (208 MHz) (416 MHz)
(a) Init. time when all other optimizations are disabledsgcd) (b) Init. time when all other optimizations are enabled é&cB$
‘DDISable All BBARRETT BHYBRID_MULT OHYBRID_SQR HCURVE_OPT EIPROJECTIVE EISLIDING_WIN(w=4) \ ‘DEnab\e Al BBARRETT BHYBRID_MULT OJHYBRID_SQR EICURVE_OPT EPROJECTIVE EISLIDING_WIN(w=4) \
1000000 —“= 1000000
100000 4 T 100000
W I TENE I
5 3 < N
10000 vl I i Rgzgmal 10000 3
H E OF 00D
& i E 7B S 2 ~oa
g oA A see 5 z pEE
® 10004 WA [R 3) N % 1000 e =
£ i s A [,) N £ 3 o
= RS (A I 4 o, i F o I NAate
0k s ’ v T 4 o
100 [/0 4 I v 100 v VR
] [] I: g | i i A B
7k 7K ’ HE | 7 A
A [:] I A 5 3
101 s A I 5 (A |- v 10 / A b
71 DHE | 7 HE | Y A
1 Vi I I / vl I Vi . Vi < /B
MICAZ TelosB Tmote Sky Imote2 Imote2 Imote2 Imote2 TelosB Tmote Sky Imote2 Imote2 Imote2 Imote2
(8 MHz) (4 MHz) (8 MHz) (13 MHz2) (104 MHz) (208 MHz) (416 MHz) (4 MHz) (8 MHz) (13 MHz) (104 MHz) (208 MHz) (416 MHz2)
(c) Encryption time when all other optimizations are digab{case A) (d) Encryption time when all other optimizations are endlflzase B)
‘DDlsable All BBARRETT BHYBRID_MULT OHYBRID_SQR B CURVE_OPT EIPROJECTIVE BISLIDING_WIN(w=4) ‘ ‘DEnab\s All BBARRETT BHYBRID_MULT OHYBRID_SQR EICURVE_OPT EIPROJECTIVE BISLIDING_WIN(w=4) ‘
1000000 1000000
8
100000 - 100000 - g
= =%
3888 1 o KedEaT g
10000 S 10000 g NEERA R g
7 o 0o 2 & o
E i~
° 1000 + % 25T © moonw £ oo
: ArES ¢ 7
= A | 17 = 4 5
/B ’ 7 5o
100 4 ’ H ’ 100 ’ =8
Al / 1
0| 8 7 HE |/ . / A
¥ Uk 4 2 4 I
it .~ A B 7) M |
MICAz TelosB Tmote Sky Imote2 Imote2 Imote2 Imote2 MICAZ TelosB Tmote Sky Imote2 Imote2 Imote2 Imote2
(8 MHz) (4 MHz) (8 MHz) (13 MHz) (104 MHz) (208 MHz) (416 MHz) (8 MHz) (4 MHz) (8 MHz) (13 MHz) (104 MHz) (208 MHz) (416 MHz)
(e) Decryption time when all other optimizations are disdbicase A) (f) Decryption time when all other optimizations are endblease B)

Figure 4. ECIES timing result

Imote2, respectively. For case BLIDINGWIN with win- MICAz, 1.2 times for TelosB/Tmote Sky, and 1.4 times for
dow size 4 requires 1,577, 1,658, 1,832 bytes for MICAmnote2. It can speed up decryption by 1.9 times for MICAz,
TelosB/Tmote Sky, and Imote2, respectively. 1.3 times for TelosB/Tmote Sky, and 1.6 times for Imote2.

Figures 4(c) and 4(e) show that in case A, none of the r%l_mllarly, theHYBRID.SQRoption can speed up encryption

maining optimization techniques help much exdeROJEC- by 1'.5 times for MICAZ, 1.2times for TeIosB/T_mote Sky, gnd
TIVE option. But in case B, there are big differences, as r1l3 times for Im_oteZ. It can speed up decryption by .1'4 times
flected in Fiéures 4(d) and 4’(f) In case B whenlﬂROJéC— for MICAz, 1.2 times for TelosB/Tmote Sky, and 1.2 times for
o2 ' ! .~ Imote2. TheCURVEOPT option can speed up encryption by
TIVE option is enabled, the number of inverse operauonsés1 times for MICAz, 2.0 times for TelosB/Tmote Sky, and
decreased a lot with increasing number of multiplicatioms a " :

. SR . 1.7 times for Imote2. Similarly, it can speed up decryptign b
squarings. Thus, the other optimization techniques caadsp . .
up ECIES in case B better than in case A. In case BHife 9.0 times for MICAz, 1.8 times for TelosB/Tmote Sky, and

BRID_MULT option can speed up encryption by 1.7 times folr'6 times for Imote2.

10

BDisable All
EICURVE_OPT

EBARRETT
B PROJECTIVE

@HYBRID_MULT
BISLIDING_WIN(w=4)

OHYBRID_SQR

25,000

20,000

15,000

10,000

ROM size (Byte)

5,000

0

TelosB / Tmote Sky

(a) ROM size w/ all other optimizations disabled (case A)

B Disable All
B CURVE_OPT

EBARRETT
BEPROJECTIVE

B@HYBRID_MULT
B SLIDING_WIN(w=4)

OHYBRID_SQR ‘

2,500

2,000

1,500

1,000

RAM size (Byte)

TelosB / Tmote Sky

Imote2

(b) RAM size w/ all other optimizations disabled (case A)

B Enable All
EICURVE_OPT

EBARRETT
BPROJECTIVE

@HYBRID_MULT
ESLIDING_WIN(w=4)

DOHYBRID_SQR ‘

20,000

15,000

ROM size (Byte)

10,000

Ed
3
8
s

o

MICAZ

TelosB / Tmote Sky

(c) ROM size w/ all other optimizations enabled (case B)

BEnable All
B CURVE_OPT

BBARRETT
O PROJECTIVE

@HYBRID_MULT
& SLIDING_WIN(w=4)

OHYBRID_SQR ‘

2,500

2,000

1,500

1,000

RAM size (Byte)

500

[

MICAZ

TelosB / Tmote Sky

Imote2

(d) RAM size w/ all other optimizations enabled (case B)

Figure 5. ECIES code size

RETT > CURVEOPT > SLIDINGWIN > HYBRIDSQR
> HYBRIDMULT. MICAz has the order: BARRETT
> HYBRIDSQR > HYBRIDMULT > PROJECTIVE>
CURVEOPT > SLIDING.WIN. For case B, TelosB/Tmote
Sky have same order:PROJECTIVE > SLIDINGWIN
> BARRETT > HYBRIDSQR > HYBRIDMULT >
CURVEOPT. MICAz has order: PROJECTIVE> SLID-
ING_WIN > HYBRIDMULT > HYBRIDSQR> BARRETT
> CURVEOPT.

ECDH: Figures 6 and 7 show the timing result and the stor-
age requirements of ECDH, respectively. Similar to ECIES,
the SHAMIRTRICK option is not applicable to ECDH, either.

The PROJECTIVEoption is the most efficient one for
ECDH, though it is also the most ROM consuming among
all the optimization switches. In case A, it can speed up
ECDH key establishment 3.4, 5.2, and 3.2 times with addi-
tional 984, 1,144 ,and 1,552 bytes ROM requirement for Ml-
CAz, TelosB/Tmote Sky, and Imote2, respectively. In case B,
it can speed up key establishment 12.0, 10.2, and 5.8 times
with 3,920, 4,220, and 4,864 bytes more ROM usage for MI-
CAz, TelosB/Tmote Sky and Imote2, respectively.

TheHYBRIDMULT, HYBRID.SQRandCURVEOPT op-
tions do not work well in case A due to the disabling of the
PROJECTIVEoption. In case B, thelYBRIDMULT option
can speed up key agreement 1.7, 1.2, and 1.3 times with 1,345,
36, and 52 more bytes ROM usage for MICAz, TelosB/Tmote
Sky, and Imote2, respectively. ThdYBRID.SQR option
can speed up key agreement 1.7, 1.2, and 1.2 times with
1,228, 138, and 180 more bytes ROM usage for MICAz,
TelosB/Tmote Sky, and Imote2, respectively. Finally, the
CURVEOPT option can speed up key agreement 2.2, 2.0, and
1.8 times with 86 more, but 204 and 264 fewer bytes ROM us-
age for MICAz, TelosB/Tmote Sky, and Imote2, respectively.
This is reasonable because nesC compiler may do different
optimizations for different platforms. We also use more in-
line assembly code in specific curve optimization to reduce
the memory operation, but do not have such inline assembly
code specifically foCURVEOPT on TelosB/Tmote Sky and
Imote2.

The SLIDING.WIN option can speed up key establish-
ment by 1.1 times faster in both cas&LIDING WIN is the
most RAM consuming switch as figures 7(b) and 7(d) show.

Based on the above performance results, we can giveRgr case ASLIDING WIN increases the RAM usage 1,262,

order of priority of the optimization switches when exeounti 1,328, and 1,472 bytes for MICAz, TelosB/Tmote Sky, and

time is the primary objective as follows?PROJECTIVE> |mote2, respectively. For case BLIDING.WIN increases

CURVEOPT > HYBRIDMULT > HYBRIDSQR> SLID- the RAM usage 1,577, 1,658, and 1,832 bytes for MICAz,

ING_WIN > BARRETTIn addition, the order of priority for TelosB/Tmote Sky, and Imote2, respectively.

the purpose of RAM size reduction is given as follow&:1D- According to the effectiveness of speeding up ECDH, we

ING.WIN > PROJECTIVE> BARRETT> HYBRIDMULT should enable each optimization switches in the following o

= HYBRID.SQR= CURVEOPT. der: PROJECTIVE> CURVEOPT > HYBRIDMULT >
For ROM size, the optimization switches have differHYBRID.SQR> SLIDINGWIN > BARRETT

ent orders for different cases. For case A, TelosB/Tmote For required RAM size, the optimization switches has the

Sky and Imote2 have similar ordePROJECTIVE~ BAR- following order for all platformsSLIDING WIN > PROJEC-

11

O Disable All BBARRETT BEHYBRID_MULT OHYBRID_SQR B CURVE_OPT EIPROJECTIVE BISLIDING_WIN(w=4) ‘

1000000.0000

10000.0000

o
©
3
&
<
8
5
S

] 159.726
19{9641

100.0000

Time (ms)
9.988
5.004

1.0000

0.0100

o e 1794 5747
T 123 5765

0.0001 +

MICAz
(8 MH2)

TelosB
(4 MHz)

Tmote Sky
(8 MHz)

Imote2
(13 MH2)

Imote2
(104 MHz)

Imote2
(208 MHz)

Imote2
(416 MHz)

D Enable Al BBARRETT BHYBRID_MULT OHYBRID_SQR EICURVE_OPT EIPROJECTIVE ESLIDING_WIN(w=4) ‘

1000000.0000

10000.0000

100.0000

Time (ms)

1.0000

0.0100

[
-
i
-
i
i
i
-
-
i
i
i
-
i
i
’
)

0.0001
MICAZ TelosB

(8 MHz)

(4 MH2)

R 1318.90
AR A ASAANSAANSSN] %gz gg

hS

Tmote Sky
(8 MH2)

Imote2
(13 MH2)

Imote2
(104 MHz)

Imote2
(208 MH2)

Imote2
(416 MHz2)

() Init. time w/ all other optimizations disabled (case A)

(b) Init. time w/ all other optimizations enabled (case B)

[Disable All BBARRETT BHYBRID_MULT OHYBRID_SQR H CURVE_OPT EIPROJECTIVE B SLIDING_WIN(w=4) ‘

1000000

100000 4

10000

1000

Time (ms)

100 4

B Enable All BBARRETT BHYBRID_MULT OOHYBRID_SQR ECURVE_OPT EPROJECTIVE EISLIDING_WIN(w=4) ‘

1000000

100000

10000

1000

Time (ms)

100

10

AR AR A RANRNRNRN] 2108007

&

SRR RN N NNNNN] 269877
A S S NN 2114197

RANNRNNNNN] 33732

1
Imote2
(13 MH2)

Tmote Sky
(8 MHz2)

TelosB
(4 MHz)

Imote2
(104 MHz)

TelosB
(4 MH2)

Imote2
(416 MHz)

Imote2
(208 MH2)

Imote2
(104 MHz)

Imote2
(13 MHz)

Imote2
(416 MHz)

Imote2
(208 MHz)

Tmote Sky
(8 MH2)

(c) Key establishment time w/ all other optimizations disdb(case A) (d) Key establishment time w/ all other optimizations eedb(case B)

Figure 6. ECDH timing result

TIVE > BARRETT> HYBRIDMULT = HYBRIDSQR= From figure 8, we can see that enabling all optimization
CURVEOPT. switches requires long pre-computation. For examplekéga
For required ROM size, the optimization switches ha¥lCAz 3,493, 1,839 and 1,839 ms to do pre-computation
different order for different platforms in different casesfor ECDSA, ECIES and ECDH, respectively. Most of the
TelosB/Tmote Sky and Imote2 have same orders in bdwhe-computation time is for the sliding window method and
cases. In case A, they have ordétROJECTIVE> BAR- Shamir’s trick (ECDSA only). It even takes longer time for
RETT> SLIDINGWIN > HYBRIDSQR> HYBRIDMULT TelosB to do pre-computation because TelosB can only run at
> CURVEOPT. In case B, they have orderPROJEC- 4 MHz. TelosB is slower than MICAz and Imote2 in ECDSA,
TIVE > SLIDINGWIN > BARRETT > HYBRIDSQR ECIES, and ECDH operations. Tmote Sky, which runs at 8
> HYBRIDMULT > CURVEOPT. MICAz has differ- MHz, is two times faster than TelosB. Running at 13 MHz,
ent orders. In case A, it has ordetHYBRIDSQR > the default CPU frequency for Imote2, Imote2 is faster than
HYBRIDMULT > BARRETT> PROJECTIVE> SLID- MICAzin all operations. If we set the frequency to 416 MHz,
ING_WIN > CURVEOPT. In case B, it has ordePROJEC- it only takes 12 and 14 ms to generate ECDSA signature and
TIVE > SLIDING.WIN > HYBRIDMULT > HYBRID.SQR verify it. Moreover, it can perform ECIES encryption in 24
> BARRETT> CURVEOPT. ms and decrypt in 15 ms. Finally, ECDH key establishment
only takes 13 ms.

6.2.2. Most Computationally Efficient Configuration Enabling all optimization switches requires the largest

ROM and RAM consumptions. Figure 9 shows the ROM and

Now let us take a closer look at the most computation- .
P RAM requirements by all schemes. Imote2 has the largest

ally efficient config.uration. Apparentl)_/, TinyECC prOVide%QAM size due to its word size. MICAz has the smallest RAM
the_most compgta‘uonally efficient configuration when ad thsize due to its 8-bit word size, but it has the largest ROM size

Because it has additional assembly code for minimizing mem-

tion time required by ECDSA initialization, signature geneOry operation whex©URVEOPT option is enabled.

ation, signature verification; ECIES initialization, epgtion,

decryption; ECDH initialization, key establishment. Now consider the energy consumption of ECDSA, ECIES

12

DDisable All EBARRETT @HYBRID_MULT OHYBRID_SQR EIMICAZ (8MHz) ~ @ TelosB (4 MHz) @ Tmote Sky (8 MHz) Blimote2 (13 MHz) O Imote2 (104 MHz)
EICURVE_OPT B PROJECTIVE B SLIDING_WIN(w=4) B Imote2 (208 MHz) OImote2 (416 MHz)

25,000 100000

20,000

10000

2
& 15,000
2
= 10,000 2 1000
o E
z 5
5,000 £
F 100
0
MICAZ TelosB / Tmote Sky Imote2
10
(a) ROM size w/ all other optimizations disabled (case A) . % i 42
init sign verify init encrypt decryp! init key establish
@ Disable Al BBARRETT @HYBRID_MULT OHYBRID_SQR (ECDSA) (ECDSA) (ECDSA) (ECIES) (ECIES) (ECIES) (ECDH) (ECDH)
BICURVE_OPT B PROJECTIVE @ SLIDING_WIN(w=4)
2,500
_ 3 Figure 8. Execution time of ECDSA, ECIES, and ECDH
’E‘T b g‘i -
S 150 o w/ all optimization switches enabled
S
E 1,000 : : B
2
: .
T =532 8 oA EEEEEE B ‘EIMICAZHTeIosB/TmoteSkyElmoteZ
JIEREELL L -
MICAz TelosB / Tmote Sky Imote2 25,000 © 'KE,
@ 5 &
@ ~
. . . 20000 1~ fe ~
(b) RAM size w/ all other optimizations disabled (case A) o)
>
£ 15,000 §
B Enable All W BARRETT @HYBRID_MULT OHYBRID_SQR ﬁ
EBICURVE_OPT B PROJECTIVE @ SLIDING_WIN(w=4) g 10,000 4
25,000 2

5,000
20,000
T
& 15,000 0
g ECDSA ECIES ECDH
2 10000
2
5000 (a) ROM size
o : x
MICAZ TelosB / Tmote Sky Imote2 ‘EIMICAZ B TelosB / Tmote Sky B Imote2
. L . 2,500 Py)
(c) ROM size w/ all other optimizations enabled (case B) o « @ O o 8
2,000 3 SR & =
B Enable All WBARRETT @HYBRID_MULT DOHYBRID_SQR i !
BICURVE_OPT B PROJECTIVE @ SLIDING_WIN(w=4) =S
< 1,500 1
2,500 8
[P, 89888 %é%%% ’51000
g > |
2,000 EEEEE@ f‘f;:ffzg - _,:% E'
& w3 o bl B o
& 1,500 .':E = E: - :E 500 1
g i B £
< 1,000 :: _':E .':: 04
< i ¥ i
@ £ i 2 ECDSA ECIES ECDH
500 3 i . 2 © [z . 1N
% e =S i &
FoE e s 72
0 i = = i
MICAZ TelosB / Tmote Sky Imote2 (b) RAM size
(d) RAM size w/ all other optimizations enabled (case B) . .
Figure 9. Code size of ECDSA, ECIES, and ECDH w/

Figure 7. ECDH code size all optimization switches enabled

radio off. To be conservative, we use the current draw with

and ECDH on the testing platforms. We compute energy coi&dio on in our computation. That is, we chose 31 mA and 66
sumption usingV =U x | xt, whereU is the voltagel is the MA for Imote2 at 13 MHz and 104 MHz.

current draw in active mode with radio off, ahd the execu- Figure 10 shows the energy consumption required by all
tion time. We took the voltage and current draw (with radithese operations. Imote2 is the most energy efficient platfo
off) from the data sheet of each sensor platform [1,2,5, awhen it runs at 104 MHz. It needs 2.86 mJ and 3.51 mJ to
used the execution time obtained in our experiments. Spegjénerate ECDSA signature and verify it; it needs 5.77 mJ and
ically, we choseJ as 3v for MICAz, TelosB and Tmote Sky.3.65 mJ to do ECIES encryption and decryption; and it needs
The current draw for MICAz and TelosB/Tmote Sky was 8.07 mJ for the ECDH key agreement operation. MICAz is
mA and 1.8 mA, respectively. For Imoted,is 0.95v for 13 the most energy consuming platform. TelosB is quite efficien
MHz and 104 MHz [1]. The Imote2 data sheet [1] does nett energy consumption due to its low current draw with radio
give the current draw when the node runs at 104 MHz withff. Tmote Sky consumes half as TelosB does because Tmote

13

‘EI MICAZ (8 MHz) B TelosB (4 MHz) B Tmote Sky (8 MHz) B Imote2 (13 MHz) O Imote2 (104 MHz) ‘ BMICAz (8MHz) BTelosB (4 MHz) BTmote Sky (8 MHz) BImote2 (13 MHz) Olmote2 (104 MHz)
(g Himote2 (208 MHz) [lImote2 (416 MHz)

100 g
b 1000000

100000

10000

1000

100

Energy consumption (mJ)
Time (ms)

init sign verify init encrypt decrypt init key establish
(ECDSA) (ECDSA) (ECDSA) (ECIES) (ECIES) (ECIES) (ECDH) (ECDH)

it sign verify init encrypt decrypt init key establish
(ECDSA) (ECDSA) (ECDSA) (ECIES) (ECIES) (ECIES) (ECDH) (ECDH)

Figure 10. Energy consumption of ECDSA, ECIES, and

ECDH w/ all optimization switches enabled Figure 11. Execution time of ECDSA, ECIES, and ECDH
w/ all optimization switches disabled

Sky (8 MHz) is two times faster than TelosB (4 MHz).
6.2.3. Most Storage-Efficient Configuration

Many TinyOS applications may use TinyECC for authersompact code size. Figure 12 shows the code size of all
tication, encryption/decryption, or key establishmertiugit schemes in TinyECC when all optimization switches are dis-
is likely that TinyECC will be loaded on sensor nodes witabled. Due to their word size, Imote2 has the largest RAM
other applications. Due to the resource constraint of log-esize, while MICAz has the smallest RAM size. The code
sensor platforms (e.g., MICAz, TelosB/Tmote Sky), we masize has been reduced greatly. For MICAz, the ROM size has
have to reduce ROM and RAM size by disabling some optieen reduced by 7,708, 8,326, and 7,384 bytes for ECDSA,
mization techniques to reserve enough space for other Bny&CIES, and ECDH, respectively; the RAM size has been re-
applications. duced by 1,358, 1,624, and 1,624 bytes for ECDSA, ECIES,

For example, when all optimization switches are enabled)d ECDH, respectively. For TelosB, the ROM size has been
ECDSA needs 17,888 bytes ROM and 1,510 bytes RAM é¢aduced by 5,348, 5,224, and 4,446 bytes for ECDSA, ECIES,
MICAz, as figure 9 shows. Stack overflow may happen whéfnd ECDH, respectively. Similarly, the RAM size has been re-
TinyECC is integrated with other programs such as TOSBagktced by 1,344, 1,658, and 1,658 bytes for ECDSA, ECIES,
the available stack for local variables may not be large ghouand ECDH, respectively. The developer can further reduce
due to the limited RAM (4K bytes) on MICAz. As anothefROM size of ECDH by enablinURVEOPT as figures 7(a)
example, TelosB only has 48K bytes ROM. If ECDSA witiand 7(c) show, but this does not work for ECDSA and ECIES.
all optimizations enabled is integrated with the Surge3elo
the total ROM siz_e would be 40,380 bytes, leaving little €pac gjpce the execution time of TinyECC is much longer, the
for other applications. energy consumption of TinyECC is also increased as figure 13

We can disable all optimization switches to show how conghows. Even when Imote2 runs at 104 MHz, it needs 21.83 mJ
pact TinyECC could be. Figure 11 shows the execution tini¢ generate ECDSA signature, which is almost 7.6 times more
of ECDSA, ECIES and ECDH when all optimization switcheghan the most computation-efficient case. For MICAz, it re-
are disabled. In this case, no pre-computation is needed, giires almost 15.4 times more energy to generate an ECDSA
the initialization time is close to 0. Imote2 running at 41gignature and 25.4 times more energy to verify a signature
MHz is still the fastest one. It can perform ECDSA signaturgan it does in the most computation efficient case. Morgover
generation and verification in 87 ms and 174 ms, respectivedynode needs 15.7 times more energy for ECIES encryption,
and perform ECIES encryption and decryption in 172 ms ang.1 times more energy for decryption, and 14.7 times more
88 ms, respectively, and finish ECDH key agreement in &nergy to establish a key in ECDH. For TelosB/Tmote Sky, a
ms. TelosB is the slowest platform due to the 4 MHz runningode needs 13.4 and 21.2 times more energy for ECDSA sig-
frequency. It needs 42,583 ms and 85,728 ms for ECDSfature generation and verification, 13.0 and 10.1 times more
signature generation and verification, respectively. BX%B- energy for ECIES encryption and decryption, and 12.0 times
cryption and decryption require 84,928 ms and 42,736 ms, faore energy for ECDH key establishment. For Imote2, it
spectively. ECDH key establishment can be done in 42,188eds 7.6 and 12.4 times more energy for ECDSA signature
ms. Tmote Sky is two times faster than TelosB. MICAz igeneration and verification, 7.5 and 6.0 times more enengy fo
faster than TelosB but slower than Tmote Sky. ECIES encryption and decryption, and 6.9 times more energy

The benefit of disabling all optimization switches is théor ECDH key establishment.

14

EIMICAz B TelosB / Tmote Sky B Imote2

25,000

20,000

2,442

15,000 -

0,434
10,904

10,000

ROM size (byte)

5,000 -

ECDSA ECIES ECDH

(a) ROM size

‘EMlCAZ B TelosB / Tmote Sky B Imote2

2,500

2,000

1,500

1,000

RAM size (byte)

(b) RAM size

Figure 12. Code size of ECDSA, ECIES, and ECDH w/

all optimization switches disabled

[EIMICAZ (8 MHz) B TelosB (4 MHz) B Tmote Sky (8 MH2) Blimote2 (13 MHz) Omote2 (104 MHz) |

2000

=
g g
o o
P 3 2
k] S

1600

H
N
=1
3

®
<]
3

Energy consumption (mJ

IS
S
3

oooooooooooooooo

o

init sign verify init encrypt decrypt it key establish
(ECDSA) (ECDSA) (ECDSA) (ECIES) (ECIES) (ECIES) (ECDH) (ECDH)

Figure 13. Energy consumption of ECDSA, ECIES, and

ECDH w/ all optimization switches disabled

7. Related Work

efficient ECC overm. Gura et al. implemented and com-
pared ECC and RSA on Atmel ATmegal28 in assembly [19].
However, it is not clear how well their implementation can be
integrated into sensor applications. Wang et al. implestnt
ECC on specific 160-bit elliptic curves on MICAz and TelosB
running TinyOS [40]. They were able to obtain very fast ex-
ecution time by hard-coding all the curve parameters into as
sembly code.

A common limitation of all these efforts is that all these at-
tempts were developed as independent packages/applisatio
without seriously considering the resource demands ofsens
network applications. As a result, developers may found it
difficult, and sometimes impossible, to integrate an ECC im-
plementation with the sensor network applications (e.gt, n
enough ROM or RAM), though the ECC implementation may
be okay on its own. In contrast, TinyECC provides a set of
optimization switches that allow itself to be configuredtwit
different resource consumptions. This allows TinyECC to be
flexibly integrated into sensor network applications.

8. Conclusion

In this paper, we presented the design, implementation,
and evaluation of TinyECC, aonfigurablelibrary for ECC
operations in wireless sensor networks. A unique feature of
TinyECC is itsconfigurability. It provides a number of op-
timization switches, which can turn specific optimizatiams
or off based on developers’ needs. Different combinatidns o
the optimizations have different execution time and reseur
consumptions, and thus give the developers great fleyibilit
in integrating TinyECC into sensor network applicationse W
also performed a series of experiments to evaluate therperfo
mance and resource consumptions of TinyECC with different
combinations of enabled optimizations. In particular, exr
perimental results gave the most computationally efficaet
the most storage efficient configurations of TinyECC.

In our future work, we plan to investigate techniques that
can further speed up the execution and reduce the resource
consumption for ECC-based PKC operations. We will also
explore opportunities that can harness resources on Imgh-e
sensors in hybrid sensor networks.

A comprehensive guide for elliptic curve cryptography is

given in [20]. A brief introduction to ECC can be found f
in [41]. Additional documentation on ECC can be foun@e erences
in [9-11]. There have been numerous ECC implementations .)
in various contexts (e.g., Crypto++ [13], OpenSSL [3], MIR-[1] Imote2: High-performance wireless sensor network node
ACL [39], NSS [34]). Most of these implementations are Ptltp;CVWMNI xbow. 3?/”1 Pr?d;cgi Pr Ed”ft—gff—
aimed at traditional computing platforms such as PCs. : es, e ess_p ot ec_tat asheet . pat - .

2] MICAz: Wireless measurement system. http:

Several recent efforts have focused on sensor pIatformLs,,

i X N [I ww. xbow. conmf Pr oduct s/ Product _pdf _
such as the Mica series of motes. Malan et al. imple- ¢ es/Wrel ess_pdf/M CAz_Dat asheet . pdf .

mented ECC over binary extension fielég on TinyOS for [3] The openssl projecht t p: / / wwv. openss| . or g/ .
Mica2 [31]. Unfortunately, due to the constraints on the-typ[4] SSL 3.0 specificatiorht t p: / / wp. net scape. conf eng/
ical microprocessors used by sensors, it is difficult to iobta ssl 3/.

15

(5]

(6]
(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

TelosB mote platform. http://ww. xbow. cont
Product s/ Product _pdf _fil es/Wrel ess_pdf/

Tel osB_Dat asheet . pdf . [24]
TinyOS: An open-source OS for the networked sensor regim
http://wwmv. tinyos. net/. [25]
Tmote sky: Reliable low-power wireless sensor network-
ing eases development and deploymentitt p: // www.
nmot ei v. com product s- t not esky. php.

I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Qeiyi
Wireless sensor networks: A surveyComputer Networks
38(4):393-422, 2002.

American Bankers Associatio®ANSI X9.62-1998: Public Key [27]
Cryptography for the Financial Services Industry: the Hii¢
Curve Digital Signature Algorithm (ECDSA)999.

Certicom Research. Standards for efficient cryptogyap
SEC 1: Elliptic curve cryptographyht t p: / / ww. secg.
or g/ downl oad/ ai d- 385/ sec1_fi nal . pdf, Septem-
ber 2000.

Certicom Research.

(26]

(28]

Standards for efficient cryptogyap [29]
— SEC 2: Recommended elliptic curve domain param-
eters. http://ww. secg.org/collateral/sec2_
final . pdf, September 2000.

H. Chan, A. Perrig, and D. Song. Random key predistiiiout
schemes for sensor networks.|IEEE Symposium on Research
in Security and Privacypages 197-213, 2003.

W. Dai. Crypto++ library 5.5.htt p: // ww. cr ypt opp.
coni , May 2007.

J. Deng, R. Han, and S. Mishra. Secure code distribtition
dynamically programmable wireless sensor networksPrim
ceedings of the Fifth International Conference on Inforiorat
Processing in Sensor Networks (IPSN '0&pril 2006.

W. Diffie and M.E. Hellman. New directions in cryptogra-
phy. IEEE Transactions on Information TheoriT-22:644—
654, November 1976.

W. Du, J. Deng, Y. S. Han, and P. Varshney. A pairwise key
pre-distribution scheme for wireless sensor networksPrm [33]
ceedings of 10th ACM Conference on Computer and Commu-
nications Security (CCS’03pages 42-51, October 2003.

L. Eschenauer and V. D. Gligor. A key-management schenfig4]
for distributed sensor networks. Rroceedings of the 9th ACM
Conference on Computer and Communications Secymétyes [35]
41-47, November 2002.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to nef36]
worked embedded systems. Rroceedings of Programming
Language Design and Implementation (PLDI '03)ine 2003.
N. Gura, A. Patel, and A. Wander. Comparing elliptic\air
cryptography and RSA on 8-bit CPUs. Rroceedings of the
2004 Workshop on Cryptographic Hardware and Embedded

(30]

(31]

(32]

(37]

Systems (CHES 20Q4)ages 119-132, August 2004. [38]
D. Hankerson, A. Menezes, and S. VanstoBeide to Elliptic
Curve Cryptography Springer, 2004.

S. Kent and R. Atkinson. IP authentication header. |RFC
2402, November 1998. [39]
S. Kent and R. Atkinson. IP encapsulating security pagil
(ESP). IETF RFC 2406, November 1998.

D.E. Knuth. The Art of Computer Programmingolume 2: [40]

16

Seminumerical Algorithms.
1997. ISBN: 0-201-89684-2.
RSA Laboratories. RSAREF: A cryptographic toolkit (s@n
2.0), March 1994.

P.E. Lanigan, R. Gandhi, and P. Narasimhan. Sluiceui®ec
dissemination of code updates in sensor network®raceed-
ings of the 26th International Conference on Distributedr€o
puting Systems (ICDCS '06)uly 2006.

A. Liu, P. Kampanakis, and P. Ning. TinyECC: Ellipticree
cryptography for sensor networks (version 0.3t tp://

di scovery. csc. ncsu. edu/ sof t war e/ Ti nyECC .

D. Liu and P. Ning. Establishing pairwise keys in distried
sensor networks. IRroceedings of 10th ACM Conference on
Computer and Communications Security (CCS'@@)ges 52—
61, October 2003.

D. Liu and P. Ning. Multi-leveluTESLA: Broadcast authen-
tication for distributed sensor network6CM Transactions in
Embedded Computing Systems (TEGS)):800-836, 2004.

D. Liu and P. Ning. Improving key pre-distribution witkeploy-
ment knowledge in static sensor networl&&CM Transactions
on Sensor Network4(2):204—-239, November 2005.

D. Liu, P. Ning, S. Zhu, and S. Jajodia. Practical braestc
authentication in sensor networks. Pmoceedings of the 2nd
Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services (MobiQuitous 2008y
2005.

D. Malan, M. Welsh, and M. Smith. A public-key infrastture

for key distribution in tinyos based on elliptic curve crggta-
phy. InProceedings of IEEE Conference on Sensor and Ad Hoc
Communications and Networks (SECOpBges 71-80, 2004.

K. Malasri and L. Wang. Addressing security in medicahsor
networks. InHealthNet '07: Proceedings of the 1st ACM SIG-
MOBILE international workshop on Systems and networking
support for healthcare and assisted living environmepéges
7-12, 2007.

A.J. Menezes, P. C. van Oorschot, and S.A. Vanstdtand-
book of Applied Cryptography CRC Press, 1996. ISBN: 0-
8493-8523-7.

Mozilla. Network security service (NSS)htt p: // wwww.
nozil |l a. org/ proj ects/security/pki/nss/.

National Institute of Standards and Technology. BRib#igna-
ture standard. Federal Information Processing Standaéd 18
http://csrc.nist.gov/publications/., 1993.
National Institute of Standards and Technology. Rer@mded
elliptic curves for federal government use, August 1999.

A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficientren-
tication and signing of multicast streams over lossy chenne
In Proceedings of the 2000 IEEE Symposium on Security and
Privacy, May 2000.

A. Perrig, R. Szewczyk, V. Wen, D. Culler, and D. Tygar.
SPINS: Security protocols for sensor networksPceedings

of Seventh Annual International Conference on Mobile Com-
puting and Networkgpages 521-534, July 2001.

Shamus Software. Multiprecision integer and ratioaath-
metic c/c++ library (MIRACL). http://ww. shanus.
iel.

H. Wang and Q. Li.

Addison-Wesley, third edition

Efficient implementation of public key

cryptosystems on mote sensors. Rroceedings of Interna-
tional Conference on Information and Communication Seéguri
(ICICS), pages 519-528, Dec. 2006.

[41] Wikipedia. Elliptic curve cryptography. htt p:
[/ en.w ki pedia.org/w ki/Elliptic_curve_
crypt ogr aphy. Visited on May 23rd, 2007.

17

