
Exact and Inexact Methods for Solving the Problem
Of View Selection for Aggregate Queries

Zohreh ASGHARZADEH TALEBI1, Rada CHIRKOVA2, and Yahya FATHI1

1 Operations Research Program, NC State University, Raleigh, NC 27695,
{zasghar,fathi! ! !}@ncsu.edu

2 Computer Science Department, NC State University, Raleigh, NC 27695,
chirkova@csc.ncsu.edu†

Abstract. We present a study of the following warehouse view-selection problem: Given a frequency
distribution on parameterized aggregate queries on a data warehouse, return definitions of aggregate
views that, when materialized in the warehouse, would reduce the evaluation costs of the frequent
queries. Optimizing the layout of stored data using view selection has a direct impact on the performance
of data warehouses. However, the optimization problem is intractable, even under natural restrictions
on the types of queries of interest. We introduce an integer-programming model to obtain optimal
solutions for the warehouse view-selection problem, and propose a heuristic to obtain competitive
inexact solutions where our exact method is inapplicable. We show that both our approaches can
be used to solve realistic-size instances of the problem. In addition, we experimentally compare our
methods to those of Harinarayan et al. (1996) and Shukla et al. (1998), and delineate applicability
areas for these and our approaches.

Keywords: business intelligence, data reporting, OLAP, business intelligence cycle, schema
specification selection, view selection, data warehouse design, data analysis tools.

1 Introduction

As data warehouses keep growing in size, evaluating many common queries — such as aggre-
gate queries — in OLAP may require significant transformations of large volumes of stored
data. Aggregate queries are widely used in data warehouses and decision support. Optimiza-
tion based on the reuse of query answers is particularly promising for aggregate queries,
as often an enormous amount of data is scanned to produce a single aggregate value. As
a result, the requirement of good overall performance of frequent and important business
intelligence queries necessitates optimal choices in choosing and executing query plans. A
significant aspect of query performance is the choice of auxiliary data (e.g., indexes) used
in query answering. In modern commercial database systems, a common type of auxiliary
data is materialized views — relations that were computed by answering certain queries on
the (original) stored data in the database and that can be used to provide, without time-
consuming runtime transformations, “precompiled” information that is relevant to the user
query. We give an example of using materialized views to answer select-project-join queries
with aggregation in a star-schema (see Kimball et al. (2002)) data warehouse.

! ! ! This author’s work is partially supported by the National Science Foundation under Grant No. 0321635.
† Work partially supported by the National Science Foundation under Grants No. 0307072 and 0447742.



Example 1. Consider a data warehouse with three stored relations: Sales(CID, DateID,Qty-
Sold,Discount), Customer(CID,CustName,Address,City,State), and Time(DateID,Day,
Month,Year). Here, Sales is the fact table, and Customer and Time are dimension tables.

Let the query workload have two queries, Q1 and Q2. Q1 asks for the total quantity of
products sold per customer in the last quarter of the year 2006. Q2 asks for the maximal
product quantity sold per year for all years after 2000 to customers in North Carolina.
Q1: SELECT c.CID, SUM(QtySold) Q2: SELECT t.Year, MAX(QtySold)

FROM Sales s, Time t, Customer c FROM Sales s, Time t, Customer c
WHERE s.DateID = t.DateID AND s.CID = c.CID WHERE s.DateID = t.DateID AND s.CID = c.CID
AND Year = 2006 AND Month >= 10 AND Month <= 12 AND Year > 2000 AND State = ‘NC’
GROUP BY c.CID; GROUP BY t.Year;

We can use techniques from Harinarayan et al. (1996) to show that the following view V
can be used to give exact answers to each of Q1 and Q2.

V: SELECT s.CID, Year, Month, State, SUM(QtySold) AS SumQS, MAX(QtySold) AS MaxQS
FROM Sales s, Time t, Customer c
WHERE s.DateID = t.DateID AND s.CID = c.CID GROUP BY s.CID, Year, Month, State;

Evaluating the queries Q1 and Q2 using the view V is likely to be more efficient than using
their original definitions, as using V allows the DBMS to avoid taking expensive joins of the
stored tables and may also save some time in grouping and aggregation. !

We consider the following warehouse view-selection problem: Given a frequency distribu-
tion on parameterized aggregate queries on a star-schema data warehouse, and given a set
of constraints (e.g., a storage limit on the amount of disk space that can be used to store
materialized views), return definitions of views that, when materialized, would satisfy the
constraints and reduce the evaluation costs of the frequent queries. As design of materialized
views is an important component of query processing in data warehouses (see Baralis et al.
(1997), Harinarayan et al. (1996), Kalnis et al. (2002), Shukla et al. (1998), Theodoratos
et al. (1997), and Yang et al. (1997)) and of automated query-performance tuning (see IBM
and Microsoft; Shasha et al. (2002)), the problems of selecting views and of answering queries
using views have been studied thoroughly in the literature.

Generally, spending more time on designing views tends to pay off, as greater improve-
ment can thereby be achieved in the query performance. As the number of beneficial views
tends to be prohibitive even for simple query workloads (Agrawal et al. (2000); Chirkova
et al. (2002); Harinarayan et al. (1996)), it is not practical to use exhaustive enumeration
to obtain derived data that would globally minimize query costs. Several approaches (see,
e.g., Agrawal et al. (2000); Gupta et al. (1997); Harinarayan et al. (1996); Shukla et al.
(1998)) have been proposed to efficiently design good-quality sets of derived data for SQL
queries. We continue the work of Gupta et al. (1997) and Harinarayan et al. (1996) of study-
ing view-selection algorithms that are competitive, that is, provide optimality guarantees on
their outputs without necessarily exploring the entire search space of views. We present a
formal model of warehouse view selection, explore competitive techniques for designing and
using views in this context, experimentally compare our techniques to previous approaches
of Harinarayan et al. (1996) and Shukla et al. (1998), and delineate applicability areas for
all of the methods involved.

Our specific contributions are as follows:

2



1. We model warehouse view selection as an integer-programming (IP) problem and give
references to similar IP structures in the literature. Our exact method for solving the
view-selection problem uses our IP model and returns optimal solutions. In addition, we
propose an heuristic that reduces, in the input to the IP model, the size of the search
space of useful views, and provides an inexact method for solving the problem.

2. With our IP model and heuristic, we use standard IP-solver software to solve optimally or
near-optimally realistic-size instances of the problem on the popular TPC-H benchmark
(described in TPC-H) and on real data in the Sloan Digital Sky Survey (SDSS) dataset
(described in Szalay et al. (2002)).

3. We study the applicability of our exact and inexact methods for two versions of the view-
selection problem, determined by whether the table for the view resulting from joining
all the base relations (we call this view raw-data view) is part of the solution.

4. We experimentally compare our two methods with the heuristic approaches of Hari-
narayan et al. (1996) and Shukla et al. (1998) and delineate the applicability areas of
each approach.

In our experiments we solved hundreds of problem instances, both on TPC-H data (described
in TPC-H) and on the SDSS dataset (described in Szalay et al. (2002)). The problem
instances used both randomly generated query workloads and queries related by the ancestor-
descendant relationship in the sense of the structure used by Harinarayan et al. (1996).

After outlining related work, in Section 2 we provide the background and formal def-
initions. Section 3 introduces our IP model of the view-selection problem. We report our
experimental results and theoretical analysis in Section 4 (for our IP model) and in Section 5
(for the heuristic we propose in the same section). We report our comparative experiments
and our comparison conclusions in Section 6.

Related Work

Designing and using derived data to improve query performance has long been studied in
data-intensive systems. A wealth of theoretical results (see Halevy (2001) for a survey) and
some practical solutions by Agrawal et al. (2001), Chaudhuri et al. (1995), and Chaudhuri
et al. (1998) have been accumulated on using views and indexes in query answering. Answer-
ing aggregate queries using views was considered in relation to data warehouses and data
cubes by Agarwal et al. (1996), Chaudhuri and Dayal (1997), Gray et al. (1997), and Widom
(1995); results on answering each query using a single view were presented by Gupta et al.
(1995), and Srivastava et al. (1996). Recent work of Afrati and Chirkova (2005) and Cohen
et al. (1999) considered rewriting aggregate queries using multiple views.

Considerable work has been done on efficiently selecting views and indexes for general
SQL queries by Agrawal et al. (2000) and in particular for aggregate queries (e.g., the works
by Afrati and Chirkova (2005), Gupta et al. (1997), Harinarayan et al. (1996), Kalnis et al.
(2002), and Shukla et al. (1998)). Yang et al. (1997) proposed algorithms, including an
IP approach, for selecting materialized views to minimize the sum cost of processing the
given queries and of maintaining all the views. Agrawal et al. (2000), and Agrawal et al.

3



(2001) introduced an end-to-end approach and a system architecture for designing and using
materialized views and indexes to answer queries.

In this paper we study the problem of selecting views for aggregate queries on star-
schema data warehouses. The setting and assumptions we use generalize those by Gupta
et al. (1997), Harinarayan et al. (1996), Kalnis et al. (2002), and Shukla et al. (1998) (in
contrast to those by Yang et al. (1997)) — that is, we seek to minimize the total execution
costs of the frequent queries under a storage-limit constraint. At the same time, one novelty
of our work is in obtaining efficiently optimal or near-optimal solutions for problem instances
of realistic sizes, for two versions of the view-selection problem. In the first version, we assume
similarly to the approach by Harinarayan et al. (1996) that the raw-data view is always part
of the solution set of materialized views. We lift this restriction in the second version of view
selection; the resulting problem arises in practice in settings where it is too expensive to
maintain efficiently the result of joining all base tables, including data-integration settings
where certain views are materialized in the mediator to improve query-processing efficiency
(see Halevy (2001)). Our extensive experimental evaluation of the proposed methods allows
us to delineate applicability areas for our approaches to view selection, as well as for the
methods by Harinarayan et al. (1996), Kalnis et al. (2002), and Shukla et al. (1998).

2 Preliminaries and Problem Specification

We consider relational select-project-join queries with grouping and aggregation (SPJGA
queries), posed on star-schema data warehouses ( Chaudhuri and Dayal (1997); Kimball
et al. (2002)). Similarly to Gupta et al. (1997); Harinarayan et al. (1996); Kalnis et al.
(2002); Shukla et al. (1998), we assume application settings where users frequently ask a
limited number of parameterized SPJGA queries, such as itemized daily/weekly/monthly
sales reports for a variety of parameters for products, locations, etc. Thus, we assume pa-
rameterized queries, by allowing arbitrary constant values (i.e., placeholders instead of fixed
constants) in the WHERE clauses of the queries, and assume that specific values of these
constants are not known in advance.

We consider star-schema data warehouses with a single fact table and a small fixed
number of dimension tables, under the following realistic assumptions. First, in each base
table all rows have a single fixed (upper bound on) length. Second, the fact table has many
more (in fact, magnitudes more) rows than each dimension table. Finally, we assume that
each base table has a single index, on the table’s key.

Our cost model is as follows. We consider the costs of answering queries using unindexed
materialized views, such that each query can be evaluated using just one view and no other
data, as in Example 1. (This setting is the same as in Harinarayan et al. (1996); Kalnis et al.
(2002); Shukla et al. (1998).) Given a query workload Q and a set of views V that have been
precomputed on a database D, the total cost of evaluating Q using V is the sum of the costs
of evaluating all the queries in Q, such that each query is evaluated using a view in V . The
sum is weighted to reflect the relative frequency (or importance) of individual queries.

4



We consider the following warehouse view-selection problem: Given a star-schema data
warehouse and for a given frequency distribution on parameterized SPJGA queries, our goal
is to minimize the evaluation costs of the queries, by selecting and precomputing views
that can be used in answering the queries. We consider this minimization problem under
a storage-space limit, which is an upper bound on the amount of disk space that can be
allocated for the views. Thus, our problem inputs are of the form I = (D,Q, b), where D is
a database, Q is a workload of parameterized queries, with a frequency/importance value fj

for each query j in Q, and b is the (positive integer) value of the storage limit.

We use the following definitions of solutions and of the optimal viewset problem (OV P ):

Definition 1. For a problem input I = (D,Q, b), a set of views V is an admissible viewset
if (1) each query in Q can be rewritten using V, and (2) V satisfies the storage limit b.

Definition 2. For a problem input I = (D,Q, b), an optimal viewset is a set of views V
defined on D, such that (1) V is an admissible viewset for I, and (2) V minimizes the cost
of evaluating Q on the database DV , among all admissible viewsets for I. Here, DV is the
database that results from adding to D the relations for all the views in V computed on D.

Definition 3. (Problem OV P ) For a given problem input I = (D,Q, b), find an optimal
viewset. A solution for a given instance of OV P consists of a set of materialized views V
(which includes the raw-data view on D and all additional views that we choose to materialize)
and an association between each element of Q and its corresponding element of V.

We also consider a variation OV P ′ of the optimal-viewset problem: Unlike OV P , in
OV P ′ we do not require that the raw-data view be materialized as part of the solution. In
Section 4 we present an experimental comparison of two versions of our proposed approach,
one for OV P and the other for OV P ′.

For the class of SPJGA queries that we consider, our search space of views is the view
lattice introduced by Harinarayan et al. (1996) and adopted in a number of research projects,
including those by Kalnis et al. (2002) and Shukla et al. (1998). We now discuss and justify
our choice of the search space of views and our cost model.

The view lattice described in Harinarayan et al. (1996) that we use as our search space
includes all star-join views with grouping and aggregation (JGA views) on the base tables,
such that each view has aggregation on all the attributes aggregated in the input queries,
using all the aggregation functions used in the queries. Such views, illustrated by view V in
Example 1, are called “multiaggregate views” (see Afrati and Chirkova (2005)). A SPJGA
query Q can be answered using a JGA view V if the grouping attributes of V are a superset
of the union of attributes in the GROUP BY clause of Q and of the attributes in the WHERE
clause of Q that are compared to constants. By definition, each query Q can be answered
using the top view (raw-data view) in the lattice.

In our cost model, the cost of answering a single SPJGA query using a JGA view is the
size of the view, as justified in Harinarayan et al. (1996), Kalnis et al. (2002), and Shukla
et al. (1998). Note that in our problem setting, given an input query Q and a view V that can
answer Q, it is enough to compare the cost of answering Q using V to the cost of answering

5



Q using only the raw-data view, rather than to the cost of answering Q using the original
base relations in the data warehouse. The reason is, under our assumptions these two costs
are directly proportional to each other.

We now argue why considering just the views in our JGA view lattices is a reasonable
option in finding optimal or near-optimal sets of views to materialize when seeking to min-
imize the costs of answering sets of parameterized SPJGA queries under a storage limit.
(Whenever we refer to finding optimal solutions of this problem, we consider optimality with
respect to our view lattices.) First, it is more efficient to answer any SPJGA query using
a single JGA view than using a query plan that involves joins of base relations or views.
Second, when the values of the constants of a parameterized query are not known in advance,
the only option to minimize the response time of all queries in Q is to materialize a single
eligible JGA view. Finally, using multiaggregate JGA views permits us to use a single view
to answer queries with different aggregation functions, as illustrated by Example 1.

3 Integer Programming Models for OV P and OV P ′

In this section we propose integer programming (IP) models for the optimal-viewset problems
OV P and OV P ′, and discuss methodologies for solving thes IP models. Since we use these
IP models to obtain globally optimal solutions for OV P and OV P ′, we refer to this approach
as an “exact method” for solving OV P and OV P ′.

We use the following notation to represent the input I = (D,Q, b) in our IP model:

ai : Size of the view i, for all i ∈ IV , where IV is the index set for all possible views;
b : storage limit;
cij : evaluation cost of answering query j by using view i, for all i ∈ IV and j ∈ Q.

We let cij = +∞ if view i cannot be used to answer query j; otherwise we have cij = ai ·fj,
where ai is as defined above and fj is the frequency (or importance) of query j. We further
define the following decision variables for the IP model.

xi =

{
1 if view i is materialized
0 otherwise

for all i ∈ IV

and

yij =

{
1 if we use view i to answer query j
0 otherwise

for all i ∈ IV and j ∈ Q

The optimal-viewset problem OV P can now be stated as the following IP model.
Minimize

∑
i ∈ IV

∑
j ∈ Q cijyij (OV IP )

subject to
∑

i ∈ IV aixi ≤ b (1)∑
i ∈ IV yij = 1 ∀ j (2)

yij ≤ xi ∀ i, j such that cij %= +∞ (3)
x1 = 1 (4)
xi, yij ∈ {0, 1} ∀ i, j

6



Constraint (1) limits the size of the materialized views to be no more than the storage
space b. Constraint (2) states that each query is answered by exactly one view in the set
of views. Constraint (3) guarantees that query j can be answered by view i only if view i
is already materialized. Constraint (4) states that the raw-data view is always materialized.
The remaining constraints are simply the binary requirements for xi and yij.

We can also modify this model into an IP model for the problem OV P ′ (see note after
Definition 3 in Section 2) by removing constraint (4). This is equivalent to stating that the
raw-data view is not required to be materialized. We refer to this modified model as OV IP ′.

The structure of this IP model is similar to those for the uncapacitated facility location
problem (UFL) and the k-median problem. These two problems are well studied in the
literature, and relatively large instances of the corresponding IP models can be solved within
reasonable time. Several heuristic approaches for solving these problems have also been
reported. See Cornuejols et al. (1984) and Krarup et al. (1983) for the facility location
problem and Mulvey et al. (1979) for the k-median problem.

A key difference between this IP model and those for the UFL and k-median problems
is the presence of relatively large numbers of variables in this model due to the large size
of the index set IV . If we have K attributes in the data base, the corresponding size of the
set IV is 2K , which leads to 2K variables of type xi and |Q| 2K variables of type yij. For a
lattice with K = 15 attributes this implies 32,708 xi-variables and 32, 708 |Q| yij-variables.
Comparatively, in a typical UFL or k-median problem the size of the corresponding IV set
is no more than a few hundreds. As a result, the algorithmic strategies that are proven to
be effective for solving those models turn out to be not as effective for solving OV IP . In
Sections 4 and 5 we discuss some strategies for reducing the size of the set IV and thereby
the size of the corresponding OV IP model.

Note that due to the special structure of this IP model the binary requirement for yij

can be replaced by a simple non-negativity restriction without affecting the corresponding
optimal solution for this model. See Parker et al. (1988) for a discussion of this subject and
its theoretical underpinning. This relaxation has a significant impact on reducing the overall
computational effort required to solve the IP model, and we use it throughout this paper
and in all our experiments.

4 A Computational Experiment with the IP Model

As discussed in Section 3, solving the proposed IP models OV IP or OV IP ′ allows us to
obtain optimal (exact) solutions to problems OV P or OV P ′, respectively. In this section
we discuss the results of an experiment that we conducted in order to investigate various
computational aspects of the proposed model, and determine the limits on the size of problem
instances that we can solve in practice using this approach and with today’s technology. We
put our results in perspective in Section 6.

We begin by proposing an approach for reducing the search space of views in our exact
method. As mentioned earlier, a key hurdle in solving realistic instances of the IP model
OV IP (or OV IP ′) is the relatively large number of variables in the model, in particular the
binary variables xi. The maximum number of such variables is equal to the size of the set

7



IV , i.e., 2K . In practice we can reduce the size of IV — and hence the number of variables
in the model — without affecting the optimal value of OV IP (or OV IP ′), by removing from
this set every view i that cannot be used to answer at least one of the queries in the set
Q3 (for obvious reasons no such view can be in the optimal solution of OV IP or OV IP ′).
We refer to the resulting (reduced) index set as IV ′. The reduction in size (i.e., IV ′ versus
IV ) depends on the specific queries in the set Q. For each instance in our experiment we
construct the corresponding reduced set IV ′ and report its size.

To determine the limits of the size of the instances that we can solve in practice using
our exact method, we constructed and solved a large collection of instances of the problem.
All experiments were run on a machine with a 3GHz Intel P4 processor, 1GB RAM, and a
80GB hard drive running Windows XP SP2, and using the IP solver CPLEX/AMPL 9.0.
This software uses a branch-and-bound algorithm for solving the IP model, and solves the
corresponding linear programming relaxation models using the simplex algorithm.

In Section 4.1 we discuss the datasets that we used in the experiments. In Section 4.2 we
report the execution time for a collection of instances from these datasets, and make some
observations. Finally, in Section 4.3 we present the results of further experiments that offer
additional insight on the applicability of our proposed exact methods.

4.1 Datasets

We used two datasets in our experiments: (1) a TPC-H database benchmark (TPC-H),
and (2) a real dataset which is a modified version of the Sloan Digital Sky Survey (SDSS)
dataset (Szalay et al. (2002)). Figure 1 shows the sizes of the stored tables for the TPC-H
dataset. Size estimates for the lattice were obtained by running the queries for all views
on the TPC-H stored data with scale factor of 0.1 and by extrapolating the answer sizes
to the sizes of the data (scale factor of 1) used in the experiments. For the SDSS dataset,
whose sizes of the stored tables are shown in Figure 2, the view sizes were measured on the
original database. The observations we made in our experiments were consistent across the
two datasets; therefore, in reporting our results in this section we only use examples from
the TPC-H dataset.

4.2 Execution Time

The execution times that we report here pertain to instances from four different TPC-H
datasets, i.e., raw-data views with 7, 13, 15, and 17 attributes. (To obtain some raw-data
views for the experiments, we used joins of TPC-H tables.) The number of nodes in the
view lattices (i.e., the size |IV | of the set IV ) for these datasets are 128, 8192, 32768, and
131072, respectively. For each raw-data view we constructed the IP model OV IP for several
instances of the problem, each instance with a different query workload Q and storage limit
b. We solved each instance using the software package CPLEX/AMPL with a time limit of
thirty seconds on the execution time. In Table 1 we give detailed characteristics of twelve

3 In fact, since in our view lattice we have ai ≥ aj for every pair (i, j) such that view i is an ancestor of view j, we
can go even further and exclude each node that is not an ancestor of at least two queries in the set Q.

8



Instance Num. of |IV | Num. of queries Capacity |IV ′| Num. of Num. of Execution
ID attr. in the workload (num. rows) xi’s yij ’s time (sec.)
1 7 128 7 702,709 60 60 60 × 7 0.12
2 7 128 15 2,237,482 73 73 73 × 15 0.03
3 7 128 20 2,796,908 76 76 76 × 20 0.07
4 7 128 50 5,020,880 112 112 112 × 50 13.00
5 13 8,192 5 604,668 5,984 5,984 5,984 × 5 0.85
6 13 8,192 8 1,264,194 4,104 4,104 4,104 × 8 0.45
7 13 8,192 30 4,535,645 2,893 2,893 2,893 × 30 1.55
8 15 32,768 5 1,002,359 4,468 4,468 4,468 × 5 0.45
9 15 32,768 8 1,522,810 17,464 17,464 17,464 × 8 3.89
10 15 32,768 20 3,291,654 3,389 3,389 3,389 × 20 1.20
11 17 131,072 5 890,108 20,136 20,136 20,136 × 5 7.03
12 17 131,072 15 2,101,790 13,755 13,755 13,755 × 15 2.64

Table 1. Description of the twelve problem instances in the experiments.

instances of the problem that we could solve within this time limit. Each row of this table
corresponds to one instance and gives the number of attributes, the size of the view lattice,
the number of queries in the workload Q, and the storage capacity for that instance. For all
instances in this experiment we assume that the frequency fj associated with each query j in
Q is equal to 1. For each instance we also give the size |IV ′| of the set IV ′, the corresponding
number of xi and yij variables, and the associated execution time that we measured for solving
that instance. We make the following observations.

1. Aside from the number of attributes and queries, the size of the IP model (as measured
by the number of xi-variables) and its corresponding execution time also depend on
the number of view-lattice nodes that are actually included in the model, i.e., on the
cardinality of the set IV ′. This size is usually larger if some workload queries are placed
relatively low in the lattice. Hence, the largest IP model in our experiment does not
necessarily pertain to the instance with the largest number of attributes and/or queries.
In fact, the largest IP model that we were able to solve within our stated time limit was
for instance 11 in Table 1, which is on a 17-attribute lattice with 5 queries. This model
has 20,136 xi-variables and 100,680 yij-variables, and its execution time is 7.03 seconds.
The largest instance of OV P that we were able to solve, however, pertains to instance 12
in Table 1 which is also on the 17-attribute lattice and has 15 queries. The corresponding
IP model has 13,755 xi-variables and 206,325 yij-variables, and its execution time is only
2.64 seconds (see Asgharzadeh Talebi et al. (2005)). Further, the largest IP model does
not necessarily pertain to the longest overall execution time, since the latter also depends
on the growth of the search tree in the context of the branch and bound algorithm. In
fact, the longest execution time in our experiments pertains to instance 4 in Table 1 with
a 7-attribute view lattice and 50 queries. The corresponding IP model has 112 xi-variables
and 560 yij-variables, and its execution time is 13.00 seconds.

2. In many instances, while solving the IP model we also observed that the runtime of
CPLEX/AMPL for solving the model is only slightly larger than its runtime for solving
the corresponding LP relaxation. Intuitively, a reason for this phenomenon could be that

9



the lower bound obtained for OVIP via its LP relaxation is relatively strong, hence it
leads to quick fathoming of most branches in the corresponding branch-and-bound tree.
This observation is not uncommon among other IP models with similar structures, such
as the UFL problem that we mentioned earlier. In our experiments, every time that
CPLEX/AMPL was not able to solve the IP model within our stated time limit, it was
also unable to solve its LP relaxation. We report on the quality of this lower bound in
detail in Li et al. (2005).

3. The execution time is expected to grow at an exponential rate with the size of the
IP model; hence we do not expect it to be practical to solve much larger instances of
this IP model using CPLEX/AMPL. At the same time, the instances that we are able
to solve are of realistic sizes in practice (cf., e.g., the problem instances used in the
experiments in Shukla et al. (1998)), as exemplified in the last few instances in Table 1.
This demonstrates that we can use a standard IP solver to obtain verifiably optimal
solutions for practical instances of the problem.

4. In our experiments we also studied whether the ancestor-descendant relationships between
workload queries influence the runtime or outcome for our approach. In particular, we
studied problem instances with “single-path” query workloads, that is, with workloads
Q where for each query Q ∈ Q, each remaining query in Q is either a descendant or an
ancestor of Q in the view lattice. It is observed in Kotidis et al. (1999) that workload
queries with such relationships are likely to occur in query sessions by a single user in
data warehouses, where the user performs roll-ups and drill-downs on the data of interest.
In our study, we did not observe significant differences in the runtime or outcome for
our approach depending on the type of relationships among workload queries. Rather,
as mentioned earlier, we observed that the placement of individual queries in the view
lattice has a bigger influence on how efficiently the problem instance can be solved by
our approach.

4.3 Further Experimental Observations

In addition to observing the execution time for solving the OVIP model as reported above,
we also carried out several related experiments with this IP model. In this section we present
a summary of our findings.

An alternative measure for size requirement: View sizes and query costs are typ-
ically measured in units of rows (see, e.g., Gupta et al. (1997); Harinarayan et al. (1996);
Shukla et al. (1998)). At the same time, the units of bytes are the actual measure of storage
requirements and of query costs in database-management systems, because the cost of an-
swering a query using a view is proportional to the number of disk blocks occupied by the
view. In order to investigate any possible effect that this modification in units might have
on the execution time for solving the IP model, we ran additional experiments where we
expressed in bytes both the size requirement for the views and the cost of answering queries
using those views. We observed that changing the units does not have any appreciable impact
on the execution time for the IP model, but it could result in different optimal solutions.
The results for four representative instances are reported in Table 2.

10



As units of bytes (instead of rows) is a more realistic measure in the context of view
selection, we posit that these units should be employed as the primary units of measurement
in problem input. Further details are available in Li et al. (2005).

Inst- Num. of Query Units of rows Units of bytes
ance grouping workload storage optimal storage optimal
ID attrib. (query indexes) limit viewset limit viewset
1 7 { 55, 59, 125, 126 } 899,418 { 55, 126, 127 } 4,487,825 { 55, 127 }
2 7 { 1, 7, 53, 76, 111, 115 } 1,084,770 { 1, 53, 76,127 } 5,412,766 { 1, 7, 76, 127 }
3 13 { 1792, 3013, 5392, 6096, 7063 } 900,541 {1792, 5392, 8191 } 6,889,391 { 5392, 6096, 8191 }
4 13 { 1185, 5224, 6401, 6672 } 836,835 { 6401,6672, 8191 } 6,402,022 { 6929, 8191 }

Table 2. Solving the OVIP problem for units of rows and bytes.

Solving the OV IP ′ model: Recall that the only difference between OV IP and OV IP ′

is that in OV IP ′ the top raw-data view in the view lattice is not required to be materialized.
This version of the problem can arise, for instance, in situations where it may be too expensive
to maintain the raw-data view relation, and it is desirable to explore solutions which do not
force that relation to be materialized. These situations include data-integration settings
where certain views are materialized in the mediator to improve query-processing efficiency
(see Halevy (2001)). (Recall that in many cases, the top raw-data view in the view lattices
by Harinarayan et al. (1996) is the result of joining several base relations in the star schema.)
We carried out a set of experiments in which we constructed and solved several instances of
the OV IP ′ model and compared the results with those for the corresponding OV IP models.
The details of our experiments are presented in Asgharzadeh Talebi et al. (2005) and Li et al.
(2005). In these experiments we observed the following:

– there is no appreciable difference between the computational requirements for solving
OV IP and OV IP ′, and

– although in some instances the results obtained via OV IP and OV IP ′ are identical (i.e.,
OV IP ′ selects the raw-data view in the optimal set), there are also many instances for
which OV IP ′ obtains solutions with significantly smaller objective-function values.

5 A Heuristic Procedure for Solving OVIP

In this section we present an inexact (heuristic) method for solving the optimal viewset
problem OV IP . The main idea used in this heuristic method is to further prune the search
space for candidate views and hence the size of the corresponding IP model, thus allowing
larger instances of the problem to be solved in reasonable execution time. Of course when
we do so, we can no longer guarantee that the optimal solution for the IP model OV IP (or
OV IP ′) is in fact optimal for the corresponding problem OV P (or OV P ′).

As observed in Section 4, a key issue in the context of practical solvability of the IP
model OV IP (or OV IP ′) is the size of the corresponding reduced viewset IV ′. Recall that
the size of this set can be quite large even if the number of queries in the set Q is relatively
small. As long as we wish to guarantee that the optimal solution for OV IP (or OV IP ′) is

11



in fact optimal for the underlying OV P (or OV P ′), we need to include all elements of the
candidate set IV ′ in the IP model. But if we do not seek this guarantee of optimality, we
can further reduce the size of the set by removing all elements (i.e., nodes of the lattice)
that we deem as not-so-promising elements of the set IV ′ in the IP model. This could lead
to significant reduction in the size of the corresponding model OV IP (or OV IP ′).

To this end we limit ourselves to a subset of IV ′ consisting of views that either correspond
to some queries in Q or are ancestors of two or more of these queries. We define a view (or
query) v1 to be an ancestor for another view (or query) v2 if the collection of attributes that
define v2 is a proper subset of the collection of attributes that define v1; in this context we
refer to v2 as the child (or descendant) of v1. We refer to the resulting collection of views
as a restricted viewset IV r. We then construct and solve the corresponding IP model with
this restricted viewset, which would likely have fewer variables than the original OV IP (or
OV IP ′). We refer to this IP model as OV IPr (or OV IPr′). In Section 5.1 we outline a
procedure by which we construct the restricted viewset IV r and the resulting input matrix
for the corresponding IP model, and discuss its computational requirements. In Section 5.2 we
report the results of a computational experiment with the corresponding IP model OV IPr.

5.1 Restricted Viewset IV r

Given a dataset D with k attributes and a set of queries Q on D, we define Q′ to be a subset
of Q consisting of those elements of Q that are not themselves a child or a descendant of
another element of Q. We now define a node of the view lattice to be an i-level ancestor of
Q, for i = 2, 3, . . . , |Q′|, if it is an ancestor for i distinct elements of Q′ and its size is less
that the sum of the sizes of these distinct elements. Using this terminology, we refer to the
views associated with elements of the set Q′ as the 1-level ancestors of Q. For all r such that
1 ≤ r ≤ |Q′|, we define the r-level restricted viewset for Q as the set of all i-level ancestors
of the set Q for all i ∈ {1, . . . , r}. This r-level restricted viewset is the set of views in the
view lattice that we use to construct the corresponding restricted version OV IPr of the IP
model OV IP .

Note that if we let r = |Q′| then the resulting OV IPr is guaranteed to produce an optimal
solution for the original problem. At the same time, this IP model could be quite large. We
submit that even if we limit the value of r to be much smaller than |Q′|, members of the
r-level restricted viewset IV r form a potentially promising collection of views for the queries
in Q. Hence the resulting IP model OV IPr is likely to produce good solutions for the original
problem. Note that for low values of r the size of the resulting IP model OV IPr would be
significantly smaller than the size of the original OV IP , hence an IP solver such as CPLEX
is likely to solve this problem with noticeably lower execution time. But as stated earlier,
when we use OV IPr with r < |Q′| we can no longer guarantee that its optimal solution is
also optimal for the original OV P . When we employ the IP model with the r-level restricted
viewset IV r to solve a given problem OV P (or OV P ′), we refer to the resulting procedure
as the r-level heuristic procedure. In the next subsection we report the results of a limited
computational experiment with this model.

12



At this point we need to be mindful of the additional computational effort required to
construct the restricted viewset IV r and the corresponding IP model OV IPr. This computa-
tional effort is proportional to the maximum number of nodes in the set IV r, i.e.,

∑r
i=1 C |Q′|

i ,

where C |Q′|
i = |Q′|!

i!(|Q′|−i)! is the combination “|Q′| choose i”.
In this heuristic procedure, there are two major steps: In the first step we build the

restricted viewset IV r consisting of
∑r

i=1 C |Q′|
i views. In order to build a view at level i,

for 2 ≤ i ≤ r, we need to take the union of the attributes of i distinct queries. The order
of complexity of this operation is O(i). Thus, the computational requirement of this step

is O(
∑r

i=1 iC |Q′|
i ). The second step is to build the input matrix for the corresponding IP

model. To do so, for each selected view we need to find out which of the |Q| queries in
the query workload can be answered by that view. In the worst case, for each view this
will take time O(|Q| k), where k is the number of attributes in the lattice. Thus, the com-

putational requirement of this step is O(|Q| k
∑r

i=1 C |Q′|
i ). Considering the computational

requirements of these two steps, the overall computational requirement of the heuristic pro-
cedure is O(

∑r
i=1 iC |Q′|

i + |Q| k
∑r

i=1 C |Q′|
i ), which is O((r+k |Q|) |Q′|r) or simply O(|Q|r+1).

For low values of r this effort is relatively small, but it increases rapidly with r. Note that the
computational experiments that we report in Section 5.2 show that we are likely to obtain
good results even with low values of r.

5.2 A Computational Experiment with OV IPr

Our objective in this section is to recommend a reasonable value for r. To do so, we solve five
instances optimally using the OV IP model. Then we solve each instance using the OV IPr
model with r = 1. For those instances for which we do not get the optimal solution using
OV IPr with r = 1, we use OV IPr with r = 2. We continue increasing the value of r and
proceed in a similar manner until we get optimal solutions for all instances.

These five instances are constructed in the following manner. All instances are on the 17
attribute TPC-H dataset. In instances 1 and 3, each query in Q has 6, 7, or 8 attributes
and in instances 2 and 4, each query in Q has 11, 12, or 13 attributes. In these instance the
number of attributes for each query is randomly selected between 6 and 13. We also assume
that the frequency associated with each query is equal to one. Furthermore, we select the
specific queries in instances 1 and 3 from the lower levels of the lattice, and select queries
in instances 2 and 4 from the upper levels of the lattice. The results of our experiments are
presented in the first five rows of Table 3.

In this table, for each instance we report the number of queries, sizes of the sets IV ′ and
IV r, and the ratio of the cost obtained by the heuristic (v(OV IPr)) to the optimal cost
(v(OV IP )). Based on our experimental results, we make the following observations:

1. In one instance (instance ID 2), we find the optimal solution using OV IPr with r = 1.
In the remaining four instances (instances 1, 3, 4, and 5), we find the optimal solution
using OV IPr with r = 2.

2. For each instance, the size of the set IV r is significantly smaller than the size of the set
IV ′. (On average, the ratio |IV ′|

|IV r| is 160 when r = 2.)

13



Instance Number of r |IV ′| |IV r| v(OV IPr)
v(OV IP ) CPLEX execution CPLEX execution

ID queries in Q time (sec.) for OVIP time (sec.) for OVIPr
1 5 1 4663 6 1.045 1.67 0.01

2 16 1.000 0.02
2 5 1 2511 6 1.000 0.74 0.01
3 10 1 5436 11 1.059 3.16 0.01

2 47 1.000 0.04
4 10 1 986 11 1.014 0.44 0.01

2 42 1.000 0.03
5 15 1 5129 15 1.048 6.44 0.01

2 105 1.000 0.09
6 40 1 17422 41 - - 0.34

2 624 - - 1.62

Table 3. Instances solved for OVIPr.

3. For each instance, the execution time for solving OV IPr with CPLEX is significantly
lower than the execution time for solving OV IP with CPLEX. In these instances, the
time for building the set IV r is negligible.

Using our heuristic algorithm, we solved a large instance on the 17 attribute TPC-H
dataset with forty queries where the number of attributes in each query is between 6 and
13. We assumed that the frequency associated with each query is equal to one. Due to
the large size of the corresponding OV IP model, we were not able to solve this instance
optimally within the time limit of fifteen minutes. However, using our heuristic with r = 1
and r = 2, we were able to solve it in 0.34 and 1.62 seconds, respectively. Information
about this instance is presented in the last two rows (instance ID 6) of Table 3, and the
corresponding values of the solutions obtained via OV IPr with r = 1 and r = 2 for this
instance are v(OV IPr)=148,514,000 and v(OV IPr)=144,020,000, respectively. Obviously,
we can no longer guarantee that the solution obtained via OV IPr with r = 2 is an optimal
solution for the corresponding OV P .

6 Experimental Comparison with Other Heuristic Procedures

To further evaluate our approaches for solving the warehouse view-selection problem, we have
experimentally compared the effectiveness of our exact and inexact methods with that of two
other heuristic procedures previously proposed for this problem. One procedure, presented
by Harinarayan et al. (1996), is based on the principle of greedy construction; throughout this
section we refer to it as procedure HHRU. The second procedure, proposed by Shukla et al.
(1998), provides a performance improvement over HHRU while having the same solution-
quality guarantees, provided that the problem input satisfy certain restrictions; we refer to
this procedure as SDN. This section presents our experimental results. Further, based on
an analysis of our experimental comparisons and of the contributions of the view-selection
approach of Kalnis et al. (2002), we delineate applicability areas of our exact and inexact
methods and of the approaches of Harinarayan et al. (1996), Kalnis et al. (2002), and Shukla
et al. (1998) in the space of practically relevant instances of the warehouse view-selection
problem.

14



We note that the approaches of both Harinarayan et al. (1996) and Shukla et al. (1998)
are applied to instances in which every node of the view lattice is in the query set Q with
unit frequency. To compare our methods with the results presented in those papers, we first
carry out an experiment in which we consider only problem instances of this type. We refer
to these instances as Group 1 instances. We solve each instance in this group using each
of the three approaches HHRU , SDN , and OV IP. (Note that applying OV IPr to such
instances would not add any additional insights, since the restricted viewset IV r would be
identical to IV .) These results are presented in Section 6.1. We then run a second experiment
in which we allow the query set Q (that is, the queries with nonnegligible frequencies) to
be a relatively small subset of the nodes of the view lattice. We refer to these instances
as Group 2 instances. Both procedures HHRU and SDN can be easily adjusted to solve
these instances. In this case, we solve each instance of the problem using each of the four
procedures HHRU , SDN , OV IP , and OV IPr. The results are presented in Section 6.2.

To carry out this comparative study, we developed an independent computer program
for each of HHRU and SDN . Each program is written in C, uses the same data structures
and subroutines as our implementations of OV IP and OV IPr, and was run on the same
machine that we used for solving the OV IP models, as described in Section 4.

6.1 A Computational Experiment with Group 1 Instances

In this subsection we present experimental results that compare the performance of proce-
dures HHRU , SDN , and OV IP , for the case where the input queries are all the nodes in
the lattice, and the frequency of each query is equal to one. The experiments in this section
are over six data lattices, which are the 5, 6, and 7 attribute TPC-H data lattices and the
5, 6, and 7 attribute SDSS data lattices. For each data lattice, we set the value of storage
space to be the size of the top view plus α× (sum of the sizes of all of the views in the lattice
except for the top view), and set α = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. Thus, for each
data lattice we solved nine problem instances.

Figure 3, which presents the results on the TPC-H data lattices, and Figure 4, which
shows the results on the SDSS data lattices, compare the quality of the solutions of HHRU
and SDN with the optimal solutions produced by our OV IP procedure. In these figures
the horizontal axis represents the value of α, and the vertical axis depicts the ratio of the
cost of the solution obtained via a heuristic procedure to the corresponding optimal cost,
averaged over three instances. For example, when α = 0.1 and for the HHRU algorithm,
for each of the instances on the 5, 6, and 7 attribute lattices with α = 0.1, we measured the
cost of the solution obtained using HHRU , divided it by the corresponding optimal cost,
and took the average of these three ratios. From Figures 3 and 4 we can observe that the
overall performance of the HHRU algorithm is better than that of the SDN algorithm.
Also, we observe that when the storage space limit is relatively tight (α = 0.01, 0.05) or
relatively loose (α = 0.7), SDN gives solutions whose corresponding costs are close to those
obtained via HHRU . Moreover, for both HHRU and SDN , when the storage space limit is
tight (α = 0.01), the cost of the solutions obtained are relatively close to the corresponding
optimal costs.

15



In our experiments we also measured the execution time for each instance. We observed
that the execution time of the SDN algorithm is significantly less than those for each of
OV IP and HHRU . Also, in none of the instances did the OV IP execution time exceed the
HHRU execution time.

6.2 A Computational Experiment with Group 2 Instances

In this group of instances we allowed the query set Q to be a relatively small subset of the
nodes of the view lattice. We modified the algorithms of HHRU and SDN to allow for this
condition; in addition, we modified SDN to guarantee that it return the (top) raw-data view
in each solution. The goal of the experiments was to compare our inexact method OV IPr
(with r = 2) with the modifications of algorithms HHRU and SDN.

In the first set of experiments, whose results are presented in Table 4, the first nine
instances are on a 7-attribute TPC-H data lattice. In all of these instances, the number of
queries in Q is five, and the number of attributes of each query is chosen randomly between
one and six. The tenth instance is on a 13-attribute TPC-H data lattice. In this instance,
there are ten queries, and the number of attributes of each query is a random number between
one and twelve. We assume that the frequency of each query in the set Q equals one. We
solved each instance with each of OV IPr (with r = 2), HHRU , and SDN , and report here
the ratios of the costs obtained for each heuristic to the optimal cost.

Instance 1 2 3 4 5 6 7 8 9 10ID
v(OV IPr)
v(OV IP ) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
v(HHRU)
v(OV IP ) 1.053 1.037 1.081 1.000 1.000 1.000 1.039 1.031 1.000 1.059
v(SDN)
v(OV IP ) 1.053 1.000 1.000 1.000 1.000 1.047 1.044 1.000 1.000 1.005

Table 4. Instances solved on TPC-H data lattices to compare the heuristic algorithms.

We did similar experiments over a 7-attribute SDSS data lattice. We solved nine instances,
each with five queries, where the number of attributes in each query was a random number
between 1 and 6. Again, we assumed that the frequency of each query equals one. The results
are presented in Table 5.

Instance 1 2 3 4 5 6 7 8 9ID
v(OV IPr)
v(OV IP ) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
v(HHRU)
v(OV IP ) 1.395 1.000 1.671 1.075 1.000 1.000 1.211 1.012 1.624
v(SDN)
v(OV IP ) 1.000 1.127 1.422 1.000 1.056 1.278 1.209 1.137 1.423

Table 5. Instances solved on SDSS data lattices to compare the heuristic algorithms.

From the results shown in Tables 4 and Table 5 we observe that in some instances the
quality of solutions obtained using HHRU is better than the quality obtained using SDN .
However, in some other instances the quality of solutions obtained using SDN is better
than that obtained using HHRU . Furthermore, we observe that in all the instances we
found optimal solutions using OV IPr with r = 2. In addition, in these experiments we

16



also observed that on this collection of instances the execution time of SDN is significantly
lower than that for each of HHRU and OV IPr, and that the execution time of OV IPr is
significantly lower than that for HHRU .

We also tried to solve a larger instance on the 17 attribute TPC-H lattice with forty
queries using both HHRU and SDN . This is the same instance that we reported earlier as
instance 6 in Table 3. As mentioned earlier, we were not able to solve this instance optimally
(using OV IP ) due to its relatively large size, and the corresponding values obtained via
OV IPr with r = 1 and with r = 2 are v(OV IPr) = 148514000 and v(OV IPr) = 144020000
obtained in 0.34 and 1.62 seconds, respectively. When we tried to solve this instance using
HHRU and SDN , HHRU did not terminate in 15 minutes, and SDN terminated in 0.68
seconds with v(SDN) = 215866080, which is 45% higher than the v obtained via OV IPr
with r = 1 and 50% higher than the v obtained via OV IPr with r = 2.

In our last set of experiments we considered instances where the frequencies associated
with queries in the set Q are not all equal to one. Specifically, we used the Zipfian frequency
distribution with the skewness parameter equal to one. We solved five such instances over
a 15-attribute TPC-H data lattice, where in each instance the number of elements in the
set Q was equal to ten and the frequency associated with each query was obtained from the
Zipfian distribution. Also, we solved five instances on a 7-attribute SDSS data lattice. The
number of queries in the latter instances varied between three and five.

For brevity, we refrain from giving details regarding these instances. Our observations on
these experiments can be summarized as follows:

1. In all of the instances, OV IPr (wirh r = 2) found the optimal solution.
2. For all the instances, the size of IV r was significantly smaller than the size of IV ′. On

average, the ratio |IV ′|
|IV r| was 106 for the instances on the 15-attribute TPC-H data lattice

and 8 for the instances on the 7-attribute SDSS data lattice.
3. For each instance, the execution time for solving OV IPr with CPLEX was significantly

lower than the execution time for solving OV IP with CPLEX. In these instances, the
time for building the set IV r was negligible. We further observed that this reduction in
execution time is more significant for larger instances.

6.3 Applicability Areas for Warehouse View-Selection Methods

In this subsection we delineate applicability areas for our exact and inexact methods and for
the approaches of Harinarayan et al. (1996), Kalnis et al. (2002), and Shukla et al. (1998) in
the space of practically relevant instances of the warehouse view-selection problem. We begin
by briefly summarizing the four view-selection approaches introduced in Kalnis et al. (2002);
we refer to those as “randomized-search methods.” These four heuristic approaches are (a)
random search, (b) iterative improvement (II) where moves are allowed only if they result in
a better solution in the next step, (c) simulated annealing (SA), and (d) a combination of II
and SA. In Kalnis et al. (2002) the authors experimentally compare their randomized-search
methods with the algorithm HHRU . (In addition, it is mentioned in Kalnis et al. (2002)
that for many problem instances, the quality of the solutions obtained by SDN might be
significantly lower than that of HHRU .) In the experiments, the four randomized-search

17



methods are compared with each other, while the HHRU solutions are used to normalize
the results. While each randomized-search method is significantly faster than HHRU , it
appears that the quality of the HHRU solutions is higher than that of each randomized-
search method in many of the experiments reported in Kalnis et al. (2002). Based on these
results as reported in Kalnis et al. (2002), we conclude that for the goal of solution quality,
HHRU should probably be chosen over the randomized-search methods of Kalnis et al.
(2002) wherever HHRU is applicable, i.e., when its execution time is not excessive. At the
same time, the approaches of Kalnis et al. (2002) may be a better option for very high-
dimensional problem instances, even though they provide no guarantees on solution quality.
(We are unable to make conclusions about the solution quality of the approaches of Kalnis
et al. (2002), as those have not been experimentally compared with optimal methods, such
as our exact method.)

In comparing our exact and inexact methods to the algorithms HHRU and SDN, our
conclusions are as follows:

1. Our exact method OV IP/OV IP ′ is guaranteed to provide optimal solutions:

(a) for both Group 1 and Group 2 problem instances for view-lattice sizes of up to seven
dimensions (cf. the experimental results of Shukla et al. (1998) for SDN , which are
given for lattices of sizes up to six dimensions only), and

(b) for much larger view-lattice sizes (up to at least 17 dimensions) for Group 2 instances,
depending on the number/positioning of the input queries with nonzero frequencies.

2. Based on our experimental results, r = 2 in OV IPr is an appropriate value for the levels
of views in the lattice that we should consider.

3. The HHRU approach is never preferable to our proposed exact and inexact methods in
solution quality or in runtime efficiency.

4. In terms of the quality of solution, while SDN is comparable to HHRU when the storage-
space constraint is “very tight” or “very loose” (see Figures 3 and 4), the quality of
the solutions obtained by these algorithms is usually inferior to that for our proposed
approaches. Intuitively, SDN picks the views in the order of their sizes. Typically, the
views that can answer many queries are of large size and will not be picked by SDN ,
yet in many cases the size of such views is smaller than the sum of the sizes of the
queries that they can answer. Unlike our approaches, SDN does not appear to give good
opportunities for such views to be selected.

5. In terms of runtime efficiency, SDN is always the method of choice.
6. Through the construction of instances with special structure, we have shown that in the

worst case, the solution value obtained by HHRU (and hence by SDN) can be arbitrary
far from the optimal value (see Asgharzadeh Talebi et al. (2006)).

18



Bibliography

Afrati, F. and Chirkova, R. (2005) ‘Selecting and Using Views to Compute Aggregate Queries’, Proc. ICDT, pp.
383–397.

Afrati, F., Chirkova, R., Gupta, S. and Loftis, C. (2005) ‘Designing and Using Views to Improve Performance of
Aggregate Queries’, Proc. 10th Int’l Conf. on Database Systems for Advanced Applications (DASFAA).

Agarwal, S., Agrawal, R., Deshpande, P., Gupta, A., Naughton, J.F., Ramakrishnan, R. and Sarawagi, S. (1996) ‘On
the Computation of Multidimensional Aggregates’, Proc. VLDB, pp. 506–521.

Agrawal, S., Chaudhuri, S. and Narasayya, V.R. (2000) ‘Automated Selection of Materialized Views and Indexes in
SQL Databases’, Proc. VLDB, pp. 496–505.

Agrawal, S., Chaudhuri, S. and Narasayya, V.R. (2001) ‘Materialized View and Index Selection Tool for Microsoft
SQL Server 2000’, Proc. ACM SIGMOD, p. 608.

Asgharzadeh Talebi, Z., Chirkova, R. and Fathi, Y. (2005) ‘Experimental study of an IP model for the view selection
problem’, NC State University, technical report number TR-2005-34, Available from http://www4.ncsu.edu/
∼rychirko/Papers/techReport072005.pdf.

Asgharzadeh Talebi, Z., Chirkova, R. and Fathi, Y. (2006) ‘A Study of a Formal Model For View Selection for
Aggregate Queries’, NC State University, technical report number TR-2006-2, Available
from ftp://ftp.ncsu.edu/pub/unity/lockers/ftp/csc anon/tech/2006/TR-2006-2.pdf.

Baralis, E., Paraboschi, S. and Teniente, E. (1997) ‘Materialized View Selection in a Multidimensional Database’,
Proc. VLDB, pp. 156–165.

Chaudhuri, S., Krishnamurthy, R., Potamianos, S. and Shim, K. (1995) ‘Optimizing Queries with Materialized Views’,
Proc. ICDE, pp. 190–200.

Chaudhuri, S. and Dayal, U. (1997) ‘An Overview of Data Warehousing and OLAP Technology’, SIGMOD Record,
Vol. 26, No. 1, pp. 64–74.

Chaudhuri, S. and Narasayya, V.R. (1997) ‘An Efficient Cost-Driven Index Selection Tool for Microsoft SQL Server’,
Proc. VLDB, pp. 146–155.

Chaudhuri, S. and Narasayya, V.R. (1998) ‘AutoAdmin ’What-if’ Index Analysis Utility’, Proc. ACM SIGMOD, pp.
367–378.

Chirkova, R., Halevy, A.Y. and Suciu, D. (2002) ‘A formal perspective on the view selection problem’, VLDB Journal,
Vol. 3, No. 3, pp. 216–237.

Cohen, S., Nutt, W., Serebrenik, A. (1999) ‘Rewriting Aggregate Queries Using Views’, Proc. PODS, pp. 155–166.
Cornuejols, G., Nemhauser, G.L. and Wolsey, L.A. (1984) ‘The uncapacitated facility location problem’, Operations

Research and Industrial Engineering, Cornell University, technical report number 605.
Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D. and Venkatrao, M. (1997) ‘Data Cube: A Relational

Aggregation Operator Generalizing Group-by, Cross-Tab, and Sub Totals’, Data Mining and Knowledge Discovery,
Vol. 1, No. 1, pp. 29–53.

Gupta, A., Harinarayan, V. and Quass, D. (1995) ‘Aggregate-Query Processing in Data Warehousing Environments’,
Proc. VLDB, pp. 358–369.

Gupta, H., Harinarayan, V., Rajaraman, A. and Ullman, J.D.(1997) ‘Index Selection for OLAP’, Proc. ICDE, pp.
208–219.

Halevy, A.Y. (2001) ‘Answering queries using views: A survey’, VLDB Journal, Vol. 10, No. 4, pp. 270–294.
Harinarayan, V., Rajaraman, A. and Ullman, J.D.(1996) ‘Implementing data cubes efficiently’, Proc. ACM SIGMOD,

pp. 205–216.
IBM, ‘Autonomic Computing’, http://www.research.ibm.com/autonomic/.
ILOG S.A. (2000) ‘CPLEX 7.0 software package’, http://www.ilog.com.
Kalnis, P., Mamoulis, N. and Papadias, D. (2002) ‘View selection using randomized search’, Data Knowledge Engi-

neering, Vol. 42, No.1, pp. 89–111.
Kimball, R. and Ross, M. (2002) ‘The Data Warehouse Toolkit (second edition)’, Wiley Computer Publishing.
Kotidis, Y. and Roussopoulos, N. (1999) ‘DynaMat: A dynamic view management system for data warehouses’, Proc.

ACM SIGMOD, pp. 371–382.
Krarup, J. and Pruzan, P.M. (1983) ‘The simple plant location problem: Survey and synthesis’, European Journal

Operations Research, Vol. 12, pp. 36–81.
Li, J., Asgharzadeh Talebi, Z., Chirkova, R. and Fathi, Y. (2005) ‘A formal model for the problem of view selection

for aggregate queries’, Proc. ADBIS, pp. 125–138.



Microsoft Research AutoAdmin Project, ‘Self-Tuning and Self-Administering Databases)’,
http://research.microsoft.com/dmx/autoadmin/default.asp.

Mulvey, J.M. and Crowder, H.P. (1979) ‘Cluster Analysis: An Application of Lagrangian Relaxation’, Management
Science, Vol. 25, pp. 329–340.

Parker, R. G. and Rardin, R.L. (1988) ‘Discrete Optimization’, Academic Press.
Shasha, D., Bonnet, P. (2002) ‘Database Tuning: Principles, Experiments, and Troubleshooting Techniques’, Morgan

Kaufmann.
Shukla, A., Deshpande, P. and Naughton, J.F. (1998) ‘Materialized View Selection for Multidimensional Datasets’,

VLDB’98, Proceedings of 24rd International Conference on Very Large Data Bases, August 24–27, New York City,
New York, USA, pp. 488–499.

Srivastava, D., Dar, S., Jagadish, H.V. and Levy, A.Y. (1996) ‘Answering Queries with Aggregation Using Views’,
Proc. VLDB, pp. 318–329.

Szalay, A.S., Gray, J., Thakar, A.R., Kunszt, P.Z., Malik, T., Raddick, J., Stoughton, C. and VandenBerg,
J. (2002) ‘The SDSS SkyServer - Public access to the Sloan Digital Sky Server data’, Microsoft Re-
search, Microsoft Corporation, technical report number MSR-TR-2001-104, Available from ftp://ftp.research.
microsoft.com/pub/tr/tr-2001-104.pdf; also see www.sdss.org.

Theodoratos, D. and Sellis, T. (1997) ‘Data Warehouse Configuration’, Proc. VLDB, pp. 126–135.
TPC-H, ‘TPC Benchmark H (Decision Support)’, http://www.tpc. org/tpch/spec/tpch2.1.0.pdf.
Widom, J.(1995) ‘Research problems in data warehousing’, Proc. CIKM, pp. 25–30.
Yang, J., Karlapalem, K. and Li, Q. (1997) ‘Algorithms for Materialized View Design in Data Warehousing Environ-

ment’, Proc. VLDB, pp. 136–145.

20



Region
Nation2
Nation1
Orders
Customer
PartSupp
Supplier
Part
Lineitem

396
2,103
2,103

482,877,440
244,883,456
5,830,541
14,188,544
1,193,906

2,147,483,647
Size (bytes)Name

TPC-H Tables

Fig. 1. Sizes of the TPC-H tables.

Neighbors
Field
Segment
Plate
PhotoObj
SpecObjAll

1,321
919
621

69,035
38,206,539
200,851,705

Size (bytes)Name
SDSS Tables

Fig. 2. Sizes of the SDSS tables.

 

HHRU 

Fig. 3. Comparison of HHRU , SDN , and
OV IP for TPC-H data lattices (OVIP provides
the optimal solutions).

 

HHRU 

Fig. 4. Comparison of HHRU , SDN , and
OV IP for SDSS data lattices (OVIP provides
the optimal solutions).

21


