View and Index Selection for Query-Performance
Improvement: Algorithms, Heuristics and Complexity

(extended abstract)

Maxim Kormilitsin
Computer Science Dept.
NC State University
Raleigh, NC 27695 USA
mvkormil@ncsu.edu

Rada Chirkova
Computer Science Dept.
NC State University
Raleigh, NC 27695 USA
chirkova@csc.ncsu.edu

Yahya Fathi
Operations Research Program
NC State University
Raleigh, NC 27695 USA
fathi@ncsu.edu

Matthias Stallmann
Computer Science Dept.
NC State University
Raleigh, NC 27695 USA
matt_stallmann@ncsu.edu

ABSTRACT

Selecting and precomputing indexes and materialized views,
with the goal of improving query-processing performance in
the system, is an important part of database-performance
tuning. The complexity of the view- and index-selection
problem is significant and may result in high total cost of
ownership for database systems. In recognition of this chal-

lenge, software tools have been deployed in commercial DBMS,

including Microsoft SQL Server [1] and DB2 [4], for sug-
gesting to the database administrator views and indexes
that would benefit the evaluation efficiency of representa-
tive workloads of frequent and important queries.

In this paper, we focus on developing a unified quality-
centered approach to view and index selection, for a range
of query, view, and index classes that are typical in practi-
cal database systems. (To the best of our knowledge, we are
the first to adopt the solution-quality focus for this generic
practical problem setting.) Our problem inputs include effi-
cient evaluation plans for the input workload queries. Each
plan is represented as a set of views and indexes; thus, the
set of plans in the problem input defines the search space
of views and indexes whose materialization may benefit the
performance of the input query workload. We show that this
version of the view- and index-selection problem is NP hard,
even when the set of indexes and views mentioned in the in-
put query plans is of relatively small size. In spite of this
level of complexity of the problem, we develop efficient meth-
ods that deliver user-specified quality (with respect to the
theoretically possible quality given the input query plans) of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EDBT ’08 Nantes, France

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

the set of selected views and indexes. Our experimental re-
sults and comparisons on synthetic and benchmark instances
demonstrate the competitiveness of our approach, and show
that it provides for a winning combination with the end-to-
end view- and index-selection framework of [1].

1. INTRODUCTION

This paper addresses the problem of selecting and precom-
puting indexes and materialized views in a database system,
with the goal of improving the processing performance for
frequent and important queries. Our specific optimization
problem is as follows: Given a set of possible plans for each
query, choose a subset of plans that provides the greatest
reduction in query cost. Each plan requires the materializa-
tion of a set of views and /or indexes, and cannot be executed
unless all of the required views and indexes are materialized.
For practical reasons, the total size of materialized views and
indexes must not exceed a given space (disk) bound.

Our problem statement for view and index selection does
not require any information about the input plans other than
the views or indexes that they require and the cost reduction
the plans yield. Thus, our solution is not tied to any partic-
ular database model (that is, the queries and even database
schemas can take any form), nor do we need to know how
the indexes or views affect the query costs. These details
are abstracted by the cost function, which in turn can come
from whatever cost model most suits the application.

In this section we provide the necessary background (Sec-
tion 1.1), outline our specific contributions to solving the
view- and index-selection problem (Section 1.2), and discuss
related work (Section 1.3). In Section 2 we show that our
optimization problem (VISP)is NP hard. Section 3 presents
our integer linear program (ILP) for problem VISP and dis-
cusses the standard branch-and-bound (B&B) technique for
solving ILP’s. We discuss our approaches to finding the
upper and lower bounds in B&B in Sections 4 and 5, respec-
tively. Section 6 reports our experimental results, and we
conclude in Section 7.

1.1 Background

Database-performance tuning is an important responsi-
bility of database administrators (dba’s) in enterprise-class
databases. One focus of the tuning process is selecting and
creating indexes and materialized views, with the goal of im-
proving query-processing performance in the system. The
complexity of this view- and index-selection problem is sig-
nificant and may result in high total cost of ownership for
database systems. In recognition of this challenge, software
tools have been developed for suggesting beneficial views
and indexes to the dba, ones that would improve the evalu-
ation efficiency of representative workloads of frequent and
important queries. The user can specify constraints that
must be met by the tool, typically an upper bound on the
storage (disk) space or, alternatively, indexes that must be
included. Such view- and index-recommender tools are part
of commercial SQL database-management systems, includ-
ing Microsoft SQL Server [1] and DB2 [4].

The ultimate goal of view and index selection for query
performance is to minimize the evaluation costs for a given
query workload, subject to input constraints such as avail-
able storage/disk space. We adopt the standard measure of
performance of a query workload, which is the sum — per-
haps weighted — of evaluation costs of the workload queries.
Query workloads in practice tend to include a variety of
query types, such as aggregate queries on one stored rela-
tion alongside nonaggregate queries defined on joins of other
stored relations. In our project on view and index selec-
tion, our goal is to develop a tool for recommending indexes
and materialized views that would guarantee a certain user-
defined (perhaps optimal) level of evaluation performance
for such real-life workloads.

The focus of this paper is to develop a unified quality-
centered view- and index-selection approach, for a range of
query, view, and index classes that are typical in practical
database systems. To the best of our knowledge, we are
the first to adopt the solution-quality focus for this generic
practical problem setting. Our problem inputs include the
query workload of interest and the amount of available stor-
age (disk) space for the views and indexes to be materialized.

1.2 Our contributions

Markl et al. [19] point out that major computational effort
directed at query optimization can easily be justified: it pays
off when amortized over many queries. In fact, reductions
in query time from over an hour to a few seconds have been
observed. We take the sting out of the major computational
effort, achieving optimum solutions with reasonable compu-
tation time. Furthermore, our branch and bound approach
allows for (a) excellent tradeoffs between runtime and solu-
tion quality;' and (b) interactive (online) response to user
demand for progressively better quality guarantees.

In this work we assume that each problem instance spec-

!The possibility of such tradeoffs with branch and bound
(B&B) has been known for many years — see, e.g., [16], but
the traditional approach requires repeating the algorithm
multiple times, doubling the number of iterations each time
until the desired quality is achieved. In our work, the speci-
fication of an error bound actually speeds up the B&B pro-
cedure.

ifies one or more evaluation plans for each workload query.
Each such query plan is viewed by our approach as just a set
of candidate views and indexes that provides acceptable —
“good enough” in the sense of [18] — time costs of evaluat-
ing the query. Thus, the input query plans form the search
space of candidate solutions in our view- and index-selection
problem.?

We show that this version of the view- and index-selection
problem is NP hard. To mitigate the complexity of the prob-
lem, we develop efficient methods that deliver user-specified
quality with respect to the input query plans. Here, quality
means proximity to the globally optimal performance for this
query workload.

Our main contributions are as follows:

e a problem statement that is flexible in the sense of
being adaptable to the full spectrum of data models
and query languages (Section 2),

e proof of NP-completeness of the decision version of our
problem (Section 2),

e an integer linear program formulation that suggests a
natural branch and bound solution strategy (Section
3),

e effective upper and lower bounding techniques that
lead to attractive tradeoffs between time and solution
quality and to interactive quality control by the user
(Sections 4 and 5),

e experimental results on benchmark instances as well
as on random instances of increasing size (to illustrate
scalability) (Section 6), and

e specification and discussion of a practically important
easy-to-solve special case (Section 6.4).

The runtime versus solution quality tradeoff is extremely
important. No approach can guarantee optimal solutions
in reasonable time with increasing instance size unless P =
N P. However, we are able to guarantee < 2% relative error
with respect to the optimum on instances with 80 queries
within 19 seconds. The desired precision is given as input to
our algorithm instead of being one of its limitations. And,
precision being a worst-case guarantee, the output solution
often has better quality than requested.

Alternatively, the algorithm can be run in an interactive
(online) setting, where it behaves as follows. It begins under
the assumption that it is seeking an optimal solution. As
soon as it finds a feasible solution, it reports the quality of
that solution, asking whether to stop or continue to search
for a better one. In both of these settings, the computation
of branch and bound is sped up by our interaction between
upper and lower bounds — see Sections 4 and 5.

1.3 Related work

Recall (see, e.g., [1]) that in selecting views or indexes
that would improve query-processing performance, produc-
ing solutions that would guarantee user-specified quality (in

2Note that defining such “good” query-evaluation plans is
not part of our framework; see [1, 8] for possible approaches
to this problem.

particular, globally optimal solutions) with respect to all po-
tentially beneficial indexes and views is a computationally
hard problem. In general, the authors of the past approaches
have concentrated on experimental demonstrations of the
quality of their solutions. A notable exception is the line of
work [9, 10, 11]. Unfortunately, in 1999 the paper [14] dis-
proved the strong performance bounds of these algorithms,
by showing that the underlying approach of [11] cannot pro-
vide the stated worst-case performance ratios unless P=NP.
In [3] we provide a detailed discussion of past work that cen-
ters on OLAP solutions, including [6, 9, 10, 11]. Note that
in this paper we focus on the problem of view and index se-
lection for query, view, and index classes that are typical in
a wide range of practical (either OLTP or OLAP) database
systems, rather than limiting ourselves to just OLAP sys-
tems.

The state-of-the-art paper [1] presents a tool for auto-
mated selection of materialized views and indexes for a wide
variety of query, view, and index classes in relational databa-
se systems. The approach of [1], implemented in Microsoft
SQL Server, is based partly on the authors’ previous work [5]
on index selection. The contributions stated in [1] are (i) the
proposed end-to-end framework for view and index selection
in practical systems, and (ii) the module for building the
search space of potential views and indexes for a given query
workload. Interestingly, the authors of [1] do not recognize
as a contribution their heuristic algorithm for selecting views
and indexes from the search space built in their framework.
In this paper, we experimentally show that our proposed
view- and index-selection algorithm fares well compared to
the heuristic algorithm of [1], which means that our algo-
rithm is suitable for complementing the overall framework
of [1], by providing the user with solution-quality guarantees
on the views and indexes to be materialized.

Papers [20, 21] by Prasan Roy and colleagues present
projects focusing on multiquery optimization (MQQO). Specif-
ically, [21] proposes algorithms for improving query-execut-
ion costs in this context, by materializing (as views) and
reusing some of their common subexpressions. [20] discusses
how to find an efficient plan for the maintenance of a set
of materialized views, by exploiting common subexpressions
between different view-maintenance expressions. While our
approach can be extended to the MQO context, in this pa-
per we focus on improving the evaluation costs of individual
queries in presence of materialized views, and consider se-
lecting and materializing indexes (as well as views) for this
purpose. Note that even though our approach may not scale
up to a very large number of query plans in the problem in-
put, Lohman in [18] argues that for all practical purposes it
is enough to consider for each query just a small number of
“good enough” (in terms of evaluation costs) query plans.

Finally, in [15] Kratica and colleagues propose a genetic al-
gorithm for minimizing the response time for a given databa-
se workload by a proper choice of indexes. While we consider
query-performance improvement in presence of views as well
as indexes, Kratica and colleagues examine an integer linear
programming model that is very similar to ours.

2. COMPLEXITY OF THE PROBLEM

In this section we formally state our problem (2.1) and
prove that it is NP-complete (2.2).

2.1 Formal Problem Statement

We first formally define our view- and index-selection prob-
lem VISP, by specifying its inputs and outputs. The problem
inputs are as follows:

Inputs: — a set of queries Q;

— a set of views and indexes V;

— a (space) bound B;

— each view/index v; € V has an associated weight
wj;

— a view subset V' C V can be materialized, if its
total weight is < B;

— for each query ¢; € @ we have a set of plans P;;
— each plan p;; € P; is a subset of V, p;; C V;
— each plan p;; € P; has an associated benefit b;;,

— a plan p;; can be chosen, if it is a subset of the
set of chosen for materialization views/indexes;

— for each query ¢; € @ at most one plan can be
chosen from P;;

Find: V' C V that can be materialized and that maximizes
the total benefit of plans that can be chosen.

2.2 NP-completeness of VISP

THEOREM 2.1. VISP is NP-complete.

Proor. We prove the NP-completeness of VISP by re-
duction to the Dense k-Subgraph Problem, which is known
to be NP-complete.

The decision version VISP-D of VISP is as follows. Given
the problem inputs of VISP and a positive integer C is there
a subset V' of the set V of input views and indexes that can
be materialized, such that the total benefit of plans that can
be chosen is at least C.

The Dense k-Subgraph Problem (DkSP) is defined as fol-
lows. Given a weighted graph G = (V, E), with weight we
associated with each edge e € FE, and given positive inte-
gers k and W, is there a subset V' of size k of vertices V of
graph G, such that the weight of the graph induced by V'
is at least W.

Suppose we have an instance Ip of the DkSP problem. We
want to construct an instance Iy of VISP-D in polynomial
time, such that if we later find an answer to Iy, then we can
find an answer to Ip in polynomial time. (All the times are
to be polynomial in the size of the instance Ip of DkSP).

For each edge e; € E in Ip we create a query ¢; € Q in Iy,
and for each vertex v; € V in Ip we create a view v; in Iy.
Each query ¢; in Iy has exactly one plan p;; that contains
views {v;1,vj2}, such that in the graph G of Ip there is an
edge (v;1,v52) = €;. In problem Iy, the weights w; are set
to 1 for all j. The gain of the plan p1; = {vj1,v;2} in Iy is
set to the weight of edge (v;1,v52) € E in Ip. C and B in
Iy are initialized with W and k, respectively, from Ip.

It is easy to see that we can construct Iy from Ip in
this manner within polynomial time in the size of Ip. By
construction, the YES answer to Iy, that is, we can choose
a subset of views with total weight at most B and total gain
at least C, means the YES answer to Ip, that is, we can
choose a subset of vertices of size at least k, such that that
weight of the graph induced by this subset of vertices is at
least W. By the same reason, the YES answer to Ip means
the YES answer to Iyy. Thus, problem VISP-D is at least as
hard as problem DkSP, i.e., NP-hard.

Now, we need to prove that VISP-D is in NP. It means,
we need to show that, given a solution to VISP-D, we can
verify it in the polynomial in the size of VISP-D time. To
do this, for a solution, we must check:

e the total weight of the views chosen for materialization
is < B; clearly, this can be done in linear in the number
of views time, O(|V]);

e for each query, at most one plan is chosen; for each
query, we count the number of chosen plans, this can
be done in linear in the number of queries and plans

time, O(|Q[|P]);

e for each chosen plan, it is a subset of the material-
ized views, p;; C V'; this can be done in linear in the
number of queries (because, after the previous check
we have at most one plan per query) and views time,

o(elvy.

Thus, VISP-D is in NP, and, as we already proved that it
is NP-hard, it is NP-complete. []

3. INTEGER LINEAR PROGRAMMING

In this section we formulate our view- and index-selection
problem VISP as an integer linear program (ILP), and dis-
cuss the standard branch-and-bound (B&B) technique for
solving ILP’s.®> The problem-specific heuristics and algo-
rithms we present later use B&B as their basic framework.
Subsection 3.1 gives a formal ILP definition of VISP; Sub-
section 3.2 outlines the B&B approach used in both general-
purpose and problem-specific solvers. We close the section
with remarks on how the basic framework presented here
lays the groundwork for the rest of the paper.

3.1 An ILP model for VISP

Our ILP model uses the following 0/1 variables: x;; is 1
when the j-th plan is chosen for query ¢, 0 otherwise; y; is
1 if the ¢-th view or index is materialized, 0 otherwise.

The objective is to maximize 77" | 377" | bij@ij, where by;
is the improvement (gain) in query response when the j-th
plan is chosen for query 7. A query can have at most one
plan; this is expressed by the constraint

m
Dy <l i=1,...,n. (1)
j=1

When a plan for a query is chosen, the views and indexes it
needs must be materialized:

Z Tij S Yt (2)

{jlvi€pi;}

3For a general discussion of B&B, see [16].

In this expression p;; represents the set of views and in-
dexes in plan j for query i, and the constraint is written for
all ,t where at least one plan for query 7 needs view/index
v¢. This is most easily understood in the contrapositive: if
v¢ is not materialized (y: = 0), none of the plans that use it
can be chosen (all such z;; where v; € p;; must be 0).

Finally, the total size of the materialized views and indexes
cannot exceed the input storage limit:

k
Zwt ‘y < B (3)
t=1

These constraints fully define our view- and index-selection
problem VISP.

3.2 Branch and bound

Branch and bound (B&B) is a well-known approach, dat-
ing back to at least the 1950’s. It obtains exact (optimum)
solutions to ILP’s at the expense of worst-case exponential
runtime. Its effectiveness relies on the assumption that the
worst case occurs only rarely in practice. For ease of under-
standing, a few of the details in the following description are
specific to the VISP problem.

The basic algorithm starts with the root node of a tree,
which represents the (initial) problem instance. Other nodes
represent smaller instances based on fixed assignments of
variables; for example, if y; is fixed at 0, the instance has
one less view/index; if it is fixed at 1, the corresponding
constraints (2) go away, but the B in (3) is reduced by w;.

Each interior node has two children, one for each of the
two values (0 or 1) of a specific variable. The leaves of the
tree arise either when the fixed assignment at a node fails to
satisfy the constraints (i.e., is infeasible) or when the values
of all variables have been fixed (in this case, the assignment
is feasible but not necessarily optimal).

With no bounding B&B is an exhaustive search of all fea-
sible solutions. A node (and its descendants) can be elimi-
nated if the best gain it can achieve — its upper bound — is
no better than the gain of a feasible solution already found,
the global lower bound. The success of B&B, in its abil-
ity to obtain optimal solutions quickly, relies on the quality
of heuristics used to obtain upper and lower bounds. Our
approaches to these are discussed in Sections 4 and 5, re-
spectively.

A node is processed when its bounds have been computed
and its children, when appropriate (i.e., feasible and upper
bound > lower bound), have been created. A node’s lower
bound, when greater than the current global one, replaces
it. A node is active when it has been created but not yet
processed. Nodes may be processed in any order, but the
order is typically depth first based on judicious choices of
branching variables and assignments to explore first. At
any point in the execution of B&B the integrality gap is the
difference between the current lower bound and the largest
upper bound among active nodes.

Experimental results in Section 6 show that our combi-
nation of upper- and lower-bound computations yields good
scalability with increasing instance size, better solution qual-
ity as compared with a well-known heuristic [1] when termi-
nated early, and promising tradeoffs between runtime and
solution quality.

4. FINDING UPPER BOUNDS

Upper bounds are essential to cut off specific subtrees of
a branch-and-bound tree: If, at some node, an upper bound
does not exceed the current global lower bound, then the
node and its descendants can be eliminated. The two best-
known methods for obtaining upper bounds for maximiza-
tion problems are linear programming relazation (LPR), a
general technique that applies to all integer programs, and
Lagrangian relazation (LaR), whose details are specific to
the problem and to the constraints the expert wishes to re-
lax.

Linear Programming Relaxation (LPR) is simple:
turn the integer program into an ordinary linear program
(LP) by relaxing those constraints that force variables to
be integers. In our problem statement, the constraints that
variables z;; and y; are 0/1 variables are replaced by 0 <
zi; < 1land 0 <y, < 1. If the optimal LP solution at a node
has all 0/1 values, a potential lower bound has been found.
Otherwise, the value of the objective is an upper bound on
the optimum value with 0/1 values. This form of relaxation
is used universally by general-purpose ILP solvers such as
CPLEX.

Lagrangian Relaxation (LaR) (see, e.g., [12]) requires
choosing the constraints to relax. The relaxed constraints
are then incorporated into the objective function, so that
there is a penalty associated with an unmet constraint.

We relax constraints (2) and add to the objective func-

tion the term > wug (yt — > mj |, where uy; is the
V(i,t) {jlveepij}

penalty associated with the (¢,7)-th constraint in the group.

Any choice of non-negative u; yields an upper bound to the

original objective function. To get the best possible upper

bound we want to find a choice that minimizes the objective.

The process we use, called subgradient optimization [13],
is an iterative one. It stops when either (a) all of the re-
laxed constraints are satisfied and the current solution is
an optimal solution to the original instance; or (b) further
improvement, i.e., a decreased upper bound, is deemed un-
likely.

Every iteration step solves the relaxed optimization using
the current u;;’s — initially arbitrary — and, if the solution
is not optimal, adjusts the u;+’s according to a line search
in order to increase the penalty for those constraints that
are not satisfied. While there is no best way to choose the
step size in the line search, it is usually started at a fixed
value (we use 2.0) and halved whenever the upper bound
fails to decrease after a fixed number of steps (we use 10).
There is also a fixed lower limit for the step size (0.01 in our
case). These choices are usually deduced from preliminary
experiments; our choices appear to work well for the full
range of instances of this model.

Our choice of constraints to relax has a useful feature: the
relaxed optimization problem can be partitioned into two
subproblems, one involving only the x;;’s, the other only
the y;’s. To wit,

e max i, >0 biwi — 3 D0
V(i,t) {jlve€psj}
to >0 wy; < 1, for i = 1,...,n; and z; € {0,1},
fori=1,...,nand j =1,...,m, which can be solved

Uit Tij, subject

optimally by a simple greedy algorithm — the objec-
tive function reduces to max > 37" | >3 | Bi;xi;, where
Bij = bij — Z{tlvtemj} Uit, and

e max Y, u;y: subject to Zle we-yr < B, ye € {0,1},
¥(i,t)
for t =1,...,k, which is a knapsack problem.

LaR consistently produces better upper bounds than LPR.
However, the difference between the two diminishes with
increasing problem size. Also, the runtime of LPR scales
better than that of LaR. That said, there are several key
advantages of LaR in the B&B context: LaR can be used

e as part of an effective lower bound heuristic, as dis-
cussed in the next section,

e to fix values of some variables, reducing the size of the
B&B tree(see Variable Binding below),

e to significantly decrease runtime when a given approx-
imation ratio is desired instead of the optimum; exper-
imental results illustrating this point are presented in
Section 6, and

e to make use of computations at the parent of a node as
a starting point; in particular, the final u;+’s at a node
make good choices for starting wu;’s at its children.

Variable Binding. Lagrangian relaxation allows us to
use one additional trick that can be used in any node of the
branch-and-bound tree to reduce the size of the subproblem.

Note that constraints (1) are present in the Lagrangian
relaxation and, in fact, are the only constraints on x;;’s.
Thus, in the solution to the relaxation we can choose only
one plan for each query. Suppose, in the solution to the
lagrangian relaxation x;; = 1. We can fix z;; = 1 if setting
it to 0 (and thus taking second best plan into the solution)
reduces the upper bound so that it is < the current lower
bound. This can be done in linear in the number of plans
time using our model. In the same way, if in the solution to
the lagrangian relaxation z;; = 0, we can fix it to 0, if setting
it to 1 (and thus removing the best plan for this query from
the solution) reduces the upper bound so that it is < the
current lower bound

S. FINDING LOWER BOUNDS

In this section we discuss our proposed methods for finding
lower bounds for the branch-and-bound method (discussed
in Section 3) for our view- and index-selection problem VISP.

5.1 Greedy Algorithm

To explain this algorithm it is easier to talk in terms of
views/indexes and plans. On the input to this algorithm we
get a feasible solution {Z, 7}. In this solution, Z corresponds
to the set of chosen plans and § corresponds to the set of
chosen views and indexes. It is possible that both of these
sets are empty. We want to greedily fill in the available
space maximizing the total benefit of the plans that can be
executed using the chosen views and indexes.

Let V' be the set of views and indexes corresponding to
7. For a set of views and indexes chosen for materialization
we can find a set of plans for the queries that maximizes the

total benefit. To do this, we, for each query, take the best
plan that is based on a view/index set that is a subset of
V. Let P(V) be the set of plans that maximizes the total
benefit of using V' and B(V) be the benefit of P(V'). Let
S(V) be the total weight of the views and indexes in V.

Algorithm 1: Greedy Algorithm
Input

: ILP problem formulation of the original prob-
lem,
a (possibly trivial) feasible solution to this
problem {Z, 7}
Output: feasible solution to the original problem (can-
didate lower bound)
begin
Let k£ be the maximum number of views and
indexes a plan can have in its definition
Let W be the set of all views and indexes
while we can add views/indezes to V without
violating the space constraint do
find a subset U C W\V of size at most k that
has maximum
(B(VUU) = B(V))/(S(VUU) = S5(V))
V.=VuU
return {P(V),V}

end

5.2 Lagrangian Heuristics

In this subsection we describe the lagrangian heuristics
we use to obtain lower bounds. This algorithm takes on
input a solution to the Lagrangian relaxation and builds
a feasible solution using the greedy heuristics described in
subsection (5.1). The idea of the Lagrangian heuristics is to
take a solution to the Lagrangian relaxation of the original
problem, which is not in general a feasible solution, and
modify it as little as possible to get a feasible solution.

To this end, we examine every query-plan assignment ob-
tained after solving the Lagrangian relaxation (i.e., deter-
mine every pair 4,j for which x;; = 1). For each such as-
signment we consider the collection of required views and
indexes in plan j, and if any one of these views or indexes
is not materialized (i.e., corresponding y: = 0), we simply
remove the assignment of plan j to query 4 (i.e., z;; = 0).
Obviously, at the end of this operation we obtain a feasi-
ble solution to the original problem. We then remove every
unused view/index by setting its corresponding y: = 0 and
use the available space according to the greedy algorithm
described in subsection (5.1) to obtain a feasible solution to
the problem.

Algorithm 2: Lagrangian Heuristics

Input : Solution to the Lagrangian Relaxation {Z, 3},
ILP problem formulation of the original prob-
lem

Output: feasible solution to the original problem (can-
didate lower bound)

begin

for each (i,7) such that Z;; =1 do

check all constraints from group (2) with Z;; in

them
if there is at least one violated constraint then
| set Z;; =0

or each k such that g = 1 do
check all constraints from group (2) with g in
them

if there is at least one constraint whose left part
evaluates to one for the solution {Z,y} then

| keep yrp =1
else

| set g =0

-

return Greedy({Z,y})

end

6. EXPERIMENTAL RESULTS

In our experiments we pursued two goals. First, we show
that our algorithm outputs solutions of significantly better
quality than the greedy heuristic of [1] and therefore makes
a suitable back end for their view- and index-selection tool.
Second, we demonstrate the behavior of our algorithm with
respect to runtime versus solution-quality tradeoffs and use
in an interactive (online) setting. We demonstrate the for-
mer in Section 6.2, and the latter in Section 6.3. For most
of our tests we used randomly generated problem instances.
We explain how we generate these instances in Section 6.1.
Finally, in Section 6.4 we make several additional obser-
vations, including a description of a practically important
easy-to-solve special case.

For the experiments we used a PC with the Intel Core
2 1.86GHz processor and 1Gb RAM, running the Red Hat
Linux operating system.

6.1 Random Generation of Problem Instances

We generated problem instances based on the values of
several parameters. These can be grouped into (i) structural
parameters, and (ii) numerical parameters. The structural
parameters are as follows:

e N, total number of queries;

e M, the number of plans per query;

e T, the total number of views/indexes; and

e K, the maximum number of views/indexes per plan.
The numerical parameters are as follows:

e Wiin and Wiee, the minimum and maximum view/
index weights;

e Chin and Ciaz, the minimum and maximum query
costs; and

e P the minimum plan cost.

We generated problem instances randomly using the follow-
ing process (all numerical values are chosen at random, uni-
formly distributed over a specified interval).

Structural properties — queries, plans, and views/indezes:
For each query i, we first choose the number of views or in-
dexes relevant to the query, a random integer r in [K, K M/2].
Then we randomly choose a subset V; of r views/indexes
from the collection of all views and indexes. This subset
constitutes the collection of views and indexes used in all
plans for query i. For each of the M plans for query i we
choose a random number s of views/indexes in [1, K] and a
subset of size s from V;. For an instance that has N queries
we assume there are T' = 2N views and indexes. We scale
problem-instance size by increasing N. These choices deter-
mine all the relationships among the input queries, plans,
and views and indexes.

Weights and costs: The weight of each view/index is a ran-
dom value in the interval [Wpin, Winasz]. The cost of query
it is Cj, a random value in the interval [Cmin, Cmasz]. For
each plan j for a query 1, its cost ¢;; is a random value from
[P, C;]. Thus, the benefit b;; of using plan 4 to answer query
j is (C»L — Cij).

Space bound. We chose a space bound that is a fraction of
the sum of the weights of the views and indexes. A value
too close to 1 makes the problem trivial, and a value too
close to 0 makes it likely that no views or indexes can be
chosen, again yielding a trivial problem. Our preliminary
experiments showed that taking the space bound to be one
third of the total view/index weights yields difficult problem
instances.

An additional feature of our problem structure is that we
order all views and indexes in a list for which we presume
neighboring views and indexes to have more in common than
others, making them more likely to be usable for the same
query. (This property of related views and indexes occurs
in practice, e.g., in the OLAP context [9, 11].) Therefore,
when choosing random views and indexes for a query, we
choose contiguous sublists of this list.

Our uniform choice of view/index weights and plan costs/
benefits ensures that, as is common in practice, these factors
will vary from very small to very big. The costs of plans for
the same query might not be independent as they are in our
random generation, but the dependencies among them are
likely be too complex to model.

6.2 Comparison with Greedy(k, m)

In this subsection we compare our algorithm with the
greedy algorithm Greedy(k, m) described in [1]. This algo-
rithm exhaustively searches for an optimal subset of views
and indexes of size k and then greedily adds views and in-
dexes to this subset until it has m views and indexes in it.
It is worth mentioning that Greedy(k, m) assumes that all
views and indexes have weight 1, while our algorithm can

work with any weights. Thus, for the experiments in this
subsection all views and indexes have weight 1.

Figure 1 shows the scalability of Greedy(k, m) when com-
pared to our algorithm with input error 0% (optimal solu-
tion). For Greedy(k, m) we set k to 3 and set m to the input
storage limit. Our choice of kK = 3 comes from the fact that
a larger value will increase the already prohibitive runtime,
while a smaller value (the only other choices are 2 and 1)
increases the error of the solution.

+ Greedy(k,m) = B&B with error = 0
100
90 | ¢
80
*
70 4
$ 60 | .
n
& 50 .
(S
= 40 A .
30 1 8
*
20 4 -
*
] .
10 . -
o ~ 2 8 o g """ LI
10 15 i 20 25
number of queries

Figure 1: Scalability of B&B and Greedy(k,m).

In Figure 1, the X-axis corresponds to the problem size
represented by the number of queries in the workload, and
the Y-axis corresponds to the runtime of the algorithms,
measured in seconds (which is the unit of runtime in all the
other figures as well). A point on this plot represents the
average runtime for 30 experiments for a given problem size.
It can be observed that the runtime of Greedy(k,m) grows
fast with the problem size. This can be explained by the fact
that the runtime is proportional to C% (number of different
ways to choose k elements form a set of size V). In contrast,
the runtime of our algorithm grows much slower. Note that
in this set of experiments our algorithm is always getting an
optimal solution, while Greedy(k,m) is getting a solution
with no guarantee on quality.

Figure 2 shows the average error of the solution returned
by Greedy(k,m). As in Figure 1, the X-axis corresponds
to the problem size represented by the number of queries
in the workload. The Y-axis corresponds to the average
relative error compared to an optimal solution. A point
on this graph represents the average relative error for 30
experiments of a given problem size.

Figure 2 is based on our experiments on 22 different prob-
lem sizes, with between 5 and 26 input queries, for the total
of 660 experiments. In this set of experiments, Greedy(k, m)
returned an optimal solution in only 40% of the cases. The
maximum relative error was 29%, and in 1% of all experi-
ments the relative error was more than 12.5%.

Figure 3 shows the relative error distribution from another
point of view. It is based on 30 experiments on instances
with 24 queries each. The X-axis represents the relative
error of the solution returned by Greedy(k, m). The Y-axis

18 &

1.6 A
1.4 4 S

12

0.8 .

0.6 -2

0.4 »*

relative error of the solution, %
*

0.2 4 -

0 + : : : :
0 5 10 15 20 25 30
number of queries

* error = 0% = error = 1% A error = 2%
180
160 Q
140
120 4
3}
2100 0
q)—- *
EBO* .
60 -
40 A
20 + -t Ill--....
k3 apmmummmERE
0 *--l;¥!!,,;=AAA#AAAA‘AAAAA‘AAAAA‘A‘
0 5 10 15 20 25 30 35) 40
number of queries

Figure 2: Quality of the Greedy(k,m) solution.

represents the fraction of problem instances. A point on this
plot, for a given relative error, shows the fraction of problem
instances that have a solution with at most the relative error
on the X-axis.

The distribution over this set of same-size experiments is
exponential, suggesting that, while the median (0.5%) and
mean (1.3%) are small, the performance can differ wildly
from one instance to the next, the extreme opposite of a
guarantee.

1
>
>
>
*
0.8 v
3 ot
o .
% -
506 52
c *
= s
g *
5049 ,°
= .
.
8 i
’
0.2
0 T T T T T T
0 1 2 3 4 5 6 7
relative error, %

Figure 3: Error distribution for Greedy(k, m).

6.3 B&B behavior

In this subsection we demonstrate the behavior of our
algorithm with respect to runtime versus solution-quality
tradeoffs and interactive (online) use, for a variety of input
parameters.

Figure 4 shows the scalability of our algorithm for dif-
ferent maximum allowed errors. The X-axis corresponds to
the problem size represented by the number of queries in
the workload. The Y-axis represents the runtime of the al-
gorithm. A point on this plot corresponds to the average for
30-instance runtime for a given problem size.

Figure 4: Scalability of B& B for various input errors.

In Figure 4, the curve corresponding to error = 0% goes
up much faster than the same curve on the plot where we
compare the scalability of our algorithm with that of
Greedy(k,m). Recall that for the sake of comparison with
Greedy(k,m), we used instances with unit view/index
weights, making the resulting problem instances easier. It
is worth mentioning that for the errors of 1% and 2% we
were able to run experiments on instances having up to 80
queries and to achieve nearly linear runtime growth.

For the next experiment, see Figure 5, we found an in-
stance with 10 queries in it with a big difference between
the initial upper and lower bounds, and tested the runtime
for this problem instance against various maximum allowed
errors on the input. The X-axis in Figure 5 represents the
error that we give our algorithm in the input, that is, the
maximum allowed relative difference between the optimal
solution and the solution that we can accept. The Y-axis
shows the runtime of our algorithm. A point on this graph
shows how much time it took the program to get a solution
within allowed relative error.

12

10 4

Time, sec.
[}
!

IS
.

N
I

0 T T
0 2 4 6 8 10
Maximum allowed error of the solution, %

Figure 5: Runtime of B&B on a fixed instance with
various input errors.

Note that the runtime drops not only because of the eas-

ier satisfiable stopping criterion, but also because we bind
more variables and prune more subproblems during the ex-
ploration of the branch and bound tree. This is an impor-
tant point given that the traditional runtime versus solution-
quality tradeoffs for branch and bound are achieved using
successively longer runs instead of more effective pruning.

The goal of the next experiment, see Figure 6, is to demon-
strate the interactive (online) property of our algorithm.
That is, at any point of program execution we can ask it
to report the solution it has at this point, together with its
quality (relative difference with the maximum upper bound).
Thus, in the next experiment we run our program with the
maximum allowed error set to zero, and record time and rel-
ative gap between the upper and lower bounds every time
this gap is improved. The plot in Figure 6 is based on the
experimental results on 181 random instances of the same
size. On this plot, the X-axis represents the runtime, and
the Y-axis represents the relative difference between an in-
termediate solution (lower bound) and a maximum upper
bound. A point on this plot says that for a given time point
there was a problem instance that had this relative differ-
ence between a known feasible solution and a maximum up-
per bound. For any given run there are multiple points on
the plot, one for each interaction with the user.

- 181 random instances with 15 queries
25

20

integrality gap / upper

bound * 100%

relative gap

T
400 500

T
0 100

0 300
time, sec.

Figure 6: Gap between the lower and upper bounds.

Although the setting is different here (the error bound
adjusted interactively versus being part of the input), there
is a clear relationship between this plot (Figure 6) and the
one showing scalability for different errors (Figure 4). In
Figure 6, the majority of points drops below the 2% level
after 10-20 seconds, correspond to the point for 15 queries
in Figure 4.

6.4 Other Observations

We make here a few additional observations on our algo-
rithm and experments. First, our preliminary experiments
on the TPC-H benchmark dataset [22] showed that our al-
gorithm can obtain in 0.2 sec. an optimal solution on in-
stances with 22 input queries (the actual TPC-H queries)
and 32 views. Second, users can specify the precision of
the output of our algorithm in two ways — maximizing the
gain or minimizing the query-evaluation costs — while al-

ways obtaining correct solutions (cf. the observation in [14]
on the line of work [9, 10, 11]). Finally, we did preliminary
experiments where the input plans for our algorithm were
formed by applying to the TPC-H data the module of [1]
for building the search space of potential views and indexes.
Based on these experiments we observe that it may be likely
in practice to have, as an input to our algorithm, a work-
load in which every view is used in only one plan. With
such problem inputs the view- and index-selection problem
degenerates to (well-studied) multiple-choice knapsack [7],
and our algorithm is guaranteed to find a globally optimal
solution in the first branch-and-bound node.

7. CONCLUSIONS

In this paper we proposed a unified quality-centered ap-
proach to the view- and index-selection problem. To the
best of our knowledge, we are the first to adopt the solution-
quality focus for this generic practical problem setting. We
showed that the view- and index-selection problem in this
context is NP hard, even for the small sets of input queries
and plans. Despite of the level of complexity of the problem,
we developed an efficient approach that finds a solution with
user-specified quality, with respect to globally optimal qual-
ity for this query workload. Our approach is based on an
integer linear programming formulation of the problem that
suggests a natural branch and bound strategy with effective
upper and lower bounding techniques that lead to attractive
tradeoffs between time and solution quality and to interac-
tive quality control by the user. Our experimental results
corroborate the competitiveness of our approach, demon-
strate a practically important easy-to-solve special case, and
show that our algorithm provides for a winning combination
with the end-to-end view- and index-selection framework of
[1].

This project, together with our other work [2, 3], lays
the foundation for studying view and index selection in a
systematic principled way. (The project reported in this pa-
per is complementary to our systematic studies [2, 17] of
the OLAP view-selection problem.) In addition, our con-
tributions make it possible, in practical settings, to quantify
the “goodness” of specific view- and index-selection solutions
with respect to the best possible (that is, globally optimum)
counterparts, rather than just with respect to the base line
where the system does not use any views or indexes. In
our current and future research, we study a problem setup
where the search space of relevant plans and views or in-
dexes can be larger, possibly exponential in the size of the
original problem input.

8. ACKNOWLEDGMENTS

The authors’ work has been partially supported by NSF
grants DMI-0321635, 0307072, and 0447742.

9. REFERENCES

[1] S. Agrawal, S. Chaudhuri, and V. R. Narasayya.
Automated selection of materialized views and indexes
in SQL databases. In VLDB, pages 496-505, 2000.

[2] Z. Asgharzadeh Talebi, R. Chirkova, and Y. Fathi.
Exact and inexact methods for solving the problem of

[10]

[11]

[12]

[15]

[16]

[17]

[18]

[19]

[20]

view selection for aggregate queries. Technical Report
TR-2007-27, NC State University, 2007.

Z. Asgharzadeh Talebi, R. Chirkova, Y. Fathi, and
M. Stallmann. Exact and inexact methods for
selecting views and indexes for OLAP performance
improvement. Technical report, NC State University,
2007.

C. M. Broughton. IBM DB2 cube views and DB2
materialized query tables in a SAS environment.
http://www.sas.com/partners/directory/ibm/
cubeviews.pdf, 2005.

S. Chaudhuri and V. R. Narasayya. An efficient
cost-driven index selection tool for Microsoft SQL
server. In VLDB, pages 146-155, 1997.

C. L. Ezeife. A uniform approach for selecting views
and indexes in a data warehouse. In IDFAS, pages
151-160, 1997.

M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

G. Gou, M. Kormilitsin, and R. Chirkova. Query
evaluation using overlapping views: Completeness and
efficiency. In SIGMOD Conference, pages 37-48, 2006.
H. Gupta, V. Harinarayan, A. Rajaraman, and J. D.
Ullman. Index selection for OLAP. In ICDE, pages
208-219, 1997.

H. Gupta and I. S. Mumick. Selection of views to
materialize under a maintenance cost constraint. In
ICDT, pages 453470, 1999.

V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In SIGMOD
Conference, pages 205216, 1996.

M. Held and R. M. Karp. The traveling salesman
problem and minimum spanning trees. Operations
Research, 18:1138-1162, 1970.

M. Held, P. Wolfe, and H. P. Crowder. Validation of
subgradient optimization. Mathematical Programmaing,
6:62—88, 1974.

H. J. Karloff and M. Mihail. On the complexity of the
view-selection problem. In PODS, pages 167-173,
1999.

J. Kratica, I. Ljubic, and D. Tosic. A genetic
algorithm for the index selection problem. In
EvoWorkshops, pages 280—-290, 2003.

E. Lawler and D. Wood. Branch-and-bound methods:
A survey. Operations Research, 14:699-719, 1966.

J. Li, Z. A. Talebi, R. Chirkova, and Y. Fathi. A
formal model for the problem of view selection for
aggregate queries. In ADBIS, pages 125—138, 2005.
G. M. Lohman. Is (your) database research having
impact? In DASFAA, pages 3-5, 2007.

V. Markl, G. M. Lohman, and V. Raman. LEO: An
autonomic query optimizer for DB2. IBM Systems
Journal, 42(1):98-106, 2003.

H. Mistry, P. Roy, S. Sudarshan, and

K. Ramamritham. Materialized view selection and
maintenance using multi-query optimization. In
SIGMOD Conference, pages 307-318, 2001.

[21] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe.
Efficient and extensible algorithms for multi query

optimization. In SIGMOD Conference, pages 249-260,

2000.

[22] TPC-H:. TPC Benchmark H (Decision Support).
Available from
http://www.tpc.org/tpch/spec/tpch2.1.0.pdf.

