
SpotWeb: Characterizing Framework API

Usages Through a Code Search Engine

Suresh Thummalapenta1 and Tao Xie2

Department of Computer Science,
North Carolina State University, Raleigh, USA.

1sthumma@ncsu.edu,2xie@csc.ncsu.edu⋆⋆

Abstract. The essentials of modern software development (such as low
cost and high efficiency) demand software developers to make intensive
reuse of the existing open source frameworks or libraries (generally re-
ferred as frameworks) available on the web. However, developers often
face challenges in reusing these frameworks due to several factors such as
the complexity and lack of proper documentation. In this paper, we pro-
pose a code-search-engine-based approach that tries to detect hotspots

in a given framework; these hotspots are the APIs that are frequently
reused. Hotspots can serve as starting points for developers in under-
standing and reusing the given framework. Our approach also detects
deadspots, which are the APIs that are rarely used. Deadspots serve as
caveats for developers as there can be difficulties in finding related code
examples and are generally less exercised compared to hotspots. We de-
veloped a tool, called SpotWeb, for frameworks or libraries written in
the Java programming language and used our tool to detect hotspots
and deadspots of eight open source frameworks including JUnit, Log4j,
Grappa, JGraphT, OpenJGraph, JUNG, BCEL, and Javassit.

1 Introduction

Reuse of existing open source frameworks or libraries (referred as frameworks)
has become a common practice in the current software development process
due to several factors such as low cost and high efficiency. However, existing
frameworks or libraries often offer complex procedures that may also involve
call backs (such as GUI libraries), making these procedures complex for effec-
tive reuse. This complexity also makes the documentation of the framework a
vital resource. However, the documentation is often missing for many existing
frameworks and even if such documentation exists, it is often outdated [9].

In general, frameworks expose certain areas (APIs) of flexibility that are
intended for reuse by their users. Software developers who reuse APIs of these
frameworks must be aware of these flexible areas for effective reuse of frameworks.
These areas of flexibility are often referred as hotspots. As described by Pree [12]

⋆⋆ This work is supported in part by NSF grant CNS-0720641 and Army Research
Office grant W911NF-07-1-0431.

and Flores et al. [2], hotspots depict a framework’s flexibility and proneness to
reuse. The foundations of hotspots are built upon the Open-Closed principle by
Martin [10]. The Open-Closed principle encompasses two main definitions: the
“closed” and the “open” parts. The “open” parts represent areas that are flexible
and variant, whereas the “closed” parts represent areas that are immutable in the
given framework. The “closed” parts are commonly referred as “templates” and
the “open” parts are referred as “hooks” as the users can redefine the behavior
of these parts. The combination of templates and hooks, referred as hotspots,
supports adherence to the Open-Closed principle of Martin.

Hotspots are useful to both users and developers of the framework in several
ways. First, new users can browse and inspect hotspots to understand commonly
reused APIs and find out the APIs that the users want to reuse. Second, users
may have more confidence or tendencies in reusing hotspots because generally
bugs in these hotspots may be fewer (or more easily exposed previously) than
the ones in non-hotspots; we can view the code reusing hotspots to be a spe-
cial type of test code that can help expose bugs in hotspots. Third, developers
or maintainers of these frameworks can choose to invest their improvement ef-
forts (e.g., performance or quality improvement) on these hotspots because the
resulting returns on investment may be substantial.

In contrast to hotspots, we call a framework’s areas that are rarely used
by users as deadspots. The concept of deadspots is introduced by our approach
and these deadspots can serve as caveats to users of the given framework. As
deadspots represent the rarely used APIs, there can be difficulties in identifying
related code examples that can help users in reusing those APIs. Moreover,
deadspots are generally less tested compared to hotspots with regards to the
“testing” conducted by API client code as test code.

Due to lack of proper documentation, detecting hotspots from the existing
open source frameworks or libraries has become an interesting research area
and is addressed by several previous approaches [1–3, 5, 11]. However, these ap-
proaches either require additional efforts from developers of those frameworks or
solely rely on the knowledge available within the framework. In this paper, we
propose an approach, called SpotWeb, to address these two preceding problems
by exploiting a code search engine (CSE) and without requiring any additional
efforts from the framework developers. Detecting hotspots of a framework re-
quires domain knowledge of how the APIs of the input framework are reused
by applications, referred as client applications. Furthermore, the effectiveness
of hotspot detection mainly depends on the number of client applications used
for detecting hotspots. The rationale behind this assumption is that a higher
number of client applications can often help in detecting hotspots more effec-
tively. Therefore, our approach uses a CSE such as Google [4], Koders [7], and
Krugle [8] that can search in billions of lines of open source code available on
the web and uses gathered code samples for detecting hotspots of the input
framework. SpotWeb is the first approach that extends the scope of client appli-
cation code bases for detecting hotspots to billions of lines of open source code
by leveraging a code search engine.

� � � � � �

��� ����� ���� ��

�� �� ����

�� � 	
 �� ��

� � �� 	� ���� � ��

� �� ��� 	

� �� ��	� ���� � ��

��� ������ �� ��

�� �� ����

�� � 	� � � �

�� � 	
 �� ��

� � �� 	� ���� �

� � � � � 	� � � �

��� ����
�� �� �
� �
� ���
�

� ��� ��� � � 	

�� ��	� ���� �

�� ��	

��� ����
�� �� �
� �

�� �� ���

��� ����
�� �� �
� �

�� �

�� � 	� � � �� � �� ��

�� � � �� � � �
 � �� �	

� � �� � � �	

��� ����� ���� ���� �

�� �� ���
� ��

��� ����
�� �� �
� �� ��
�
������ �����

�

� �� ��� 	� ���� �

� �� ��� 	

��� ����� �� ��

�� �� ����

� � �� 	� ���� � ��

�� � 	
 �� ��

� �� ��� 	

��� ����
�� �� �
� �

�� �� � ��� ��

� �� ��� 	
 �� ��

� � � � � � �	� � � �

� �� ��� 	

� �� ��� 	� ���� �

� � � � � � �� � ��� 	
 �� ��

�� �� � � � 	� ���� �

� � �� � � � 	

�� � 	� � � �� � �� ��

�� � � �� � � �
 � �� �	

��� ����� ���� ���� �� � �
�!�
�� �� � ���

� �� ��� 	

��� ����� ���� ���� �
� �"�� ���
�� � �#$

� �� ��� 	� � � � �� �

�� � 	� � � �� � �� ��

�� � � �� � � �
 � �� �	

��� ����� ���� ���� �

�� �� � ��" �%

� �� ��� 	� � � �

��� ����
�� �� �
� �

�� �� ��� ��

� �� ��� 	

�� ��� ��
 � � � �	

� ��� �
 � � � �	

! � �� � ��� �� �� �	

� ��� �� 	

�� �
 � � � �	

� � �� � � � 	

�� ��� �� � 	

� � � " �� �� � � �	� � � �" �� �� � � �

� � � � � � �	� � � �

� �� ��� � � �	� � � �

�� � # �� �� � �� � 	� � � �
�� �� � �� $ ��

�% � � �� � �� & 	

� � � ' � ��� �� 	� � � � (��� ���� �

� �� & 	

� � �) ��� �	� � � � � % �� ! � $ ��

�� � � *� " �� �� � � �	� � � �" �� �� � � �

��� ������ �� ��
� ��� ��&
�� ��

� � �+ ���� �	
 �� ��

& ��� �' � � �� �	� � � �� � �� ��

& ��� �' � ��� �� � 	� � � �� � �� ��

��� ���
����
�
' ���
�� �� ����

� � �� � � �	� ���� �

� � �' ���� �� � � �� �� 	� %

�� ! � $ ��

��� ���
����
�

�� �(�� ����

��� ����
�� �� �
� �

�� ��� ���
�

�% �� ! �) ,�� & ��� � 	

�� ��� � � � � �	

� ,�� & ��� � - � ��� � � 	

��� ���
����
�
�� ��
���� ����(����

�� � �
 �� �� 	� ���� �
$ � � �� � �

� �� ��� 	

��� ���
����
�� �� " �
�
�� �� � ���� ��

� �� ��� 	

��� ���
����
�

�� �� � ���(����

��� ���
����
�
� ����& � �)
�� �� � ���� ��

�� ��� � �' ��� � .� # � �% 	� ���� �

� �� ��� � � � ' �� � ' ��� 	� ���� �

��� ���
����
�

�� �� � ���� ��

�� ��� � �� � � �� 	

� � � � / � � � � 0 � � � � � � � � � 1 � � � � 2

��� ����
�� �� �
� �

�� �� � ���

� �� ��� 	
 �� ��

� � � � � � �	� � � �

� �� ��� 	

� �� ��� 	� ���� �

� � � � � � �� � ��� 	
 �� ��

�� �� � � � 	� ���� �

� � �� � � � 	

�� � 	� � � �� � �� ��

�� � � �� � � �
 � �� �	

��� ����� ���� ���� �� � �
�!�
�� �� � ���

� �� ��� 	

��� ����� ���� ���� �
� �"�� ���
�� �

� �� ��� 	� � � � �� �

�� � 	� � � �� � �� ��

�� � � �� � � �
 � �� �	

��� ����� ���� ���� �

�� �� � ��"

� �� ��� 	� � � �

� � � � 3

� � � � 4

� � � � � 5

� � � � 6

� � � � � /

� � � � � 6

� � � � � 2

� � � � � 0 � � � � 5 5 � � � � 5 /

� � �� � � � 	

�� �� � � � 	� ���� �

�� �7 & 	

�� � �8 � ! � 	

�� � 	� � � �� � �� ��

Fig. 1. Hotspots identified in the JUnit framework

In particular, SpotWeb accepts a framework as input and extracts the API
information of the input framework. SpotWeb interacts with a CSE to gather rel-
evant code samples for all classes and interfaces of the input framework. SpotWeb
analyzes these code samples statically and computes a heuristic called UsageMet-

ric that quantitatively evaluates APIs of the input framework. The computed
UsageMetrics capture metrics related to classes, interfaces, and methods of the
input framework. For example, the UsageMetrics for a class capture how often
the class is instantiated or extended by the client applications. SpotWeb struc-
turally propagates the computed information through five phases for detecting
hotspots of the input framework. For each hotspot, SpotWeb also gathers rela-
vant code examples that can assist the framework users in identifying how to
reuse the detected hotspots.

We used SpotWeb to identify hotspots and deadspots of eight widely used
open source frameworks or libraries including JUnit, Log4j, Grappa, JGraphT,
OpenJGraph, JUNG, BCEL, and Javassit, which differ in size and application
purpose. We show that SpotWeb can give a high recall while detecting hotspots
and the detected hotspots of Log4j and JUnit are consistent with the starting
points described in the documentation for these frameworks.

The rest of the paper is organized as follows. Section 2 explains our approach
through an illustrative example. Section 3 presents related work. Section 4 de-

01: public class ShipReleaseDAOTestCase extends TestCase {
02: private ShipReleaseDAO dao = null; ...

03: public ShipReleaseDAOTestCase() { super(); ... }
04: protected void setUp() throws Exception { ...

05: dao = (ShipReleaseDAO)context.getBean("shipReleaseDAO"); ...}
06: public void tearDown() throws Exception { dao = null; }
07: public void testF() { ... }
08: public void testB() { ... }
09: ...}

Fig. 2. Suggested code example for the hook class TestCase.

01: public class MyTestSuite { ...

02: public static Test suite(){
03: TestSuite suite = new TestSuite("All axis.soap tests");

04: suite.addTest(new ShipReleaseDAOTestCase());

05: return suite; }
06: ...}

Fig. 3. Suggested code example for the template class TestSuite.

scribes our approach. Section 5 discusses evaluation results. Section 6 discusses
threats to validity. Finally, Section 7 concludes.

2 Example

We next use an example to explain our approach and show how the detected
hotspots and deadspots can be used by the framework users. We use JUnit [6],
the de facto standard unit testing framework for the Java programming language,
as an illustrative example for explaining our approach.

SpotWeb accepts an input framework, say JUnit, and extracts Application-

Info from the framework. The ApplicationInfo includes all classes, all interfaces,
public or protected methods of each class and interface, and inheritance hierar-
chy among classes or interfaces of the framework. SpotWeb constructs different
queries for each class or interface and interacts with a CSE such as Google Code
Search [4] to gather relevant code samples from existing open source projects
that use the APIs of the input framework. For example, SpotWeb constructs
a query such as “lang:java junit.framework.TestSuite” for gathering related
code samples of the TestSuite class. The gathered code samples are referred as
a LocalRepository for the input framework. SpotWeb analyzes the gathered code
samples statically and computes UsageMetrics for classes, interfaces, and public
or protected methods of all classes and interfaces. For example, the UsageMet-

rics computed for the TestSuite class show that the class is instantiated for 165
times and is extended for 32 times. Similarly, the UsageMetrics computed for the
method addTest of the TestSuite class show that the method is invoked for 95
times. SpotWeb also gathers code examples for each class or method and stores
these code examples in a repository, referred as ExampleDB. Then SpotWeb
uses the algorithm shown in Figure 6 for detecting hotspots from the computed
UsageMetrics.

Initially, SpotWeb ranks methods in non-ascending order based on their Us-

ageMetrics and uses a threshold percentage t to detect hotspot methods: the
methods in the top t percentage with a non-zero UsageMetrics are detected

as hotspot methods. The detected hotspot methods are then clustered into
their declaring classes, detected as hotspot classes. These hotspot classes are
ranked based on the minimum rank of the hotspot methods declared by these
classes. SpotWeb classifies the hotspot classes into two categories (templates
and hooks) based on heuristics described in the algorithm. The hotspot classes
of each category are further clustered into hierarchies based on their inheritance
relationships. For example, SpotWeb detected classes Assert and TestCase as
hook hotspots in the JUnit framework. As TestCase class extends Assert class,
SpotWeb clusters both the classes into the same hierarchy. SpotWeb assigns a
rank to each hierarchy based on the minimum rank of the hotspot classes con-
tained in the hierarchy. For example, consider that the Assert class has Rank 3
and the TestCase class has Rank 6, then the clustered hierarchy of the Assert

and TestCase classes is assigned with Rank 3. The rank attribute uniquely iden-
tifies a hierarchy among all other hierarchies. Hierarchies with lower ranks have
more preference or importance to the hierarchies with higher ranks.

Figure 1 shows the hotspot hierarchies detected in the JUnit framework. The
hierarchies that are referred in the succeeding description are highlighted with
a red border. The figure also shows ranks assigned to each hierarchy. As the
rank attribute uniquely identifies a hierarchy, we use the rank as an identity for
describing a hierarchy. Each hierarchy includes one or more hotspot classes and
is shown as pairs of class and its methods. For example, Hierarchy 1 (hierarchy
with Rank 1) has classes Test, Assert, TestCase, and TestDecorator. Hierarchy 1
also shows that the class Test includes hotspot methods run and countTestCases.
We show template hierarchies in white and hook hierarchies in gray. For example,
Hierarchy 1 is a hook hierarchy and Hierarchy 3 is a template hierarchy.

Methods inside each class of each hierarchy are sorted based on their com-
puted UsageMetrics. Sorting of methods of a class can assist the framework
users in quickly identifying the methods that are often used inside a given
hotspot class. For example, consider the TestSuite class shown in Hierarchy
5. The TestSuite class has three constructors <init>(Class), <init>(), and
<init>(String). However, the constructor <init>(Class) is often used compared
to the other two constructors. In the class Assert of Hierarchy 1, the method
name assertXXX indicates different assertion methods such as assertEquals and
assertTrue of the class Assert.

The figure also displays dependencies among hotspot hierarchies (shown as
arrows between hierarchies). SpotWeb tries to capture the usage relationships
among hotspot classes through dependencies. For example, if a template class,
say X, has a constructor that requires an instance of another template class,
say Y, then SpotWeb captures dependency of the form “X → Y”, which de-
scribes that X requires Y. Basically, SpotWeb identifies two kinds of dependen-
cies: TEMPLATE TEMPLATE and TEMPLATE HOOK. Each dependency has a parent and
a child, and the dependency relation is shown from the child to the parent. A
TEMPLATE TEMPLATE dependency indicates that an instance of the parent template
hotspot is required for using the child template hotspot. A TEMPLATE HOOK depen-
dency describes that the user has to define a new behavior for the corresponding

hook hotspot before using the template hotspot. For example, Hierarchy 5 has
a TEMPLATE HOOK dependency with Hierarchy 1. This dependency indicates that
to reuse methods such as addTest of the class TestSuite in Hierarchy 5, the user
has to define a new behavior for the classes in Hierarchy 1.

We next describe how the hotspots detected by SpotWeb can be used by the
framework users to reuse the APIs of the JUnit framework. After reviewing the
hotspots shown in Figure 1, consider that a framework user wants to start with
the method addTest of the template class TestSuite in Hierarchy 5. Figure 1
shows that Hierarchy 5 of the TestSuite class has a TEMPLATE HOOK dependency
with the Hierarchy 1. This dependency indicates that the user may need to de-
fine a new behavior for the associated hook hierarchy. SpotWeb recommends the
code example shown in Figure 2 for the hook class TestCase, which is a part of
Hierarchy 1. The code example exhibits several aspects that needs to be han-
dled by the user while extending the TestCase class. For example, in the SetUp

method the user can write code for setting up the environment such as instanti-
ating necessary variables, and in the tearDown method the user can destroy the
created variables. Also, the code example shows that names of the test methods
in the extended class of the TestCase should start with the prefix test. SpotWeb
also recommends code example for addTest method and the recommended code
example is shown in Figure 3. The code example shows that the user has to
create an instance of the TestSuite class and then add test cases through the
addTest method.

An API is identified as a deadspot if that API is neither used directly nor
used indirectly by the gathered code samples. The complete algorithm used for
detecting deadspots is shown in Figure 7. SpotWeb identified 20 classes such
as Swapper, TestRunListener, and ExceptionTestCase as deadspots in the JUnit
framework. However, deadspots are only suggestions for users unfamiliar to that
framework or library and SpotWeb does not intend to recommend users not
to reuse those deadspot classes. Sometimes, deadspots can also be helpful to
the framework developers in distributing their maintenance efforts, because the
framework developers can give a low preference to the deadspot classes.

3 Related Work

Detecting hotspots in a given framework is an interesting area of research for
many years and is addressed by several previous approaches. However, SpotWeb
is the first approach that leverages a code search engine for gathering the knowl-
edge of how the input framework APIs are reused by other client applications.
As SpotWeb uses a CSE, SpotWeb can mine a much larger scope of code bases
compared to other approaches.

Hotspotter by Flores et al. [2] is closely related to our SpotWeb. Hotspotter
identifies hotspots in the given library or framework through a JavaML base
representation of the source code and evolves through a series of XSL transfor-
mations. SpotWeb is different from Hotspotter as Hotspotter identifies hotspots
with only the knowledge available within the input framework. Instead, SpotWeb
identifies hotspots from the knowledge both within the input application and

Fig. 4. Overview of SpotWeb approach

from code samples gathered from a CSE. Therefore, the results of SpotWeb can
be more precise compared to the results of Hotspotter.

Baxter et al. [1] proposed an approach to discover the structure of Java pro-
grams and the way that the classes relate to each other through inheritance and
composition. Their study is useful for the framework developers who can evalu-
ate the structural features of their own programming practice and optimize their
performance. Instead, SpotWeb is useful for the framework users in effectively
reusing the APIs of the framework.

Mendonca et al. [11] proposed an approach to assist framework instantiation
and to understand the intricate details surrounding the framework design. How-
ever, their approach requires users to have knowledge regarding a specific process
language, called Reuse Definition Language, proposed by their approach. Other
several previous approaches [3, 5] also claim to facilitate framework instantia-
tion. However, these approaches need an additional effort from the framework
developers. Unlike these approaches, SpotWeb does not need any additional ef-
fort from the framework developers. Our approach tries to gather the required
additional information from code samples gathered through a CSE.

Our previous approaches MAPO [14] and PARSEWeb [13] also exploit CSEs
for gathering related code examples. However, these previous approaches are
developed for assisting the users in effectively reusing a given API. Instead,
SpotWeb assists the framework users by detecting hotspots that can serve as
starting points for reusing the framework.

4 Approach

Our approach consists of five major components: the framework reader, code
search engine (CSE), code downloader, code analyzer, and spot builder. Figure 4
shows an overview of all components and flows among different components. The
framework reader component takes a framework as input and extracts the Frame-

workInfo information. The code downloader accepts a set of classes and interfaces
from the framework reader as input and interacts with a CSE to download rel-
evant code samples. The downloaded code samples, referred as LocalRepository,
are given as input to the code analyzer. The code analyzer analyzes code sam-
ples stored in the LocalRepository statically and computes UsageMetrics for all
classes and methods of the input framework. The spot builder component uses
the computed UsageMetrics for detecting hotspots and deadspots. The code an-
alyzer also identifies several code examples for each class and method, and stores
these code examples in a repository, referred as ExampleDB.

Fig. 5. Example classes of a sample input framework

4.1 Framework Reader

The framework reader component accepts the input framework and gathers en-
tire API information, referred as FrameworkInfo. The FrameworkInfo includes
the set of package names, all classes, all interfaces, and public or protected
methods of all classes and interfaces. The framework reader also gathers the
inter-method calls of the input framework; these inter-method calls give the set
of other public and protected methods invoked by each method of the class
and are used while identifying deadspots. The framework reader also extracts
inheritance hierarchy among classes or interfaces of the input framework.

4.2 Code Search Engine

Code Search Engines (CSE)1 are primarily used by programmers to search for
relevant code samples. As CSE can search in billions of lines of open source code
available on the web, CSE can serve as powerful resources of open source code.
Therefore, we used a CSE in our approach to gather relevant code samples of the
given framework. In our approach, we used Google Code Search (GCS) [4] for
collecting relevant code samples, partly because GCS provides convenient open
APIs for third-party tools to interact with and it has been consistently improved
and maintained. However, our approach is independent of the underlying CSE
and can be extended easily to any other CSE.

4.3 Code Downloader

The code downloader accepts a set of classes and interfaces as input from the
framework reader component. The code downloader constructs different queries
for each element in the set and interacts with the CSE to gather relevant code
samples. For example, the code downloader constructs the query “lang:java
junit.framework.TestSuite” to collect code samples related to the TestSuite

class of the JUnit framework. The gathered code samples are stored in a Local-

Repository and serve as input to the code analyzer component. Along with code
samples, the code downloader also stores the project information associated with
each code sample.

4.4 Code Analyzer

The code analyzer accepts the FrameworkInfo from the framework reader and the
LocalRepository from the code downloader as inputs, and analyzes the gathered
code samples stored in the LocalRepository statically to compute UsageMetrics

for all classes and methods of the input framework.

1 http://gonzui.sourceforge.net/links.html

The UsageMetrics capture several ways of how often each class or interface
or a method of the input framework is used by the gathered code samples.
For example, a class can be instantiated to invoke its methods or the class can
be extended to define a new behavior. Similarly, a method of a class can be
either invoked or overridden. Furthermore, some methods such as constructors
or factory methods may be invoked only once in a client application and other
methods may be invoked several times. For example, in the JUnit framework, the
TestSuite object may be created once but the addTest method may be invoked
several times for adding test cases to the test suite. Therefore, computing metrics
without considering the associated project information can result in a higher
biased preference to the addTest method instead of the actual starting point,
which is the constructor call of the TestSuite class. Therefore, the code analyzer
computes the usage for a class or a method only once for a client application.
For example, consider that the addTest method is used 20 times by a client
application. But the code analyzer considers that the addTest method is used
only once by the client application.

The UsageMetrics for a class include the number of created instances (more
precisely, the number of constructor call sites) and the number of times that
the class is extended. For an interface, the UsageMetrics include the number
of times that the interface is implemented. We use notations INj , EXj , and
IMj for the number of instances, the number of extensions, and the number of
implementations, respectively. The consolidated usage metric UMj for a class
or an interface is the sum of all the three preceding metrics. The code analyzer
computes three types of UsageMetrics for methods: Invocations, Overrides, and
Implements. The Invocations metric gives the number of times that the method
is invoked by the code samples. The Overrides metric gives the number of times
that the method is overridden by the code samples to define a new behavior.
The Implements metric, specific for interfaces, gives the number of times that the
method is implemented. For constructors, the code analyzer computes only the
Invocations metric. We use notations INi, OVi, and IMi for invocations, over-
rides, and implementations, respectively. The overall usage metric for a method
is the sum of all the three preceding metrics.

The code analyzer also gathers code examples for each class or method and
stores these code examples in a repository, referred as ExampleDB. The ExampleDB

is used for suggesting related code examples for a class or a method requested
by the user. The related code examples can further assist users in making an
effective reuse of APIs of the input framework.

4.5 Spot Builder

The spot builder component (SBC) accepts the computed UsageMetrics and
detects hotspots and deadspots by structurally propagating the computed infor-
mation through five phases. We next describe how SBC identifies hotspots and
deadspots.

Identification of hotspots: Hotspots are APIs that are often used by the
gathered code samples stored in the LocalRepository. The algorithm used by
SBC for detecting hotspots is shown in Figure 6. We next describe the algorithm

Input: UsageMetrics of classes and methods, HT percentage
Output: Hotspot hierarchies and their dependencies
SortedMET = Sort methods based on their usage metric values;
for (METi in SortedMET) {

if(UMi 6= 0) {
if(Position of METi ≤ (HT * Size of SortedMET)){

Set METi type as HOTSPOT ;}
else {

Set METi type as WEAKSPOT ;}
}
CTj = Cluster HOTSPOT METi into related classes;
Rank of CTj = Minimum rank of all METi of the CTj ;
//Classify CTj into templates and hooks
Switch(CTj) {

Case (Interface): Set CTj type to HOOK;
Case (Abstract Class): Set CTj type to HOOK;
Other :{

if(EXj of CTj > IMj of CTj) {
Set CTj type to HOOK;}

else {Set CTj type to TEMPLATE;}}
Cluster CTj of the same category into hierarchies based on inheritance;
Associate hook hierarchies to template hierarchies;
Define dependencies between template hierarchies;

Fig. 6. Algorithm for detecting hotspots through the computed UsageMetrics

through an illustrative example shown in Figure 5. The figure shows three classes
C1, C2, and C3 and their declarations. The class C3 is an abstract class. The
figure also shows the computed usage metrics for each class and its methods.
For example, the class C1 is instantiated for 10 times (shown as IN=10) and
the abstract class C3 is extended for 12 times (shown as EX=12). Similarly, the
method m2 1 is invoked for 6 times and is overridden for 2 times.

Initially, SBC sorts all methods such as m1 1 and m2 1 based on their com-
puted usage metric values. SBC uses a threshold percentage, referred as HT ,
and selects the top HT methods, whose usage metric is non-zero, as hotspots.
For example, for a HT of 7%, SBC identifies the methods as m3 1, m3 2, m3 3,
c1, and so on as hotspot methods. SBC traverses the hotspot methods and clus-
ters them into their declaring classes. The clustered classes are sorted based on
the minimum rank among their methods. In the current example, the clustering
process results in classes C3 (methods: m3 1, m3 2, and m3 3), C1 (methods:
c1 and m1 1), and C2 (methods: c2 and m2 1). After clustering, SBC uses the
computed metrics of classes to classify these classes further into templates and
hooks. The criteria used for classifying hotspot classes into templates and hooks
are shown in the algorithm. For the current example, SBC identifies class C3

as a HOOK class and classes C1 and C2 as TEMPLATE classes. SBC further tries to
cluster the classes of the same category based on their inheritance relationship.
For example, if C1 has a parent class P1 and both the classes are classified as
TEMPLATE classes, SBC clusters C1 and P1 into the same hierarchy.

Input: A method Mi of a class Cj

Output: Is the method a dead spot or not?
if (UMi 6= 0) {Return false;}
if (Cj is an interface) {

//verify all implemented methods of Mi

if (All implemented methods of Mi are deadspots) { Return true; }
else { Return false; }}

if (Mi is abstract) {
//Verify all overridden methods of Mi

if (All overridden methods of Mi are deadspots) {Return true;}
else { Return false; }}

if (All callers of Mi are deadspots) { Return true; } else { Return false; }
Fig. 7. Algorithm for detecting whether a method is a deadspot.

SBC identifies dependencies among the detected hotspot hierarchies based
on the arguments passed to methods of the classes. SBC identifies two kinds
of dependencies: TEMPLATE HOOK and TEMPLATE TEMPLATE. A TEMPLATE HOOK depen-
dency defines a relationship between a template hierarchy and a hook hierarchy.
SBC identifies that a template hierarchy is dependent on a hook hierarchy if
methods in the template hierarchy accept the classes of the hook hierarchy as
arguments. Such a dependency describes that the users have to first define a
new behavior for those related hook classes, say extend the class, and use the in-
stances of those classes as arguments. In the given code example, SBC identifies
that class C1 has a TEMPLATE HOOK dependency with the class C3 as the method
m1 1 requires an instance of C3 as an argument. Similarly, the spot builder iden-
tifies TEMPLATE TEMPLATE hierarchies, when a template hierarchy is dependent on
another template hierarchy. For example, class C2 has a TEMPLATE TEMPLATE de-
pendency with the class C1. In SpotWeb implementation, we used the HT per-
centage as 25%, which is based on our evaluations with frameworks JUnit and
Log4j.

Identification of deadspots: SBC identifies APIs of the input framework
that are rarely or never used by the gathered code samples as deadspots. How-
ever, detecting deadspots based on only the UsageMetrics can give many false
positives. For example, the UsageMetrics for an abstract method defined in a
class can be zero, as the gathered code samples reference the concrete implemen-
tation provided by some of the classes’s subclasses. In this case, this abstract
method is not a deadspot as the method is indirectly referenced through the
subclasses. Therefore, to reduce the number of false positives while identifying
deadspots, the code analyzer uses a recursive algorithm shown in Figure 7. The
last step shown in the algorithm (related to callers) is performed to identify
indirect usages of a method of the input framework. SBC clusters the detected
deadspot methods into their declaring classes.

5 Evaluation

We evaluated SpotWeb with eight widely used open source frameworks. In our
evaluation, we investigate two research questions. First, what is the percentage

Subject # Classes # Methods # Samples # KLOC URL

Log4j 207 1543 9768 2064 logging.apache.org/log4j

JUnit 56 531 8891 1558 www.junit.org

JGraphT 177 931 289 30 jgrapht.sourceforge.net

Grappa 44 561 2071 1978 www.graphviz.org

OpenJGraph 210 1365 1076 113 openjgraph.sourceforge.net

JUNG 461 3241 2390 353 jung.sourceforge.net

BCEL 357 3048 5225 1219 jakarta.apache.org/bcel

Javassit 249 2149 3226 631 www.csg.is.titech.ac.jp
/chiba/javassist

Table 1. Subjects used for evaluating SpotWeb.

Subject # Classes Hotspots Deadspots
Classes % # Templ # Hooks # Depend #Classes %

Log4j 207 74 35.74 49 13 44 101 48.79

JUnit 56 23 41.07 11 5 11 20 35.71

JGraphT 177 41 23.16 20 9 0 125 70.62

Grappa 44 16 36.36 9 2 2 19 43.18

OpenJGraph 210 43 20.47 25 10 21 145 69.04

JUNG 461 228 49.45 144 29 225 144 31.23

BCEL 357 153 42.85 95 12 74 81 22.68

Javassit 249 77 30.92 60 8 27 126 50.60
Table 2. Evaluation results showing the detected hotspots and deadspots.

of hotspot and deadspot classes among the total number of classes? This re-
search question helps to characterize the usages of a framework. Second, what is
the effectiveness of our hotspot detection in terms of precision and recall? The
subjects used in our evaluation and their characteristics such as the number of
classes and methods are shown in Columns “Classes” and “Methods” of Table 1.
Column “Samples” of Table 1 shows the number of code samples gathered and
Column “KLOC” shows the total number of kilo lines of Java code analyzed by
SpotWeb for identifying hotspots and deadspots. One of the major advantages
of SpotWeb compared to other approaches is the large number of analyzed code
samples that can help detect hotspots and deadspots effectively.

5.1 Statistics of Hotspots and Deadspots

We used SpotWeb to detect hotspots and deadspots of all subjects and the
results of our evaluation are shown in Table 2. Column “Subject” shows the
name of the input framework. The sub-columns “Classes” and “%” of Column
“Hotspots” show the number of hotspot classes and their percentages among
the total number of classes. Columns “Templ”, “Hooks”, and “Dependen” give
the number of template hierarchies, hook hierarchies, and their dependencies,
respectively. The sub-columns “Classes” and “%” of Column “Deadspots” show
the number of deadspot classes and their percentages.

Our results show that the percentage of hotspots for all subjects ranges from
20% to 50%, whereas the percentage of deadspots ranges from 22% to 70%. Fig-

Hotspots and Deadspots

0

20

40

60

80

Log4j JUnit JGraphT Grappa OpenJGraph JUNG BCEL Javassit

Subjects

P
er

ce
n

ta
g

e Hotspots

Deadspots

Neutral

Fig. 8. Distribution of hotspot and deadspot percentages in all subject frameworks.

ure 8 presents the distribution of hotspot and deadspot percentages of all sub-
jects. The distribution chart shows that OpenJGraph and JGraphT frameworks
have the lowest percentage of hotspots and the highest percentage of deadspots.
In the figure, we also show a new classification called “Neutral”, which represents
classes that do not belong to either the hotspot or deadspot category. The graph
shows that the percentage of classes in the Neutral category is relatively low
for all subjects except BCEL. This characteristic indicates that a class is either
reused heavily or is never reused, and only in a few cases a class is occasionally
reused.

5.2 Effectiveness of Hotspot Detection

We next analyze the effectiveness of hotspot detection using the evaluation re-
sults with Log4j and JUnit frameworks. The primary reason for selecting Log4j2

and JUnit3 for analysis is the availability of their documentation that can help
validate the detected hotspots.

Log4j provides several features such as Appenders and Layouts, and for
each such feature, Log4j provides several classes such as ConsoleAppender and
JDBCAppender for the appender feature. Among those several classes provided for
each feature, a few classes are much more often used than other classes. The fea-
tures described in the documentation of Log4j are shown in Columns “Feature”
and “Description” of Table 3. Column “Class” shows the commonly used classes
for each feature. Each of these classes serves as starting points for using those
features.

SpotWeb identified 74 classes as hotspots in the Log4j library, and these
classes captured all 12 starting points described in the documentation resulting
in a recall of 100%. In constrast, the precision is 16.21%. But the real hotspots
could be beyond the starting points described in the documentation and our real
precision could be much higher than the one calculated based on the documen-
tation. Ideed, although the precision calculated based on the documentation can
be increased by decreasing the HT threshold percentage used in our approach,
we prefer to have a high recall. The primary reason is that SpotWeb sorts the
detected hotspot classes based on their importance and ranks each class. Col-
umn “Rank” of Table 3 presents the rank among the total number of hotspots
detected by SpotWeb. Column “Type” shows whether the detected hotspot is

2 http://logging.apache.org/log4j/docs/manual.html
3 http://junit.sourceforge.net/doc/cookstour/cookstour.htm

Feature Description Class Rank Type

Loggers Log the messages of several levels Category 1 TEMPLATE

Logger 7 HOOK

Level 12 HOOK

Appenders Allows logging to multiple destinations ConsoleAppender 8 TEMPLATE

FileAppender 16 TEMPLATE

Layouts Helps to format the logging request PatternLayout 4 TEMPLATE

SimpleLayout 11 TEMPLATE

Configurators Helps to configure Log4j BasicConfigurator 2 TEMPLATE

PropertyConfigurator 3 TEMPLATE

DOMConfigurator 5 TEMPLATE

Loaders Helps to load resources Loader 31 TEMPLATE

NDC Nested diagnostic constant NDC 10 TEMPLATE

Table 3. Hotspots described in Log4j documentation.

a TEMPLATE or a HOOK. Although SpotWeb has low precision, except the Loader

class, all other 11 hotspot classes are ranked among the top 16 classes of the
total 74 classes. Therefore, a user who plan to reuse APIs of the Log4j library
can refer to the first 16 classes suggested by SpotWeb to identify where to start
reusing the framework.

SpotWeb also captured the dependency information that is described in the
documentation. For example, the appender classes of the Log4j library require
layout classes. SpotWeb correctly identified a TEMPLATE TEMPLATE dependency be-
tween appenders and layouts. The dependency describes that the user needs an
instance of layouts such as PatternLayout or SimpleLayout to create an instance
of appenders such as ConsoleAppender or FileAppender.

We used the cookbook provided with the JUnit framework to verify the de-
tected hotspots. Hotspots detected in the JUnit framework are shown in Figure 1.
SpotWeb identified all hotspot classes described in the cookbook resulting in a
recall of 100%. The cookbook describes only six classes resulting in a precision of
26.08%. However, due to the sorting mechanism of SpotWeb, five of the hotspot
classes described in the documentation are ranked among the top seven hotspot
classes detected by SpotWeb. In addition, similar to the case in the documen-
tation of the Log4j library, the real hotspots of JUnit could be beyond the ones
described in the JUnit cookbook and our real precision could be higher than the
one calculated based on the cookbook.

6 Threats to Validity

The threats to external validity primarily include the degree to which the subject
programs and used CSE are representative of true practice. The current subjects
range from small-scale applications such as Grappa to large-scale applications
such as BCEL and JUNG. In SpotWeb, we used only one CSE, i.e., Google
code search. We plan to reduce these threats by conducting more experiments
on wider types of subjects and by using other CSEs in future work. The threats
to internal validity are instrumentation effects that can bias our results. Faults
in our SpotWeb prototype might cause such effects while detecting hotspots and

deadspots. To reduce these threats, we inspected some code samples gathered
from the CSE to double check the metrics computed by SpotWeb for these code
samples.

7 Conclusion

In this paper, we proposed an approach called SpotWeb that tries to assist soft-
ware developers in reusing APIs of an existing framework by detecting hotspots
and deadspots of the framework. Hotspots serve as starting points for reusing
the framework, whereas deadspots serve as caveats. SpotWeb tries to address
major problems faced by earlier related approaches by not requiring any addi-
tional efforts from the developers and by collecting relevant code samples through
a code search engine. We evaluated our approach through eight popular open
source frameworks and showed that SpotWeb can give a high recall while de-
tecting hotspots and the detected hotspots of Log4j and JUnit frameworks are
consistent with the starting points described in the documentation for these
frameworks.

References

1. G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser, H. Melton, and
E. Tempero. Understanding the shape of Java software. In Proc. OOPSLA, pages
397–412, 2006.

2. N. Flores, D. Soares, H. Ferreira, and M. Rodrigues. HotSpotter: a JavaML-based
approach to discover Framework’s Hotspots. In Proc. XATA, 2005.

3. G. Froehlich, J. Hoover, L. Liu, and P. Sorenson. Hooking into object-oriented
application frameworks. In Proc. ICSE, pages 491–501, 1997.

4. Google Code Search Engine, 2006. http://www.google.com/codesearch.
5. R. Johnson. Documenting frameworks using patterns. In Proc. OOPSLA, pages

63–76, 1992.
6. Junit, 2001. http://www.junit.org.
7. The Koders source code search engine, 2005. http://www.koders.com.
8. The Krugle code search for developers, 2006. http://www.krugle.com.
9. T. Lethbridge, J. Singer, and A. Forward. How software engineers use documen-

tation: The state of the practice. In IEEE Software, pages 35–39, 2003.
10. R. Martin. The Open Closed Principle. j-C-PLUS-PLUS-REPORT, 8(1):37–43,

1996.
11. M. Mendonca, P. Alencar, T. Oliveira, and D. Cowan. Assisting aspect-oriented

framework instantiation: towards modeling, transformation and tool support. In
Proc. OOPSLA, pages 94–95, 2005.

12. W. Pree. Meta Patterns - A Means For Capturing the Essentials of Reusable
Object-Oriented Design. In Proc. ECOOP, pages 150–162, 1994.

13. S. Thummalapenta and T. Xie. PARSEWeb: A Programmer Assistant for Reusing
Open Source Code on the Web. In Proc. ASE, 2007.

14. T. Xie and J. Pei. MAPO: Mining API usages from open source repositories. In
Proc. MSR, pages 54–57, 2006.

