
Static Detection of API Error-Handling Bugs
via Mining Source Code

Mithun Acharya and Tao Xie
Department of Computer Science
North Carolina State University

Raleigh NC USA 27695
{acharya, xie}@csc.ncsu.edu

Abstract

Incorrect handling of errors incurred after API invoca-
tions (in short, API errors) can lead to security and robust-
ness problems, two primary threats to software reliability.
Correct handling of API errors can be specified as formal
specifications, verifiable by static checkers, to ensure de-
pendable computing. But API error specifications are of-
ten unavailable or imprecise, and cannot be inferred eas-
ily by source code inspection. In this paper, we develop
a novel framework for statically mining API error specifi-
cations automatically from software package repositories,
without requiring any user input. Our framework adapts a
compile-time push-down model-checker to generate inter-
procedural static traces, which approximate run-time API
error behaviors. Data-mining techniques are used on these
static traces to mine specifications that define the correct
handling of errors for relevant APIs used in the software
packages.The mined specifications are then used to uncover
API error-handling bugs. We have implemented the frame-
work, and validated the effectiveness of the framework on
82 widely used open-source software packages with approx-
imately 300KLOC in total1.

Submission Category: Testing, Verification, and Valida-
tion.

Keywords: Software Reliability, Mining, Static Traces,
Specifications, API Error-Handling, Robustness

1 Introduction

A software system interacts with third-party libraries
through various APIs (Application Programming Inter-
faces). Incorrect handling of errors incurred after API in-

1This work is supported in part by NSF grant CNS-0720641 and ARO
grant W911NF-07-1-0431. Contact Author: Mithun Acharya, Tel: +1 919
515 2858.

vocations (in short, API errors) can lead to security and
robustness violations in complex software systems. These
violations often lead to system crashes, leakage of sensi-
tive information, and complete security compromises. Ro-
bustness is formally defined as the degree to which a soft-
ware component behaves correctly in the presence of ex-
ceptional inputs or stressful environmental conditions [1].
API errors are usually caused by stressful environment con-
ditions, which may occur in forms such as high compu-
tation load, memory exhaustion, process related failures,
network failures, file-system failures, and slow system re-
sponse. Stressful conditions, and hence API errors, however
rare, should be gracefully handled. Traditional software
testing focuses on correctness of functionality and is often
insufficient for assuring the absence of API-level robustness
violations. Robustness testing approaches [10, 11, 15] con-
sider the target applications or operating systems as a black
box, and send random or exceptional input values through
their APIs. However, robustness testing approaches can-
not easily generateimplicit return exceptions through APIs,
which are an important type of sources for robustness prob-
lems.

Correct handling of API errors can be specified as for-
mal specifications verifiable by static checkers to ensure
the absence of error-handling bugs. Writing such specifica-
tions, which are usually temporal in nature, requires identi-
fying API detailssuch as (1) the relevant APIs that fail with
errors, (2) different error-checks that should follow such
APIs (depending on different API error conditions), and (3)
proper error-handling or clean-up in the case of program
exits. Furthermore, APIs in error-handling blocks might de-
pend on the APIs called prior to the error being handled. As
these API details are often inter-procedurally scattered and
not always correctly coded by the programmers, manually
inferring specifications from source code becomes hard and
inaccurate, necessitating automatic specification inference.

To detect API error-handling bugs in the absence of spec-

ifications, we develop a novel framework for statically min-
ing API error-handling specifications directly from soft-
ware package repositories, without requiring any user in-
put. Our framework adapts atrace generatorto approxi-
mate run-time API behaviors. The trace generator uses a
compile-time push-down model-checker to generate inter-
procedural static traces. Data mining techniques are used
on these static traces to mine specifications that define cor-
rect handling of errors for relevant APIs used in the software
packages. The mined specifications are then formally veri-
fied against the same software packages (or other software
packages, which use these relevant APIs) to uncover API
error-handling bugs.

Two of our previous approaches [2,3] used the trace gen-
erator, adapted in this work for mining API error specifica-
tions, for different tasks. One approach [3] uses the trace
generator to infer API details such as return values on API
failure and success. As opposed to intra-procedural trace
generation in our previous approach [3], in this paper, both
trace generation and bug checking are inter-procedural. The
inter-procedural analysis allows our framework to mine API
error-check and clean-up details (and hence bugs) scaterred
across different procedures. The other approach [2] uses
the trace generator to mine APIusage scenariosand speci-
fications using a partial-order miner [18]. API usage scenar-
ios dictate how a given set of APIs are used for a particular
task. Both specifications and usage scenarios mined by our
previous approach [2] were ordering requirements between
multiple, user-specified APIs only, and not error checks. To
capture different possible orderings (summarized as partial
orders) among user-specified set of APIs, the static traces
generated were from thestart-to-endof the analyzed pro-
gram. To detect API error-handling bugs, our framework
in this paper adapts the trace generator to generate traces
aroundrelevantAPI error paths (described in Sections 3.2
and 3.3). Both our previous approaches require users to
specify the APIs of interest. In contrast, the framework pro-
posed in this paper automatically infers the relevant APIs,
the APIs that fail with errors. Finally, the framework pro-
posed in this paper employs sequence mining to infer proper
API clean-up in case of program exits, not mined by our
previous approaches. Frequent-sequence mining [23] (as
opposed to the more costly partial-order mining) sufficed as
error checking and cleaning up are unique for a given API
along error paths. In summary, this paper makes the follow-
ing main contributions:

Static approximation of run-time API error behav-
iors. We adapt previous trace generation framework to stat-
ically approximate run-time API error behaviors. Our tech-
niques allow mining of open source systems for API error-
handling bugs without requiring environment setup for sys-
tem executions or availability of sufficient system tests. Fur-
thermore, our framework to detect API error-handling bugs

expects no user input in the form of specifications, program-
mer annotations, profiling, instrumentation, random inputs,
or a set of relevant APIs.

Specification Extraction. We present novel applica-
tions of frequent-sequence mining [23] on static traces to
mine specifications that dictate correct handling of API er-
rors.

Implementation and Experience. We implement the
framework and validate the effectiveness of the framework
on 82 widely used open-source software packages with ap-
proximately 300K LOC in total.

The remainder of this paper is structured as follows. Sec-
tion 2 starts with an example that motivates our frame-
work. Section 3 describes the various components of our
framework in detail. Section 4 presents the implementation
details and evaluation results. Section 5 discusses related
work. Finally, Section 6 concludes.

2 Example

This section illustrates how our framework automatically
detects API error-handling bugs via mining program source
code, without requiring any user-input. The only input to
our tool is compilable source code of a single software or
a set of software packages. Figure 1(a) shows a simple
code snippet inC that uses APIs from a header file, say
<abcdef.h>, namely,a, b, c, d, e, andf. Next, we ex-
plain the various components of our framework on the sam-
ple code snippet at a high level, after defining a few terms
used throughout the paper. The formal details of the frame-
work are described in Section 3.

Definitions. We identify two types of specifications that
determine correct handling of API errors along all paths in
the program:error-checkspecifications andmultiple-API
specifications. Error-check specifications ensure that error-
check conditionals exist after each call site of an API before
its return value isusedor themain procedure returns. Error-
check conditionals check the API return value and error flag
(such aserrno) value against their possible error values.
We classify an API error (return-value error or error-flag
error) to becritical, if the program should not proceed af-
ter the critical error and has to exit (through anexit(0)
call, for example). Critical API errors are caused because
of stressful environment conditions such as network fail-
ures, disk failures, and memory exhaustion. We classify a
conditional checking against any critical API error ascriti-
cal check conditional(CCC; we use CCC(a) to denote CCC
of API a). In this paper, we restrict the scope of error-
check specifications to the presence of critical check con-
ditional after an API call before its return value is used or
themain procedure returns. For example, the POSIX API
setuid returns -1 on failure, with possible error values of
EPERM and EAGAIN. Checks should exist after each call-

void fata l() {exit(0); // EB}void error() { if (errno==EINVAL) // CCCexit(0); // EB} 1. …, a() ,T (i < 0), fata l() , …, ex it(0)2. …, a() , F(i<0),T (errno<0), e rro r() ,T (errno=EINVAL), ex it(0)3. …, a() , F(i<0), F(errno<0), b(i) , d(j) , e(j) ,T (j =1), p(), …, a() ,F(z=1),T (errno=EIGVAL), d(y), e(y), ex it(0)123 void p(){int x, y, z;y = c();x= a();if (z==1) { if (z<0) z+=1; }; (b) Shortest exit tracesRelevantAPIs, R = {a}Critical error return values for a: < 0Critical errno values for a: EIGVAL, EINVALProbable cleanwupAPIs, PC = {d, e}456789 () { () }if (errno == EIGVAL) // Error flag check, CCC{ // Exit block (EB)d(y); e(y); exit(0);}d(y); e(y); f(y); b(x); f(x);} a
 bc
 d ec
 d e fa
 b f101112131415 }void q() {int r = c(); d(r); e(r);}#include <abcdef.h>int main(){ a
 b fc
 d ea
 bc
 d eFrequent sequence, support = 3/ 4, length = 3: a b, c d

eRelevantAPIs = {a, b, c, d, e}; CleanwupAPIs = {b, d, e}16171819 {int i, j ;j = c();i = a();if (i < 0) // returnwvalue check, CCCfatal();If (errno < 0) // Error flag check CCC (c) Independentscenarios from random non¡exit tracesafter scenario extractionError¦check bugs19202122232425 If (errno < 0) // Errorwflag check, CCCerror();b(i); d(j); e(j);if (j == 1)p();else () Error check bugsMissing ret urnvalue check for a() at line 8Missing (errno == EIGVAL) check f or a() at line 22Missing (errno == EINVAL) check for a() at line 8Multiple¦API bugsma in() , …,a() , ...,e rro r() , ex it(0) // b not called; d and e not calledma in() , …,a() , …, fata l() , ex it(0) // b not called; d and e not called25262728293031 q();}(a) Example code– Input source (d)Verification results – API error¡handling bugs() , , () , , () , () ;ma in() , …, p() , …,a() , …,T (errno=EIGVAL), …, ex it(0) // b not called3132

Figure 1. A simple example for illustrating our framework

site ofsetuid and these critical error conditions should be
handled appropriately. Critical check conditionals should
be followed byexit blocks(EB; we use EB(a) to denote
EB of API a). Exit blocks handle the error and executes
an exit call. Multiple-API specifications ensure that the
right clean-upAPIs are called in the exit blocks. Clean-
up APIs are APIs called in the exit blocks, which may
share a temporal relationship with any API called prior to
the exit block. For example, the display pointer produced
by the X11 API,XOpenDisplay, should be consumed by
theXCloseDisplay API along all paths. Hence, each exit
block reachable from a call toXOpenDisplay should have
a call toXCloseDisplay (clean-up API). We definerele-
vantAPIs as APIs that can fail with critical errors, clean-up
APIs, and APIs that share temporal relationship with clean-
up APIs. Our framework automatically mines relevant APIs
from the source code, and then generates specifications. A
trace in a program is the print of all statements that exist
along some control flow between any two statements, say
S1 and S2. In our analysis, we restrict such traces to those
that can be captured by a Finite State Machine (details in
Section 3). Anexit traceis any trace from the entry to the
main procedure to some exit point in the program (through
anexit(0) call, for example). Anon-exittrace is any trace
from the entry of themain procedure to the return of the
main procedure.

To infer error-check specifications, our framework first
gathers APIs that fail with critical API errors from the
source code. Our framework generates the shortest exit
trace for each exit path (in the program) that contains a
critical check conditional. Figure 1(b) shows three shortest
exit traces. For a predicateP , T (P) means that the predi-
cateP is true, andF (P) means that the predicate is false.
HenceT (i<0) in trace 1 means that the predicatei<0 is
true. For Trace 3,T (z==1) in procedurep implies a longer
trace, which is not output by our framework. Since the crit-
ical check conditionals in exit traces pertain to APIa, a is
added to the set of relevant APIs (set R). Critical API er-
rors are inferred from critical check conditionals presentin
exit traces. Fora, critical API errors for the return value
are all negative integer values, andEINVAL and EIGVAL
are critical API errors for the error flag. Error-check spec-
ifications are then generated with the knowledge of criti-
cal API errors. The APIs present in the exit blocks for
a ared ande (Lines 11-13). These APIs could probably
be clean-up APIs (set PC) that share a temporal relation-
ship with APIs called prior to critical check conditionals.
Our framework then generates non-exit traces that involve
APIs from set R and PC (a, d, ande), and APIsrelated
to them. Two APIs arerelated, if they have some data-
flow dependency between them. Non-exit traces are gener-
ated randomly (details in Section 3) from a set of all non-

exit traces until an upper limit is reached on the number of
traces. Figure 1(c) shows non-exit traces generated by our
framework afterscenario extraction(see Section 3.4), with
an upper limit of seven. Scenario extraction generatesin-
dependent scenariosfrom non-exit traces. An independent
scenario in a non-exit trace is a sequence of APIs that are
related through some data-flow dependency. For example,
one non-exit trace in the example code hasj=c(), i=a(),
b(i), d(j), e(j), y=c(), x=a(), d(y), ande(y) as an
API invocation sequence. There are three independent sce-
narios in this non-exit trace, namely, (j=c(), d(j), e(j)),
(i=a(), b(i)), and (y=c(), d(y), e(y)). Multiple-API
specifications are derived from these traces using frequent-
sequence mining. Based on the observation by Weimer and
Necula [24], exit traces are not used to infer multiple-API
specifications because programmers tend to commit mis-
takes along exit paths when using clean-up APIs. The fre-
quent sequences (shown in Figure 1(c)) are mined from ran-
dom non-exit traces with support 3/4, and they imply that
APIs b should always be called aftera, and thatd ande
should be called after APIc. The error-check and multiple-
API specifications are then verified against the source code
to detect API error-handling bugs. Figure 1(d) shows the
detected API error-handling bugs. Our framework outputs
the shortest path for each bug in the program, instead of
all buggy traces, thus making bug inspection easier for the
users.

3 Framework

A high-level overview of our framework is shown in Fig-
ure 2. The only input to our framework is compilable source
code of a single software package or a set of software pack-
ages. Our framework then finds API error-handling bugs, if
any, in the source code. There are three main stages in our
framework: trace generation, specification extraction, and
verification, as shown by dotted boxes in the figure. The
trace generation stage generates two types of traces, short-
est exit traces and random non-exit traces. The specifica-
tion extraction stage generates two types of specifications,
error-check specifications and multiple-API specifications,
inferred from the traces using different mining algorithms.
In the verification stage, the inferred specifications are veri-
fied against software packages to detect API error-handling
bugs. Section 3.1 introduces the trace generation mecha-
nism, also used by our previous approaches [2, 3]. Sec-
tions 3.2 and 3.3 explain how our framework adapts trace
generation to generate API exit and non-exit traces. Sec-
tions 3.4 and 3.5 describe the specification extraction and
verification stages, respectively.

3.1 Trace Generation

Our framework mines error-check specifications from
exit traces and multiple-API specifications from random
non-exit traces. Trace generation forms the basis for gen-
erating exit and non-exit traces. Informally, a trace is a
sequence of program statements between two points in a
program along some control-flow path. However, generat-
ing all traces along all execution paths is an uncomputable
problem and a trace can be of infinite size. Furthermore,
a generated trace can be infeasible. These problems will
be addressed in subsequent sections. Here we first formal-
ize the problem of trace generation as below. The problem
is to generate traces between two points in a program and
then to extract relevant statements (such as API invocation,
return-value checks, and exits) from each trace. To describe
trace generation, we assume that the user wants to extract
API (from a known set of APIs) invocation sequences from
traces. We then summarize the Push-Down Model Check-
ing (PDMC) process [7,9], which we adapt for trace gener-
ation. Next, we introduce the concept ofTriggers required
for trace generation. Finally, we discuss the soundness and
complexity of trace generation.

Let us assume thatA is a set of APIs. To simplify the
definitions, let us assume that all APIs inA are empty meth-
ods, do not take any arguments, and returnvoid, so that
they do not have any data dependencies with other state-
ments. We show how to generate sequences of API (from
setA) invocations along different program paths. Formally,
letΣ be the set of valid program statements in the given pro-
gram source code. Atracet ∈ Σ∗, a sequence of statements
executed by a pathp, is feasibleif path p is feasible in the
program. LetT⊂Σ∗ be the set of all feasible traces in the
program. For a givent∈T , let A(t)∈A∗ be the API invoca-
tions along the tracet expressed as a string.A(t) can be an
empty string ift does not have any invocation of APIs from
the setA. Let T ′⊆T be the set of all feasible traces such
that if t∈T ′, A(t) is not empty. However, the setT ′ is un-
computable andt∈T ′ can be of infinite size. A computable
approximation ofT ′ is generated from the program.A(t)
is extracted for allt in the approximate set, usingTriggers
(explained later in this section). We now describe PDMC
process required to understand Triggers.

3.1.1 Push-Down Model Checking (PDMC)

Given a property represented using a Finite State Machine
(FSM), PDMC [9] checks to see if there is any path in the
program that puts the FSM in its final state. For example, if
the property FSM is specified as shown in Figure 3, PDMC
reports all program paths in whicha is followed by eitherb
orc. PDMC models the program as a Push Down Automata
(PDA) and the property as an FSM. PDMC then combines

Source CodeTrace Trigger GeneratorTriggersTraceGeneratorShortest ExitTrace Generator Random NonçExitTrace GeneratorUSES USES TraceGenerationTriggersModel CheckerTrace Generator Trace GeneratorShortest ExitTraces Random NonçExitTracesErrorçCheckSpecificationExtractor MajorityMiner I d d tUSES ScenarioExtractorMultiple APISpecificationFrequentSequence IndependentScenariosUSES SpecificationExtractionExtractorMiner Multiple APISpecificationsErrorçCheckSpecifications Model Checker VerificationSpecificationsSpecifications API ErrorçHandling Bugs
Figure 2. Our framework for detecting API error-handling bu gs

the program PDA and the property FSM to generate a new
PDA; the new PDA is then model checked to see if any
final configurationin the PDA is reachable. Aconfiguration
of a PDA P is a pairc = 〈q, ω〉, whereq is the state in
which the PDA is in andω is a string of stack symbols in the
PDA stack at that state. A configuration is said to be a final
configuration, ifq belongs to the set of final states in the
FSM. If a final configuration is reachable, PDMC outputs
the paths (in the program) that cause the resultant PDA to
reach this final configuration. The resulting trace can either
be feasible or infeasible because of data-flow insensitivity
(being incomplete). However, if there is a program trace
that puts the FSM in the final state, PDMC reports it (being
sound). We next describe ourTriggers technique [2] that
adapts PDMC to generate API invocation sequences in a
program.

3.1.2 Triggers

Our goal is to generate the setT ′⊆T from the pro-
gram and extractA(t) for all t∈T ′, A(t)∈A∗, A =
{a1, a2, a3, ..., ak}. Let us assume that we give the FSM
shown in Figure 4 to PDMC to be verified against a pro-
gramP. The FSM in Figure 4 accepts any string of the
form e(

∑
i=1,2,...,k ai)

∗x, wheree andx are any two points
in the program. Given this Trigger FSM, PDMC outputs
all program paths that begin withe and end withx in the
program.

Let B ⊆ Σ∗ be all sequences of program statements in
P that put the FSM in Figure 4, sayF, in its final state.
As defined earlier,T⊂Σ∗ is the set of all feasible traces in

start aCalled

end1

end2

a

b

c

Figure 3. A property FSM with end1 and end2
as final states

a1Called end
x

start
e

a1, a2, a3, … , ak

Figure 4. Trigger FSM that accepts the regular
language e(a1 + a2 + ... + ak)

∗

x

the program, in this case,P. If T∩B = φ, then the final
state ofF is never reached. SinceB andT are arbitrary
languages andT is uncomputable, deciding ifT∩B = φ is
an undecidable problem. Hence PDMC restricts the form
of B andT by modelingB to be a regular language ac-
cepted byF (B = L(F)), andT as a context-free language
accepted by a PDAP (of programP). In general, we have
T⊆L(P), which then impliesT∩B⊆L(F)∩L(P). Conse-
quently, if L(F)∩L(P) is empty,T∩B is definitely empty.
However, ifL(F)∩L(P) is not empty,T∩B could either be

empty or not. SinceL(F) is a regular language andL(P)
is a context-free language,L(F)∩L(P) can be captured by
a PDA, sayP, and hence the final state ofF is unreach-
able if and only if the PDAP accepts the empty language.
There are efficient algorithms to determine if the language
accepted by the PDA is empty [14]. OnceP is constructed,
PDMC checks to see if any final configuration is reachable
in P. Chen and Wagner [8] use the preceding analysis to
adapt PDMC for light-weight property checking. We use
the preceding analysis for static trace generation. We call
the FSMs such as the one used in Figure 4 as Triggers. By
using Triggers, we have achieved two purposes:

• We have producedTex, the set of traces in the program
that begin withe and end withx instead ofT ′⊆T .

• The knowledge ofA = {a1, a2, a3, ..., ak} allows us
to extractA(t) from anyt∈Tex. Similarly, other state-
ments like return-value checks, error-flag checks can
also be retrieved from the traces.

3.1.3 Soundness

The consequence of using a context-free language forT

introduces imprecision but retains the soundness of anal-
ysis. Infeasible traces might occur (being incomplete) be-
cause of data-flow insensitivity of the PDMC process, but
all the program traces that put the FSM in its final state are
reported (being sound). Since determining ifT∩B = φ

is undecidable, no tool can be sound and complete at the
same time. Consequently, there could be some infeasible
API sequences. The model-checker that we use is data-flow
insensitive. We implement simple data flow extensions to
the PDMC process as described in Section 4. However, we
do not implement a potentially expensive pointer or alias
analysis. We intend to explore data-flow-sensitive model-
checkers in future work for trace generation. Also, along
some feasible paths, the implicit API ordering rules might
be violated and APIs could be used incorrectly (producing
buggy traces with actual errors). Hence the API sequences
might contain certain wrong API sequences. However, we
assume that most programs that we analyze are well written.
Hence, we expect only few feasible paths to be buggy, if at
all. We expect to handle buggy traces by selecting an appro-
priatemin sup value. The traces generated by PDMC with
Triggers can still be of infinite size (for example if there is
a loop). We address this problem in Section 4.

3.1.4 Complexity

PDMC constructs PDAP from the program Control Flow
Graph (a directed graphG = (N,E)) where each node rep-
resents a program point and each edge represents a valid
program statement. PDMC takesO(E) time to construct

the PDAP from the CFGG, takesO(E × |Q|) (Q is the
number of states in the FSA) for computingP, the product
of FSA F and PDAP, takesO(|Q|

2
× E) for deciding if

the PDAP is empty andO(|Q|
2
) × lg|Q| × E × lgN for

backtracking. The derivations are shown by Chen [7].
Our framework has four components: the shotest exit-

trace generation, random non-exit trace generation, specifi-
cation extraction, and verification, described in subsequent
sections. Figure 5 lists the algorithm used by our framework
to detect API error-handling bugs. The algorithm summa-
rizes the various steps in each of our framework compo-
nents.

3.2 Shortest Exit Trace Generation

Our framework generates the shortest trace for each exit
path (in the program) that contains a critical check condi-
tional (CCC). We useP to denote the input program andF

to denote the Trigger FSM. CCC(a) denotes CCC for API
a. Line 4 in Figure 5 sets the Trigger to collect the shortest
exit traces. A path from the entry of themain procedure
to an exit point in the exit block of an API must always go
through CCC for that API. Hence, in generating exit traces,
we collect CCCs for APIs that fail with critical errors. Crit-
ical errors (return-value errors and error-flag errors) foran
API are inferred from the CCCs of that API. We generate
the shortest exit traces instead of enumerating all exit traces
(or generating traces randomly with an upper limit) because,
for an API, saya, which can fail with a critical error, pro-
gram statements between themain’s entry and the invoca-
tion of a do not yield additional information to infer critical
errors fora. To collect critical API errors, it suffices to gen-
erate program statements between CCC(a) and the program
exit in the exit block ofa, EB(a). The shortest exit traces for
a given trigger are generated by computing the shortest path
from sourceto sinknodes in the graph obtained aftersatu-
rating PDA P [7]. When generating the shortest exit traces,
all APIs that fail with critical errors are added to the set of
relevant APIs (set R). Also, APIs in the exit blocks of APIs
that fail with critical errors are flagged as potential clean-up
APIs (set PC), which could share temporal relationship with
any API called prior to the exit block.

3.3 Non-Exit Trace Generation

Non-exit traces are generated randomly from a set of all
non-exit traces until the number of traces reach an upper
limit (L). Random traces are generated by a random walk
from sourceto sink nodes in the graph obtained aftersat-
urating PDA P [7]. Line 21 in Figure 5 sets the Trigger
required to generate non-exit traces. The PDMC process
slices the programP based on the transition edges in the
trigger F. APIs related to APIs in sets R and PC are cap-

R = { }; /* Set of relevant AP Is */PC = { }; /* Set of probable clean up APIs */// set trigger to collect shortest exit tracesset = ;1234 // Generate exit tracesT = PDMC(,);// Collect shortest exit traces in the set TsLet T = Te 1 + Te2 + …+ Ten, ei being an exit point, Tei being set of all traces that exit at ei, i ? [1, n];for(i = 1 to n) do56789 for(i = 1 to n) doTs += t ? T I |t | K |ti | ti ? Tei ;end// Update AP Iset R and PCforeach (t in Ts) doR+={a}, where a in t and CCC(a) follows a in tCollect cae from CCC(a)9101112131415 ()CAE .add(a, cae);PC += {b}, where b in t and b lies in EB(a)end// set trigger to collect random non exit tracesset = ;1617181921 set = ;// Generate random non exit traces upto limit LT = PDMC (,);// Extract independent scenarios = Program, input source21222324 pIS = Extract_Scenarios(T);// Extract error check specificationsECS = Extract_ECS(CAE);// Extract multiple AP Ispecifications; update set RMAS = Extract_MAS(T);// Verification = Trigger FSMPDMC = Push{Down Model{CheckingCCC(a) = Crit ical Check Condit ional forAPI acae = Crit ical API ErrorCAE = set of all crit ical API errors indexed by API252627282930 foreach(in ECS and MAS) do// output APIerror handling bugs; output shortest trace for each bugT = PDMC(,);end CAE = set of all crit icalAPI errors indexed by APIEB(a) = Ex it Block of API aIS = Independent ScenariosECS = Error{Check Specif icat ion FSMsMAS = Mult iple{API Specif icat ions FSMs31323334
Figure 5. Algorithm for Detecting API Error-Handling Bugs

tured in the generated non-exit traces. As APIs related to
R and PC could occur anywhere in the program, we gener-
ate random traces instead of shortest non-exit traces (in fact
there is only one shortest trace from the entry of themain

procedure to the return of themain procedure). Based on
the observation by Weimer and Necula [24], exit traces are
not used to infer multiple-API specifications because pro-
grammers tend to make mistakes along exit paths when us-
ing clean-up APIs. We next describe how specifications are
extracted from traces.

3.4 Specification Extraction

Error-check specifications are derived from the shortest
exit traces. In generating the shortest exit traces, we col-
lect CCCs for APIs that fail with critical errors. Critical
errors (return-value errors and error-flag errors) for an API
are inferred from the CCCs of that API. Error-check speci-
fications are derived from the inferred critical API errors.

Multiple-API specifications are derived from non-exit
traces. A single non-exit trace generated by the model
checker might involve several APIclean-up scenarios, be-

ing often interspersed. A clean-up scenario in a non-exit
trace consists of an API and its corresponding clean-up
APIs in the right sequence. We have to separate different
API clean-up scenarios (or match each API with its corre-
sponding clean-up APIs) from a given non-exit trace, so that
each clean-up scenario can be fed separately to the miner.
We use the usage scenario extraction algorithm [2], which
is based on identifyingproducer-consumerchains among
APIs in the trace. The algorithm is based on the assump-
tion that an API and its corresponding clean-up APIs have
some form of data dependencies between them such as a
producer-consumer relationship. Each producer-consumer
chain is output as an independent clean-up scenario. For
example, in Figure 1,a is the producer API, whileb is the
consumer API fora. Also, APIsd ande are consumers
for the producer APIc. f is the consumer API once fora
(in procedurep) and once forc (in proceduremain). Sep-
arate producer-consumer chains are output as independent
scenarios.

Multiple-API specifications are derived from indepen-
dent scenarios using frequent-sequence mining [23]. Inde-
pendent scenarios are obtained after applying the scenario

extraction algorithm over random non-exit traces. LetIS be
the set of independent scenarios. We apply a maximal se-
quence mining algoirthm [23] on the setIS with user spec-
ified supportmin sup (min sup ∈ [0, 1]), which outputs a
setFS of frequent sequences that occur as subsequences in
at leastmin sup × |IS| sequences in the setIS. Here we
consider maximal subsequences, that is, every sequence in
FS is not a subsequence of any other sequence inFS.

3.5 Verification

In Section 3.1, the PDMC process was used for trace
generation. Here we use the same PDMC process for prop-
erty verification. The specifications inferred by our frame-
work represent the properties to be verified at this stage.
The error-check and multiple-API specifications are verified
against the software packages to detect API error-handling
bugs, using the Push-Down Model Checker. The inferred
specifications can also be used to verify correct API usage
in other software packages, which use these relevant APIs.
Our framework outputs the shortest path for each bug in the
program, instead of all buggy traces, thus making bug in-
spection easier for the users.

4 Implementation and Evaluation

To generate static traces, we adapted a publicly available
model checker called MOPS [8]. We used BIDE [23] to
mine frequent sequences. The process of generating error
traces from a final configuration〈q, ω〉 (ω is the stack con-
tent containing a list of return addresses) of PDAP is called
backtracking[7]. Multiple program paths (and hence graph
paths) can violate a given property specified by a FSM (such
as the one shown in Figure 3), and many such violations
could be similar because they indicate the same program-
ming error. So instead of reporting all program traces that
violate a given property, the MOPS model checker clusters
similar traces and reports the shortest trace as a candidate
trace for each violation. This mechanism would save the
user’s time considerably because the user has to review each
trace manually. However, for our purposes, given a Trigger,
we need all the traces in the program that contain the APIs
specified in the Trigger. We modified the backtracking al-
gorithm of MOPS, wherein, instead of clustering traces, we
consider all program paths that satisfy the Trigger, and out-
put a random number of traces by random walking the graph
generated by the PDMC process.

Because the basic MOPS static checker is data-flow in-
sensitive, it assumes that a given variable might take any
value. Therefore, it assumes that both branches of a condi-
tional statement may be taken and that a loop may execute
anywhere between zero to infinite iterations. Data-flow in-
sensitivity causes MOPS to output infeasible traces. Fur-

thermore, the trace size and the number of traces can be in-
finite due to loops. MOPS monitors backtracking and aborts
if it detects a loop. We wrote extensions to the MOPS pat-
tern matching [8]; these extensions make it possible to track
the value of variables that take the return status of an API
call along the different branches of conditional constructs.
For each possible execution sequence, our extensions asso-
ciate a value to the variable that is being tracked using pat-
tern matching. MOPS pattern matching allows our frame-
work to correlate two program statements related by pro-
gram variables (as an example,FILE* fp = fopen(...)

andfread(fp) are related through the file pointer variable,
fp). Our extensions enable our framework to mine proper-
ties such as “If APIa returnsNULL, then APIb should al-
ways be called along theNULL path”. The basic trace gen-
erator was also used in our previous approaches [2, 3], and
here we adapt it for generating exit and non-exit traces. Our
current implementation does not consider aliasing.

We have applied our framework on 10 open source pack-
ages (approximately, 100,000 LOC), mostly from the Red-
hat 9.0 distribution, and 72 clients (approximately, 200,000
LOC) of X11 APIs from theX11R6.9.0 distribution. Fig-
ure 6 lists the packages used in our evaluation. Our frame-
work mined about 100 APIs that fail with critical errors
from the source code. Error-check specifications were gen-
erated for these critical APIs and verified against the soft-
ware packages. 56 error-check violations were reported.
We manually inspected the violations (by inspecting the
source code) and found 49 violations to be real bugs, while
7 were false positives. False positives are caused because
of the lack of sophisticated data-flow analysis in our model
checker. Multiple-API specifications were mined as fre-
quent sequences from non-exit traces, with amin sup

value of0.8. 11 multiple-API specifications (9 real, 2 false)
were mined resulting in 27 multiple-API violations (all vio-
lations being real bugs) in the packages used in our eval-
uation. We did not use the 2 false specifications in the
verification phase after we verified the mined specifications
against POSIX manual in UNIX and X11 Inter-client Com-
munication Conventions Manual (ICCCM) [21] from the
X Consortium standards. We next present an example of
a multiple-API bug fromxrdb/xrdb.c. Our framework
mines a specification which dictates that the display pointer
produced by the X11 API,XOpenDisplay, should be con-
sumed by theXCloseDisplay API along all paths. How-
ever, our framework detects an exit path in the program
where the specification is violated;fdopen is called af-
ter XOpenDisplay along this path, and the exit block of
fdopen (reached inter-procedurally through a call to an
error-handling procedure,fatal(...)) forgets to invoke
XCloseDisplay before a program exit. At the time of this
submission, we are still in the process of verification and
validation (by manual inspection of source code), and we

(a) Packages from Redhat�9.0 distribution
(b) X11 clients from X11R6.9.0 distribution

Figure 6. Open source packages used in our evaluation

expect the number of API error-handling bugs that we re-
port to increase.

5 Related Work

Previous work has mined API properties from program
execution traces. For example, Ammons et al. [5] mine API
properties as probabilistic finite state automata from execu-
tion traces. Perracotta developed by Yang et al. [26] mines
temporal properties (in the form of pre-defined templates
involving two API calls) from execution traces. These ap-
proaches require setup of runtime environments and avail-
ability of sufficient system tests that exercise various parts
of the program. Furthermore, stressful environment condi-
tions need to be simulated to expose API-error behaviors.
Such simulations of stressful environment conditions might
not sufficiently expose API errors. In contrast, our new
framework mines properties related to correct error han-
dling from static traces without suffering from the preceding
issues.

Related approaches developed by other researchers also
mine properties from static source code for finding bugs.
For example, PR-Miner developed by Li and Zhou [16]
mines programming rules (involving multiple code ele-
ments such as function calls) from source code. DynaMine
developed by Livshits and Zimmermann [17] mines simple
rules (involving mostly function-call pairs) from software
revision histories. Ramanathan et al. [19,20] mine function
preconditions or function precedence protocols (involving
function-call pairs) from static traces. Both Chang et al. [6]
and Thummalapenta and Xie [22] detect missing condition-
als by mining source code. None of these previous ap-

proaches find bugs related to API error handling as targeted
by our new framework. A detailed comparison of our new
framework with our previous approaches [2,3] was already
given in Section 1.

From exception-handling code in Java applications,
Weimer and Necula [24] mine temporal safety rules that
involve pairs of API calls used in Java’s exception han-
dling. In contrast, our new framework focuses on C appli-
cations and mine multiple-API specifications (as frequent
sequences) in error handling beyond pairs of API calls. In
addition, our framework mines error-check specifications,
not being mined by their approach.

A number of approaches [4, 13, 25] apply static analysis
or model checking on the API implementation code to syn-
thesize permissive API usage patterns that are allowed by
the API implementation. Different from these approaches,
our framework analyzes API client code (rather than API
implementation code) and applies a miner on static traces
extracted from the client code. Mining from API client
code is complementary to mining from API implementa-
tion code, and mining API client code can be applied where
API implementation code is not available.

6 Conclusions and Future Work

We have described our novel framework to detect API
error-handling bugs in software packages without requiring
any user input. Our framework uses a compile-time push-
down model checker to generate inter-procedural static
traces, which approximate run-time API error behaviors.
Data mining techniques are used on these static traces to
mine specifications that define correct handling of errors for

relevant APIs used in the software packages. The mined
specifications are then formally verified against the same
(or other) software packages to uncover API error-handling
bugs. We have implemented our framework, and validated
the effectiveness of the framework on 82 widely used open-
source software packages with approximately 300K LOC
in total. The model checker used in our framework is data-
flow-insensitive. This limitation leads to infeasible traces.
In future work, we plan to explore the utility of data-flow-
sensitive model checkers such as BLAST [12] for trace gen-
eration. Although we have applied our framework on clients
written in C, the basic idea is generally applicable to even
object-oriented languages such as Java and C#.

References

[1] IEEE Computer Society, IEEE Standard Glossary of Soft-
ware Engineering Terminology, IEEE STD 610.12-1990.
December 1990.

[2] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API pat-
terns as partial orders from source code: From usage sce-
narios to specifications. InProc. 6th joint meeting of the
European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engi-
neering (ESEC/FSE), pages 25–34, 2007.

[3] M. Acharya, T. Xie, and J. Xu. Mining interface specifi-
cations for generating checkable robustness properties. In
Proc. International Symposium on Software Reliability En-
gineering (ISSRE), pages 311–320, 2006.

[4] R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis
of interface specifications for Java classes. InProc. Sym-
posium on Principles of Programming Languages (POPL),
pages 98–109, 2005.

[5] G. Ammons, R. Bodik, and J. Larus. Mining specifica-
tions. In Proc. Symposium on Principles of Programming
Languages (POPL), pages 4–16, 2002.

[6] R. Y. Chang and A. Podgurski. Finding what’s not there: A
new approach to revealing neglected conditions in software.
In Proc. International Symposium on Software Testing and
Analysis (ISSTA), pages 163–173, 2007.

[7] H. Chen. Lightweight Model Checking for Improving Soft-
ware Security. PhD thesis, University of California, Berke-
ley, 2004.

[8] H. Chen and D. Wagner. MOPS: an infrastructure for ex-
amining security properties of software. InProc. ACM Con-
ference on Computer and Communications Security (CCS),
pages 235–244, 2002.

[9] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Ef-
ficient algorithms for model checking push down systems.
In Proc. International Conference on Computer Aided Veri-
fication (CAV), pages 232–247, 2000.

[10] J. Forrester and B. P. Miller. An empirical study of the ro-
bustness of Windows NT applications using random testing.
In Proc. USENIX Windows Systems Symposium, pages 69–
78, 2000.

[11] J. Haddox, G. Kapfhammer, C. Michael, and M. Schatz.
Testing commercial-off-the-shelf software components. In

Proc. International Conference and Exposition on Testing
Computer Software, 2001.

[12] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Soft-
ware verification with BLAST. InProc. Workshop on Model
Checking Software, pages 235–239, 2003.

[13] T. A. Henzinger, R. Jhala, and R. Majumdar. Permissive in-
terfaces. InProc. European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE), pages 31–40, 2005.

[14] J. Hopcroft and J. Ullman.Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[15] P. Koopman and J. DeVale. The exception handling effec-
tiveness of POSIX operating systems.IEEE Trans. Softw.
Eng., 26(9):837–848, 2000.

[16] Z. Li and Y. Zhou. PR-Miner: automatically extract-
ing implicit programming rules and detecting violations in
large software code. InProc. European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE), pages
306–315, 2005.

[17] B. Livshits and T. Zimmermann. DynaMine: finding com-
mon error patterns by mining software revision histories. In
Proc. European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), pages 296–305, 2005.

[18] J. Pei, H. Wang, J. Liu, K. Wang, J. Wang, and P. Yu.
Discovering frequent closed partial orders from strings.
IEEE Transactions on Knowledge and Data Engineering,
18(11):1467–1481, 2006.

[19] M. K. Ramanathan, A. Grama, and S. Jagannathan. Path-
sensitive inference of function precedence protocols. In
Proc. International Conference on Software Engineering
(ICSE), pages 240–250, 2007.

[20] M. K. Ramanathan, A. Grama, and S. Jagannathan. Static
specification inference using predicate mining. InProc.
Conference on Programming Language Design and Imple-
mentation (PLDI), pages 123–134, 2007.

[21] D. Rosenthal. Inter-client communication Conventions
Manual (ICCCM), Version 2.0. X Consortium, Inc.1994.

[22] S. Thummalapenta and T. Xie. NEGWeb: Static defect de-
tection via searching billions of lines of open source code.
Technical Report TR-2007-24, North Carolina State Univer-
sity Department of Computer Science, Raleigh, NC, August
2007.

[23] J. Wang and J. Han. BIDE: Efficient mining of frequent
closed sequences. InProc. International Conference on
Data Engineering (ICDE), pages 79–90, 2004.

[24] W. Weimer and G. C. Necula. Mining temporal specifica-
tions for error detection. InProc. International Conference
on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), pages 461–476, 2005.

[25] J. Whaley, M. C. Martin, and M. S. Lam. Automatic ex-
traction of object-oriented component interfaces. InProc.
International Symposium on Software Testing and Analysis
(ISSTA), pages 218–228, 2002.

[26] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Per-
racotta: Mining temporal API rules from imperfect traces.
In Proc. International Conference on Software Engineering
(ICSE), pages 282–291, 2006.

