
Exact and Inexact Methods for Selecting Views and
Indexes for OLAP Performance Improvement

Zohreh Asgharzadeh
Talebi

Operations Research Program
NC State University

Raleigh, NC 27695 USA
zasghar@ncsu.edu

Rada Chirkova
Computer Science Dept.

NC State University
Raleigh, NC 27695 USA

chirkova@csc.ncsu.edu

Yahya Fathi
Operations Research Program

NC State University
Raleigh, NC 27695 USA

fathi@ncsu.edu

Matthias Stallmann
Computer Science Dept.

NC State University
Raleigh, NC 27695 USA

matt_stallmann@ncsu.edu

ABSTRACT
In on-line analytical processing (OLAP), precomputing
(materializing as views) and indexing auxiliary data ag-
gregations is a common way of reducing query-evaluation
time costs for important data-analysis queries. We con-
sider an OLAP view- and index-selection problem stated
as an optimization problem, where (i) the inputs in-
clude the data-warehouse schema, a set of data-analysis
queries of interest, and a storage-limit constraint, and
(ii) the output is a set of views and indexes that mini-
mizes the costs of the input queries, subject to the stor-
age limit. While greedy and other heuristic strategies
for choosing views or indexes might have some success
in improving the costs, it is highly nontrivial to arrive
at a globally optimum solution, one that reduces the
processing costs of typical OLAP queries as much as is
theoretically possible. In fact, as observed in [16] and to
the best of our knowledge, there is no known approxi-
mation algorithm for OLAP view or index selection with
nontrivial performance guarantees.

In this paper we propose a systematic study of the
OLAP view- and index-selection problem. Our specific
contributions are as follows: (1) we develop an algo-
rithm that effectively and efficiently prunes the space of
potentially beneficial views and indexes given realistic-
size instances of the problem; (2) we provide formal
proofs that our pruning algorithm keeps at least one
globally optimum solution in the search space, thus the
resulting integer-programming model is guaranteed to
find an optimal solution; (3) we develop a family of al-
gorithms to further reduce the size of the search space
so that we are able to solve larger instances of the prob-
lem, although we no longer guarantee the global op-
timality of the resulting solution; and (4) we present
an experimental comparison of our proposed approaches
with the state-of-the-art approaches of [2, 11]. Our ex-
periments show that our proposed approaches to view

and index selection result in high-quality solutions —
in fact, in globally optimum solutions for many realistic-
size problem instances. Thus, they compare favorably
with the well-known OLAP-centered approach of [11]
and provide for a winning combination with the end-to-
end framework of [2] for generic view and index selec-
tion.

1. INTRODUCTION
On-line analytical processing (OLAP) and data ware-

housing are essential elements of decision support, which
is aimed at enabling executives, managers, and ana-
lysts to make better and faster decisions [8]. OLAP
applications include marketing, business reporting for
sales, management reporting, business-process manage-
ment, budgeting and forecasting, financial reporting,
and health care. Stored OLAP data are commonly pre-
sented as a large-scale multidimensional data cube; typ-
ical data-analysis queries on the cube data involve ag-
gregation of large volumes of stored data and are thus
complex and time consuming. Precomputing (materi-
alizing as views) and indexing auxiliary data aggrega-
tions is a common way in OLAP of reducing query-
evaluation time costs for frequent and important data-
analysis queries. We now give an example that shows
how materialized views and indexes may speed up the
evaluation times of aggregate queries. 1

EXAMPLE 1.1. Consider a data warehouse with
three stored relations: Sales(CID,DateID,QtySold),
Company(CID,CompName,State), and Time(DateID,Day,
Month,Year). Here, Sales is the fact table in the star
schema of the data warehouse, and Company and Time
are dimension tables, with key attributes underlined.

1Throughout the paper we assume that data warehouses
under consideration have the star schema [8], and that
the costs of evaluating a query are proportional to the
number of stored-data tuples scanned by the query-
processing system when evaluating the query [11, 13].

Suppose the query workload has two queries, Q1 and
Q2. Q1 asks for the maximal quantity of products sold per
state in November 2006. Q2 asks for the total quantity
of products sold per company per year in North Carolina
since 2000. The SQL representation of the queries is as
follows:

Q1: SELECT State, MAX(QtySold)
FROM Sales s, Time t, Company c
WHERE s.DateID = t.DateID AND s.CID = c.CID
AND Year = 2006 AND Month = ‘Nov’
GROUP BY State;

Q2: SELECT c.CID, Year, SUM(QtySold)
FROM Sales s, Time t, Company c
WHERE s.DateID = t.DateID AND s.CID = c.CID
AND State = ‘NC’ AND Year > 2000
GROUP BY c.CID, Year;

Each of Q1 and Q2 can be answered using either the
original stored fact and dimension tables or the raw-
data view2 of this data warehouse. (Under the realistic
assumption that the warehouse contains indexes on the
primary keys of all the stored tables, these two strategies
for evaluating Q1 have similar time costs; the same point
holds about Q2.)

We can use techniques from [1, 13] to show that the
following view V can be used to give exact answers to
each of Q1 and Q2.

V: SELECT c.CID AS CID, Year, Month, State,
SUM(QtySold) AS SumQS, MAX(QtySold) AS MaxQS
FROM Sales s, Time t, Customer c
WHERE s.DateID = t.DateID AND s.CID = c.CID
GROUP BY c.CID, Year, Month, State;

When we materialize V as a table in the data ware-
house, under a wide range of realistic assumptions on
the contents of the stored data there is an evaluation-
time benefit to using V instead of the raw-data view (or
of the original stored tables) in answering each of Q1
and Q2. This benefit is present even when we assume
that no indexes have been created on the stored table V.
However, if we create a B+-tree index I on the sequence
of attributes Year, Month, State, CID of the table V,
we may be able to drastically cut the evaluation costs
for Q1. The reason for this further cost reduction is that
index I permits the OLAP system to scan only those
tuples of the view that contribute directly to the answer
to Q1. (These are the tuples that have the sales infor-
mation only for November 2006.) At the same time, in
answering query Q2 on view V, index I may not be as
beneficial, because Year is the only attribute that can be
used to limit the number of tuples scanned for Q2. !

The prominent role of materialized views and indexes
in improving query-processing performance has long been
recognized, see, for instance, [5, 20]. Enterprise-class
database-management systems that include modules for

2The raw-data view of a star-schema data warehouse is
the table resulting from the star join of all the stored
(both fact and dimension) tables. The raw-data view
can be defined in SQL as a GROUP BY, on all the dimen-
sion attributes of the stored data, of the table resulting
from the star join.

generic view and index selection include Microsoft SQL
Server [2, 21] and DB2 [5]. At the same time, while it
can be relatively easy to improve to some degree query-
evaluation costs by using, for instance, greedy strategies
for choosing indexes or views, it is highly nontrivial to
arrive at a globally optimum solution, one that reduces
the processing costs of typical OLAP queries as much
as is theoretically possible.

As we show in our experiments (Section 7) as well
as in our related project [18], our proposed approaches
to view and index selection result in high-quality solu-
tions — in fact, in globally optimum solutions for many
realistic-size problem instances. Thus, they compare fa-
vorably with the well-known OLAP-centered approach
of [11] and provide for a winning combination with the
end-to-end framework of [2] for generic view and index
selection.

Of course, we can talk about “globally optimum” so-
lutions only when we have defined the OLAP view- and
index-selection problem in a formal way. We provide a
precise definition of the OLAP view- and index-selection
and a detailed discussion in Section 2; we now give an
informal discussion of this optimization problem.

In our OLAP view- and index-selection problem, (1)
the inputs include the data-warehouse schema, a set of
data-analysis queries of interest, and a storage-limit con-
straint, and (2) the output is a set of definitions of those
views and indexes that minimize the cost measure for
the input queries, subject to the input constraint. In
our work, we do not consider the maintenance cost; we
only consider the view selection problem under the stor-
age space limitation. For each instance of this optimiza-
tion problem one can find a globally optimum solution,
for instance by complete enumeration of all potential
solutions. Typically (see [11]), the search space of views
and indexes that can be in a potential solution includes
(1) views defined by the star join followed by a GROUP
BY on some dimension attributes in the input warehouse
schema, and (2) B+-tree indexes on such views, where
each index is defined as a sequence of GROUP BY at-
tributes in the view definition. For realistic-size problem
instances the size of this search space tends to be very
large, thus finding optimum solutions w.r.t. the entire
search space is infeasible by brute-force methods. In
fact, NP-completeness of a variant of the problem de-
scribed here is proved in [11]. Thus, it is natural to look
for heuristic solutions. Well-known past efforts in this
direction include [2, 11]; we discuss these approaches in
detail in Section 1.1.

In contrast with the past heuristic approaches, we
propose a systematic study of the OLAP view- and
index-selection problem. As observed in [16] and to
the best of our knowledge, there is no known approx-
imation algorithm for view or index selection (given a
search space of views and indexes) with nontrivial per-
formance guarantees on OLAP data cubes. This is one
reason that in this paper we concentrate instead on the
problem of pruning the search space of views and in-
dexes, with the hope that the resulting search space is
small enough, for practical problem instances, that we
can use software such as CPLEX [14] to get optimum or

near-optimum solutions with respect to that resulting
search space. (As we show in this paper, some of our
pruning methods keep in the search space at least one
globally optimum solution, which can then be found by
CPLEX.)

Our specific contributions:

• We develop an algorithm that effectively and effi-
ciently prunes the search space of potentially bene-
ficial views and indexes, for realistic-size instances
of the problem (Section 4). The pruned search
space significantly reduces the size of our integer-
programming (IP) model, so that it can be solved
more efficiently by an integer program solver such
as CPLEX [14].

• We provide formal proofs that our pruning algo-
rithm keeps in the search space at least one glob-
ally optimal solution. Thus, the solution obtained
after solving the corresponding IP model via
CPLEX (or any other IP solver) is guaranteed to
be globally optimal. This includes many problem
instances of practical interest.

• We develop a family of algorithms to further re-
duce the size of the search space. In this reduction,
we only keep a collection of promising views and
indexes and remove many other solutions. With
this reduction, we bring the size of the search space
down to a manageable level even for larger in-
stances of the problem. However, we can no longer
guarantee that the solution obtained by the IP
model and CPLEX is optimal for the original prob-
lem. Thus, our proposed algorithms are IP-based
inexact methods (heuristic procedures) for solving
the OLAP view- and index-selection problem.

• We present an experimental comparison of our IP-
based inexact approach with the generic state-of-
the-art view- and index-pruning approach of [2].
Our experiments show that for the special case of
OLAP queries, the model size of our approach is
small enough to make solution by CPLEX tractable
while still retaining solutions that have significantly
better cost than those produced when [2] is used
as a heuristic to reduce the search space. Further-
more, the runtime required to do our reduction is
not significantly larger than that of [2].

• Further, we report the results of some experiments
where we compare the performance of the well-
known view- and index-selection approach of [11]
with the performance of all IP-based approaches
that we propose here. Of course, if the size of the
problem instance permits us to use the IP model
with the original (or pruned) search space, then it
is always preferable to do so (as opposed to using
the heuristic approach of [11]), since it guarantees
to obtain a globally optimal solution. However,
in the instances where the size of this original (or
pruned) search space is so large that we cannot use
the exact IP model, then in the IP-based approach

we also employ a reduced search space, hence we
can no longer guarantee global optimality. In this
case, a direct comparison of the IP-based heuristic
with that of [11] is not possible. In section 7 we re-
port the results of applying our IP-based heuristic
and the approach of [11] on a collection of several
instances.

• In developing our solutions, we take advantage of
the special structure of data cubes.

• As our experiments show that we can solve realistic-
size instances of the problem in a fairly short
amount of time using our approaches, it is easy to
implement our approaches into standard database
systems.

The remainder of this paper is organized as follows.
We review related work in Section 1.1. In Section 2 we
discuss the formulation and settings for our OLAP view-
and index-selection optimization problem, and give a
high-level overview of our proposed approaches. Sec-
tion 3 presents our integer-programming model for view
and index selection given a (possibly pruned) search
space of views and indexes. In Section 4 we propose
approaches to prune the search space of views and in-
dexes, with the goal of reducing the size of the integer-
programming model, while maintaining that the result-
ing optimal solution of the IP model is also globally
optimal for the original problem. In sections 5 and 6
we propose methods for further reducing the size of the
search space in order to reduce the size of the resulting
IP model, but we no longer guarantee global optimality.
In Section 7 we present and discuss our experimental
results. We conclude in Section 8.

1.1 Related Work
Recall (see, e.g., [1]) that in selecting views or indexes

that would improve query-processing performance, pro-
ducing solutions that would guarantee user-specified
quality (in particular, globally optimum solutions) with
respect to all potentially beneficial indexes and views
is a computationally hard problem. In general, the au-
thors of the past approaches have concentrated on ex-
perimental demonstrations of the quality of their solu-
tions. A notable exception is the line of work includ-
ing [11, 12, 13]. In particular, a well-known paper [11]
by Gupta and colleagues proposed two families of algo-
rithms for solving the problem of view and index selec-
tion in a generalization of the OLAP setting. Unfor-
tunately, in 1999 the paper [16] disproved the strong
performance bounds of these algorithms, by showing
that the underlying approach of [13] cannot provide the
stated worst-case performance ratios unless P=NP. As
observed in [16] and to the best of our knowledge, there
is no known approximation algorithm for view or in-
dex selection with nontrivial performance guarantees on
data cubes.

[10] discusses a uniform approach for selecting views
and indexes for OLAP queries. This approach consid-
ers view- and index- maintenance costs alongside query-
response costs. The paper proposes to use a “bond
energy” algorithm for initial clustering of indexes, and

then to apply a partitioning method to select a set of
views or indexes. Once the best partition is found,
views or indexes are eliminated in a greedy manner,
until the storage-space constraint is satisfied. The pa-
per [10] leaves out most implementation detail as well
as any performance study of the proposed approach,
which makes the approach very hard to compare with
other work.

The state-of-the-art paper [2] presents a tool for au-
tomated selection of materialized views and indexes for
a wide variety of query, view, and index classes in re-
lational database systems. The approach of [2], imple-
mented in Microsoft SQL Server, is based partly on the
authors’ previous work [9] on index selection. The con-
tributions stated in [2] are (i) the proposed end-to-end
framework for view and index selection in practical sys-
tems, and (ii) the module for building the search space
of potential views and indexes for a given query work-
load. (Interestingly, the authors of [2] do not recognize
as a contribution their heuristic algorithm for selecting
views and indexes from the search space built in their
framework.) In this paper, we experimentally show that
our proposed pruning algorithms for view and index se-
lection fare well when compared (in the special case of
OLAP queries) to the pruning algorithm of [2]. This
means that our algorithms are suitable for complement-
ing the overall framework of [2] in the special case of
OLAP, by providing the user with solution-quality guar-
antees on the views and indexes to be materialized. Also
see [18] for our approach to quality-guaranteed view and
index selection for the [2] framework, for the general
case of typical practical (both OLAP and OLTP) query,
view, and index classes.

Other past work considers either selection of indexes
only (see, e.g., [6, 7] and references therein) or selec-
tion of views only (see, e.g., [4, 15, 22, 24] and refer-
ences therein) for OLAP. In particular, Yang and col-
leagues [24] propose an integer-programming model for
selecting the search space of views, coupled with a heuris-
tic algorithm for selecting views from the resulting space,
for the cost measure of query-processing costs combined
with view-maintenance costs. Note that in our approach
we use integer programming at the stage of view-select-
ion proper, rather than at the stage of forming or prun-
ing the search space, and that our search space includes
not only views but also indexes.

2. PRELIMINARIES
We consider relational select-project-join queries with

grouping and aggregation (SPJGA) in star-schema data
warehouses [8, 17]. Similarly to [11, 13, 15, 22], we as-
sume users frequently ask a limited number of SPJGA
queries, such as itemized daily sales reports, for a va-
riety of parameters for products, locations, etc. Thus,
we assume parameterized queries, by allowing arbitrary
constant values in the WHERE clauses of the queries,
and assume that specific values of these constants are
not known in advance. We consider star-schema data
warehouses with a single fact table and several dimen-
sion tables, under the following realistic assumptions.
First, in each base table all rows have a single fixed

(upper bound on) length. Second, the fact table has
many more rows than each dimension table. Finally, we
assume that each base table has a single index, on the
table’s key.

Our (full) search space of views is the view lattice de-
fined in [13], which includes all star-join views with
grouping and aggregation (JGA views) on the base ta-
bles. Each lattice view (1) has grouping on some of the
attributes used in the GROUP BY and WHERE clauses in
the input queries, and (2) has aggregation on all the
attributes aggregated in the input queries, using all the
aggregation functions used in the queries (such views
are called “multiaggregate views” [1]).

B+-tree indexes play an important role in answering
queries efficiently. The ordering of attributes in an in-
dex is important in answering a query using that index.
A B+-tree index can be defined by any permutation
of any subset of attributes of a view. However, in our
study we consider only fat indexes over the lattice views
— that is, those indexes that have a permutation of all
of the grouping attributes of one of the views in the
view lattice. We can extend our approaches to select
among non-fat indexes as well. We plan to do this in
our future work. Also, in our paper, we assumed that
the attributes in WHERE clause and in GROUP BY clause
are equally important. However, we can extend our ap-
proach to favor certain attributes to the others.

A SPJGA query q can be answered using a JGA view
v only if the grouping attributes of v are a superset of
the union of attributes in the GROUP BY clause of q
and of the attributes in the WHERE clause of q that
are compared to constants. By definition, each query q
can be answered using the raw-data view in the lattice.
Furthermore, if view v is chosen for answering query q,
then at most one index of view v can be used to answer
query q.

2.1 Cost Model
The cost model that we use is similar to the one pro-

posed in [11], i.e., the cost of answering query q using
view v is the size of that portion of v that we must
process in order to construct the result of q. When we
answer query q using only view v with no indexes, we
have to scan all rows of v to answer q. However, when
we answer query q using view v and some index π on
v, we read only the part of v referenced by the index
with respect to the query. [11] generalizes the above ob-
servations to obtain a formula for the cost of answering
query q using view v and index π.

Suppose A is the set of attributes in the GROUP BY
clause of query q and the attributes that are compared
with constant in the WHERE clause of query q. Also, sup-
pose B is the set of grouping attributes of view v. If
view v can answer query q, we have A ⊆ B. Further-
more, let "R be an ordered set of attributes in index π
over view v. "R is a sequence of attributes of B. "R = ()
(the empty sequence) denotes the case where we are not
using any index.

Let D denote the largest subset of A such that the
attributes in D form a prefix (not necessarily proper) of
"R. Then Cq(π, v) which is the cost of answering query

q using view v and index πv is defined as follows:

Cq(π, v) =
size(v)

size(vD)

where vD is a view which its grouping attributes are the
attributes in the set D. Note that vD = φ represents
the view which is aggregated on all of the attributes of
the database.

We use sampling and analytical methods to compute
the sizes of views in the view lattice. The size of a
given view is the size (in bytes) of the distinct values
of the attributes that the view groups by. Thus if the
set of the GROUP BY attributes of view v1 is a subset
of the set of the GROUP BY attributes of view v2, then
size(v1) ≤ size(v2).

A typical cost measure for query-evaluation efficiency
is the sum of the costs of evaluating the OLAP queries
of interest, where the cost of each individual query in
the sum may be weighted according to the frequency or
importance of the query.

2.2 Problem Statement
In practical settings, the amount of available storage

(disk) space is a typical natural optimization constraint
in the (OLAP) view- and index-selection problem, as
storing all possibly beneficial views and indexes is in-
feasible in today’s database systems [2, 11]. This is still
true even when we restrict our consideration to a set of
frequent and important data-analysis queries instead of
making the view- and index-materialization effort for all
possible aggregate queries.

We consider the following OLAP view and index selec-
tion problem OLAP-VI: Given a star-schema data ware-
house and a set of parameterized SPJGA queries, our
goal is to minimize the evaluation costs of the queries in
the workload, by selecting and precomputing (i) a set of
lattice (JGA) views that can be used in answering the
queries, and (ii) some fat indexes over those views. We
consider this minimization problem under the storage-
space limit, which is an upper bound on the amount
of disk space that can be allocated for the material-
ized views and indexes. Thus, our problem input are of
the form I = (D,Q, b), where D is a database, Q is a
workload of parameterized queries, and b is the (positive
integer) value of the storage limit.

Definition. For a problem input I = (D,Q, b), a set
of views and indexes VI is admissible if (1) each query
in Q can be rewritten using views in VI, and (2) views
and indexes in VI satisfy the storage limit b. !

Definition. For a problem input I = (D,Q, b), an
optimal set of views and indexes is a set of views and
indexes VI such that (1) VI is admissible for I, and (2)
VI minimizes the cost of evaluating Q on the database
Dv, among all admissible set of views and indexes for
I. Here, Dv is the database that results from adding
to D the relations for all the views in VI and all of the
indexes in VI. !

Definition. (OLAP-VI problem) For a given problem
input I = (D,Q, b), find an optimal set of views and
indexes. A solution for a given instance of the view-and

index-selection problem for OLAP (OLAP-VI) consists
of a set of materialized views V (which includes the raw-
data view on D and all additional views that we choose
to materialize), a set of indexes over views in V, Π,
and an association between each element of Q and its
corresponding element of V and Π. !

Our problem statement is a special case of that of [11];
at the same time, we consider the hardest version of the
problem statement of [11], by including in the initial
search space of views and indexes the entire view lat-
tice and all the fat indexes on the lattice views. Also
note that, even though we consider “fat” indexes only,
a straightforward modification of our approach can pro-
duce indexes with any number of columns.

3. THE IP MODEL
In this section we propose an integer-programming

(IP) model for our OLAP view- and index-selection prob-
lem OLAP-VI. This IP model is the starting point from
which we derive improvements, each of which signifi-
cantly reduces the number of variables and constraints
in the model.

To prune the search space of views we use a modifica-
tion of our approach in [3]; For each view v in the view
lattice V and a given query workload Q, we define Q(v)
as the set of queries in Q that can be answered by v. We
consider a view v to be in the search space of views if
each attribute of v is an attribute of one of the queries in
Q(v). We experimentally show the effectiveness of this
method for reducing the size of the search space of views
in Section 7. We use two sets of binary variables in our
IP model. The variables in the first set are in the form
yvπq, for all v ∈ V ′, π ∈ Iv, and q ∈ Q. The value of
yvπq is one if and only if view v along with index π over
v is selected to answer query q. Note that π in yvπq can
represent the empty set, for the case where only view v
without any index is selected to answer query q. The
variables in the second set are in the form xvπ, where
v ∈ V ′ and π ∈ Iv. If index π of view v is selected for
materialization, then xvπ = 1. Also, if view v is selected
we have xvφ = 1.

Our problem OLAP-VI can now be stated as the fol-
lowing IP model:

min
X

v∈V ′

X

π∈Iv

X

q∈Q(v)

Cq(π, v)yvπq (1)

subject to
X

v∈V ′

X

π∈Iv

yvπq = 1 ∀q ∈ Q(v) (2)

X

v∈V ′

X

π∈Iv

size(v)xvπ ≤ b (3)

yvπq ≤ xvπ v ∈ V ′, π ∈ Iv, q ∈ Q(v) (4)

xvπ ≤ xvφ v ∈ V ′, ∀π ∈ Iv (5)

x1φ = 1 (6)

yvπq, xvπ ∈ {0, 1} v ∈ V ′, π ∈ Iv, ∀q ∈ Q(v) (7)

In this model, Cq(π, v) is the cost of answering query q
using view v and index π.

The meaning of constraint (2) is that each query should
be answered by exactly one view and either no index or
one of the indexes of that view. Constraint (3) states
that the total storage requirement for the selected views
and indexes should not exceed the prespecified amount
b 3 . Constraint (4) ensures that if a view and one
(or none) of its indexes is used to answer a query, then
the corresponding view and index must be materialized.
Constraint (5) implies that if an index is selected, its
corresponding view should be selected too. Constraint
(6) states that the raw-data view is always selected. Fi-
nally, the meaning of constraint (7) is that the variables
in the model are all binary.

Suppose the value of storage space b is set to be

b = size(raw-data view)+α× (
P

q∈Q size(q)) .

If α < 0, the problem is infeasible, since the available
storage space is not sufficient for storing the raw-data
view. (If α = 0 then the problem is not challenging.)
If α ≥ 2, then the best solution is to materialize the
raw-data view, all the queries, and an optimal index
per query; 4 the cost (i.e., the value of the objective
function) would be the number of queries. Thus, for
the view- and-index-selection problem OLAP-VI to be
nontrivial, we need 0 < α < 2. Note that the cost
of answering each query is at least 1. As a result, the
number of the queries in the workload is a lower bound
on the cost in this model.

4. THE IPP MODEL
The search space of indexes and views in our IP

model (Section 3), i.e., the sets V ′ and Iv for all v ∈ V ,
can be very large for realistic-size instances of our prob-
lem OLAP-VI. For each view v, there are |v|! fat indexes
in the search space. In this section we propose an ap-
proach to significantly reduce the number of indexes to
be considered for each view, while still retaining all in-
dexes associated with the optimum solution. We make
the observation that only some points along an index
π lead to query cost decreases – the attributes between
such points can be arbitrarily permuted. With the help
of an auxiliary graph G we can formalize this insight
and reduce the number of candidate indexes from |v|! to
2|Q(v)|, a significant reduction, especially if only a few
queries benefit from v. We begin with two illustrative
examples.

EXAMPLE 4.1. Consider view v = {a, b, c, d, e, f}
and queries Q1 = {a, b, c, d, e}, Q2 = {a, b, c, d}, Q3 =
{b, c, d}, and Q4 = {b}. (We represent each query or
view as a set of attributes in its GROUP BY and WHERE
clauses, and each index as a sequence of attributes of the
underlying view.) Notice that in this example Q4 ⊂ Q3 ⊂

3We assume (see [11, 13]) that the storage requirement
for each fat index is the same as that for the underlying
view.

4We assume (see [11, 13]) that the raw-data view (i.e.,
the top of the view lattice) is always in the solution.

Q2 ⊂ Q1, i.e., the queries form a “chain”. Now consider
index π∗ = (b, d, c, a, e, f). This index has the attributes
of each of Q1, Q2, Q3, and Q4 as its prefix. Thus, for each
query q ∈{Q1, Q2, Q3, Q4}, the evaluation cost Cq(π

∗)
does not exceed Cq(π), where π is any of the 6! indexes
over view V . !

EXAMPLE 4.2. Consider view v = {a, b, c, d, e}; let
queries Q1 = {a, b, c, d} and Q2 = {c, d, e} be the only
queries in Q(v). Unlike example 4.1, these queries do
not form a chain, yet they both have attributes c and
d. Thus, those indexes over view v whose first two at-
tributes are c and d can reduce the cost of answering
queries Q1 and Q2 by at least a factor of size({c, d}). For
an index to further reduce the cost of Q1 it has to have
attribute a or b immediately after c and d. To further
reduce the cost Q2, e must be next. Storing both of the
indexes (c, d, a, b, e) and (c, d, e, a, b) is the best choice
for minimizing the cost of answering queries Q1 and Q2
using view v. However, if the space limit is sufficient
for only a single index, one of those two indexes is still
the best choice. This means that the 5! = 120 indexes
of Iv can be replaced with only two choices while still
retaining the optimal solution. !

In what follows we explain how to identify a restricted
set of indexes I for an arbitrary view v ∈ V ′. For each
view v, we build a digraph G. The nodes of digraph G
are sets of attributes in v: the empty set φ, the universal
set v, the attributes of a query q in Q(v), or attributes
that two or more queries have in common. There is an
edge from w1 to w2 if w1 ⊂ w2, and there is no node
w ∈ G with w1 ⊂ w ⊂ w2. Note that G has a single
source φ and a single sink v (all attributes of v).

In Ex. 4.1 the nodes of G are the sets φ, {b}, {b, c, d},
{a, b, c, d}, and {a, b, c, d, e}, and the edges form a path
that includes all nodes from φ to {a, b, c, d, e}. In Ex. 4.2
the nodes are φ, {c, d}, {c, d, e}, {a, b, c, d}, and {a, b, c, d,
e}. There are two source-sink paths — one going through
{c, d, e}, the other through {a, b, c, d}. As these exam-
ples illustrate, there is a discernible relationship between
paths of G and indexes in our restricted set I.

Definition. A path P in G that begins at the source is
related to an index π if every node along P is the set of
attributes in a prefix of π. We say that P agrees with a
query q if every node w along P has w ⊆ q. !

Definition. We define the cost associated with index π
of view v as the total cost of answering queries in Q(v)
using view v and index π. !

From here on, every use of the word path refers to a
path that begins at the source of G. The definition also
applies to all such paths that go only part way to the
sink.

Consider the relationship between an arbitrary query
q and a path P . We can identify a node w such that
P agrees with q up to and including w, and fails to
agree after that — note that w may be the last node on
P , in which case all of P agrees with q. For any node
z on path P starting at w, we know that w ⊆ z. By
construction of G, we can also deduce that q∩z = w. In
other words, none of the attributes in z \w are relevant

to q. Thus the cost of answering query q using any index
related to P is the same, since any index related to P
only has those attributes of q as a prefix that are in w.
This observation leads to the following lemma.

Lemma 4.1. If P is a source-sink path in G and P is
related to two indexes π1, π2, then the costs associated
with π1 and π2 are the same. !

The conclusion is that the cost associated with an
index depends only on the unique source-sink path that
agrees with it. The indexes related to a source-sink path
P form an equivalence class w.r.t. cost: any index from
that class can be chosen.

We formalize this for the set of optimal indexes I∗ for
view v.

Lemma 4.2. Let π be an index in I∗ for view v and
G be the diagraph related to view v. Then there is an
index π′ ∈ Iv that is related to a source-sink path in G
and has at most the same cost as π with respect to every
query in Q(v). !

Proof. Let P (π) be the longest path of G that is
related to π. Let w be the last node in P (π) and let
attributes in {a1, . . . , ak} be what remains of π after
the attributes of w have been removed. Suppose the
order of attributes in {a1, . . . , ak} after attributes of w
in π is (a1, . . . , ak). Let wi be a child node of w that has
all of the attributes in {a1, . . . , ai}. Also, suppose wi is
a node with the largest value of i. If i = k, then wi is a
sink node and P (π) is a source-sink path. As a result,
based on the Definition 4, π is related to a source-sink
path and π′ = π. So suppose i)= k. Consider a source-
sink path P that P (π) and wi are part of it. Note that
P (π) along with wi forms a path on P . Furthermore,
suppose index π′ is related to path P .

We categorize the queries in Q(v) into three groups
(some groups may not contain any query): (1) those
that do not have all of the attributes in w, (2) the query
that its attributes are the attributes in w, and (3) those
that do have all of the attributes of w and some more
attributes. The cost of answering any query q in groups
1 and 2 using π is the same as the cost of answering q
using π′ since the order of the attributes of q that form
a prefix of π is the same in π′. Any query q in group
3 has all of the attributes in wi, otherwise a node with
attributes q ∩ wi would be between node w and wi on
P which is against the fact that w is a direct parent of
wi on G. Also, π does not have all of the attributes in
wi as a prefix otherwise w would not be the last node
on P (π), but as π′ is related to P , it has all of the
attributes of wi as a prefix. Knowing the fact that any
query q in group 3 has all of the attributes in wi, and
knowing that π does not have all of the attributes in wi

as a prefix but π′ does, results in the following: the cost
of answering any query q in category 3 using index π′ is
not more than the cost of answering q using index π. !

What this lemma is saying is that we do not give
up any optimal indexes by restricting ourselves to those
that correspond to source-sink paths.

We are now ready to define the IPP model as an
integer programming model that differs from our IP

a,b,c,d

a,c a,b b,d

a b

Figure 1: Graph G for Example 4.3.

model of Section 3 in that we use the set I ′v in place of
Iv. The set I ′v is defined by considering all source-sink
paths P in the graph G for v and choosing, for each
path, one π related to it.

The following is a direct consequence of Lemmas 4.1
and 4.2.

Theorem 4.1. Any optimal solution of the IPP model
is optimal for the IP model. !

EXAMPLE 4.3. Consider view V = {a, b, c, d} and
query workload QV = {Q1, Q2, Q3, Q4} where Q1 = {a, b, c, d},
Q2 = {a, c}, Q3 = {a, b}, and Q4 = {b, d}. Figure 1 rep-
resents graph G for V. The paths in this graph are as
follows:

1. φ → b → b, d → a, b, c, d

2. φ → b → a, b → a, b, c, d

3. φ → a → a, b → a, b, c, d

4. φ → a → a, c → a, b, c, d

An index related to the first path should have first b, then
d, and next a and c (a and c are in an arbitrary order
at the end of the permutation). Thus index (b, d, c, a) is
related to the first path. Indexes (b, a, c, d), (a, b, d, c),
and (a, c, b, d) are related to the second, third, and forth
paths, respectively. Thus we have:
I ′v={(b, d, c, a), (b, a, c, d), (a, b, d, c), (a, c, b, d)}. !

A major limitation of the IPP model is the size of G,
and hence the number of paths in it. In the worst case
this will be exponential in the number of attributes. In
the next two sections we will address this limitation by
giving up potential optimal solutions in favor of decreas-
ing the size of the search space of indexes.

5. THE IPN MODEL
Although our experiments show that our IPP ap-

proach (Section 4) is efficient in reducing the number
of indexes considered in the search space of our IP
model (Section 3), there are many realistic problem in-
stances that we still cannot solve using our IPP model.
Our next reduction in problem complexity comes about
when we limit the number of paths to consider in the
auxiliary graph G (Section 4). While this does not re-
duce the size of the graph, it will significantly reduce the
number of variables and constraints in the model, thus
reducing the time required to solve it. Except for a spe-
cial case discussed at the end of this section, however,
the smaller model may not yield an optimum solution
to the overall problem.

First we introduce parameter N(v), defined as an up-
per bound on the number of indexes required for view v
to ensure a locally optimal solution with respect to v. By
“locally optimal” we mean a solution that would be op-
timal if v were the only materialized view. As observed
in the previous section, it suffices to choose one index
per path in G — call this set of indexes IN(v). The
IPN model is based on the choice of indexes yielded
when IN(v) is chosen in place of I ′v. At the end of this
section, we introduce a special case of our OLAP view-
and index-selection problem, for which the IPN model
guarantees an optimum solution.

Due to the space limit for storing indexes and the
limited number of queries that each view can answer,
there are upper bounds on N(v). We have N(v) ≤
|Q(v)|, since each query q ∈ Q(v) can be answered
optimally w.r.t. v by at most one index of v. Also,
N ≤ *(b−size(v))/size(v), because of the storage limit
— each index requires size(v) additional storage. Thus,
N = min{|Q(v)|, *(b− size(v))/size(v),}.

Suppose we find a source-sink path P that yields the
locally optimal solution when only one index is possible.
Let Q(P) be the set of queries q for which there exists
a node w on P with q ⊆ w — these are the queries that
are helped by (indexes related to) P to the maximum
extent possible. When there is room for more indexes,
the locally optimum solution consists of an index related
to P combined with the locally optimum solution over
queries in Q(v) \ Q(P).

The algorithm below finds the optimum path P in G.
We can apply the algorithm N(v) times. Each time we
remove from G all nodes that exist only because of the
queries in Q(P).

Algorithm Optimal Path
for each other node w)= φ in G, in topological order do

let pred(w) = {u | uw is an edge of G}
choose u ∈ pred(w) with minimum cost(path(u))
let path(w) = path(u), w

end do

At the end of Optimal Path, w is the sink and path(w) =
P , the path we are looking for. The predecessor of w on
P is the intersection of one or more queries, all of which
agree with P .

Given N(v) we can use the graph G to compute the
N(v) best paths. We do N(v) repetitions of algorithm
Optimal Path. After a repetition computes a path P we
update G, keeping the source, the sink, and all nodes
that are intersections of queries in Q(v)\Q(P); all other
nodes are discarded.

EXAMPLE 5.1. Consider view V and the set of queries
Q(v) described in Ex. 4.3. Suppose N(v) = 2. Let size({a})
= 200, size({b}) = 100, size({a, b}) = 250, size({a, c}) =
400, size({b, d}) = 200, and size({a, b, c, d}) = 1000.
The corresponding graph G is shown in Figure 2(a).

Now, using cost(w) as shorthand for cost(path(w))

a,b,c,d

a,c a,b b,d

a b

(a) The original graph G.

a,b,c,d

a,b b,d

b

(b) The modified graph after the first iteration.

Figure 2: Graphs for two iterations of Example 5.1.

the first repetition of the algorithm is

cost({a}) = 3× 1000/200 + 1000 = 1015

a ∈ Q1, Q2, Q3

cost({b}) = 3× 1000/100 + 1000 = 1030

b ∈ Q1, Q3, Q4

path({a, b}) = {a}, {a, b} cost({a}) < cost({b})
cost({a, b}) = 2× 1000/250 + 1000/200 + 1000

= 1013 a, b ∈ Q1, Q3; a ∈ Q2

path({a, c}) = {a}, {a, c} no other choice

cost({a, c}) = 2× 1000/400 + 1000/200 + 1000

= 1010 a, c ∈ Q1, Q2; a ∈ Q3

path({b, d}) = {b}, {b, d} no other choice

cost({b, d}) = 2× 1000/200 + 1000/100 + 1000

= 1020 b, d ∈ Q1, Q4; b ∈ Q3

path({a, b, c, d}) = {a}, {a, c}, {a, b, c, d}
cost({a, c}) < cost({a, b})
cost({a, b}) < cost({b, d})

cost({a, b, c, d}) = 1000/1000 + 1000/400 + 1000/200

+1000

= 1008.5

a, b, c, d ∈ Q1; a, c ∈ Q2; a ∈ Q3

At this point we can choose π = (a, c, b, d), which relates
to P . We see that Q1 and Q2 are helped by π to the
maximum extent possible. We remove node {a, c} on
path P which is associated with Q2, yet we keep node
{a, b, c, d} because it is a sink node. Furthermore, we
remove node {a} as it is not the intersection of those
queries that are left in the graph, i. e. {a, b} and {b, d}.
The resulting graph is in Figure 2(b). !

Special Case
In general, IPN does not guarantee that the solution
it obtains is the optimum for the original problem. To
see this note that IN(v) is the best set of N(v) indexes
over view v to answer queries in Q(v), given view v is
selected to answer all of the queries in Q(v). But an
optimum solution might not use v to answer all of the
queries in Q(v) – some queries could benefit more from
other views.

However, if the set of selected views V ∗ in the opti-
mum solution of IP model are such that no two views
other than the raw-data view in V ∗ can answer the same
query in the set Q and if no index is selected for the
raw-data view, then any v ∈ V ∗ must answer all of the
queries in Q(v). Considering the property of IN(v) dis-
cussed above, it follows that in this case any optimum
solution of IPN is optimum for the original problem.
Since size(v) is always ≤ the size of the raw-data view,
we can safely choose v instead of the raw-data view.

This property, in turn, guarantees that for certain
instances of the view-and index-selection problem, the
solution obtained by IPN is indeed guaranteed to be
optimum for the original problem. In particular, we
have the following special case:

Theorem 5.1. If in an instance of the view-and index-
selection problem, the set of attributes of none of the
queries in the workload is a subset of the union of the
sets of attributes of other queries, then for this instance
there exists a set of optimum views such that no two
views other than the raw-data view in this set can an-
swer the same query. In this case if the solution of IPN
is in such a way that no index is selected for the raw-data
view, IPN guarantees to provide the optimum solution
for the original problem. !

Proof. Consider the set of optimum views for this
instance. Suppose there exists a view v in this set that
can answer query q, yet in the optimum solution, query
q is selected to be answered by view v̂ which is another
view in the set of optimum views. In what follows, we
explain how to substitute view v in the set of optimum
solution by another view v′ and how to substitute in-
dexes over view v in the set of optimum indexes by some
indexes over view v′ such that 1) the total cost of evalu-
ating queries does not increase, and 2) v′ cannot answer
q.

Consider view v′ in the view lattice that its set of
attributes is the union of the sets of attributes of queries
in Q(v) \ {q}. Obviously, the set of attributes of v′ is
the subset of the set of attributes of v. Since the set of
attributes of q is not a subset of the union of the sets of
attributes of queries in Q(v) \ {q}, v′ cannot answer q,
but it can answer all other queries that are selected to
be answered by v.

Suppose q′ is a query that is selected to be answered
by view v and index πv over view v in the optimum
solution. We have:

Cq′(πv, v) =
size(v)

size(vq′)
(8)

where vq′ is the view that its attributes are the largest
subset of attributes of q′ that forms a prefix of πv. Now

consider the cost of answering query q′ using view v′ and
index πv′ . Index πv′ is an index over view v′ related to
index πv where attributes in πv′ have the same order as
attributes in πv, i.e., if attribute i is before attribute j
in πv, same is the order of i and j in πv′ . (Note that πv

has all of the attributes in πv′). We have:

Cq′(πv′ , v′) =
size(v′)
size(vq′)

(9)

Since v has all of the attributes in v′ we have:

size(v′) ≤ size(v) (10)

Also, since the order of attributes of q′ is the same in
πv and πv′ and πv has more attributes than πv′ , the set
of attributes of vq′ is the subset of the set of attributes
of v′q′ . Thus

size(vq′) ≤ size(v′q′) (11)

From equalities 8 and 9 and inequalities 10 and 11 we
have:

Cq′(πv′ , v′) ≤ Cq′(πv, v) (12)

Since q′ is an arbitrary query that is selected to be an-
swered by v, inequality 12 is true for all queries that are
selected to be answered by v. As a result, if we substi-
tute v in the set of optimum views by v′ and any index
πv over view v in the set of optimum indexes by its re-
lated index πv′ over view v′, the total cost of evaluating
queries will not increase. Also, these substitutions do
not violate any of the constraints of the problem.

We can repeat the above substitution procedure until
there is no view other than v̂ in the set of optimum views
that can answer q. We also repeat this for all queries
that can be answered by more than one view other than
the raw-data view in the set of optimum views. This way
we build a set of optimum views that no two view other
than the raw-data view can answer the same query.

6. THE IPNIR MODELS
In the previous section we achieved significant reduc-

tion in the size of the IP model — IPN has at most
|Q(v)| indexes to consider for each view v, instead of
the potential 2|Q(v)| of the IPP model of Section 4. To
achieve this reduction, however, we still needed to cre-
ate a graph with 2|Q(v)| nodes in the worst case. Now
we consider the possibility of creating only the most im-
portant part of the graph.

As we observed in Example 4.2, the order of the first
attributes of each index are much more important than
the order of the last attributes of that index. When the
first attributes of index π are common to the largest
number of queries in Q(v), the index π tends to be more
effective in reducing the cost. A promising approach,
therefore, is to restrict our construction of G to Gp,
with only those nodes that represent intersections of at
least p queries. The value of p can range from 1 to
|Q(v)|. We also keep in Gp the nodes representing single
queries in Q(v). This is to ensure that we do not miss
an opportunity to agree completely with a query.

In order to generate the IPNIR(p) search space of
indexes for each view v, we reuse the algorithm that

a,b,c,d

ba

Figure 3: Graph G for Example 6.1.

generates IN(v), except that instead of using G in the
first iteration, we use Gp. Note that for p = 1 or 2, Gp is
the same as G. As we increase the value of p, the number
of nodes in Gp will decrease; as a result, building the
search space of indexes would be less time consuming.
The size of Gp is

Pk−p
i=1 c(k, i), where k = |Q(v)| and

c(k, i) is the number of ways to choose i items from k.
This is roughly O(2k−p).

For some large instances, building the IPNIR(p) search
space of indexes for view v may require a lot of time
even for large values of p. For this reason, we propose
three other approaches to further reduce the number of
nodes considered in Gp. In the first approach, we only
consider nodes that represent queries and nodes that
are immediate successors of the source (minimal number
of attributes or maximal number of queries intersected
without being empty) — call this IPNIR-QS.

In the second approach, we leave off the nodes that
are queries, only considering the immediate successors of
the source, intersections of as many queries as possible.
We call this second approach IPNIR-S.

The other way to restrict the first approach gives us
a final approach: only consider nodes that are queries.
Call this approach IPNIR-Q.

EXAMPLE 6.1. Figure 3 shows graph GS in the first
iteration of IPNIR-S. !

Our experiments show that when the building time
and solving time of IPNIR(p) model is significantly
different, the time needed to build IPNIR(p) model is
dominated by the time needed for CPLEX to solve the
related integer programming model. See Section 7 for
details of the experiments and analysis on IPNIR(p)
model.

Each of these approaches yields a corresponding in-
teger programming model in the obvious way. In the
remainder of the paper we examine the benefits of our
various improvements (described in Sections 3-6) on our
original IP model through experimental evidence.

7. EXPERIMENTAL RESULTS
In this section, we present the results of computa-

tional experiments to evaluate the performance of our
proposed exact and inexact methods. The experiments
consist of solving a collection of instances of the view-
and-index-selection problem using each of the proposed
algorithms and other competitive algorithms. For solv-
ing our instances, we have to choose a solver and a
search space.

In our approaches, we used integer programming to
select views and indexes. In order to solve the integer
programming models, we used CPLEX [14] as a solver.
We also used a greedy approach that we call it GHRU
(defined below) to solve instances. Thus we used two
solvers for solving our instances: CPLEX and GHRU.

The search space of views and indexes that we con-
sider in our experiments are 1) the original search space
of views and indexes which contains all of the views
in the view lattice and all possible fat indexes for each
view, 2) the IP search space of views and indexes where
views are reduced to those that are the union of the
queries that they can answer and for each such view, all
possible fat indexes are considered in the search space of
indexes, 3) IPP, 4) IPN, 5) IPNIR, and 6) ACN search
space of views and indexes.

The results of our experiments show the followings:

• IPP is effective in reducing the size of the search
space of views and indexes without removing any
optimal view or index from the search space.

• Most of the time we obtain optimal solutions by
applying CPLEX on IPN search space of views and
indexes. Also, IPN search space is consistently a
better search space than ACN in terms of includ-
ing views and indexes that result in a lower cost
of answering the queries, regardless of the solver
that is used, i.e. CPLEX or GHRU. Moreover, the
execution time for applying a solver on IPN and
ACN search spaces are comparable.

• GHRU performs significantly better on IPN search
space than any other search space mentioned above.
In other words, GHRU by itself does not select a
good combination of views and indexes, however
if the search space is pruned before hand through
IPN algorithm, then GHRU selects a much better
combination of views and indexes.

In the remainder of this section we present a detailed
account of our experiments and analysis.

7.1 Experimental Settings
We implemented our algorithms in C++ and ran them

on a PC with a 3GHz Intel P4 processor, 1GB RAM,
and a 80GB hard drive running Red Hat Linux Enter-
prise 4. As mentioned earlier in this section, we used
the CPLEX solver [14] to solve the integer-programming
models. For comparative purposes we also indepen-
dently developed computer programs for two other al-
gorithms that we refer to as ACN and GHRU. We coded
these algorithms in C++ as well and ran the code on
the same platform.

The first algorithm we use in our experimental com-
parisons was proposed in [2]; its primary contribution
is to reduce the size of the search space by constructing
effective subsets of views and indexes. (See Section 1.1
for a detailed discussion of the contributions of [2].)
For our experimental comparisons, we implemented an
OLAP specialized version, which we call ACN, of that
algorithm. In the first step of ACN, each query is con-
sidered to be a potential view, and a randomly selected

order of the attributes of each such view is considered an
index for that view. Subsequently, ACN considers the
union of each pair of views, v1 and v2, as a new ”merged”
view v. If the size of a merged view v is less than the
sum of the sizes of views v1 and v2, the algorithm adds
view v to the search space of views and removes views
v1 and v2 from the space. In this case, for each index
of views v1 and v2, we also construct a similar index for
the merged view v. 5 ACN terminates once it can add
no more merged views to the search space.

Algorithm GHRU is the r-greedy algorithm proposed
in [11] for selecting views and indexes for materializa-
tion, given a search space of views and indexes. 6 GHRU
includes two types of basic steps: (i) select an index for
an already selected view; or (ii) pick a view with at most
r − 1 selected indexes and enumerate all subsets of in-
dexes choosing a set that maximizes the benefit per unit
space. For a full description of the algorithm see [11].

In our experiments, we solved instances of the OLAP
view- and index-selection problem OLAP-VI using dif-
ferent data-
sets of the TPC-H benchmark [23]. The sizes of the
instances that we solved are realistic and comparable
to the sizes of the instances used in the related work
cf. [2, 7, 9, 15]. In all of our instances, we set the value
of storage space available to be equal to the size of the
raw-data view plus half of the sum of the sizes of the
queries, i.e. we set α = 0.5.

7.2 Effectiveness of the View Reduction Al-
gorithm

In this subsection, we study the effectiveness of our
view reduction algorithm, i.e. we want to compare the
size of the sets V and V ′. Recall that V is the set of all
views in the view lattice and V ′ includes those views in
V that are the union of queries that they can answer.
In other words, view v is in V ′ if each attribute of v
belongs to at least one of the queries that v can answer.

To build V ′, first we compare the number of attributes
in the database, k, with the number of queries in the
workload, |Q|. Note that the number of views in the
original search space of views is 2k. If k > |Q| then we
build the set of views V ′ by considering each combina-
tion of r queries, 1 ≤ r ≤ |Q|. Otherwise, we consider
each view in the original search space of views and check
whether it is the union of the queries that it can answer
or not. As a result, the complexity of building the set
V ′ is roughly 2min{k,|Q|}.

Our experiments include 10 instances over a 7-attribute
TPC-H dataset. We add some queries to each instance
to get the next instance. Each query in these instances
has a random number of attributes between 1 and 6. In
these instances, the size of the original search space of
views is 127. Table 1 presents the number of views in

5If π is an index of view v1, we add the attributes in
v \ v1 to the end of index π and get an index for view v.

6For our experimental comparisons we chose, from the
algorithms proposed in [11], an algorithm with the best
performance guarantees, and set r = 4 for the parameter
of this algorithm.

 Size of the Search Space of Indexes in IP and IPP

20901723
1163

6514362876315 82193

11226

5224

7800

8784

10062

12565 12742
13476 13639 13649

13699

0

2000

4000

6000

8000

10000

12000

14000

16000

0 10 20 30 40 50

Number of Queries

Nu
m

be
r o

f I
nd

ex
es

IPP
IP
all indexes

Figure 4: Number of indexes in IP and IPP for 10
instances on a 7-attribute TPC-H dataset.

set V ′ for each instance. Note that when the number
of queries is relatively large (40 and 50), the size of the
set V ′ is close to the size of the original search space of
views, i.e. 127; however, when the number of queries is
relatively small, the size of the set V ′ is much smaller
than the size of the original search space of views.

no. of no. of
queries views

3 8
5 18
7 22
10 31
12 40
15 54
20 60
30 94
40 114
50 119

Table 1: Size of the reduced search space of views
for instances over a 7-attribute TPC-H dataset.

7.3 Evaluating the Performance of IPP
Our next set of experiments is to evaluate the per-

formance of IPP approach to reduce the search space
of indexes. We solve ten instances over a 7-aqttribute
TPC-H dataset [23]. Our instances are the same as in-
stances in Subsection 7.2. For each instance, we measure
the number of indexes in IP and IPP search spaces.

In these instances, the total number of indexes in the
original search space is 13699. From Figure 4, we ob-
serve that the number of indexes in IPP search space
of indexes is significantly smaller that the number of
indexes in IP search space of indexes. Also, we can ob-
serve from this figure that for the instances with larger
number of queries, the number of indexes in the search
space of IP becomes closer to the number of indexes
in the original search space. This is due to the larger
number of views for instances with more queries.

For each of the instances described above, we mea-
sured the time required to build each of the IP and IPP
search spaces and the time required to solve their related
models with CPLEX. We observed that the time needed
to build each of IP and IPP search spaces for larger in-
stances (instances 4-10) is significantly smaller than the
time needed to solve that instance using CPLEX. Ta-
ble 2 shows the total time needed to build and solve
each of the IP and IPP models for each instance. From
this table we observed that the total time required to
build IPP search space and apply CPLEX on it for each
instance is significantly smaller than the total time re-
quired to build IP search space and apply CPLEX on
it for that instance. In particular, applying CPLEX on
the IP search space of views and indexes for the last
seven instances took more than 15 minutes (our time
limit), however, applying CPLEX on the IPP search
space took one to eleven seconds for instances 4 to 9
and ninety eight seconds for the last instance.

of IP time IPP time
queries (sec) (sec)

3 0.28 0.97
5 2.63 0.69
7 13.86 0.61
10 >15 min 1.14
12 >15 min 0.76
15 >15 min 1.23
20 >15 min 1.95
30 >15 min 15.13
40 >15 min 11.11
50 >15 min 98.45

Table 2: Comparison of the execution times for IP
and IPP.

7.4 Impact of Parameter p on the Time Re-
quired for Building IPNIR Models

The purpose of the experiments in this subsection is
to study the impact of parameter p in IPNIR on the
number of indexes in the search space of indexes, build-
ing time of models, solving time, and the cost obtained
by IPNIR.

We build 10 instances over a 13-attribute TPC-H dataset
where each instance has 32 random queries and each
query has a random number of attributes between 1
and 12. For each instance we compute the number of
indexes in the search space of indexes, building time in
seconds, solving time in seconds, and the cost obtained
by IPNIR for p=2, 4, 8, 16, and 32.

Each graph in Figure 5 is related to an instance and
shows the number of indexes for different values of p for
that instance. From these graphs we observe that as
the value of p increases, the number of indexes in the
search space of indexes does not increase. The average
difference between maximum and minimum number of
indexes for each instance for different values of p is 9%.

The reason that sometimes the number of indexes in
the search space decreases as we increase the value of p
is that sometimes for some views like view v, the larger

value of p results in smaller number of nodes in Gv and
smaller number of source-sink paths for Gv. Thus, if Nv

be large enough such that all indexes related to source-
sink paths be in the search space, the size of the search
space of indexes of v is smaller for larger values of p.

Each graph in Figure 6 is related to an instance and
shows the time needed for building the IPNIR model for
different values of p for that instance. We observe that
as we increase the value of p, the building time never
increases.

Each graph in Figure 7 is related to an instance and
shows the time needed to solve the IPNIR model for
different values of p for that instance. We do not observe
any interesting pattern.

Each graph in Figure 8 is related to an instance and
shows the cost obtained using IPNIR model for different
values of p for that instance. Here again, we do not
observe any interesting pattern.

Also, we observe that in almost all of our instances,
the time needed for building the IPNIR model is sig-
nificantly smaller than the time needed for solving that
model, regardless of the value of p.

The results of these experiments are also presented
in tables of Figure 9. In summary, we observe in our
instances that the value of parameter p has a direct
effect on the size of the search space of indexes and the
time needed to build the model, but it does not affect
the cost or the CPLEX time for solving the model in
any special way.

Number of Indexes for Different Values of Parameter p

1835

1671 1671
1658 1650

1550

1600

1650

1700

1750

1800

1850

2 4 8 16 32

p

nu
m

be
r o

f i
nd

ex
es

1

Number of Indexes for Different Values of Parameter p

1463

1411

1388
1378

1371

1320

1340

1360

1380

1400

1420

1440

1460

1480

2 4 8 16 32

p

nu
m

be
r o

f i
nd

ex
es

2

Number of Indexes for Different Values of Parameter p

1641

1605

1573
1564 1559

1500

1520

1540

1560

1580

1600

1620

1640

1660

2 4 8 16 32

p

nu
m

be
r o

f i
nd

ex
es

3

Number of Indexes for Different Values of Parameter p

1382

1314

1266 1264
1256

1180

1200

1220

1240

1260

1280

1300

1320

1340

1360

1380

1400

2 4 8 16 32

p

nu
m

be
r o

f i
nd

ex
es

4

Number of Indexes for Different Values of Parameter p

2550

2463

2398 2398
2383

2250

2300

2350

2400

2450

2500

2550

2600

2 4 8 16 32

p

nu
m

be
r o

f i
nd

ex
es

5

Number of Indexes for Different Values of Parameter p

1425

1356

1334 1333
1326

1260

1280

1300

1320

1340

1360

1380

1400

1420

1440

2 4 8 16 32

p

nu
m

be
r o

f i
nd

ex
es

6

Number of Indexes for Different Values of Parameter p

1566

1489

1442 1440 1440

1360

1380

1400

1420

1440

1460

1480

1500

1520

1540

1560

1580

2 4 8 16 32

p

nu
m

be
r o

f i
nd

ex
es

7

Number of Indexes for Different Values of Parameter p

2030

1908

1854
1834 1827

1700

1750

1800

1850

1900

1950

2000

2050

2 4 8 16 32

p

nu
m

be
r o

f i
nd

ex
es

8

Number of Indexes for Different Values of Parameter p

1168

1126

1105

1077

1052

980

1000

1020

1040

1060

1080

1100

1120

1140

1160

1180

2 4 8 16 32

p

nu
m

be
r o

f i
nd

ex
es

9

Number of Indexes for Different Values of Parameter p

1567
1467

1302 1294 1294

0

200

400

600

800

1000

1200

1400

1600

1800

2 4 8 16 32

p

nu
m

be
r o

f i
nd

ex
es

10

Figure 5: Effect of Parameter p on the size of the search space of indexes.

Building Times for Different Values of Parameter p

2.8

2.68

2.54
2.5 2.5

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2 4 8 16 32

p

tim
e

(s
ec

)

1

Building Times for Different Values of Parameter p
2.63 2.61

2.35

2.24 2.23

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2 4 8 16 32

p

Ti
m

e
(s

ec
)

2

Building Times for Different Values of Parameter p

2.32

2.29

2.25
2.24

2.22

2.16

2.18

2.2

2.22

2.24

2.26

2.28

2.3

2.32

2.34

2 4 8 16 32

p

Ti
m

e
(s

ec
)

3

Building Times for Different Values of Parameter p

2.38

2.35

2.28

2.22 2.22

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2 4 8 16 32

p

Ti
m

e
(s

ec
)

4

Building Times for Different Values of Parameter p

2.42

2.36

2.3
2.28

2.21

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2 4 8 16 32

p

Ti
m

e
(s

ec
)

5

Building Times for Different Values of Parameter p

2.38

2.3

2.27
2.26 2.26

2.2

2.22

2.24

2.26

2.28

2.3

2.32

2.34

2.36

2.38

2.4

2 4 8 16 32

p

Ti
m

e
(s

ec
)

6

Building Times for Different Values of Parameter p

2.37

2.33

2.28 2.28

2.26

2.2

2.22

2.24

2.26

2.28

2.3

2.32

2.34

2.36

2.38

2 4 8 16 32

p

Ti
m

e
(s

ec
)

7

Building Times for Different Values of Parameter p

2.37
2.36

2.31

2.28 2.28

2.22

2.24

2.26

2.28

2.3

2.32

2.34

2.36

2.38

2 4 8 16 32

p

Ti
m

e
(s

ec
)

8

Building Times for Different Values of Parameter p

2.55

2.5

2.42

2.34 2.34

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2 4 8 16 32

p

Ti
m

e
(s

ec
)

9

Building Times for Different Values of Parameter p

2.49

2.44

2.35

2.32 2.32

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2 4 8 16 32

p

Ti
m

e
(s

ec
)

10

Figure 6: Effect of Parameter p on Time needed to Build IPNIR model.

Solving Times for Different Values of Parameter p

433.61

324.49

23.17

448.92

261.49

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16 32

p

tim
e

(s
ec

)

1

Solving Times for Different Values of Parameter p

141.7

45.59
52.39

10.34

29.66

0

20

40

60

80

100

120

140

160

2 4 8 16 32

p

Ti
m

e
(s

ec
)

2

Solving Times for Different Values of Parameter p

10.24

14.22

3.19

19.72

9.09

0

5

10

15

20

25

2 4 8 16 32

p

Ti
m

e
(s

ec
)

3

Solving Times for Different Values of Parameter p

55.65

18.12

6.16 4.52

13.28

0

10

20

30

40

50

60

2 4 8 16 32

p

Ti
m

e
(s

ec
)

4

Solving Times for Different Values of Parameter p

9.17

231.79

113.02

1.63

84.74

0

50

100

150

200

250

2 4 8 16 32

p

Ti
m

e
(s

ec
)

5

Solving Times for Different Values of Parameter p

8.83

5.15

7.12 7.23

2.85

0

1

2

3

4

5

6

7

8

9

10

2 4 8 16 32

p

Ti
m

e
(s

ec
)

6

Solving Times for Different Values of Parameter p

110.18

61.85

45.43

4.42

42.62

0

20

40

60

80

100

120

2 4 8 16 32

p

Ti
m

e
(s

ec
)

7

Solving Times for Different Values of Parameter p

30.22

8.08 9

15.09

2.89

0

5

10

15

20

25

30

35

2 4 8 16 32

p

Ti
m

e
(s

ec
)

8

Solving Times for Different Values of Parameter p

66.93

35.06

10.4
3.55

20.7

0

10

20

30

40

50

60

70

80

2 4 8 16 32

p

Ti
m

e
(s

ec
)

9

Solving Times for Different Values of Parameter p

136.29

58.42

6.12

28.87

10.27

0

20

40

60

80

100

120

140

160

2 4 8 16 32

p

Ti
m

e
(s

ec
)

10

Figure 7: Effect of Parameter p on Time needed to Solve IPNIR model .

Costs Obtained for Different Values of Parameter p

32.10

32.05

32.07
32.08

32.11

32.02

32.03

32.04

32.05

32.06

32.07

32.08

32.09

32.10

32.11

32.12

2 4 8 16 32

p

tim
e

(s
ec

)

1

Costs Obtained for Different Values of Parameter p

32.16

32.16 32.16

32.14

32.15

32.14

32.14

32.15

32.15

32.16

32.16

32.17

2 4 8 16 32

p

Ti
m

e
(s

ec
)

2

Costs Obtained for Different Values of Parameter p

32.06

32.09

32.06

32.09

32.10

32.03

32.04

32.05

32.06

32.07

32.08

32.09

32.10

32.11

2 4 8 16 32

p

Ti
m

e
(s

ec
)

3

Costs Obtained for Different Values of Parameter p

32.05

32.09

32.03

32.05

32.13

31.98

32.00

32.02

32.04

32.06

32.08

32.10

32.12

32.14

2 4 8 16 32

p

Ti
m

e
(s

ec
)

4

Costs Obtained for Different Values of Parameter p

32.02

32.05 32.05

32.02

32.11

31.96

31.98

32.00

32.02

32.04

32.06

32.08

32.10

32.12

2 4 8 16 32

p

Ti
m

e
(s

ec
)

5

Costs Obtained for Different Values of Parameter p

32.08

32.07 32.07
32.07

32.09

32.06

32.06

32.07

32.07

32.08

32.08

32.09

32.09

32.10

32.10

2 4 8 16 32

p

Ti
m

e
(s

ec
)

6

Costs Obtained for Different Values of Parameter p

32.06

32.04
32.05 32.05

32.12

31.98

32.00

32.02

32.04

32.06

32.08

32.10

32.12

32.14

2 4 8 16 32

p

Ti
m

e
(s

ec
)

7

Costs Obtained for Different Values of Parameter p

32.03 32.03

32.03

32.04

32.03

32.02

32.02

32.03

32.03

32.03

32.03

32.03

32.04

2 4 8 16 32

p

Ti
m

e
(s

ec
)

8

Costs Obtained for Different Values of Parameter p

32.01

32.02

32.02

32.02

32.01

32.00

32.01

32.01

32.02

32.02

32.03

2 4 8 16 32

p

Ti
m

e
(s

ec
)

9

Costs Obtained for Different Values of Parameter p

32.04

32.05

32.03

32.04

32.06

32.00

32.01

32.02

32.03

32.04

32.05

32.06

32.07

2 4 8 16 32

p

Ti
m

e
(s

ec
)

10

Figure 8: Effect of Parameter p on the Cost Obtained by IPNIR model.

instance 1

p #indexes
BT
(sec)

ST
(sec) cost

2 1835 2.80 433.61 32.11
4 1671 2.68 324.49 32.10
8 1671 2.54 23.17 32.05

16 1658 2.50 448.92 32.07
32 1650 2.50 261.49 32.08
instance 2

p #indexes
BT
(sec)

ST
(sec) cost

2 1463 2.63 141.7 32.16
4 1411 2.61 45.59 32.16
8 1388 2.35 52.39 32.16

16 1378 2.24 10.34 32.14
32 1371 2.23 29.66 32.15
instance 3

p #indexes
BT
(sec)

ST
(sec) cost

2 1641 2.32 10.24 32.06
4 1605 2.29 14.22 32.09
8 1573 2.25 3.19 32.06

16 1564 2.24 19.72 32.09
32 1559 2.22 9.09 32.10
instance 4

p #indexes
BT
(sec)

ST
(sec) cost

2 1382 2.38 55.65 32.05
4 1314 2.35 18.12 32.09
8 1266 2.28 6.16 32.03

16 1264 2.22 4.52 32.05
32 1256 2.22 13.28 32.13
instance 5 545

p #indexes
BT
(sec)

ST
(sec) cost

2 2550 2.42 9.17 32.02
4 2463 2.36 231.79 32.05
8 2398 2.30 113.02 32.05

16 2398 2.28 1.63 32.02
32 2383 2.21 84.74 32.11

instance 6

p #indexes
BT
(sec)

ST
(sec) cost

2 1425 2.38 8.83 32.08
4 1356 2.30 5.15 32.07
8 1334 2.27 7.12 32.07

16 1333 2.26 7.23 32.07
32 1326 2.26 2.85 32.09
instance 7

p #indexes
BT
(sec)

ST
(sec) cost

2 1566 2.37 110.18 32.06
4 1489 2.33 61.85 32.04
8 1442 2.28 45.43 32.05

16 1440 2.28 4.42 32.05
32 1440 2.26 42.62 32.12
instance 8

p #indexes
BT
(sec)

ST
(sec) cost

2 2030 2.37 30.22 32.03
4 1908 2.36 8.08 32.03
8 1854 2.31 9.00 32.03

16 1834 2.28 15.09 32.04
32 1827 2.28 2.89 32.03
instance 9

p #indexes
BT
(sec)

ST
(sec) cost

2 1168 2.55 66.93 32.01
4 1126 2.50 35.06 32.02
8 1105 2.42 10.40 32.02

16 1077 2.34 3.55 32.02
32 1052 2.34 20.70 32.01
instance 10

p #indexes
BT
(sec)

ST
(sec) cost

2 1567 2.49 136.29 32.04
4 1467 2.44 58.42 32.05
8 1302 2.35 6.12 32.03

16 1294 2.32 28.87 32.04
32 1294 2.32 10.27 32.06

Figure 9: Results of the Experiments in table format.

7.5 Evaluating the IPN Search Space of Views
and Indexes

Our next set of experiments is to evaluate the perfor-
mance of IPN by comparing it to the optimal approach
IPP. To do so, we construct several instances over a 7
and a 13-attribute TPC-H datasets. For each instance,
we build both IPP and IPN search spaces of views and
indexes and apply CPLEX on each search space.

We solved seven instances over a 13-attribute TPC-H
dataset; the first four instances have 10 random queries
and instances five, six, and seven have 15, 15, and 20
random queries, respectively. Each query in these in-
stances has a random number of attributes between 1
and 12.

We report the number of indexes in each of IPP and
IPN search spaces for each instance in Table 3. From
this table, we observe that the number of indexes in IPP
is about 21 times more than the number of indexes in
IPN.

ins- no. of no. of no. of
tance queries indexes indexes

in IPP in IPN
1 10 1218 60
2 10 409 52
3 10 534 55
4 10 358 52
5 15 5437 136
6 15 7069 181
7 20 15460 581

Table 3: Number of indexes in IPP and IPN
search spaces for instances over a 13-attribute TPC-
H dataset.

In Table 4 we report the total time needed to build
each of the IPP and IPN search spaces and apply CPLEX
on each search space for each instance. Also, we report
the cost obtained from applying CPLEX on each search
space. This table shows that except for the second in-
stance, for all those instances that we could get the op-
timal solution in one hour (instances 1-6), the value of
cost obtained from applying CPLEX on IPN is close
to the optimal cost. Furthermore, the time needed to
apply CPLEX on IPN is significantly smaller than the
time needed to apply CPLEX on IPP for all of these
instances. In particular, we observe that we were able
to obtain a solution from applying CPLEX on IPN for
a large instance (instance 7) in only about one second
while CPLEX could not solve this instance in one hour
when we applied it on IPP search space. Also, the cost
that we obtained using IPN for this large instance, 21,
is close to the lower bound for optimal cost in this in-
stance, 20.

We also solved 11 instances over a 7-attribute TPC-H
dataset where the number of queries in these instances
varies from 20 to 50 and each query has a random num-
ber of attributes between 1 and 6. Similar to the previ-
ous set of experiments, we report the number of indexes
in each of IPP and IPN search spaces for each instance

ins- IPP cost IPN IPP IPN
tance (optimal) cost time time

(sec.) (sec.)
1 10 10 2.10 0.73
2 10 20 0.96 0.75
3 10 10 0.96 0.74
4 10 10 0.83 0.72
5 15 15 287.34 0.95
6 15 15 520.74 0.99
7 - 21 >1hr 1.16

Table 4: Comparison of the cost obtained from ap-
plying CPLEX on IPP and IPN search spaces and ex-
ecution times for instances over a 13-attribute TPC-
H dataset

in Table 5. From this table, we observe that the num-
ber of indexes in IPP is about 6 times more than the
number of indexes in IPN.

ins- no. of no. of no. of
tance queries indexes indexes

in IPP in IPN
1 20 913 117
2 20 500 108
3 20 561 144
4 20 521 114
5 20 713 112
6 20 692 98
7 20 694 98
8 20 418 109
9 30 802 202
10 40 1356 211
11 50 2117 287

Table 5: Number of indexes in IPP and IPN
search spaces for instances over a 7-attribute TPC-H
dataset

Similar to Table 4, in Table 6 we report the total time
needed to build each search space and apply CPLEX
on each search space for each instance. Also, we re-
port the cost obtained from applying CPLEX on each
search space. This table shows that except for the third
and forth instances, for all of the instances, the value
of cost obtained from applying CPLEX on IPN is close
to the optimal cost. Furthermore, the time needed to
apply CPLEX on IPN is significantly lower than the
time needed to apply CPLEX on IPP for all of these
instances. In particular, we observe that we were able
to obtain a solution from applying CPLEX on IPN for
a large instance (instance 11) in only about three sec-
onds while CPLEX solve this instance in five hundred
seconds when we applied it on IPP search space. Also,
the cost that we obtained using IPN for this large in-
stance is the same as the optimal cost. From Table 6
we also observe that except for two instances, the cost
obtained via applying CPLEX on IPN is very close to
the optimal cost.

ins- no. of IPP cost IPN IPP IPN
tance queries (optimal) cost time time

(sec.) (sec.)
1 20 20 20 10.14 0.81
2 20 20 22 2.17 0.77
3 20 20 53 3.66 0.9
4 20 20 74 1.93 0.95
5 20 20 20 3.26 0.81
6 20 20 20 4.49 0.81
7 20 20 21 2.99 0.77
8 20 21 25 4.01 1.04
9 30 30 30 13.82 1.23
10 40 40 40 50.57 1.16
11 50 50 50 500.5 3.07

Table 6: Comparison of the cost obtained from ap-
plying CPLEX on IPP and IPN search spaces and ex-
ecution times for instances over a 7-attribute TPC-H
dataset.

We did a preliminary investigation to find out why
for some instances IPN provides a value for cost that
is far from the optimal. Our investigation showed that
small values for N(v) for some views which have large
sizes and can answer many queries might be the reason.
To clarify this, we present the following example:

EXAMPLE 7.1. Suppose V ′ = {v1, v2}. Also sup-
pose Q(v1) = {q1, q2} and Q(v2) = {q1, q3}. Further-
more, assume Nv1=Nv2=1. So for each of views v1 and
v2, only one index is in the search space of IPN. Sup-
pose both of these indexes have all of the attributes of q1

as their prefix. Also, suppose in the optimal solution, q1

and q3 are assigned to v2 and q2 is assigned to v1. In
this case, if the index over v1 had instead of attributes
of q1 attributes of q2 as its prefix, it could be more ben-
eficial because v1 is not selected for q1. !

We solved the instances that we did not get close to
optimal solutions using IPN again by changing the value
of N(v) from min{ b−s(v)

s(v) , |Q(v)|} to |Q(v)| for all views.
Tables 7 and 8 show the results after we changed the
value of Nv: the solutions that we obtain via IPN im-
proves significantly; in fact we obtain optimal solutions
after changing Nv to be |Q(v)|. Also in these three in-
stances, although the number of indexes in the search
space of IPN increases after changing Nv to be |Q(v)|,
this number is still significantly smaller than the number
of indexes in the search space of indexes of IPP. Further-
more, the time required for solving IPN after changing
Nv did not significantly change for these three instances.
We plan to work on determining a more proper defini-
tion for N(v) in our future work.

7.6 Comparing with Other Heuristics
In this subsection, we compare the performance of our

heuristic IPN with another heuristic ACN for reducing
the size of the search space of views and indexes through
several instances over two large size lattices.

Our first set of experiments consists of 10 instances
over a 17-attribute TPC-H dataset. Each instance has

inst- no. of no. of no. of
ance indexes in indexes in indexes in

IPN before IPN after IPP
2 of the

first set of 52 77 534
experiments

3 of the
second set of 144 172 561
experiments

4 of the
second set of 114 159 521
experiments

Table 7: Comparing number of indexes in the search
space of IPN before and after changing the definition
of Nv for three instances that IPN provides solutions
far from the optimal before changing the definition
of Nv.

inst- IPN IPN optimal IPN IPN
ance cost cost cost time time

(sec.) (sec.)
before after before after

2 of the
first set of 53 20 20 0.90 0.91

experiments
3 of the

second set of 74 20 20 0.95 0.90
experiments

4 of the
second set of 20 10 10 0.75 0.77
experiments

Table 8: Comparing the performance of IPN be-
fore and after changing the definition of Nv for three
instances that IPN provides solutions far from the
optimal before changing the definition of Nv.

20 random queries in the workload where each query
has a random number of attributes between 1 and 16.
For each instance, we first build IPN and ACN search
spaces and then apply CPLEX on them. For all of these
instances, the ACN search space of views and indexes
is significantly smaller than the size of the IPN search
space of views and indexes. On average, both the num-
ber of indexes and the number of views in ACN is two
times smaller than the number of indexes and the num-
ber of views in IPN. Figure 10 compares the size of the
search space of views in IPN and ACN for each instance
and Figure 11 compares the size of the search space of
indexes in IPN and ACN for each instance.

For each of these instances, we also measured the cost
obtained from applying CPLEX on each of IPN and
ACN search spaces and report it in Table 9. In this
table, we also report the total execution time (building
the search space and applying CPLEX) for solving each
instance. From this table, we observe that the cost ob-
tained via applying CPLEX on IPN for each instance is
significantly smaller that the cost obtained via applying

263

174

108

342

277
257

464

278

146

222

161

90
60

112

166

111

251

169

84
110

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

Nu
m

be
r o

f V
ie

w
s

Instance

Size of the IPN and ACN Search Spaces of Views

IPN

ACN

Figure 10: Comparison of the sizes of IPN and ACN
search spaces of views for instances on 17-attribute
TPC-H dataset.

941

683

415

1324
1191

1021

1941

1078

525

865

616

316
169

668 638
471

1094

695

261
444

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

Nu
m

be
r o

f I
nd

ex
es

Instance

Sizes of the IPN and ACN Search Spaces of Indexes

IPN

ACN

Figure 11: Comparison of the sizes of IPN and ACN
search spaces of indexes for instances on 17-attribute
TPC-H dataset.

CPLEX on ACN for that instance. Also, we observe
that the total time needed to build IPN search space
and apply CPLEX on it for each instance is comparable
with the total time needed to build ACN search space
and apply CPLEX on it for that instance.

The reason for the poor performance of algorithm
ACN is that the order of the attributes of each index
in the first iteration is a random order of attributes of
a query. Thus most probably, each index is useful for
one or only a few number of queries. Since the stor-
age space is not enough to select one distinct index per
query, there is no useful index among the selected in-
dexes for some of the queries. To clarify this, we present
the following example:

EXAMPLE 7.2. Suppose queries in the workload are
q1={a, b} and q2={a, c}. Suppose the sizes of views
va={a}, vb={b}, vc={c}, v1={a, b}, v2={a, c}, and v=
{a, b, c} are 5000, 2000, 2000, 10000, 15000, and 20000,
respectively. In the first iteration of ACN, v1 and v2 are
in the set of potential views. Suppose the order of at-
tributes of the index for v1 is (b, a) (a random order of
attributes of q1), and the order of attributes of the in-
dex for v2 is (c, a) (a random order of attributes of q2).

ins- IPN ACN IPN ACN
tance cost cost time time

(sec.) (sec.)
1 20 359360 12.08 11.95
2 20 243476 1.22 10.43
3 20 92580 17.51 7.98
4 20 1810970 2.58 16.06
5 22 576012 2.44 32.20
6 20 144209 3.99 5.43
7 21 743439 11.02 40.76
8 20 35627 38.63 12.72
9 20 481878 6.94 4.28
10 20 43369 33.51 4.45

Table 9: Execution times and costs obtained via
IPN and IPACN algorithms for instances on a 17-
attribute TPC-H dataset. Each instance has 20
queries.

Since s(v) ≤ s(v1)+s(v2), in the second iteration v1 and
v2 will be substituted by v in the set of potential views
and the set of potential indexes will be {(b, a, c), (c, a, b)}.
Suppose the space limit allows us to only select one in-
dex over view v. Thus CPLEX chooses view v and index
(c, a, b) which result in value 20001 for cost. However,
the optimal index is (a, c, b) (not in the set of potential
indexes of ACN) which results in value 5 for cost. !

We also applied algorithm GHRU on IPN and ACN
search spaces of each of the above instances. For each
instance we measured the cost and the time needed to
solve that instance with GHRU. In Table 10, we report
the cost obtained via GHRU on each search space for
each instance divided by the cost obtained via CPLEX
on that particular search space for that instance. Also,
we report the total time of building a search space and
applying CPLEX on that search space for each instance
divided by the total time of building a search space and
applying GHRU on that particular search space for that
instance.

From Table 10, we observe that the costs obtained
via GHRU solver is 1 to 6.5 times more than the costs
obtained via CPLEX solver, yet the execution time of
GHRU is about 1 to 31 times smaller that the execution
time of CPLEX.

Our second set of experiments consists of 10 instances
over a 13-attribute TPC-H dataset. Each instance has
20 random queries in the workload where each query
has a random number of attributes between 1 and 12.
Again, for each instance, we first build IPN and ACN
search spaces and then apply CPLEX on them. For all
of these instances, the ACN search space of views and
indexes is significantly smaller than the size of the IPN
search space of views and indexes. On average, both the
number of indexes and the number of views in ACN is
two times smaller than the number of indexes and the
number of views in IPN. Figure 12 compares the size
of the search space of views in IPN and ACN for each
instance and Figure 13 compares the size of the search
space of indexes in IPN and ACN for each instance.

ins- GHRU
CPLEX

GHRU
CPLEX

GHRU
CPLEXtime

GHRUtime
CPLEX

tance cost cost time time
IPN ACN IPN ACN

1 1.0 1.0 0.10 0.31
2 1.2 1.4 0.86 0.34
3 1.0 6.5 0.06 0.44
4 1.2 1.0 0.66 0.23
5 5.5 1.1 0.47 0.11
6 1.0 2.9 0.27 0.65
7 1.9 1.2 0.16 0.09
8 1.1 2.0 0.03 0.28
9 1.0 1.6 0.15 0.84
10 1.3 2.0 0.03 0.82

Table 10: Comparing the costs obtained from ap-
plying CPLEX and GHRU on IPN and ACN search
spaces and their execution times for instances over
a 13-attribute TPC-H dataset. Each instance has 20
queries in the workload.

260

316
295

223

110 106 119 113

152

73

132
108

89 87
55 51

73 62
79

41

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

Nu
m

be
r o

f V
ie

w
s

Instance

Size of the IPN and ACN Search Spaces of Views

IPN

ACN

Figure 12: Comparison of the sizes of IPN and ACN
search spaces of views for instances on 13-attribute
TPC-H dataset.

For each of these instances, we also measured the cost
obtained from applying CPLEX on each of IPN and
ACN search spaces and report it in Table 11. In this
table, we also report the total execution time (building
the search space and applying CPLEX) for solving each
instance. Our observations from this table is consistent
with our observation in the previous set of experiments:
the cost obtained via applying CPLEX on IPN for each
instance is significantly smaller that the cost obtained
via applying CPLEX on ACN for that instance. Also,
the total time needed to build IPN search space and
apply CPLEX on it for each instance is comparable with
the total time needed to build ACN search space and
apply CPLEX on it for that instance.

As in our previous set of experiments, we also ap-
plied algorithm GHRU on IPN and ACN search spaces
of each of the above instances and present the result in
Table 12. From this table, we observe that the costs
obtained via GHRU solver is 1 to 3.9 times more than
the costs obtained via CPLEX solver, yet the execution
time of GHRU is about 1 to 32 times smaller that the

1092 1139 1130

823

353 361
443

369

537

229

519 475

314 324

147 137
195 176

258

104

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Nu
m

be
r o

f I
nd

ex
es

Instance

Sizes of the IPN and ACN Search Spaces of Indexes

IPN

ACN

Figure 13: Comparison of the sizes of IPN and ACN
search spaces of indexes for instances on 13-attribute
TPC-H dataset.

ins- IPN ACN IPN ACN
tance cost cost time time

(sec.) (sec.)
1 85 469959 28.59 7.72
2 25 769250 1.88 37.19
3 21 1237010 4.57 21.52
4 20 656023 5.18 13.08
5 20 598928 2.13 27.4
6 20 74779 4.17 5.6
7 20 72352 1.31 8.47
8 20 19959 1.8 15.58
9 20 336517 15.16 19.03
10 20 3839 3.4 3.98

Table 11: Execution times and costs obtained via
IPN and IPACN algorithms for instances on a 13-
attribute TPC-H dataset. Each instance has 20
queries.

execution time of CPLEX.

7.7 Evaluating the Performance of GHRU
on Different Search Spaces of Views and
Indexes

In this subsection, we study the performance of GHRU
on five different search spaces of views and indexes men-
tioned at the beginning of this section. To do so, We
solved six instances over a 7-attribute TPC-H dataset
using GHRU solver. For each instance, we applied GHRU
on 1) the original, 2) IP, 3) IPP, 4) IPN, and 5) ACN
search spaces. We used a small lattice (7-attribute) so
that we will be able to solve GHRU on the original
search space as well. Each of our instances has 10 ran-
dom queries in the query workload where each query
has a random number of attributes between 1 and 6.
For each instance, we measured the cost obtained via
GHRU on each search space. We observe that in all of
our instances, the performance of GHRU on IPN search
space results in the smallest cost. Thus in Table 13 for
each instance we report the cost obtained via GHRU
on each search space divided by the cost obtained via

ins- GHRU
CPLEX

GHRU
CPLEX

GHRU
CPLEXtime

GHRUtime
CPLEX

tance cost cost time time
IPN ACN IPN ACN

1 1.7 1.0 0.03 0.47
2 1.2 1.6 0.51 0.10
3 3.9 1.2 0.22 0.17
4 1.0 1.1 0.17 0.28
5 1.0 1.2 0.41 0.14
6 1.0 1.1 0.20 0.64
7 1.5 1.8 0.69 0.43
8 1.0 0.7 0.48 0.24
9 1.0 1.0 0.06 0.19
10 1.1 1.1 0.27 0.91

Table 12: Comparing the costs obtained from ap-
plying CPLEX and GHRU on IPN and ACN search
spaces and their execution times for instances over
a 13-attribute TPC-H dataset. Each instance has 20
queries in the workload.

GHRU on IPN search space for that instance. From
this table, we observe that GHRU performs better on
IPP search space than the original, IP, and ACN search
spaces. The performance of GHRU on the original, IP,
and ACN search spaces are comparable.

For each instance we also measured the time required
to solve that instance using GHRU and report it in Ta-
ble 14. From this table we observe that on average the
time required to solve instances by applying GHRU on
the original, IP, IPP, IPN, and ACN search spaces for
each instance is 615.50, 112.56, 12.63, <0.01, and 0.02
seconds, respectively. Thus, not only we obtained the
best cost when we applied GHRU on IPN search space,
but also applying GHRU on IPN is faster than applying
GHRU on any other search space.

ins- original
IPN

IP
IPN

IPP
IPN

ACN
IPN

tance GHRU GHRU GHRU GHRU
cost cost cost cost

1 73351 73351 1 87290
2 4 4 1 3
3 20471 20492 2 3
4 27890 27949 20917 27890
5 92251 92251 23064 81646
6 4 4 2 2

Table 13: Comparing the quality of the solutions
obtained via GHRU on different search spaces.

Our above observations show that for the instances
we solved, GHRU performs better on smaller size search
spaces IPN and IPP, rather than larger size search spaces,
IPP and original. This means that most of the time
GHRU by itself does not select a good combination
of views and indexes, however, if the search space is
pruned before hand by our approaches, then GHRU se-
lects a relatively better combination of views and in-
dexes. Also, GHRU did not provide good solutions when
it was applied on ACN search space due to the fact that

ins- GHRU on GHRU GHRU GHRU GHRU
tance original on IP on IPP on IPN on ACN

time time time time time
(sec.) (sec.) (sec.) (sec.) (sec.)

1 817.78 158.1 38.13 <0.01 <0.01
2 524.42 111.28 17.33 <0.01 0.03
3 614.86 95.59 15.07 <0.01 0.04
4 641.01 105.43 0.01 <0.01 <0.01
5 571.1 137.56 5.25 <0.01 <0.01
6 523.84 67.37 0.01 <0.01 0.04

Table 14: Comparing the solving time of GHRU on
different search spaces.

most of the times ACN does not contain good combina-
tion of views and indexes.

8. CONCLUSIONS
In this paper we undertook a systematic study of

the OLAP view- and index-selection problem, and pro-
posed a family of algorithms that effectively and effi-
ciently prune the space of potentially beneficial views
and indexes. Our experiments show that our proposed
approaches to view and index selection result in high-
quality solutions — in fact, in globally optimum solu-
tions for many realistic-size problem instances. Thus,
they compare favorably with the well-known OLAP-
centered approach of [11] and provide for a winning
combination with the end-to-end framework of [2] for
generic view and index selection.

This project, together with our other work [18, 19],
lays the foundation for studying view and index selec-
tion in a systematic principled way. (The project re-
ported in this paper builds on our systematic studies [3,
19] of the OLAP view-selection problem.) In addition,
our contributions make it possible, in practical settings,
to quantify the “goodness” of specific view- and index-
selection solutions with respect to the best possible (that
is, globally optimum) counterparts, rather than just with
respect to the base line where the system does not use
any views. Directions of our current and future work
in this project include finding special cases of practical
significance where good approximability of the OLAP
view- and index-selection problem can be achieved.

9. ACKNOWLEDGMENTS
The authors’ work has been partially supported by

NSF grants DMI-0321635, 0307072, and 0447742.

10. REFERENCES
[1] F. N. Afrati and R. Chirkova. Selecting and using

views to compute aggregate queries (extended
abstract). In ICDT, pages 383–397, 2005.

[2] S. Agrawal, S. Chaudhuri, and V. R. Narasayya.
Automated selection of materialized views and
indexes in SQL databases. In VLDB, pages
496–505, 2000.

[3] Z. Asgharzadeh Talebi, R. Chirkova, and Y. Fathi.
Exact and inexact methods for solving the

problem of view selection for aggregate queries.
Technical Report TR-2007-27, NC State
University, 2007.

[4] E. Baralis, S. Paraboschi, and E. Teniente.
Materialized view selection in a multidimensional
database. In Proc. VLDB, pages 156–165, 1997.

[5] C. M. Broughton. IBM DB2 cube views and DB2
materialized query tables in a SAS environment.
http://www.sas.com/partners/directory/ibm/
cubeviews.pdf, 2005.

[6] A. Caprara, M. Fischetti, and D. Maio. Exact and
approximate algorithms for the index selection
problem in physical database design. IEEE
Transactions on Knowledge and Data
Engineering, 7(6):955–967, 1995.

[7] S. Chaudhuri, M. Datar, and V. R. Narasayya.
Index selection for databases: A hardness study
and a principled heuristic solution. IEEE Trans.
Knowl. Data Eng., 16(11):1313–1323, 2004.

[8] S. Chaudhuri and U. Dayal. An overview of data
warehousing and OLAP technology. SIGMOD
Record, 26(1):65–74, 1997.

[9] S. Chaudhuri and V. R. Narasayya. An efficient
cost-driven index selection tool for microsoft SQL
server. In VLDB, pages 146–155, 1997.

[10] C. I. Ezeife. A uniform approach for selecting
views and indexes in a data warehouse. In IDEAS,
pages 151–160, 1997.

[11] H. Gupta, V. Harinarayan, A. Rajaraman, and
J. D. Ullman. Index selection for OLAP. In ICDE,
pages 208–219, 1997.

[12] H. Gupta and I. S. Mumick. Selection of views to
materialize in a data warehouse. IEEE Trans.
Knowl. Data Eng., 17(1):24–43, 2005.

[13] V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In SIGMOD
Conference, pages 205–216, 1996.

[14] ILOG. CPLEX Homepage, 2004. Information on
CPLEX is available at
http://www.ilog.com/products/cplex/.

[15] P. Kalnis, N. Mamoulis, and D. Papadias. View
selection using randomized search. Data
Knowledge Engineering, 42(1):89–111, 2002.

[16] H. J. Karloff and M. Mihail. On the complexity of
the view-selection problem. In PODS, pages
167–173, 1999.

[17] R. Kimball and M. Ross. The Data Warehouse
Toolkit (second edition). Wiley Computer
Publishing, 2002.

[18] M. Kormilitsin, R. Chirkova, Y. Fathi, and
M. Stallmann. View and index selection for
query-performance improvement: Algorithms,
heuristics and complexity. Technical report, NC
State University, 2007.

[19] J. Li, Z. A. Talebi, R. Chirkova, and Y. Fathi. A
formal model for the problem of view selection for
aggregate queries. In ADBIS, pages 125–138, 2005.

[20] Microsoft. Web page of the AutoAdmin project:
Self-tuning and self-administering databases.
http://research.microsoft.com/research/dmx/

autoadmin.
[21] Microsoft. Web page of the data management,

exploration and mining group. http://research.
microsoft.com/research/dmx/.

[22] A. Shukla, P. Deshpande, and J. F. Naughton.
Materialized view selection for multidimensional
datasets. In VLDB’98, Proceedings of 24rd
International Conference on Very Large Data
Bases, August 24-27, 1998, New York City, New
York, USA, pages 488–499, 1998.

[23] TPC-H:. TPC Benchmark H (Decision Support).
Available from http://www.tpc.
org/tpch/spec/tpch2.1.0.pdf.

[24] J. Yang, K. Karlapalem, and Q. Li. Algorithms
for materialized view design in data warehousing
environment. In Proc. VLDB, pages 136–145,
1997.

