Static Detection of API Error-Handling Bugs
via Mining Source Code

Mithun Acharya and Tao Xie
Department of Computer Science
North Carolina State University
Raleigh NC USA 27695
{acharya, xi¢@csc.ncsu.edu

Abstract vocations (in short, API errors) can lead to security and
robustness violations in complex software systems. These
Incorrect handling of errors incurred after APl invoca- violations often lead to system crashes, leakage of sensi-
tions (in short, API errors) can lead to security and robust- tive information, and complete security compromises. Ro-
ness problems, two primary threats to software reliahility bustness is formally defined as the degree to which a soft-
Correct handling of API errors can be specified as formal ware component behaves correctly in the presence of ex-
specifications, verifiable by static checkers, to ensure de-ceptional inputs or stressful environmental conditions [1
pendable computing. But API error specifications are of- API errors are usually caused by stressful environment con-
ten unavailable or imprecise, and cannot be inferred eas- ditions, which may occur in forms such as high compu-
ily by source code inspection. In this paper, we develop tation load, memory exhaustion, process related failures,
a novel framework for statically mining API error specifi- network failures, file-system failures, and slow system re-
cations automatically from software package repositgries sponse. Stressful conditions, and hence API errors, haweve
without requiring any user input. Our framework adapts a rare, should be gracefully handled. Traditional software
compile-time push-down model-checker to generate inter-testing focuses on correctness of functionality and isnofte
procedural static traces, which approximate run-time API insufficient for assuring the absence of API-level robussne
error behaviors. Data-mining techniques are used on theseviolations. Robustness testing approaches [10, 11, 15] con
static traces to mine specifications that define the correct sider the target applications or operating systems as & blac
handling of errors for relevant APIs used in the software box, and send random or exceptional input values through
packages.The mined specifications are then used to uncovetheir APls. However, robustness testing approaches can-
API error-handling bugs. We have implemented the frame- not easily generatenplicit return exceptions through APIs,
work, and validated the effectiveness of the framework onwhich are an important type of sources for robustness prob-
82 widely used open-source software packages with approxdems.

imately 300KLOC in totat. Correct handling of API errors can be specified as for-

o . o . mal specifications verifiable by static checkers to ensure
Submission Category: Testing, Verification, and Valida- the absence of error-handling bugs. Writing such specifica-

tion. tions, which are usually temporal in nature, requires ident
Keywords: Software Reliability, Mining, Static Traces, fying API detailssuch as (1) the relevant APIs that fail with
Specifications, API Error-Handling, Robustness errors, (2) different error-checks that should follow such
APIs (depending on different API error conditions), and (3)
1 Introduction proper error-handling or clean-up in the case of program

exits. Furthermore, APIs in error-handling blocks might de
pend on the APIs called prior to the error being handled. As
these API details are often inter-procedurally scatteratl a
not always correctly coded by the programmers, manually
inferring specifications from source code becomes hard and

'This work is supported in part by NSF grant CNS-0720641 an®AR jnaccurate, necessitating automatic specification infeze
grant W911NF-07-1-0431. Contact Author: Mithun Acharyd; ¥ 919

515 2858. To detect API error-handling bugs in the absence of spec-

A software system interacts with third-party libraries
through various APIs (Application Programming Inter-
faces). Incorrect handling of errors incurred after API in-

ifications, we develop a novel framework for statically min- expects no user input in the form of specifications, program-
ing API error-handling specifications directly from soft- mer annotations, profiling, instrumentation, random isput
ware package repositories, without requiring any user in- or a set of relevant APIs.

put. Our framework adapts sace generatorto approxi- Specification Extraction. We present novel applica-
mate run-time API behaviors. The trace generator uses aions of frequent-sequence mining [23] on static traces to
compile-time push-down model-checker to generate inter-mine specifications that dictate correct handling of API er-
procedural static traces. Data mining techniques are usedors.

on these static traces to mine specifications that define cor- Implementation and Experience. We implement the
rect handling of errors for relevant APIs used in the sofewvar framework and validate the effectiveness of the framework
packages. The mined specifications are then formally veri-on 82 widely used open-source software packages with ap-
fied against the same software packages (or other softwar@roximately 300K LOC in total.

packages, which use these relevant APIs) to uncover APl The remainder of this paper is structured as follows. Sec-
error-handling bugs. tion 2 starts with an example that motivates our frame-

Two of our previous approaches [2,3] used the trace gen_work. Sect_ion 3 d_escribt_as the various components of our
erator, adapted in this work for mining API error specifica- framework in detail. Section 4 presents the implementation
tions, for different tasks. One approach [3] uses the tracedetails and evaluation results. Section 5 discusses delate
generator to infer API details such as return values on AP|Work. Finally, Section 6 concludes.
failure and success. As opposed to intra-procedural trace
generation in our previous approach [3], in this paper, both2 Example
trace generation and bug checking are inter-procedural. Th

inter-procedural analysis allows our framework to mine APl Thg section illustrates how our framework automatically
error-check and clean-up details (and hence bugs) saaterreyetects API error-handling bugs via mining program source
across different procedu_res. The other approach [2]. US€Sode, without requiring any user-input. The only input to
the trace generator to mine AB$age scenarioand speci- oy 100l is compilable source code of a single software or
fications using a partial-order miner [18]. APl usage scenar 5 set of software packages. Figure 1(a) shows a simple
ios dictate how a given set of APIs are used for a particular .y qe snippet irC that uses APIs from a header file, say
task. Both specifications and usage scenarios mined by oUL . def . h> namely,a, b, c, d, e, andf . Next, we ex-
previous approach [2] were ordering requirements betweeny|ain the various components of our framework on the sam-
multiple, user-specified APIs only, and not error checks. To pje code snippet at a high level, after defining a few terms
capture different possible orderings (summarized asgdarti ;5eq throughout the paper. The formal details of the frame-
orders) among user-specified set of APIs, the static tracesyork are described in Section 3.
generated were from thetart-to-endof the analyzed pro- Definitions. We identify two types of specifications that
gram. To detect API error-handling bugs, our framework getermine correct handling of API errors along all paths in
in this paper adapts the trace generator to generate traCege program:error-checkspecifications andnultiple-API
aroundrelevantAPI error paths (described in Sections 3.2 gpecifications. Error-check specifications ensure that-err
and 3.3). Both our previous approaches require USers t0check conditionals exist after each call site of an API befor
specify the APIs of interest. In contrast, the framework pro jis return value isisedor themai n procedure returns. Error-
posed in this paper automatically infers the relevant APIS, chack conditionals check the API return value and error flag
the APIs that fail with errors. Finally, the framework pro- (gch aserr no) value against their possible error values.
posed in this paper employs sequence mining to infer propefyg classify an API error (return-value error or error-flag
API clean-up in case of program exits, not mined by our grop) o becritical, if the program should not proceed af-
previous approaches. Frequent-sequence mining [23] (aer the critical error and has to exit (through exi t (0)
opposed to the more costly partial-order mining) sufficed as cq| for example). Critical API errors are caused because
error checking and cleaning up are unique for a given APl ¢ giressful environment conditions such as network fail-
along error paths. In summary, this paper makes the follow-,re5 disk failures, and memory exhaustion. We classify a
ing main contributions: conditional checking against any critical AP errorcai-
Static approximation of run-time API error behav- cal check conditiona|]CCC; we use CCC(a) to denote CCC
iors. We adapt previous trace generation framework to stat-of APl a). In this paper, we restrict the scope of error-
ically approximate run-time API error behaviors. Our tech- check specifications to the presence of critical check con-
niques allow mining of open source systems for API error- ditional after an API call before its return value is used or
handling bugs without requiring environment setup for sys- the nai n procedure returns. For example, the POSIX API
tem executions or availability of sufficient system tests-F set ui d returns -1 on failure, with possible error values of
thermore, our framework to detect API error-handling bugs EPERM and EAGAI N. Checks should exist after each call-

1. ..., a(), T(i < 0), fatal(), ..., exit(0)
2. ..., a(), F(i<0), T(errno<0), error(), T(errno=EINVAL), exit(0)
3...., a(), F(i<0), F(errno<0), b(i), d(j), e(i), T(=1), p(). ---, a(),

1 void fatal() {exit(0); // EB}

2 void error() { if (ermo==EINVAL) //CCC - = i
3 exit(0); /| EB) F(z=1), T(errno=EIGVAL), d(y), e(y), exit(0)
4 void p() Relevant APlIs, R = {a}
5 { Critical error return values for a: < 0
6 intx,y, z Critical errno values for a: EIGVAL, EINVAL
g y=c(); Probable clean-up APIs, PC = {d, e}
X=a(); .
9 i (Z=()=1){ if (2<0) z+=1; }; (b) Shortest exit traces
10 if (errno == EIGVAL) // Error flag check, CCC
11 {// Exit block (EB)
12 d(y); e(y); exit(0); a>b
13 } c>d>e
14 d(y); e(y); f(y); b(x); f(x); c>d>e>f
15 } a>b>f
c>d>e
16 void q()fint r = c(); d(r); e(r);} a>b
c>d>e

17 #include <abcdef.h>

18 int main() Frequent sequence, support = 3/4,length=3:a>b,c>d>e
9

Relevant APIs = {a, b, c, d, e}; Clean-up APIs = {b, d, e}

g? ?"_t 'C(J) (c) Independent scenarios from random non-exit traces

22 JI - a()’. after scenario extraction

23 if (i < 0) // return-value check, CCC

24 fatal();

25 If (ermo < Og)// Error-flag check, CCC Error-check bugs

26 error(); Missing return value check for a() at line 8

27 b(i; d(j); e(); ’ Missing (errno == EIGVAL) check for a() at line 22

28 if T 1’) ’ Missing (errno == EINVAL) check for a() at line 8

29 0; Multiple-API bugs

30 . Y main(), ..., a(), ..., error(), exit(0) // b not called; d and e not called

31 else . main(), ..., a(), ..., fatal(), exit(0) / b not called; d and e not called

32) a0 main(), ..., p(), ..., a(), ..., T(errno=EIGVAL), ..., exit(0) // b not called
(a) Example code - Input source (d) Verification results — API error-handling bugs

Figure 1. A simple example for illustrating our framework

site ofset ui d and these critical error conditions should be To infer error-check specifications, our framework first
handled appropriately. Critical check conditionals sdoul gathers APIs that fail with critical API errors from the
be followed byexit blocks(EB; we use EB(a) to denote source code. Our framework generates the shortest exit
EB of APl a). Exit blocks handle the error and executes trace for each exit path (in the program) that contains a
an exit call. Multiple-API specifications ensure that the critical check conditional. Figure 1(b) shows three sheairte
right clean-upAPlIs are called in the exit blocks. Clean- exit traces. For a predicate, 7'(P) means that the predi-
up APIs are APIs called in the exit blocks, which may cateP is true, andF'(P) means that the predicate is false.
share a temporal relationship with any API called prior to HenceT'(i <0) in trace 1 means that the predicate0 is

the exit block. For example, the display pointer produced true. For Trace 37'(z==1) in procedurep implies a longer

by the X11 API,XOpenDi spl ay, should be consumed by trace, which is not output by our framework. Since the crit-
theXd oseDi spl ay API along all paths. Hence, each exit ical check conditionals in exit traces pertain to ARl is
block reachable from a call &&OpenDi spl ay should have added to the set of relevant APIs (set R). Critical API er-
a call toxd oseDi spl ay (clean-up API). We definesle- rors are inferred from critical check conditionals presant
vantAPIs as APIs that can fail with critical errors, clean-up exit traces. Fom, critical API errors for the return value
APIs, and APIs that share temporal relationship with clean- are all negative integer values, aBINVAL and El GVAL

up APIs. Our framework automatically mines relevant APIs are critical API errors for the error flag. Error-check spec-
from the source code, and then generates specifications. Afications are then generated with the knowledge of criti-
trace in a program is the print of all statements that exist cal APl errors. The APIs present in the exit blocks for
along some control flow between any two statements, saya ared ande (Lines 11-13). These APIs could probably
S1 and S2. In our analysis, we restrict such traces to thosebe clean-up APIs (set PC) that share a temporal relation-
that can be captured by a Finite State Machine (details inship with APIs called prior to critical check conditionals.
Section 3). Arexit traceis any trace from the entry to the Our framework then generates non-exit traces that involve
mai n procedure to some exit point in the program (through APIs from set R and PCa(d, ande), and APlsrelated
anexi t (0) call, for example). Anon-exittrace is any trace to them. Two APIs areelated if they have some data-
from the entry of themai n procedure to the return of the flow dependency between them. Non-exit traces are gener-
mai n procedure. ated randomly (details in Section 3) from a set of all non-

exit traces until an upper limit is reached on the number of 3.1 Trace Generation

traces. Figure 1(c) shows non-exit traces generated by our

framework aftesscenario extractiorfsee Section 3.4), with Our framework mines error-check specifications from
an upper limit of seven. Scenario extraction generates gyt traces and multiple-API specifications from random
dependent scenarideom non-exit traces. An independent non_exit traces. Trace generation forms the basis for gen-
scenario in a non-exit trace is a sequence of APIs that Ar€arating exit and non-exit traces. Informally, a trace is a
related thro.ugh some data-flow dependency. F_or examplesequence of program statements between two points in a
one non-exit trace in the example code has() , i =a() , program along some control-flow path. However, generat-
b(i),d(j),e(i),y=c(),x=a(),d(y), ande(y) asan jnq gl traces along all execution paths is an uncomputable
APl invocation sequence. There are three independent sceproplem and a trace can be of infinite size. Furthermore,
narios in this non-exit trace, namely~c() , d(j).e(i)), a generated trace can be infeasible. These problems will
(i=a(), b(i)), and g=c(), d(y), e(y)). Multiple-API be addressed in subsequent sections. Here we first formal-
speC|f|cat|0n§ are derived from these traqes using frequentize the problem of trace generation as below. The problem
sequence mining. Based on the observation by Weimer ands o generate traces between two points in a program and
Necula [24], exit traces are not used to infer multiple-API hen, to extract relevant statements (such as API invogation
specifications because programmers tend to commit Mis—etyrn-value checks, and exits) from each trace. To desscrib
takes along exit paths when using clean-up APIs. The fre-5ce generation, we assume that the user wants to extract
quent sequences (shown in Figure 1(c)) are mined from ran-apy (from a known set of APIs) invocation sequences from
dom non-exit traces with support 3/4, and they imply that yraces. We then summarize the Push-Down Model Check-
APIs b should always be called after, and thatd ano!e ing (PDMC) process [7, 9], which we adapt for trace gener-
should be called after ARI. The error-check and multiple- giion. Next, we introduce the conceptBfiggers required

API specifications are then verified against the source codesy; trace generation. Finally, we discuss the soundness and
to detect API error-handling bugs. Figure 1(d) shows the ¢qmpexity of trace generation.

detected API error-handling bugs. Our framework outputs | ot s assume that is a set of APIs. To simplify the
the shortest path for each bug in the program, instead ofyefinitions, let us assume that all APIsdrare empty meth-

all buggy traces, thus making bug inspection easier for theods, do not take any arguments, and reteond, so that
USETS. they do not have any data dependencies with other state-
ments. We show how to generate sequences of API (from
set.A) invocations along different program paths. Formally,
let > be the set of valid program statements in the given pro-
gram source code. facet € ¥*, a sequence of statements
executed by a patp, is feasibleif path p is feasible in the
program. LetI'C¥* be the set of all feasible traces in the

A high-level overview of our framework is shown in Fig- Program. For a givencT’, let A()e. A" be the APl invoca-
ure 2. The only input to our framework is compilable source tions along the traceexpressed as a string(t) can be an
code of a single software package or a set of software pack-£MPty string ift does not have any invocation of APIs from
ages. Our framework then finds API error-handling bugs, if the setA. Let T"CT be the set of all feasible traces such
any, in the source code. There are three main stages in outhat if t€7”, A(#) is not empty. However, the sgt is un-
framework: trace generation, specification extractionj an computable ande7" can be of infinite size. A computable
verification, as shown by dotted boxes in the figure. The @PProximation ofl” is generated from the progran(t)
trace generation stage generates two types of traces; shortS extracted for alt in the approximate set, usingiggers
est exit traces and random non-exit traces. The specifica{€Xplained later in this section). We now describe PDMC
tion extraction stage generates two types of specifications Process required to understand Triggers.
error-check specifications and multiple-API specification
inferred frqm t_he traces using different m_ir_ling_ algorit_hms 3.1.1 Push-Down Model Checking (PDMC)

In the verification stage, the inferred specifications are ve

fied against software packages to detect API error-handlingGiven a property represented using a Finite State Machine
bugs. Section 3.1 introduces the trace generation mecha{FSM), PDMC [9] checks to see if there is any path in the
nism, also used by our previous approaches [2, 3]. Sec-program that puts the FSM in its final state. For example, if
tions 3.2 and 3.3 explain how our framework adapts tracethe property FSM is specified as shown in Figure 3, PDMC
generation to generate API exit and non-exit traces. Sec-reports all program paths in whiehis followed by eitheb
tions 3.4 and 3.5 describe the specification extraction andorc. PDMC models the program as a Push Down Automata
verification stages, respectively. (PDA) and the property as an FSM. PDMC then combines

3 Framework

Source Code

Trace
Generator ————————————

1 Trigger Generator 1
- - = Trace
Shortest Exit N ____|.USES | Random Non-Exit Generation
Trace Generator Trace Generator

f
Shortest Exit L

Traces

v
Error-Check

Specification |----- USES_____ Mn:{?‘::y
Extractor

Frequent

Miner

—

|

API Error-Handling Bugs

Sequence [---------F---

Random Non-Exit
Traces
| —
f—
Scenario
Extractor
Independent
Scenarios Specification
Extraction
Multiple API
- -~ Specification
Extractor
—_—

}Verification

Figure 2. Our framework for detecting API error-handling bu gs

the program PDA and the property FSM to generate a new
PDA,; the new PDA is then model checked to see if any
final configurationn the PDA is reachable. Aonfiguration

of a PDAP is a pairc = (g,w), wheregq is the state in
which the PDAis in and is a string of stack symbols in the
PDA stack at that state. A configuration is said to be a final
configuration, ifg belongs to the set of final states in the
FSM. If a final configuration is reachable, PDMC outputs
the paths (in the program) that cause the resultant PDA to
reach this final configuration. The resulting trace can eithe
be feasible or infeasible because of data-flow insengitivit
(being incomplete). However, if there is a program trace
that puts the FSM in the final state, PDMC reports it (being
sound). We next describe oiiriggerstechnique [2] that
adapts PDMC to generate API invocation sequences in a
program.

3.1.2 Triggers

Our goal is to generate the s@/CT from the pro-
gram and extractA(¢) for all teT’, A(t)eA*, A =

Figure 3. A property FSM with end1 and end2
as final states

a,, @y, Ay, ... , Ay

Figure 4. Trigger FSM that accepts the regular
language e(a; + as + ... +ax)*w

{a1,as,as,...,ar}. Let us assume that we give the FSM the program, in this cas&®. If TNB = ¢, then the final
shown in Figure 4 to PDMC to be verified against a pro- state of[F is never reached. SincB andT" are arbitrary
gramP. The FSM in Figure 4 accepts any string of the languages and@’ is uncomputable, deciding®NB = ¢ is
forme(>",_, 5 . ai)*z, wheree andz are any two points an undecidable problem. Hence PDMC restricts the form
in the program.” Given this Trigger FSM, PDMC outputs of B and T by modelingB to be a regular language ac-
all program paths that begin withand end withz in the cepted byF (B = L(IF)), andT as a context-free language
program. accepted by a PDA& (of programP). In general, we have
Let B C ¥* be all sequences of program statements in TC L(IP), which then impliesTnBCL(F)NL(P). Conse-
P that put the FSM in Figure 4, say, in its final state. quently, if L(F)NL(P) is empty,TNB is definitely empty.
As defined earlier]' CX* is the set of all feasible traces in However, if L(F)NL(PP) is not empty,l’NB could either be

empty or not. Since (F) is a regular language and(IP) the PDAP from the CFGG, takesO(FE x |Q]) (Q is the

is a context-free languagé&,(F)NL(P) can be captured by number of states in the FSA) for computiig the product

a PDA, sayP, and hence the final state Bfis unreach- of FSAF and PDAP, takesO(|Q|* x E) for deciding if
able if and only if the PDAP accepts the empty language. the PDAP is empty anc()(|Q\2) x 1lg|Q| x E x lgN for
There are efficient algorithms to determine if the language backtracking. The derivations are shown by Chen [7].
accepted by the PDA is empty [14]. Onés constructed, Our framework has four components: the shotest exit-
PDMC checks to see if any final configuration is reachable trace generation, random non-exit trace generation, §peci
in P. Chen and Wagner [8] use the preceding analysis tocation extraction, and verification, described in subsetjue
adapt PDMC for light-weight property checking. We use sections. Figure 5 lists the algorithm used by our framework
the preceding analysis for static trace generation. We callto detect API error-handling bugs. The algorithm summa-
the FSMs such as the one used in Figure 4 as Triggers. Byizes the various steps in each of our framework compo-
using Triggers, we have achieved two purposes: nents.

e We have produced,,, the set of traces in the program

that begin withe and end withr instead of["CT. 3.2 Shortest Exit Trace Generation

e The knowledge ofd = {a1,as,as, ..., a;} allows us Our framework generates the shortest trace for each exit

to extractA(t) from anyteT.,. Similarly, other state- path (in the program) that contains a critical check condi-

ments like return-value checks, error-flag checks can tional (CCC). We usé to denote the input program aiid
also be retrieved from the traces. to denote the Trigger FSM. CCC(a) denotes CCC for API

a. Line 4 in Figure 5 sets the Trigger to collect the shortest
exit traces. A path from the entry of thi n procedure

to an exit point in the exit block of an APl must always go
The consequence of using a context-free languagefor through CCC for that API. Hence, in generating exit traces,
introduces imprecision but retains the soundness of anal-We collect CCCs for APIs that fail with critical errors. Grit
ysis. Infeasible traces might occur (being incomplete) be- i@l errors (return-value errors and error-flag errors)aor
cause of data-flow insensitivity of the PDMC process, but AP! are inferred from the CCCs of that API. We generate
all the program traces that put the FSM in its final state are the shortest exit traces instead of enumerating all exiesa
reported (being sound). Since determining B = ¢ (or generating traces randomly with an upper limit) because
is undecidable, no tool can be sound and complete at theOr an API, saya, which can fail with a critical error, pro-
same time. Consequently, there could be some infeasibledram statements between tinei n’s entry and the invoca-
API sequences. The model-checker that we use is data-flowion of a do not yield additional information to infer critical
insensitive. We implement simple data flow extensions to errors fora. To collect critical API errors, it suffices to gen-
the PDMC process as described in Section 4. However, weerate program statements between CCC(a) and the program
do not implement a potentially expensive pointer or alias €Xitin the exit block ok, EB(a). The shortest exit traces for
analysis. We intend to explore data-flow-sensitive model- & given trigger are generated by computing the shortest path
checkers in future work for trace generation. Also, along from sourceto sinknodes in the graph obtained aftatu-
some feasible paths, the implicit API ordering rules might rating PDAP [7]. When generating the shortest exit traces,
be violated and APIs could be used incorrectly (producing @ll APIs that fail with critical errors are added to the set of
buggy traces with actual errors). Hence the API sequenced@levant APIs (set R). Also, APIs in the exit blocks of APIs
might contain certain wrong API sequences. However, we that fail with critical errors are flagged as potential clegm
assume that most programs that we analyze are well written AP1S (set PC), which could share temporal relationship with
Hence, we expect only few feasible paths to be buggy, if atany AP called prior to the exit block.

all. We expect to handle buggy traces by selecting an appro-

priatemin_sup value. The traces generated by PDMC with 3.3 Non-Exit Trace Generation

Triggers can still be of infinite size (for example if there is

aloop). We address this problem in Section 4. Non-exit traces are generated randomly from a set of all
non-exit traces until the number of traces reach an upper
limit (L). Random traces are generated by a random walk
from sourceto sink nodes in the graph obtained aftsat-
PDMC constructs PDA from the program Control Flow urating PDA P [7]. Line 21 in Figure 5 sets the Trigger
Graph (a directed grapi = (IV, E))) where each node rep- required to generate non-exit traces. The PDMC process
resents a program point and each edge represents a validlices the progran® based on the transition edges in the
program statement. PDMC takéx F) time to construct trigger F. APIs related to APIs in sets R and PC are cap-

3.1.3 Soundness

3.1.4 Complexity

R ={}; /* Set of relevant APIs */
PC = {}; /* Set of probable clean-up APIs */
1/ set trigger to collect shortest exit traces

¢ P @ Dad) s 6 @

5 I/l Generate exit traces

T=PDMC(P]F)

11 Collect shortest exit traces in the set T
LetT=Tg + T, + ... + T, €i being an exit point, T; being set of all traces that exit at ei, i € [1, n];
for(i=1to n) do

10 Te+=teTalt|<|t|VEeTy;

11 end

12/l Update API set R and PC

13 foreach (tin T,) do

14 R+={a}, where a in t and CCC(a) follows a in t
15 Collect cae from CCC(a)

16 CAE.add(a, cae);

17 PC += {b}, where b in t and b lies in EB(a)

18 end

19 /I set trigger to collect random non-exit traces
R.PC

_ main main .
21 set IF - . entry)m. ’

22 /I Generate random non-exit traces upto limit L

WN =

23 T=PDMC (7), IF) P = Program, input source
24 || Extract independent scenarios

25 IS = Extract_Scenarios(T);]F = Trigger FSM

26 Il Extract error-check specifications

27 ECS = Extract_ECS(CAE);
28 /I Extract multiple-AP| specifications; update set R
29 MAS = Extract_MAS(T);

PDMC = Push-Down Model-Checking
CCC(a) = Critical Check Conditional for API a

30 // Verification cae = Critical API Error
CAE = set of all critical AP errors indexed by API
31 foreach(|{' in FECS and FMAS) do EB(a) Exit Block of APl a
32/l output API error-handling bugs; output shortest trace for each bug = Independent Scenarios
7)]F % ECS = Error-Check Specification FSMs
33 T=PDMC ; MAS = Multiple-AP| Specifications FSMs

34 end

Figure 5. Algorithm for Detecting API Error-Handling Bugs

tured in the generated non-exit traces. As APIs related toing often interspersed. A clean-up scenario in a non-exit
R and PC could occur anywhere in the program, we gener-trace consists of an APl and its corresponding clean-up
ate random traces instead of shortest non-exit tracesdin fa APIs in the right sequence. We have to separate different
there is only one shortest trace from the entry ofrthen API clean-up scenarios (or match each API with its corre-
procedure to the return of theai n procedure). Based on sponding clean-up APIs) from a given non-exit trace, so that
the observation by Weimer and Necula [24], exit traces areeach clean-up scenario can be fed separately to the miner.
not used to infer multiple-API specifications because pro- We use the usage scenario extraction algorithm [2], which
grammers tend to make mistakes along exit paths when usis based on identifyingoroducer-consumechains among

ing clean-up APIs. We next describe how specifications areAPIs in the trace. The algorithm is based on the assump-

extracted from traces. tion that an API and its corresponding clean-up APIs have
some form of data dependencies between them such as a
3.4 Specification Extraction producer-consumer relationship. Each producer-consumer

chain is output as an independent clean-up scenario. For
example, in Figure 1a is the producer API, whilé is the
consumer API fora. Also, APIsd ande are consumers

for the producer APt. f is the consumer API once far

(in procedurep) and once for (in proceduremai n). Sep-
arate producer-consumer chains are output as independent
scenarios.

Error-check specifications are derived from the shortest
exit traces. In generating the shortest exit traces, we col-
lect CCCs for APIs that fail with critical errors. Critical
errors (return-value errors and error-flag errors) for am AP
are inferred from the CCCs of that API. Error-check speci-
fications are derived from the inferred critical API errors.

Multiple-API specifications are derived from non-exit Multiple-API specifications are derived from indepen-
traces. A single non-exit trace generated by the modeldent scenarios using frequent-sequence mining [23]. Inde-
checker might involve several ARlean-up scenarigse- pendent scenarios are obtained after applying the scenario

extraction algorithm over random non-exit traces. L&be thermore, the trace size and the number of traces can be in-
the set of independent scenarios. We apply a maximal sefinite due to loops. MOPS monitors backtracking and aborts
guence mining algoirthm [23] on the sk¥ with user spec- if it detects a loop. We wrote extensions to the MOPS pat-
ified supportmin_sup (min_sup € [0, 1]), which outputs a tern matching [8]; these extensions make it possible tdtrac
setF'S of frequent sequences that occur as subsequences ithe value of variables that take the return status of an API
at leastmin_sup x |1.S| sequences in the séf. Here we call along the different branches of conditional conssuct
consider maximal subsequences, that is, every sequence iRor each possible execution sequence, our extensions asso-

F'S is not a subsequence of any other sequendesn ciate a value to the variable that is being tracked using pat-
tern matching. MOPS pattern matching allows our frame-
3.5 Verification work to correlate two program statements related by pro-

gram variables (as an exampfe LEx fp = fopen(...)

In Section 3.1, the PDMC process was used for traceandf read(f p) are related through the file pointer variable,
generation. Here we use the same PDMC process for propf p). Our extensions enable our framework to mine proper-
erty verification. The specifications inferred by our frame- ties such as “If APk returnsNULL, then APIb should al-
work represent the properties to be verified at this stage.ways be called along theULL path”. The basic trace gen-
The error-check and multiple-API specifications are vatifie erator was also used in our previous approaches [2, 3], and
against the software packages to detect API error-handlinghere we adapt it for generating exit and non-exit traces. Our
bugs, using the Push-Down Model Checker. The inferred currentimplementation does not consider aliasing.
specifications can also be used to verify correct API usage

in other software packages, which use these relevant APIs.a (\a/\sle(ZaV(raOi[i)mpg?éilouz{(l;gagoegv I?(r)kc?)n ;%gt?e?rgs]utrﬁg %icdk_
Our framework outputs the shortest path for each bug in the g PP Y. ; ' y

roaram. instead of all bu traces. thus making bud in- hat 9.0 distribution, and 72 clients (approximately, 200,0
program, Ins 99y ’ 9 BUg 1N 5C) of X11 APIs from thex11R6. 9. 0 distribution. Fig-
spection easier for the users.

ure 6 lists the packages used in our evaluation. Our frame-
)] work mined about 100 APIs that fail with critical errors
4 Implementation and Evaluation from the source code. Error-check specifications were gen-
erated for these critical APIs and verified against the soft-
To generate static traces, we adapted a publicly availableware packages. 56 error-check violations were reported.
model checker called MOPS [8]. We used BIDE [23] to We manually inspected the violations (by inspecting the
mine frequent sequences. The process of generating errosource code) and found 49 violations to be real bugs, while
traces from a final configuratiofy, w) (w is the stack con- 7 were false positives. False positives are caused because
tent containing a list of return addresses) of PP4s called of the lack of sophisticated data-flow analysis in our model
backtracking7]. Multiple program paths (and hence graph checker. Multiple-API specifications were mined as fre-
paths) can violate a given property specified by a FSM (suchquent sequences from non-exit traces, withman_sup
as the one shown in Figure 3), and many such violationsvalue 0f0.8. 11 multiple-API specifications (9 real, 2 false)
could be similar because they indicate the same program-were mined resulting in 27 multiple-API violations (all vio
ming error. So instead of reporting all program traces that lations being real bugs) in the packages used in our eval-
violate a given property, the MOPS model checker clustersuation. We did not use the 2 false specifications in the
similar traces and reports the shortest trace as a candidateerification phase after we verified the mined specifications
trace for each violation. This mechanism would save the against POSIX manual in UNIX and X11 Inter-client Com-
user’s time considerably because the user has to review eacmunication Conventions Manual (ICCCM) [21] from the
trace manually. However, for our purposes, given a Trigger, X Consortium standards. We next present an example of
we need all the traces in the program that contain the APIsa multiple-API bug fromxr db/ xr db. ¢. Our framework
specified in the Trigger. We modified the backtracking al- mines a specification which dictates that the display pointe
gorithm of MOPS, wherein, instead of clustering traces, we produced by the X11 APXOpenDi spl ay, should be con-
consider all program paths that satisfy the Trigger, and out sumed by the&XCl oseDi spl ay API along all paths. How-
put a random number of traces by random walking the graphever, our framework detects an exit path in the program
generated by the PDMC process. where the specification is violatedidopen is called af-
Because the basic MOPS static checker is data-flow in-ter XOpenDi spl ay along this path, and the exit block of
sensitive, it assumes that a given variable might take anyf dopen (reached inter-procedurally through a call to an
value. Therefore, it assumes that both branches of a condierror-handling proceduréat al (. ..)) forgets to invoke
tional statement may be taken and that a loop may executexCl oseDi spl ay before a program exit. At the time of this
anywhere between zero to infinite iterations. Data-flow in- submission, we are still in the process of verification and
sensitivity causes MOPS to output infeasible traces. Fur-validation (by manual inspection of source code), and we

ftp-0.17-17
ncompress-4.2.4-33
routed-0.17-14
rsh-0.17-14
sysklogd-1.3.31-3
sysstat-4.0.7-3
SysVinit-2.84-13
tftp-0.32-4
traceroute-1.4al2-9
zlib-1.1.3-3

(a) Packages from Redhat-9.0 distribution

appres |beforelight| bitmap | dpsexec | dpsinfo | editres | glxgears | glxinfo
iceauth ico listres luit |makepsres| oclock |proxymngr| rstart
setxkbmap| showfont | smproxy [texteroids| —twm viewres | xIlperf | xauth
xbift xcale |xclipboard| xclock | xcmsdb [xconsole| xditview |xdpyinfo
xev xeyes xf86dga xfd |xfindproxy| xfontsel| xfsinfo xfwp
Xgamma Xgc xhost Xinit xkbevd |xkbprint| xkbutils xkill
xload xlogo | xIsatoms [xlIsclients| xIsfonts | xmag Xman |xmessage
xmh xmodmap Xpr xrandr xrdb [xrefresh xset [xsetmode
xsetpointer| xsetroot |xstdcmap| xterm xtrap [xvidtune| xvinfo xwud

(b) X11 clients from X71R6.9.0 distribution

Figure 6. Open source packages used in our evaluation

expect the number of API error-handling bugs that we re- proaches find bugs related to API error handling as targeted

port to increase. by our new framework. A detailed comparison of our new
framework with our previous approaches [2, 3] was already
5 Related Work given in Section 1.

From exception-handling code in Java applications,
Weimer and Necula [24] mine temporal safety rules that
| involve pairs of API calls used in Java’'s exception han-
dling. In contrast, our new framework focuses on C appli-
cations and mine multiple-API specifications (as frequent
sequences) in error handling beyond pairs of API calls. In
addition, our framework mines error-check specifications,

|-.not being mined by their approach.
A number of approaches [4, 13, 25] apply static analysis

Previous work has mined API properties from program
execution traces. For example, Ammons et al. [5] mine AP
properties as probabilistic finite state automata from exec
tion traces. Perracotta developed by Yang et al. [26] mines
temporal properties (in the form of pre-defined templates
involving two API calls) from execution traces. These ap-
proaches require setup of runtime environments and avai

ability of sufficient system tests that exercise variousgar | checki h - ;
of the program. Furthermore, stressful environment condi- " Model checking on the AP implementation code to syn-

tions need to be simulated to expose API-error behaviors.N€Siz€ permissive APl usage patterns that are allowed by

Such simulations of stressful environment conditions migh € APl implementation. Different from these approaches,
not sufficiently expose API errors. In contrast, our new our framework analyzes API client code (rather than API

framework mines properties related to correct error han- implementation code) and applies a miner on static traces

dling from static traces without suffering from the precegli extragted from the client cod'e.. Mining from API client

issues. code is complementary to mining from APl implementa-
Related approaches developed by other researchers alsion ¢ode, and mining API client code can be applied where

mine properties from static source code for finding bugs. P! implementation code is not available.

For example, PR-Miner developed by Li and Zhou [16]

mines programming rules (involving multiple code ele- 6 Conclusions and Future Work

ments such as function calls) from source code. DynaMine

developed by Livshits and Zimmermann [17] mines simple ~ We have described our novel framework to detect API

rules (involving mostly function-call pairs) from softwear error-handling bugs in software packages without reqggirin

revision histories. Ramanathan et al. [19, 20] mine fumctio any user input. Our framework uses a compile-time push-

preconditions or function precedence protocols (invavin down model checker to generate inter-procedural static

function-call pairs) from static traces. Both Chang et@].[traces, which approximate run-time API error behaviors.

and Thummalapenta and Xie [22] detect missing condition- Data mining techniques are used on these static traces to

als by mining source code. None of these previous ap-mine specifications that define correct handling of errors fo

relevant APIs used in the software packages. The mined
specifications are then formally verified against the same
(or other) software packages to uncover API error-handling [12]
bugs. We have implemented our framework, and validated
the effectiveness of the framework on 82 widely used open-
source software packages with approximately 300K LOC
in total. The model checker used in our framework is data-
flow-insensitive. This limitation leads to infeasible teac

In future work, we plan to explore the utility of data-flow-
sensitive model checkers such as BLAST [12] for trace gen-
eration. Although we have applied our framework on clients (15]
written in C, the basic idea is generally applicable to even
object-oriented languages such as Java afid C

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(9]

(10]

(11]

IEEE Computer Society, IEEE Standard Glossary of Soft-
ware Engineering Terminology, |IEEE STD 610.12-1990
December 1990.

M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API pat-
terns as partial orders from source code: From usage sce-
narios to specifications. IRroc. 6th joint meeting of the
European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engi-
neering (ESEC/FSEpages 25-34, 2007.

M. Acharya, T. Xie, and J. Xu. Mining interface specifi-
cations for generating checkable robustness properties. In
Proc. International Symposium on Software Reliability En-
gineering (ISSREpages 311-320, 2006.

R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis
of interface specifications for Java classes.Phc. Sym-
posium on Principles of Programming Languages (PQPL)
pages 98-109, 2005.

G. Ammons, R. Bodik, and J. Larus. Mining specifica-
tions. InProc. Symposium on Principles of Programming
Languages (POPL.ypages 4-16, 2002.

R. Y. Chang and A. Podgurski. Finding what's not there: A
new approach to revealing neglected conditions in software.
In Proc. International Symposium on Software Testing and
Analysis (ISSTApages 163-173, 2007.

H. Chen. Lightweight Model Checking for Improving Soft-
ware Security PhD thesis, University of California, Berke-
ley, 2004.

H. Chen and D. Wagner. MOPS: an infrastructure for ex-
amining security properties of software. Pnoc. ACM Con-
ference on Computer and Communications Security (CCS)
pages 235-244, 2002.

J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Ef-
ficient algorithms for model checking push down systems.
In Proc. International Conference on Computer Aided Veri-
fication (CAV) pages 232-247, 2000.

J. Forrester and B. P. Miller. An empirical study of the ro-

bustness of Windows NT applications using random testing. [26]

In Proc. USENIX Windows Systems Symposiages 69—
78, 2000.

J. Haddox, G. Kapfhammer, C. Michael, and M. Schatz.
Testing commercial-off-the-shelf software components. In

(13]

(14]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

Proc. International Conference and Exposition on Testing
Computer Software2001.

T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Soft-
ware verification with BLAST. IrProc. Workshop on Model
Checking Softwargages 235-239, 2003.

T. A. Henzinger, R. Jhala, and R. Majumdar. Permissive in-
terfaces. InProc. European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSBages 31-40, 2005.

J. Hopcroft and J. Ulimarintroduction to Automata Theory,
Languages and ComputatioAddison-Wesley, 1979.

P. Koopman and J. DeVale. The exception handling effec-
tiveness of POSIX operating systemdEEE Trans. Softw.
Eng, 26(9):837-848, 2000.

Z. Li and Y. Zhou. PR-Miner: automatically extract-
ing implicit programming rules and detecting violations in
large software code. IRroc. European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSEgges
306-315, 2005.

B. Livshits and T. Zimmermann. DynaMine: finding com-
mon error patterns by mining software revision histories. In
Proc. European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSEpages 296-305, 2005.

J. Pei, H. Wang, J. Liu, K. Wang, J. Wang, and P. Yu.
Discovering frequent closed partial orders from strings.
IEEE Transactions on Knowledge and Data Engineering

18(11):1467-1481, 2006.

M. K. Ramanathan, A. Grama, and S. Jagannathan. Path-
sensitive inference of function precedence protocols. In
Proc. International Conference on Software Engineering
(ICSE) pages 240-250, 2007.

M. K. Ramanathan, A. Grama, and S. Jagannathan. Static
specification inference using predicate mining. Rroc.
Conference on Programming Language Design and Imple-
mentation (PLDI) pages 123-134, 2007.

D. Rosenthal. Inter-client communication Conventions
Manual (ICCCM), Version 2.0. X Consortium, Int994.

S. Thummalapenta and T. Xie. NEGWeb: Static defect de-
tection via searching billions of lines of open source code.
Technical Report TR-2007-24, North Carolina State Univer-
sity Department of Computer Science, Raleigh, NC, August
2007.

J. Wang and J. Han. BIDE: Efficient mining of frequent
closed sequences. IRroc. International Conference on
Data Engineering (ICDE)pages 79-90, 2004.

W. Weimer and G. C. Necula. Mining temporal specifica-
tions for error detection. IRroc. International Conference
on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS)ages 461-476, 2005.

J. Whaley, M. C. Martin, and M. S. Lam. Automatic ex-
traction of object-oriented component interfaces. Phoc.
International Symposium on Software Testing and Analysis
(ISSTA) pages 218-228, 2002.

J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Per-
racotta: Mining temporal API rules from imperfect traces.
In Proc. International Conference on Software Engineering
(ICSE) pages 282-291, 2006.

