Pay-As-You-Go Information Integration:
The Semantic Model Approach

Rada Chirkova*

Computer Science Dept.
~NC State University
chirkova@csc.ncsu.edu

Dongfeng ChenT
Computer Science Dept.
NC State University
dchen3@ncsu.edu

Fereidoon Sadri]t
Dept. of Computer Science
UNC Greensboro
sadri@uncg.edu

Timo J. Salo
IBM RTP
Research Triangle Park, NC

tjisalo@us.ibm.com

ABSTRACT

This paper describes algorithms for query processing and
optimization in our semantic-model approach to large-scale
information integration and interoperability, and experimen-
tally evaluates the algorithms on real-life and synthetic data.
In addition to supporting gradual (pay-as-you-go) large-scale
information integration and efficient inter-source (join) pro-
cessing, the semantic-model approach, first described in [34],
eliminates the need for mediation in deriving the global
schema, thus addressing the main limitation [49] of data-
integration systems. The focus of our study in this paper
is performance-related characteristics of several alternative
approaches that we propose for efficient query processing
in the semantic-model environment. Our theoretical results
and practical algorithms are of independent interest and can
be used in any information-integration system that avoids
loading all the data into a single repository. In addition,
we present an experimental study of our techniques on real-
life and synthetic data. Our experimental results establish
the efficiency of our algorithms, and, further allow us to
make context-specific recommendations on selecting query-
processing approaches from our proposed alternatives. As
such, the approaches we propose form a basis for scalable
query processing in information integration and interoper-
ability.

1. INTRODUCTION

The need for decentralized data sharing arises naturally
in a wide range of applications, including enterprise data
management, scientific projects undertaken across univer-
sities or research labs, data sharing among governmental
databases, and the World-Wide Web. The recent advent of
XML as a standard for online data interchange holds much
promise toward promoting interoperability and data inte-
gration. In addition the focus of information integration

*Supported by NSF grants Career 0447742 and IIS 0307072.

JfSupported by CACC project 07-01 “Integration and Inter-
operability of XML Data”

iSupported by NSF grant IIS 0083312.

has shifted from small-scale integration to providing inte-
gration and interoperability among a large number of inde-
pendent and autonomous information sources. Historically,
research and practice in data sharing have focused on data-
integration systems, which query distributed shared data
through a single central point with a fixed mediated schema
[52].

Data-integration projects have been a research and com-
mercial success for applications requiring integration of rel-
atively few data sources. At the same time, the need for the
mediated schema is a major bottleneck in developing data-
sharing products for many real-life applications [49]. Peer
data-management systems (PDMS) (e.g., see [24] and refer-
ences therein) address this limitation by eliminating the need
for a mediated schema altogether. In PDMS, each (physi-
cal) peer uses its own schema of its stored data and typically
interacts with one or more other peers using agreed-on local
mappings between the respective schemas. This framework
makes it easy for a peer to join or leave the peer system
at any point in time. Moreover, as some peers in a PDMS
may act as mediators (coordinators) with respect to other
peers, a PDMS can be used as a basis for sharing data on
the World-Wide Web, as in the Semantic-Web initiative [4].
See Figure 1 for an example of a PDMS.

PDMS mechanisms for querying the shared data must
take into account compositions of the peer-to-peer map-
pings, which may lead to unsatisfactory query-processing
costs in large-scale systems. (Please see [49] for a detailed
discussion of the related issues.) In addition, in many practi-
cal applications — such as banking, large-scale collaboration
among scientific projects undertaken across universities or
research labs, data sharing among governmental databases
and agencies, and medical information systems — several
information sources may store fragments of the same kind
of data (conceptually, of the same logical relation), such as
information about employees or user accounts in individ-
ual bank branches. Coupled with the need for evaluating
queries that involve joins of data stored in more than one
data source (inter-source processing), such data configura-
tions present a further complication in query processing in
peer-to-peer systems.

In this paper we address these and other query-processing
challenges in large-scale data-sharing systems, by develop-
ing algorithms for query evaluation and optimization in our



DBLP

/ I\

paper

Berlin / \\ Roma

title author venue

area members pubs

/ \ DB-Projects | |

member  project member

harme title author
pubs people | praject

| AN\ project A

AN

name members  pubs

Stanford Paris

people papers direction  members

SN SN TN

students  faculty ;J\h project leaders ather
| | |

AN

Figure 1: A PDMS for the database research do-
main. A fragment of each peer’s XML schema is
shown as a labeled tree (from [49])

semantic-model approach to information integration and in-
teroperability. In the semantic-model (SM) approach, in-
troduced in [34], information at each source is viewed as
a collection of (logical) binary relations, which we call the
semantic-model view. These relations are basically a decom-
position of the information into its “atomic components”.
(For practical simplicity, we allow views that combine bi-
nary relations with the same key into a single relation.)
The SM approach is consistent with approaches based on
ontological modeling [41] in the Semantic-Web initiative,
where applications are modeled by the relevant concepts and
their properties (basically, by binary relationships), and the
semantic-model view for a given source can be designed us-
ing an available ontology. To include a source in the integra-
tion effort, the source’s owner provides mappings from the
source’s data to the SM view. A source can participate by
providing mapping for as few as a single relation, and add
more mappings if desired at will. Hence the system supports
gradual (pay-as-you-go) integration, where new sources can
join incrementally and with small overhead. (This paper is
not concerned with the problem of generating the mappings.
We refer the reader to [15, 16, 45] for semi-automatic schema
mapping techniques, which directly apply to our context.)

Our semantic-model approach differs from existing and
proposed information-integration systems. It differs from
data-warehousing approaches in that it does not generate a
repository of all data, and hence is flexible and can dynam-
ically accommodate sources and scale up to a large number
of sources. It differs from information-integration systems
that use a mediated schema in that it avoids the lengthy
and error-prone process of schema mediation. Intuitively,
our SM approach uses ready-made ontologies, or even a
much simpler identification of binary relations to serve as an
atomic decomposition of the application domain. Again, this
allows incremental information integration and scalability.
Finally, it differs significantly from peer data-management
systems in its capabilities and efficiency in inter-source pro-
cessing, and its ability to handle sources coming from dif-
ferent application domains. (We provide a more detailed
comparison with related projects in Section 5.)

In our SM approach, a user query can be submitted at

any site. It can be formulated in terms of the local (origi-
nal) schema, such as XML or relational, or in terms of the
global SM view. The interoperability system is responsi-
ble for processing the query. The answers should be as
if the query were executed on the overall collection of all
data in the participating information sources, while avoid-
ing the generation of a single repository of the data. There
are many ways of achieving this goal, with widely varying
performances. Query optimization, in particular, is critical
to such an interoperability system.

In this paper we address query processing and optimiza-
tion in our SM approach. The focus of our study in this
paper is performance-related characteristics of several alter-
native approaches that we propose for efficient query pro-
cessing in the semantic-model environment. One specific
focus of our study is reduction or elimination of inter-source
processing (namely, of some or even all inter-source sub-
queries) in many practical scenarios. Our theoretical results
and practical algorithms are of independent interest and can
be used in any information-integration system that avoids
loading all the data into a single repository and for combin-
ing (merging) XML data. In addition, we present an exten-
sive experimental study of our techniques on real-life data.
Our experimental results allow us to make context-specific
recommendations on selecting query-processing approaches
from our proposed alternatives. As such, the approaches we
propose form a basis for scalable query processing in infor-
mation integration and interoperability.

Our specific contributions:

e We provide a suite of query-processing algorithms for
the “subqueries approach” [34] (based on the decom-
position of user queries into a number of local and
inter-source subqueries), including algorithms for for-
mulating inter-source subqueries and for merging par-
tial XML results.

e We develop a new query-processing algorithm for the
SM approach, which we call the wrapper approach.
Specifically, we propose an algorithm to derive data-
source-specific queries that extract from each source
the minimum amount of data needed to answer the

overall user query. In addition, we experimentally demon-

strate that, in many practical cases, an efficient chase-
based [51] algorithm can be applied to the union of
these intermediate results to produce the answer to
the user query.

e We formulate theoretical results that enable us to use
key and foreign-key information (%) to determine when
all inter-source subqueries are redundant, that is, do
not produce any new results when compared to the re-
sults of local subqueries, and (i¢) to partition (in case
inter-source subqueries are still needed) the subqueries
into required, redundant, and equivalent sets, which en-
able us in our experiments to achieve significantly more
efficient query processing in the subqueries approach.

e We propose an algorithm for merging multiple XML
data documents with the same schema into a single se-
mantically coherent XML document. This algorithm is
of independent interest, as it can also be used to merge
multiple overlapping XML documents in a variety of
contexts. We use this algorithm in our subqueries ap-
proach for merging the results of the subqueries.



e We have implemented the SM approach, with multi-
ple query-processing algorithms, including basic mate-
rialization, the subqueries approach, and the wrapper
approach. We report the results of our extensive ex-
periments, and establish that our proposed methods
are very competitive.

e Our experimental results show that the performance
of our methods is query-type and environment depen-
dent, suggesting an (automated) learning approach can
be used to establish rules for dynamically selecting the
best query processing method for a given query in a
specific integration instance.

The remainder of the paper is organized as follows: We
provide a summary of our SM approach and discuss effi-
ciency issues and optimization opportunities in Section 2.
Our algorithms and theoretical results are presented in Sec-
tion 3, followed by a discussion of our optimization tech-
niques and experimental results in Section 4. We review
related work in Section 5, and conclude in Section 6.

2. THE SEMANTIC-MODEL APPROACH

We begin this section by presenting an overview of the
semantic-model (SM) approach, and then concentrate on the
optimization challenges and opportunities in this approach.
We discuss in Sections 3-4 how we address the challenges
and use the opportunities in our proposed algorithms and
architectures for the SM approach.

2.1 Overview

The semantic-model (SM) approach to information inte-
gration and interoperability was first introduced in [34]. In
the SM approach, an information source joins an information-
integration effort by providing a semantic-model view (SM
view) of its information, as well as a mapping from its data to
this model. The SM view for a source is a view of the infor-
mation as a collection of binary relations, possibly based on
an ontology for the source’s application domain. These are
basically a decomposition of the information into its “atomic
components”. (For practical simplicity, we allow views that
combine binary relations with the same key into a single re-
lation.) The task of defining the view and providing data
mappings is the responsibility of the database administrator
(DBA) and/or users of local sources. Tools, such as [38], can
greatly simplify the task of defining mapping rules. An SM
system contains many sites, where a site can be either an
information source or a coordinator that oversees query de-
composition and execution. A user query can be submitted
at any site. It can be formulated in terms of the SM view, or
in terms of the local (original) schema if submitted at an in-
formation source. Currently, our implementation of the SM
system supports XML and relational sources, but the SM
approach is applicable to any source type as long as map-
pings from the source data format to the SM view can be
provided. The integration and interoperability system is re-
sponsible for processing the query in such a way that the an-
swer corresponds to the answer of the query on the collection
of all data in the participating information sources. There
are many ways to achieve this goal, with widely varying per-
formance characteristics. Query optimization, in particular,
is critical to such an interoperability system. The SM ap-
proach is consistent with approaches based on ontological
modeling [41], where applications are modeled by domain-
specific concepts and their properties, which are, basically,

binary relationships. The following examples (adopted from
[34]) illustrate the SM approach.

EXAMPLE 1  (THE SEMANTIC MODEL). Consider a fed-
eration of catalog sales businesses. In this example we con-
centrate on their warehousing operations. A possible ontol-
ogy for this application may use objects (concepts) such as
item, warehouse, city, state, and relationships (proper-
ties) such as item-name, item-warehouse, warehouse-city,
and warehouse-state. The SM view consists of binary re-
lations representing the relationships. Sources with hetero-
geneous models and schemas can model their warehousing
operations using this SM view. For example, the DTDs of
two XML sources are shown below *. (We discuss the map-
pings from these schemas to the SM view in Ezample 2.)

<!ELEMENT store (warehousex*)>

<!ELEMENT warehouse (city, state, item*)>
<!ELEMENT item (id, name, description)>
<IATTLIST warehouse id ID #REQUIRED>

<!ELEMENT store (items, warehouses)>
<!ELEMENT items (itemx*)>

<!ELEMENT item (id, name, description)>
<!ELEMENT warehouses (warehousex*)>

<!ELEMENT warehouse (city, state)>

<VATTLIST item warehouse-id IDREFS #REQUIRED>
<VATTLIST warehouse id ID #REQUIRED>

The language we use to specify XML-to-SM mappings is
based on (a subset of) XPath [53] and is similar to mapping
languages, also called “transformation rules” or “source-to-
target dependencies” in the literature (see, e.g., [3, 11]). A
mapping for a binary relation p has the following general

form:
p($X, $Y) <- pathl $G, $G/path2 $X, $G/path3 $Y ,

where $X and $Y correspond to the arguments of p. The
variable $G in the body of the rule is called the “glue” vari-
able, and is used to restrict ($X,$Y) pairs to have the same
$G ancestor element in the document.

EXAMPLE 2 (MAPPING RULES). Consider the first in-
formation source of Example 1. Some of the mapping rules
that map data in this source to the SM view are as follows:

item-name ($I,$N) <-

/store/warehouse/item $X, $X/id $I, $X/name $N.
item-warehouse ($I,$W) <-

/store/warehouse $X, $X/item/id $I, $X/@id $W.
warehouse-state ($W,$S) <-

/store/warehouse $X, $X/@id $W, $X/state $S.

2.2 Efficiency Issues and Optimization Oppor-
tunities

For each relation r in the SM view, a source i either stores
the information for a fragment r; of r, or has no data rel-
evant to r. The fragment r; is not materialized; only the
mapping rule to generate r; from the data at source i is
available. We assume the data in the system correspond-
ing to a relation r is the union of its fragments at every
source, possibly subject to value mappings to reconcile het-
erogeneities.” The answer to a user query Q should reflect

We omit declarations of elements of type #PCDATA.

2The issue of data heterogeneity, such as different units of
measurement, different scales, different terms for the same
property, or the same term used for different properties, and
ways to handle them are well known and will not be ad-
dressed in this paper.



the total data in information sources. That is, if () mentions
relation 7, the answer is obtained as if the query were exe-
cuted on r = rq1U...Ury, where rq, ..., 7, are the fragments
of r at the information sources in the federation. There are
a number of ways to process user queries, with widely dif-
ferent performances. No single scheme is optimum for all
queries and cases. Rather, an intelligent query-optimization
approach needs to choose from a number of alternatives.
We discuss our specific query-processing approaches and al-
gorithms in Section 3, and present experimental results in
Section 4. In the remainder of this section we discuss opti-
mization challenges and opportunities in the semantic-model
approach.

We envision a peer/coordinator system architecture. In
the simplest form, all information sources are connected to
a single coordinator, which is in charge of coordinating query
processing. In general, we can have a network of communi-
cating coordinators, where each coordinator is in charge of
a set of sources and, possibly, other coordinators. In fact, a
coordinator can be regarded as a source, or, more accurately,
as a broker for the information under its oversight. An in-
formation source can also function as a coordinator. A pure
peer-to-peer system is a special case of a peer/coordinator
system where every source is (its own) coordinator.

Consider a user query @ involving k relations r',... r®
in the SM view.® Since each relation is the union of its
fragments, Q can be regarded as a collection of n* sub-
queries, where each subquery corresponds to one combina-
tion of single-source fragments of r*, ..., 7*. In fact, one way
of executing @ is to execute its corresponding subqueries,
and then to merge the results. A subquery where all frag-
ments are from the same source is called local; such sub-
queries can be executed at the source with no additional
data transfer. A subquery with fragments from two or more
sources is an inter-source subquery; its execution requires
data transfer. Note that out of n* subqueries, only n are
local. The majority (nk —n) are inter-source subqueries.

The need for inter-source processing arises naturally in in-
formation integration. An application may need information
from many sources with different kinds of data. For example,
a security application may benefit from integrating many
sources involving banking, travel, investment, employment,
or taxes. There are important queries that need data from
many of these sources simultaneously. Even when all sources
belong to the same domain, there may be a need for inter-
source processing. For example, academic data sources list
information about their faculty, students, research, or pub-
lications. Each source has complete information about its
personnel, but there may be collaboration between groups
from different universities. There are queries where the re-
sults of local subqueries are only a strict subset of all an-
swers. The need for inter-source processing poses a signif-
icant challenge to query optimization in data integration.
Blindly executing all subqueries, or, alternatively, material-
izing the SM view relations by computing their fragments
and unioining them, can be very costly. Our approach is
based on using known integrity constraints, such as key and
foreign-key constraints, to minimize the amount of inter-
source processing that is needed. We present a method to

3We use superscripts for relations and subscripts for frag-
ments. For example, ] represents the fragment of relation
r’ at source i.

determine when no inter-source processing is required to pro-
cess a given query (Section 3.5). For queries that require
some inter-source processing, we present a method to deter-
mine the minimum number of subqueries that are required
(Section 3.6). These results are of general interest and can
be used in any information-integration system that avoids
loading all the data into a single repository.

3. ALGORITHMS AND THEORETICAL RE-
SULTS

In this section we discuss our main query-processing al-
gorithms and theoretical results that will play a significant
role in query optimization. In addition to the basic materi-
alization approach for query evaluation, we describe the sub-
queries and the wrapper approaches. Then we discuss theo-
retical results that allow us (1) to determine when no inter-
source processing is needed (Section 3.5), and, (2) when
inter-source processing cannot be avoided, to determine min-
imal equivalence sets of subqueries that are adequate to
provide the complete answer to a user query (Section 3.6).
These optimization techniques are then discussed in the next
section (Section 4), along with the experimental results.

3.1 Query Processing I: Materialization

This is the base query-processing approach against which
we evaluate other approaches. In the simple materialization
approach, we materialize the SM view relations that appear
in the user query, and execute the query on the materialized
relations. Although the approach is not efficient in general,
we were surprised to find that this approach was relatively
efficient in certain situations, see discussion in Section 4.

3.2 Query Processing II: The Subqueries Ap-
proach

The subqueries approach is based on generating local and
inter-source subqueries for the user query, executing the sub-
queries, and merging their (partial) results. A local subquery
uses data from a single source and can be executed at the
source. An inter-source subquery needs data from multiple
sources, and requires some data transmission for its execu-
tion. The algorithm for generating local subqueries was pre-
sented in [34]. The pseudocode for generating inter-source
subqueries is shown in Algorithm 1.

Depending on the key and foreign-key conditions of the
semantic-model predicates, we may not need any inter-source
subqueries, or may only need a subset of all possible inter-
source subqueries. We discuss this issue in detail in Sections
3.5-3.6.

3.3 Query Processing III: The Wrapper Ap-
proach

In the wrapper approach, we generate one subquery per in-
formation source; the subquery extracts from the source the
minimum amount of information that is needed to answer
the user query. We call this the “wrapper” approach because
this extraction can be viewed as a (query-specific) wrapper
that collects the needed information from each source. Com-
pared to local subqueries, the information extracted from
each source in the wrapper approach is richer than the re-
sult of the local subquery on the same source, and makes
it possible to obtain the full answer to user query by fur-
ther processing. In a large class of applications, an efficient
chase-based algorithm can be applied to the extracted in-
formation to obtain the full answer to the user query. We



Algorithm 1: Inter-source subquery generation

input : User query @, order of data sources, set of
binary predicate mappings
output: Inter-source subquery(XQuery) Q'

1 foreach predicate in (Q do
2 create one variable p for predicate, specifying data
locations;
3 for each attribute in predicate, create one variable
using the variable p above;
end
construct a FOR clause based on the above variables;

copy the WHERE clause from @ into Q’;
replace binary predicates in the WHERE clause with
the corresponding variables in the FOR clause;
foreach head in Q’s head elements do
9 generate its RETURN string with the corresponding
variables in the FOR clause;
10 end

11 concatenate the FOR, WHERE, and RETURN clauses;
12 return XQuery Q' with FLWOR expressions;

B =N BN

®

discuss this approach further in Section 4. The pseudocode
for the wrapper algorithm is shown in Algorithm 2.

3.4 Merging XML Data

Given two or more XML documents on the same schema,
our merge algorithm produces one XML document on the
same schema; the document contains all the data from the
input documents. In case merging the input documents is
not possible, the algorithm outputs the discrepancies that
hindered the merge operation. As an example, consider sev-
eral XML documents of personnel information. Certain nat-
ural consistency constraints are expected to hold on this kind
of data. For example, each individual has a social security
number that uniquely identifies the person’s name and date
of birth. A person may have multiple phone numbers, but
the date of birth should be unique. There may or may not
be uniqueness constraints on names. The output of running
the merge algorithm on such personnel data should contain
all individuals mentioned in the input files. In addition, the
information for one individual (determined by the same SSN
in different inputs) is combined in the output document in
the intuitive way: The date of birth of the same individ-
ual from different inputs, if known, should be identical. If
not, merge is not possible and a discrepancy in the date of
birth of this individual is identified. Further, phone numbers
from multiple inputs for the same individual are all included
in the merged information for that individual. In our pro-
totype implementation, merge is halted if a discrepancy is
detected. Many other approaches are possible, including ap-
proaches that use information about the degree of reliability
of sources to guide the merge in presence of discrepancies,
and can be incorporated with relative ease. The pseudocode
for the merge algorithm is shown in Algorithms 3 and 4.

3.5 Eliminating Inter-Source Subqueries

In this subsection and in Section 3.6, we present theoreti-
cal results that play a significant role in query optimization
in the semantic-model approach. Our first result addresses
the question “when is inter-source processing not needed?”
To motivate this investigation, let us first obtain an intu-

Algorithm 2: The Wrapper Algorithm

w N

© 0N o o

10
11

12
13
14

15
16
17
18
19
20
21

22
23
24
25

26
27
28
29

30
31
32

33
34
35

input : User query, set of sources Srcs and their
mappings
output: Single XML document Doc

foreach source in Srcs do
create a local subquery for source;
execute the subquery locally, then send the local
result to the coordinator;

end

merge the local results at the coordinator;

if isInterSourceProcessingNeeded() then
chaseSteps();

end

eliminate duplicates in the query answer;
save the final answer into XML document Doc;
return Doc;

Function isInterSourceProcessingNeeded()
retrieve binary predicates in the user query;
generate a directed graph based on each predicate’s key,
foreign keys, and consistency information;
find a direct spanning tree (DST);
if failed OR this DST has more than one root then
return True;
end
else
return False;
end

Function chaseSteps|()

fetch the WHERE clause from the user query;
foreach condition in the WHERE clause do
if condition doesn’t match “predicate-1.attribute-1
= predicate-2.attribute-2” then
continue;
end
if attribute-1 is the key of predicate-1 then
replace nulls at predicate-1 with values at
predicate-2;
end
if attribute-2 is the key of predicate-2 then
replace nulls at predicate-2 with values at
predicate-1;
end
end
return the query answer;




Algorithm 3: The Merge Algorithm

input : XML documents and their schemas
output: Single XML document D

parseSchemal(fileStr);
D = mergeAll(dirStr);

Procedure parseSchema(schemaStr)

retrieve keys, unique nodes and other constraints from
the schema;

treewalk all elements from root and classify elements
into types (single required leaf, single optional leaf,
etc...);

Function mergeAll(dirStr)

foreach XML in the directory dirStr do
DocumentnextDoc = get Doc(X ML);
rsDoc = mergeTwoDocs(rsDoc, nextDoc);

10 end

11 write rsDoc into an XML document D;

12 return D

W N =

S

© ® 3o

13 Function mergeTwoDocs(rsDoc, nextDoc)

14 get root element rootl from rsDoc;

15 get root element root2 from nextDoc;

16 foreach element under rootl do

17 mergeElements(element, root2, rsDoc, nextDoc);
18 end

19 return rsDoc;

ition about the amount of inter-source processing that may
be needed: Consider a system with n information sources,
and a user query involving k relations in the semantic model.
The total number of possible subqueries, where the data for
each of the k relations comes from one of the n sources, is
n*. Only n of these are local, in the sense that all data come
from the same source. The remaining n* — n may require
some degree of inter-source processing. This is, of course, a
worst-case scenario. In practice, even when the total num-
ber of sources is very large, a specific relation in the SM view
has a limited number of sources with data pertaining to that
relation, reducing the possible inter-source queries to m* —n,
where m << n is the number of sources with data for a given
relation, on the average. Nevertheless, in large-scale infor-
mation integration, where n can be in the hundreds or even
thousands or higher, this number can still be quite large. If
we are able to identify the minimum amount of inter-source
processing that is required, and restrict our query evaluation
to avoid any extra work, we can potentially achieve orders of
magnitude faster query processing in large-scale integration.

Our result generalizes a result of [34], which studies user
queries that involve the natural join of two relations of the
SM view and defines cases when inter-source processing is
not needed. We generalize their result to user queries with
any number of relations. First, we state the result from [34]:

THEOREM 1. [34] Consider a user query involving the nat-
ural join of relations r*(A, B) and r? (B, C). No inter-source
processing is needed for this query if all the following condi-
tions hold:

1. Key constraint: For every source k, B is the key for
the fragment 7.

2. Foreign-key constraint: For every source k, there is a
foreign-key constraint from ri,(B) to r1(B).

Algorithm 4: The Merge Algorithm (continued)

Procedure mergeElements(el, eleInNextDoc, rsDoc,
nextDoc)
get this el’s type typeVal;
switch typeVal do
case Single Required Leaf
check existence of the corresponding element e2
in nextDoc;
compare el’s value with e2’s value;
if either e2 does not exist, or its value is equal to
el’s, print ERROR;
break;
end
case Single Optional Leaf
if e2 exists, compare el’s value with e2’s value;
break;
end
case Single Required NonLeaf
check existence and size of eleInNextDoc in
nextDoc;
ele2 = eleInNextDoc’s child;
foreach element under el do
mergeElements(element, ele2, rsDoc, nextDoc);
end
break;
end
case Single Optional NonLeaf
if the size of eleInNextDoc is 1, CALL
mergeElements() recursively;
break;
end
case Multi Unique Leaf
merge eleInNextDoc’s children;
remove duplicates that have the same logical
identifiers;
break;
end
case Multi optional Leaf
merge eleInNextDoc’s children, if they exist;
remove duplicates that have the same logical
identifiers;
break;
end
case Multi Unique NonLeaf
check the unique node in the result of
parseSchemal();
CALL mergeElements() recursively;
break;
end
case Multi Optional NonLeaf
case Multi Reduplicate Leaf
case Multi Reduplicate NonLeaf
attach eleInNextDoc’s children;
break;
end
case Set Node
CALL mergeElements() recursively;
break;
end
otherwise
print ERROR
break;
end

end




3. Consistency constraint: If (b, c) and v} (b,¢') hold at
two sources k and 1, then c = c. |

In our generalization we use the following definition:

DEFINITION 1. (LOCAL-JOIN GrRAPH) Given r*(A, B) and
r7(B, C), if the three conditions of Theorem 1 hold then we
say ' and r7 have the local-join property. Let r',... r™
be all the relations in the SM view. The local-join graph
is a directed graph G = (N, E), where the set of nodes N
corresponds to the relations 7*,...,r™, and (r,77) € E if
r® and 7 have the local-join property. |

Our theorem follows:
THEOREM 2. Given a user query involving the natural

join of two or more relations v',...,7%, if the local-join
graph restricted to the query relations {rl, . 7rk} contains
a directed spanning tree, then no inter-source processing is
needed for this query. [ |

In the proof of Theorem 2 we use the following lemma.

LEMMA 1. If there is an edge from r® to v in the local-
join graph, then (7";1 Do Dt e X X rfk)
subsumes (ry, M .- Xl Mri M ... Mrfk) for all s;,
z, and y.

Proof (Lemma 1): By the local-join property, since r* has
a foreign-key constraint to 77, then all tuples of the fragment
ri at a source x participate in the join with the fragment 7
at the same source. Further, by the consistency condition,
re r{; cannot generate any tuple that is not already in
ri Xl Then, r& X rd D rl X ri for all x and y. Join both
sides with T;l e rfk. The result of the lemma follows. M

Proof of Theorem 2:

Let G be the local-join graph of the predicates, and H be
the restriction of G to the query relations. Then we want
to show that if H has a directed spanning tree T”, then the
query does not require inter-source processing. Without loss
of generality, assume r' is the root of T, and r*, 72, ..., 7" is
the depth-first search order of T (any ordering compatible
with the parent-child ordering of T" will work, including the
DFS order). The user query can be written as 7! X ... X

r*. We will show that each inter-source subquery 7';1 X

7“32 XX rfk is subsumed by the local subquery at source

s1, namely v}, X rZ X ... X rF . For simplicity, we use

(s1,82,...,5,) to represent the subquery ri X rZ, X ... X
7% . We now show, by (backward) induction, from j = k to
j: 1, that (81,...751) B) (81,...,81,5j+1,...,5k)

Basis j = k: Obviously, (s1,81,...,81) 2 (S1,81,..-,81).

Induction: Assume the inductive hypothesis holds for j +
1, that is, (s1,...,81) 2 (S1,...,81,81,8j41,---,8k). We
want to show (s1,...,81) 2 (S1,...,51,8j,8j+1,.-.,5k). Let
r; be the parent of r; in the directed spanning tree. Then,
since 71,...,7r is the depth-first ordering of the tree, we
must have ¢ < j. By Lemma 1, we have (rj! X --- X ri1 X
S XSt e MR subsumes (7t Cess DTt e
¥ Moo Mok, for all y. Let y = s;. Written in our no-
tation: (S1,...,81,8j4+1,-«-58k) 2 (S1,-++, 855 Sjd1s--+,Sk)-
Combined with the inductive hypothesis and by transitivity

of subsumption we get: (s1,...,81) 2 (S1,--+, 85, Sjt1s--+,Sk)-

This completes the proof of the induction.

Hence, the n local subqueries (s1,...,81), s1 = 1,...,n
(n is the number of sources) subsume all inter-source sub-
queries. Thus, no inter-source processing is needed in the
computation of the user query. |

Theorem 2 gives a sufficient condition, based on key and
foreign-key constraints, where no inter-source processing is
needed for the evaluation of a user query. The question nat-
urally arises as to whether the condition of Theorem 2 is also
necessary. In other words, if the restriction of the local-join
graph to query relations does not have a directed spanning
tree, does the evaluation of the query require evaluation of
some inter-source subqueries? We should first mention that
there are weaker semantic constraints (than key, foreign-key
constraints) that may provide conditions for Theorem 2 [34].
However, these semantic constraints are, to the best of our
knowledge, not available as standard features in commercial
databases. (At the same time, it is possible to enforce such
conditions by means of triggers.) Hence, we restrict our-
selves to key and foreign-key constraints. This means that
if there is no edge from r; to r; in the local-join graph, then
no constraints of any form exist between r; and r;. The fol-
lowing theorem addresses the issue of whether the conditions
of Theorem 2 are also necessary in the positive.

THEOREM 3. Given a user query involving the natural
join of two or more relations ri,...,rk, if the local-join
graph restricted to the query relations {r1,...,rr} does not
contain a directed spanning tree, then a database instance
exists where at least one inter-source subquery is not sub-
sumed by any local subqueries. |

Proof: (Sketch) Let G be the local-join graph restricted
to query relations. We show the nodes NV of G can be par-
titioned to 3 subsets: IN; contains a node r; and all nodes
reachable from 7;; N2 contains a node 7; that can not reach
r; and is not reachable from r;, plus all nodes that can reach
r;; and N3 contains the remaining nodes. We show that N;
and N2 are nonempty. Now, we build an instance involv-
ing two information sources, where the fragments (1) satisfy
the constraints dictated by G, while, (2) there is at least
one tuple ¢ in the inter-source join involving relations corre-
sponding to N; from source 1, and relations corresponding
to Na from source 2, such that ¢ is not in the result of any
local subquery. Detailed proof can be found at [5]. [ |

3.6 Partitioning Inter-Source Subqueries

Given a user query, if the condition of Theorem 2 does
not hold then some inter-source processing is needed. In
this section we discuss the problem of determining the set
of subqueries that are needed for the evaluation of the user
query. In particular, we will show a counterintuitive re-
sult, namely that the set of needed subqueries is not unique,
rather, there can be multiple equivalence sets of subqueries.
More specifically, we show by a simple example that the set
of subqueries can be partitioned into (1) required subqueries,
(2) redundant subqueries, with each subquery in this group
being subsumed by a subquery in the required group, and
(3) zero or more sets of equivalent subqueries, where we need
to execute only one subquery from each equivalence class.

EXAMPLE 3. Consider a system with two sources (n = 2),
and a user query involving the join of three relations r(A, B),
s(A,C), t(A,D). Further, assume A is the key for r, and
foreign-key constraints hold from s.A and t.A to r.A. Also
assume the consistency condition (condition 3 in Theorem 1)
holds for r. Note that the local-join graph, restricted to r,
s, and t, has edges from s and t to r, and does not have a
directed spanning tree.

There are 2° = 8 subqueries. Two of them are local sub-
queries, namely, 11 M s1 M t1 and r2 X s X t2 (where r;



represents the fragment of r that comes from source i, simi-
larly for s and t.) It is easy to verify that (see Section 3.6.1
below), for this query,

e 71 X sy Xty and ro X so X to are required.

o 11 X so X to and 1o X s1 X t1 are redundant: r1 X
s2 M to is subsumed by r2 X s2 M ta, and ro X s1 X ¢
is subsumed by r1 M s1 M t.

e 71 X 51 M te and r2 M s1 X to are equivalent, and so
are r1 X so X t1 and ro X so X ¢1.

Hence, the user query can be evaluated fully by evaluating
four subqueries (out of the total 8). There are four sets of
such minimally-sufficient subqueries: FEach set includes the
two required subqueries, plus one subquery from each of the
two equivalence classes in the third bullet above. |

3.6.1 Determining the partition

We use a graph G = (N, E), which we call the subsumes
graph, to determine required, redundant, and equivalence
classes of subqueries. Each node ¢ € N represents a sub-
query. There is also a special node ¢, intended to represent
subqueries with empty results. There is an edge from g¢; to
q; if ¢; subsumes (i.e., is a superset of) g;. Further, there is
an edge from node ¢ to a node q if the subquery represented
by q includes an empty fragment — that is, ¢ represents a
subquery involving 7“;1 XX rfk where at least one of the
sources s; does not provide a mapping for the corresponding
relation r¢, and hence, rii is empty. The following procedure
can be used to partition the set of subqueries:

e Eliminate all nodes reachable from ¢ (these are the
subqueries with empty answers);

e A node with in-degree zero in the remaining graph
represents a required subquery;

e Nodes reachable from the required subqueries repre-
sent the redundant subqueries;

e Eliminate all nodes representing the required and re-
dundant subqueries; the remaining nodes, if any, must
be on cycles; all nodes on a given cycle represent equiv-
alent subqueries.

Finally, how do we determine if one subquery subsumes
another? We demonstrate the idea of the algorithm with an
example.

EXAMPLE 4. Consider the same user query and constraints
as in FExample 3. Consider the edge from s to r in the local-
join graph. The following is immediate from the key, foreign-
key, and consistency conditions:

7 D8 D1 XS, foralll<i<nandl <j<n (nisthe
number of sources). It follows that r; > s; Wt O ;> s; M
t, foralll <i<n,1<j<mn,andl <k <n. Hence,
there is an edge from r; DA s; Mt to r; >4 83 M ty, for all
1<i<n,1<j<mn,j#i, andl <k <n, in the subsumes
graph. |

4. OPTIMIZATION TECHNIQUES AND EX-
PERIMENTAL RESULTS

Query-processing performance is a key issue in large-scale
information integration. In this section we discuss query-
optimization techniques for the semantic-model approach

and present experimental results to evaluate the impact of
the techniques on the query-processing performance and on
the network traffic. We present our experimental results in
Section 4.4, after outlining our experimental setup in Sec-
tion 4.1 and discussing, in Sections 4.2-4.3, the optimization
techniques we used in our approach.

Our experimental results show that (a) our methods are
competitive with respect to the baseline materialization, and
(b) the performance is query-type and environment depen-
dent, suggesting learning approach can be used to establish
robust rules or to develop cost functions to be used for dy-
namically selecting the best query processing method for a
given query in a specific integration instance.

4.1 Experimental Setup

In our experiments we used the setup of [49]74 with the
modification that in addition to the queries used in [49] we
defined several extra queries that would require more inter-
source processing. Our first set of experiments used the “DB-
research” dataset, which contains data sources pertaining to
several universities, research organizations, and publications
information from sources such as CiteSeer [8], DBLP [12],
and SIGMOD [48]. Our semantic model for the DB-research
dataset, shown in Figure 2, is based on the academic depart-
ment ontology [1] from the DAML ontology library [10]; the
queries are shown in Figure 3. (The first ten queries are
from [49]; Q11 and Q12 are our extra queries.)

[proceeding]

proceeding-title

proceeding-year

proceeding-location
proceeding-gc(general-chair)
proceeding-pc(program-chair)
proceeding-member (program-committee)

[project and person]
project-leader
project-member
project-paper
project-area
project-topic
person-adviser
person-advisee
person-affiliation
person-homepage

[paper]
paper-title
paper-author
paper-conference
paper-cite
paper-status

[review]
review-reviewer
review-rating
review-paper
review-comment

Figure 2: Semantic model for DB-Research

Our second set of experiments used schemas from XML.org.
We generated the data for these schemas, since the original
data are no longer available on the Internet. As our exper-
iments compare relative performance of our algorithms, the
comparison is valid no matter what data are used. Our se-
mantic model for the XML.org dataset is shown in Figure
4. The queries are shown in Figure 5; the last query is our
extra query.

All the experiments were executed using PostgreSQL [44]
version 8.1.3 and SAXON [46] version 8 on a 2.0 GHz Pen-
tium M computer with 768 MB memory and 40 GB hard
disk running Windows XP Pro.

4We are grateful to Igor Tatarinov and Alon Halevy for pro-
viding us with their experimental setup for [49], including
the data, schemas, and queries.



Q1: Find all XML related projects

Q2: Find all projects a given person was involved in

Q3: Find all co-authors of a given researcher

Q4: Find all papers by a given pair of authors

Q5: Find papers written by researchers who lead an XML
project

Q6: Find authors who have written reviews about each
other’s papers and who also have co-authored a
paper

Q7: Find researchers who had a paper at a conference
where they have been a PC member (perhaps a
different year)

Q8: Find Jayavel Shanmugasundaram’s paper on VLDB’99

Q9: Find PC chairs of recent conferences and their
papers

Q10: Find pairs of PC-member, submitted paper where
there is a conflict of interests, i.e., a paper
author and the PC member have written a paper
together in the past

Q11: Find people at UC Berkeley and their home pages

Q12: Find students who have published a paper
co-authored with their supervisors

Figure 3: Queries for the DB-research experiments

[order]
order-buyer
order-seller
order-price
order-item
[item] order-itemNum
item-description

item-price

item-qty

[person]
person-name
person-address
person-phone

Figure 4: Semantic model for the XML.org schemas

4.2 Reducing Inter-Source Processing

The results presented in Sections 3.5 and 3.6 allow us (1)
to determine whether inter-source processing is needed, and,
(2) if such processing is needed, to determine equivalent sets
of inter-source subqueries that are required and adequate
for answering the user query. These results can go a long
way toward reducing the overall query-execution costs. Con-
straints (key and foreign-key) used in these results are quite
common and should, in many practical cases, enable us to
avoid a large portion of costly inter-source processing. If no
inter-source processing is required, the amount of processing
needed is O(n), where n is the number of sources, and the
processing can be performed locally at each source. Only the
last step, merging partial results, needs data transmission.
Compare this to a naive execution of all subqueries, where
the processing effort is significantly larger — O(nk)7 where k
is the number of relations in the user query. The amount of
data transfer in this case is also significant due to additional
data transmission required for inter-source processing.

4.3 The Chase Approach

Our wrapper approach generates for each source local sub-

Q1. Find all customers

Q2. Find the parts supplied by a given supplier

Q3. Find customers of a given supplier

Q4. Find suppliers who sell a given part

Q5. Find customers who also supply parts

Q6. Find customers’ ids and phones of a given supplier

Figure 5: Queries for the XML.org experiments

queries that, intuitively, extract the minimum amount of
information needed to answer the user query. More specifi-
cally, if the user query involves the join of relations 1, ..., r¥,
the wrapper extracts the outer join of ri,...,r% from each
source i. (Recall that 7! denotes the fraction of r/ stored
at source i.) With care, selections can also be pushed down
to the wrapper. But we have to be careful not to miss any
valid answers because of null values. Intuitively, this means
we need to treat comparisons with nulls as true at the wrap-
per level, and repeat the comparison once the null has been
replaced by a value in our chase process.

An important optimization approach in the wrappers tech-
nique is the application of the well-known chase method [51].
In some cases we can obtain the complete answer to the
user query by unioning the extracted data, performing a
chase with respect to key constraints, enforcing the remain-
ing conditions and projecting on the desired attributes. The
chase (with respect to a key constraint, or, more generally,
with respect to a functional dependency) can be used to fill
in values for nulls in certain cases. The following example
illustrates the idea of our algorithm.

EXAMPLE 5. Consider a user query on the SM view that
involves (A, B) X s(A,C), and assume A is the key of r.
Assume the wrapper generates (among other tuples) (a, b, null)
from source 1 and (a,null,c) from source 2. The result of
unioning these two answers and chasing with respect to the
key constraint generates the tuple (a,b, c), since the A-value
a is associated with B-value b in the first tuple, hence the null
in the second tuple can be replaced by b. Note that (a,b,c) is
in the (inter-source join) r1 M so and belongs in the answer
to the user query. [ |

An efficient sort-based or hashing-based algorithm can be
used to implement the chase with respect to functional de-
pendencies. The question arises as to when this simple pro-
cessing would generate all answers to the user query. The
answer is, not surprisingly, when the key constraints guar-
antee the lossless join property for the join in the user query.

4.4 Experimental Results

Our experimental results for the DB-Research dataset are
shown in Figures 6 and 7, and the results for the XML.org
dataset are shown in Figure 8. We show the performance of
four algorithms:

e The materialization technique generates the relations
in the user query at the coordinator, and executes the
query on the materialized data.

e The subqueries technique executes all local and inter-
source subqueries, and merges the results at the coor-
dinator.

e The optimized-subqueries technique is similar to the
subqueries approach, except that it avoids executing
redundant inter-source subqueries.

e The wrapper technique extracts the minimum required
information from each source, combines them at the
coordinator, and applies the chase.

The horizontal (X) axis of each of Figures 6-8 lists the
queries, and the vertical (Y) axis — the respective exe-
cution times in milliseconds. (The 12 queries used in the
DB-Research experiments are shown in Figure 3, and the 6
queries used in the XML.org experiments are shown in Fig-
ure 5.) Some of the execution times are missing (for Q6, Q7,



Eiaterialization B Subqueries K Optimized Subgueries EWrapper

12000

16000

BoR e
o nooR
o ©o o
& & o°
& & o

B000

6000

Total execution tine(ns)

4000

o Lﬁ

Q1 Qz Qs Q4 Qs
Queries

Figure 6: Experimental results for the DB-Research
dataset. All query times are given in milliseconds.

D Materialization B Subqueries O0ptimized Subqueries @Wrapper
20000
18000 HTY
B 16000 [ — —
E 14000 H
-
o 12000 H
g
‘H 10000 | —
3
g 000 |
5000 ﬁ‘ W —
T 4000 | |
2
9 , . . N . .
Qs a7 o] a9 Q1o a1l a1z
Queries

Figure 7: Experimental results for DB-Research
(continued). All query times are in milliseconds.

Q10, and Q12 in the DB-Research experiments) due to the
SAXON XQuery “out of memory” errors.

The first observation we make is that, although the optimized-

subqueries technique seems to be the algorithm of choice for
most cases, it is not always the most efficient. In fact, we
should not write off any of the algorithms. Rather, we ex-
pect that, depending on the information sources and the
user query, any of the algorithms may outperform the other
three.

The second, more subtle, observation is that our experi-
mental environment may have had an impact on the results,
which should be carefully considered when interpreting these
results. For XML processing, which included local and inter-
source subqueries, and the subqueries for the extraction of
minimum required information in the wrapper technique,
we used XQuery on SAXON [46]. In fact, the entire wrap-
per algorithm, including chase and duplicate elimination, is
implemented in XQuery. On the other hand, for the mate-
rialization technique, we used PostgreSQL [44]. This seems
to have penalized the efficiency for the wrapper and, to a
lesser degree, for the subqueries approach, while favoring
materialization.

We have experimentally established that our proposed
methods are very competitive, although, in some cases, the
basic materialization method turns out to be the best. The
subqueries approach is, in general, more efficient than ma-
terialization. The optimized-subqueries technique is more
efficient than the other methods for most (but not all) user
queries. This is witnessed, in particular, in Q8 of the DB-

OMaterialization B Subgueries DOptinized Subqueries B Wrapper

5 70

©
=3
=3

Total executien time(ms
-
)
3

]
o o
p=gp=$

o

1 Qz Ak} Q4 Q5 o2}
Queries

Figure 8: Experimental results for the XML.org
dataset. All query times are given in milliseconds.

Research experiments as well as in most XML.org exper-
iments. Despite the handicap of the XQuery-engine ineffi-
ciencies, the wrapper technique has the best performance for
some of the XML.org experiments. Our conjecture is that
when data is very regular at every source, in the sense that
each source contributes to all relations in a user query, then
the wrapper method is the most efficient. For queries where
semantic constraints enable us to eliminate all or most of
the inter-source processing, the optimized subqueries is ex-
pected to outperform the other methods. Materialization is
preferred for queries with large number of relations where
all or most inter-source subqueries are required. Finally,
subqueries method is preferable for queries with small to
moderate number of relations.

Our experimental results show that the performance of
our methods is query-type and environment dependent, sug-
gesting an (automated) learning approach can be used to es-
tablish robust rules or to develop cost functions to be used
for dynamically selecting the best query processing method
for a given query in a specific integration instance. The de-
sign of such a system is a direction of our ongoing research
in this project.

S. RELATED WORK

There has been an increased interest in information in-
tegration and interoperability and its applications in recent
years, as evidenced by a large number of workshops (such as,
Workshop on Information Integration Methods, Architec-
tures, and Systems (IIMAS) (in conjunction with ICDE’08)
[29], Workshop on Data Integration in Life Sciences [14], and
EDBT 2006 Workshop on Information Integration in Health-
care Applications (ITHA) [28], to name a few). The degree
of research activities and publications in information inte-
gration and related areas, such as schema matching, model
management, and information exchange, have also increased
substantially. In this section we will review some of the re-
cent and relevant works.

The importance of large-scale integration (web-scale in-
tegration) and “pay-as-you-go” paradigm in such environ-
ments have been observed in many recent works, such as
[23, 36]. There has been a revitalization of ontological mod-
eling as a result of the W3C Semantic Web initiative [47].
Some information integration systems have been proposed
and implemented using ontological modeling concepts. For
example, the ICS-FORTH Semantic Web Integration Mid-
dleware (SWIM) [6, 7] uses Semantic Web tools for inte-



gration. Main differences with our SM approach is in our
use of database tools and concepts, and emphasis on query
optimization, versus their reliance on Semantic Web tools,
such as RDF and query language RQL [31]. Further, we pay
special attention to queries that require data from multiple
sources (inter-source processing), while this important issue
has not been addressed in SWIM.

In a recent work on indexing large volumes of data [20],
authors advocate a triple model as a global model for all
data. Triples are closely related to RDF and ontologies,
and to our SM view model, demonstrating the validity and
naturalness of our SM view for modeling the information
contents of information sources.

The Piazza and related projects [22, 24, 25, 42, 50] cover
various aspects of large-scale data integration, including: (1)
Peer-based data management [25, 37, 49, 50], (2) Schema
mapping [13, 16, 17, 19, 26, 35], and (3) Theoretical foun-
dations, indexing, and access control [18, 21, 30]. The main
idea behind data integration/interoperability in Piazza Peer
Data Management System (PDMS) is that users provide
mappings between pairs of information sources [25]. There
is no need to provide mappings for all pairs. In fact, all that
is needed is that the sources graph that represents available
mappings be connected. Mappings between any two sources
can then be obtained by composing the pairwise mappings
along a path connecting the two sources [37, 49]. However,
this works well for sources belonging to the same applica-
tion domain, with similar data. Otherwise the composition
process will result in information loss.

Systems based on peer-to-peer mappings are appropriate
for federations of information sources with similar informa-
tion. In contrast, our approach is based on mappings from
data sources to simple ontology-based SM views and can
be applied to federations of sources with different (as well
as similar) information. In our approach mappings are lo-
cal: No knowledge about other sources is needed. Another
advantage of our approach is that the system is more re-
silient to erroneous mappings (only one source is affected by
an erroneous mapping). In contrast, an erroneous mapping
in Piazza affects all query processing that uses a path that
includes the mapping.

The Clio [9, 40] and Hyperion [2, 27] projects have de-
veloped tools for automating common data and structure
management tasks underlying many data integration, trans-
lation, transformation, and evolution tasks. The thrust of
these projects has been on supporting schema management,
such as generating, matching, and mapping queries between
schemas in multi-source and peer-to-peer systems [33, 39].
Semi-automatic techniques have been developed for gen-
eral schema matching and for generating mappings between
schemas [43, 54]. The projects introduce the mapping table
approach to represent schema mappings, and discuss query
processing in this environment [32, 33]. The architecture is
similar to that of Piazza: A query is submitted at a peer,
which passes it, possibly in translated form, to (some of)
its acquaintances, which repeat this process. In our pro-
posal, schema mappings are always between a simple seman-
tic model and a general schema. We may benefit from some
of the discoveries of these projects, but in general, we do
not need the sophisticated technologies for general schema
matching and mapping.

6. CONCLUSIONS

We presented algorithms for query processing and opti-
mization in our semantic-model approach to large-scale in-
formation integration and interoperability. In addition to
supporting gradual (pay-as-you-go) large-scale information
integration and efficient inter-source (join) processing, the
SM approach eliminates the need for mediation in deriv-
ing the global schema, thus addressing the main limitation
of data-integration systems. The focus of our study was
performance-related characteristics of several alternative ap-
proaches that we proposed for efficient query processing in
the semantic-model environment. Owur theoretical results
and practical algorithms are of independent interest and can
be used in any information-integration system that avoids
loading all the data into a single repository. We also pre-
sented an experimental study of our techniques on real-life
and synthetic data. Our experimental results establish the
efficiency of our algorithms, and show that the performance
of our methods is query-type and environment dependent,
suggesting an (automated) learning approach can be used to
establish robust rules or to develop cost functions to be used
for dynamically selecting the best query processing method
for a given query in a specific integration instance. The de-
sign of such a system is a direction of our ongoing research
in this project.

7.. REFERENCES

[1] Academic Department Ontology.

http://www.daml.org/ontologies/65.

[2] Marcelo Arenas, Vasiliki Kantere, Anastasios

Kementsietsidis, [luju Kiringa, Renée J. Miller, and John

Mylopoulos. The Hyperion project: From data integration

to data coordination. SIGMOD Record, 32(3):53-58, 2003.

Special issue on Peer to Peer Data Management.

Marcelo Arenas and Leonid Libkin. XML data exchange:

Consistency and query answering. In Proceedings of ACM

Symposium on Principles of Database Systems, pages

13-24, 2005.

[4] Tim Berners-Lee, James Hendler, and Ora Lassila. The

Semantic Web. Scientific American, May 2001.

Dongfeng Chen, Rada Chirkova, and Fereidoon Sadri.

Designing an Information Integration and Interoperability

System — First Steps. Technical Report NCSU CSC

TR-2006-30. Available at

http://wwwé.ncsu.edu/ rychirko/Papers, October 2006.

Vassilis Christophides, Gregory Karvounarakis, I. Koffina,

G. Kokkinidis, Aimilia Magkanaraki, Dimitris Plexousakis,

G. Serfiotis, and Val Tannen. The ICS-FORTH SWIM: A

powerful Semantic Web integration middleware. In

Proceedings of VLDB Workshop on Semantic Web and

Databases, pages 381-393, 2003.

Vassilis Christophides, Gregory Karvounarakis, Aimilia

Magkanaraki, Dimitris Plexousakis, and Val Tannen. The

ICS-FORTH Semantic Web integration middleware

(SWIM). In IEEFE Data Engineering Bulletin, pages 11-18,

2003.

[8] CiteSeer. http://citeseer.ist.psu.edu/.
[9] The Clio project. http://www.cs.toronto.edu/db/clio.

[10] DAML Ontology Library.
http://www.daml.org/ontologies/.

[11] Susan Davidson, Wenfei Fan, Carmem Hara, and Jing Qin.
Propagating XML constraints to relations. In Proceedings of
IEEE International Conference on Data Engineering, 2003.

[12] dblp.
http://www.informatik.uni-trier.de/ ley/db/index.html.

[13] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Y.
Halevy, and Pedro Domingos. iMAP: Discovering complex
semantic matches between database schemas. In

3

=

6

[7



(14]

(15]

[16]

(17]

(18]

19]

20]

(21]

(22]

23]

(24]

(25]

[26]

27]

(28]

(29]

(30]

(31]

(32]

Proceedings of ACM SIGMOD International Conference
on Management of Data, pages 383-394, 2004.

Data Integration in Life Sciences, 2007.
http://dils07.cis.upenn.edu.

Hong Hai Do and Erhard Rahm:. COMA - a system for
flexible combination of schema matching approaches. In
Proceedings of International Conference on Very Large
Databases, pages 610-621, 2002.

AnHai Doan, Pedro Domingos, and Alon Halevy.
Reconciling schemas of disparate data sources: A
machine-learning approach. In Proceedings of ACM
SIGMOD International Conference on Management of
Data, 2001.

AnHai Doan, Pedro Domingos, and Alon Halevy.
Reconciling schemas of disparate data sources: A
multistrategy approach. Machine Learning, 50(3):279-301,
2003.

AnHai Doan and Alon Halevy. Efficiently ordering query
plans for data integration. In Proceedings of IEEE
International Conference on Data Engineering, pages
393-402, 2002.

AnHai Doan, Jayant Madhavan, Pedro Domingos, and
Alon Halevy. Learning to map between ontologies on the
semantic web. In Proceedings of the International WWW
Conference, pages 662—673, 2002.

Xin Dong and Alon Halevy. Indexing dataspaces. In
Proceedings of ACM SIGMOD International Conference
on Management of Data, pages 43—-54, 2007.

Xin Dong, Alon Y. Halevy, and Igor Tatarinov.
Containment of nested XML queries. In Proceedings of
International Conference on Very Large Databases, pages
132-143, 2005.

Alon Halevy, Oren Etzioni, AnHai Doan, Zachary Ives,
Jayant Madhavan, Luke McDowell, and Igor Tatarinov.
Crossing the structure chasm. In Proceedings of the
Biennial Conference on Innovative Data Systems Research
(CIDR), 2003.

Alon Halevy, Michael Franklin, and David Maier. Principles
of dataspace systems. In Proceedings of ACM Symposium
on Principles of Database Systems, pages 1-9, 2006.
Alon Y. Halevy, Zachary G. Ives, Jayant Madhavan, Peter
Mork, Dan Suciu, and Igor Tatarinov. The Piazza peer
data management system. IEEE Transactions on
Knowledge and Data Engineering, 16(7):787-798, 2004.
Alon Y. Halevy, Zachary G. Ives, Peter Mork, and Igor
Tatarinov. Piazza: data management infrastructure for
semantic web applications. In Proceedings of the
International WWW Conference, pages 556—567, 2003.
Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor
Tatarinov. Schema mediation in peer data management
systems. In Proceedings of IEEE International Conference
on Data Engineering, pages 505-516, 2003.

The Hyperion project.
http://www.cs.toronto.edu/db/hyperion.

EDBT 2006 Workshop on Information Integration in
Healthcare Applications (ITHA), 2006.

www6.informatik.uni-erlangen.de/events/wsIIHAedbt2006/.

‘Workshop on Information Integration Methods,
Architectures, and Systems (IIMAS), in conjunction with
ICDE’08, 2008. http://daks.ucdavis.edu/IIMASO8/.
Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld.
Adapting to source properties in processing data integration
queries. In Proceedings of ACM SIGMOD International
Conference on Management of Data, pages 395-406, 2004.
Gregory Karvounarakis, Sofia Alexaki, Vassilis
Christophides, Dimitris Plexousakis, and Michel Scholl.
RQL: A declarative query language for RDF. In
Proceedings of the International WWW Conference, pages
592-603, 2002.

Anastasios Kementsietsidis and Marcelo Arenas. Data
sharing through query translation in autonomous sources.

(33]

(34]

(35]

(36]

(37]

(38]

39]

[40]

[41]

42]

(43]

[44]
[45]

[46]
[47]

(48]
[49]

[50]

(51]

(52]

(53]

In Proceedings of International Conference on Very Large
Databases, pages 468-479, 2004.

Anastasios Kementsietsidis, Marcelo Arenas, and Renée J.
Miller. Mapping data in peer-to-peer systems: Semantics
and algorithmic issues. In Proceedings of ACM SIGMOD
International Conference on Management of Data, pages
325-336, 2003.

Laks V. S. Lakshmanan and Fereidoon Sadri.
Interoperability on XML data. In Proceedings of the
International Semantic Web Conference (ISWC), pages
146-163, 2003.

Jayant Madhavan, Philip A. Bernstein, AnHai Doan, and
Alon Y. Halevy. Corpus-based schema matching. In
Proceedings of IEEE International Conference on Data
FEngineering, 2005.

Jayant Madhavan, Shirley Cohen, Xin Luna Dong, Alon Y.
Halevy, Shawn R. Jeffery, David Ko, and Cong Yu.
Web-scale data integration: You can afford to pay as you
go. In Proceedings of the Biennial Conference on Innovative
Data Systems Research (CIDR), pages 342-350, 2007.
Jayant Madhavan and Alon Y. Halevy. Composing
mappings among data sources. In Proceedings of
International Conference on Very Large Databases, pages
572-583, 2003.

Douglas Markland. An XML mapping tool. Project Report,
Department of Mathematical Sciences, University of North
Carolina at Greensboro, April 2004.

Renée J. Miller, Laura M. Haas, and Mauricio A.
Hernandez. Schema mapping as query discovery. In
Proceedings of International Conference on Very Large
Databases, pages 77-88, 2000.

Renée J. Miller, Mauricio A. Herndndez, Laura M. Haas,
Ling-Ling Yan, C. T. Howard Ho, Ronald Fagin, and
Lucian Popa. The Clio project: Managing heterogeneity.
SIGMOD Record, 30(1), 2001.

Natalya F. Noy and Deborah L. McGuinness. Ontology
development 101: A guide to creating your first ontology,
2001.
http://ksl.stanford.edu/people/dlm/papers/ontology-
tutorial-noy-mcguinness.pdf.

The Piazza project.
http://data.cs.washington.edu/p2p/piazza.

Lucian Popa, Yannis Velegrakis, Renée J. Miller,
Mauricio A. Hernédndez, and Ronald Fagin. Translating web
data. In Proceedings of International Conference on Very
Large Databases, 2002.

PostgreSQL. http://wuw.postgresql.org/.

Erhard Rahm and Philip A. Bernstein. A survey of
approaches to automatic schema matching. The VLDB
Journal, 10(4):334-350, 2001.

SAXONICA XSLT and XQuery Processing.
http://www.saxonica.com/.

Semantic Web. http://www.w3c.org/2001/sw/.

SIGMOD. http://www.sigmod.org/.

Igor Tatarinov and Alon Halevy. Efficient query
reformulation in peer data management systems. In
Proceedings of ACM SIGMOD International Conference
on Management of Data, pages 539-550, 2004.

Igor Tatarinov, Zachary G. Ives, Jayant Madhavan, Alon Y.
Halevy, Dan Suciu, Nilesh N. Dalvi, Xin Dong, Yana
Kadiyska, Gerome Miklau, and Peter Mork. The piazza
peer data management project. SIGMOD Record,
32(3):47-52, 2003.

Jeffrey D. Ullman. Principles of Database and
Knowledge-Base Systems, Volume I. Computer Science
Press, 1988.

Jeffrey D. Ullman. Information integration using logical
views. In Proceedings of International Conference on
Database Theory, pages 19-40, 1997.

XML Path Language (XPath).
http://www.w3c.org/TR/xpath.



[54] Ling-Ling Yan, Renée J. Miller, and Laura M. Haas.
Data-driven understanding and refinement of schema
mappings. In Proceedings of International Conference on
Very Large Databases, 2001.



