
North Carolina State University Computer Science Technical Report TR-2007-26

Managing Ambiguity and Traceability in Regulatory Requirements:
A Tool-supported Frame-based Approach

Travis D. Breaux and Annie I. Antón
Department of Computer Science
North Carolina State University
{tdbreaux,aianton}@ncsu.edu

Abstract. Government laws and regulations

impose requirements on software-intensive information
systems. To comply, organizations need to evaluate
current and future software systems early in the
software development and procurement process by
using a set of regulatory requirements. Acquiring
requirements from regulations is complex because
regulations contain ambiguity and because maintaining
traceability is essential to demonstrate due diligence in
adhering to the law. To further address the traceability
challenge, we extend the Frame-Based Requirements
Analysis Method (FBRAM); a method to systematically
acquire requirements specifications from regulations.
This extension allows analysts to derive dependencies
from cross-references and maintain these dependencies
in a requirements model. This tool-supported method
constructs the requirements model from an annotated
regulation text and generates a requirements document,
expressed in HTML, from the model. This document is
visually inspected by analysts and domain experts who
determine the correctness of the resulting requirements
based on their collective interpretations of the
regulation.

1. Introduction
National and international standards, regulations and

policies impose requirements on industries and business
practices that affect a software system’s non-functional
properties (e.g., accessibility, privacy, safety, security,
etc.). Because these requirements are broadly written to
govern one or more industries and are not restricted to a
single system with a well-defined set of stakeholders,
analysts must strategically address the ambiguous
syntax in regulatory language while maintaining
traceability from regulations to requirements.

The Frame-Based Requirements Analysis Method
(FBRAM) assists analysts in extracting software
requirements from regulations [7]. It has been applied to
two regulations: the Health Insurance Portability and
Accountability Act1 (HIPAA) Privacy Rule and the

1 U.S. Public Law No. 104-191, 110 Stat. 1936 (1996)

Telecommunications Act2 of 1996, Section 508. In this
paper, we extend the FBRAM and illustrate how it is
applied within the context of the HIPAA Privacy Rule.
The HIPAA Privacy Rule governs the privacy of patient
medical information and affects some 545,000 different
establishments in the U.S. who employ over 13.5
million people [9].

This paper is organized as follows: Section 2
summarizes related work; Section 3 discusses several
challenges to resolving ambiguity and improving
traceability in regulatory requirements; Section 4
presents the extended FBRAM; Section 5 presents the
results of a HIPAA case study; Section 6 presents a
comparative evaluation with another method; and
Section 7 concludes with a discussion and summary.

2. Related Work
Zave and Jackson discuss the challenge in acquiring

formal specifications of systems from informal
descriptions of the environment [27]. They declare that
“all statements in the course of requirements
engineering are statements about the environment” [27]
and they distinguish statements expressed in the
indicative mood, which includes definitions and facts,
from statements expressed in the optative mood, which
typically include requirements [27]. The FBRAM’s
requirements meta-model includes both types of
statements [7]; optative statements are further refined
into normative statements about rights, permissions,
obligations and refrainments. Rights and permissions
describe actions that stakeholders are permitted to
perform, whereas obligations and refrainments describe
actions that stakeholders are required to perform or
required to avoid, respectively. These concepts have
been formalized in Deontic Logic [19].

Prior work in requirements modeling includes goal-
oriented methods and models, such as KAOS [12],
Tropos [15, 18], GBRAM [1] and User Requirements
Notation (URN) [16]. Goals represent states that a
system must achieve, maintain or avoid. Normative
goals elaborate upon the traditional goal concept by

2 U.S. Public Law No. 104-104, 110 Stat. 56 (1996)

North Carolina State University Computer Science Technical Report TR-2007-26

expressing goals as permissions, obligations and
refrainments [2, 18]. Herein, we adapt a frame-based
representation to normative goals in which a frame
corresponds to a concept, comprising slots that represent
stereotypical properties of that concept [14, 25]. Frames
formalize the deep structure, or semantics, of regulatory
language [10]. The FBRAM is a step forward in
automating an earlier, entirely manual methodology to
acquire normative goals from regulations [4, 6].

Lexicons and natural language (NL) patterns are
used to analyze requirements. Wasson et al. [26],
Overmeyer et al. [23] and Cysneiros and Leite [11]
employ lexicons to improve natural language (NL)
requirements analysis. In addition, NL patterns are used
to identify critical real-time properties [21] and improve
requirements quality for embedded systems [13].
FBRAM complements this work by providing a means
to formalize NL patterns using a standard lexicon or
ontology. Lee et al. describe an ontological approach to
acquire requirements from regulations [22]. They
highlight a need for new methods to systematically
decompose verbose regulatory statements into
requirements; a contribution of the FBRAM, presented
herein.

The Requirements Apprentice (RA) tool acquires
formal specifications from informal descriptions using a
specification language based upon Common Lisp and
clichés, which are used to codify requirements
knowledge in frame-like structures [24]. Analysts
employ the RA to construct a requirements model
through requirements elicitation with domain experts.
The FBRAM is specifically designed to systematically
account for how analysts interpret and manipulate legal
language in regulatory documents during requirements
acquisition. Similar to the RA, domain expert feedback
is required to evaluate the correctness of an analyst’s
formalized interpretation of a regulation.

Ghanavati et al. describe a goal-oriented requirements
framework that they applied to the Canadian Personal
Health Information Privacy Act (PHIPA) [16]. The
framework expresses goal models in the Goal-oriented
Requirements Language (GRL) and maintains “source
links” from regulatory documents to goals acquired
from those documents. They note that our manual
method [4] “could facilitate the extraction of [their]
privacy GRL model” from the PHIPA [16]. The
FBRAM improves upon the manual method by
automating the maintenance of traceability links from
goals to their originating sections, paragraphs,
statements and phrases. Furthermore, the frame-based
requirements generated by the FBRAM can be
expressed in GRL to provide inputs directly to their
framework.

3. Ambiguity and Traceability
This section discusses the two primary challenges

faced by analysts who extract requirements from
regulatory texts: ambiguity and traceability.

Ambiguity. U.S. Federal and state regulations
contain ambiguities that are intended by law makers to
be re-interpreted as business practices emerge and as
capabilities to comply with regulations change over
time. For example, HIPAA §164.512(e)(1)(iv) states
that an entity must make “reasonable” efforts to notify
individuals of certain requests for their protected health
information. The word “reasonable” is an intended
ambiguity: which mechanisms are considered
reasonable, (e.g., postal mail, secure electronic mail or
websites, etc.) varies depending on the type of
communities served and the prevalence of relevant,
existing technologies.

Law makers also define governed entities using
terms that are open to interpretation. For example, in
HIPAA §164.304, workstation is exemplified by “a
laptop or desktop computer, or any other device that
performs similar functions.” Compliance officers must
decide if this definition is intended to cover handheld
Personal Digital Assistants (PDAs). As PDAs are
integrated into routine business practices, organizations
may need to re-interpret this ambiguity to achieve
compliance.

Regulations also contain unintended ambiguities that
are inherent to natural language syntax –– or English.
We distinguish (and address) three types of ambiguity:
logical, attributive, and referential. Kamsties classifies
these ambiguities as requirements document ambiguity
[20].

Logical ambiguity refers to English words that can be
mapped to different logical interpretations. Herein, we
only consider how English conjunctions (and, or) can be
assigned conflicting logical connectives; see Berry and
Kamsties for a separate discussion of universal and
existential qualification-related ambiguity [8]. For
example, in HIPAA §164.524(a)(1), an individual has
“a right of access to inspect and obtain” a copy of their
protected health information. While this statement uses
the English conjunction “and,” presumably an
individual can obtain a copy of their information
without needing to inspect the information; e.g., the
conjunction can be interpreted as a logical-or. In
contrast, interpreting this conjunction as a logical-and
may lead to systems that provide the information such
that an inspection is required and confirmable.

Attributive ambiguity is found in phrases that may be
reasonably ascribed to more than one phrase within a
sentence. For example, in HIPAA §164.520(b)(1)(vii),
“The [privacy] notice must contain the name or title and
telephone number of a person or office” may be

North Carolina State University Computer Science Technical Report TR-2007-26

construed to mean the notice contains one of: (1) the
name of the person or office; (2) the title and telephone
number of the person or office; or (3) the name and
telephone number of the person or office. Because the
phrase “and telephone number” can be attributed to the
“name and title” or only the “title,” the analyst may
interpret either options (1) and (2) or options (2) and (3)
as valid interpretations. The former interpretation
permits the organization to withhold the telephone
number from the policy, making it more difficult for
recipients of the notice to contact the person or office.

Referential ambiguity occurs when a word or phrase
has multiple meanings; this includes intensional and
extensional polysemy [5]. We consider a type of
extensional polysemy in which words have an anaphoric
(backward-referencing) or cataphoric (forward-
referencing) function. These words include pronouns
(this, that, they), noun phrases that use definite articles
(the) and some adjectives (such). A statement that
contains the phrase “must provide such notices” refers
to notices that are elaborated upon in the broader
context of the statement or paragraph. The analyst must
identify additional implications or constraints on the
“notices,” that appear in the broader context before
determining which notices must be provided.

Traceability. Regulations present traditional and
novel traceability challenges to analysts. Similar to
other requirements sources (e.g. interviews, scenarios
and use cases), the loss of original context also affects
requirements that are extracted from regulations. Unlike
these other sources, the “context” of a regulatory
statement is distributed across multiple sections,
paragraphs and sub-paragraphs in the source document.
Analysts must reconstruct this context by employing
knowledge of the regulation document structure and the
cross-reference syntax. For example, a regulatory
statement can start in one paragraph and end in a sub-
paragraph; this break is called a continuation. Consider
the following continuation in HIPAA §164.520(a)(2)
(i)(B)(ii) that describes two requirements (obligations)
to maintain and provide a privacy notice to patients:

(ii) A group health plan… must:

(A) Maintain a notice under this
section; and

(B) Provide such notice to any person…

During requirements acquisition, traceability must be
maintained between unique paragraph indices and
corresponding requirements to map paragraph cross-
references back to those requirements [4]. Therefore,
the paragraph index (ii) should trace to both
requirements (and vice versa), whereas the paragraph
index (ii)(A) should only trace to the maintenance
requirement and paragraph index (ii)(B) should only
trace to the provision requirement.

Regulations also contain internal cross-references to
sections and paragraphs within the regulation and
external cross-references to other regulations. These
cross-references express dependencies between
regulatory rules. Consider the following statement (a
fact) from HIPAA §164.522(a)(1)(v) that describes an
exception; the cross-reference phrases appear in bold:

A restriction agreed to by a covered entity
under paragraph (a) of this section, is not
effective under this subpart to prevent
uses or disclosures permitted or required
under §164.502(a)(2)(i), 164.510(a) or
164.512.

The fact contains four cross-references: a relative
reference to paragraph (a) in §164.522, and three fully
qualified references to other Privacy Rule sections and
paragraphs. From each cross-reference, we can derive
an asymmetric dependency between the fact and one or
more other statements in the cross-referenced
paragraphs. For example, the first cross-reference
excludes the effect of “agreed restrictions” (the domain)
from certain uses and disclosures stated by this fact (the
range). In contrast, the remaining three cross-references
refine these uses and disclosures (the domain) through
this exception (the range). When analysts extract
requirements from these paragraphs, they must
propagate these derived dependencies to requirements
specifications derived from those cross-referenced
paragraphs to preserve the original context.

4. Frame-Based Requirements Analysis
In the Frame-Based Requirements Analysis Method

(FBRAM), analysts use specialized knowledge about
requirements and law to manually annotate a regulatory
document and an accompanying tool parses the
annotations to extract regulatory requirements (Fig. 1).

Figure 1: Overview of the FBRAM

The manual annotation process uses the following
three artifacts:

1. A reusable upper ontology comprised of domain-
independent requirements concepts and
properties, used to classify regulatory statements
independently of any single regulatory domain
(e.g., privacy, accessibility).

North Carolina State University Computer Science Technical Report TR-2007-26

2. A context-free markup language that describes the
deep structure of natural language [9] using
concepts in the upper ontology and logical
connectives.

3. A document model that describes the structural
organization of a regulatory document in terms of
hierarchical divisions (e.g., sections, paragraphs,
sub-paragraphs, etc.)

During the manual annotation process (top of Fig. 1),
analysts use upper ontology concepts and the context-
free markup language to assign an interpretation to a
regulation text; this can remove logical, attributive and
referential ambiguity. This manual process yields an
annotated regulation that is then parsed by our tool to
produce the following two types of artifacts:

1. A requirement that is represented as a frame in
which original, unedited phrases from the
regulation text are assigned to slots in the frame
and cross-references are formalized into typed
dependencies between requirements.

2. For each requirement, a requirement pattern is
generalized from the requirement’s originating
natural language syntax in the regulation.

During parsing, the tool identifies and reports syntax
and semantic errors in the markup. The parsed frame
objects and patterns are converted into a W3C
eXtensible Markup Language (XML) representation; a
process called serialization. The serialized objects can
then be manipulated using the eXtensible Stylesheet
Language Transformations (XSLT). To date, from the
annotated text, we generate a requirements document
expressed in the Hypertext Markup Language (HTML)
and an exception and refinement hierarchy expressed in
the Graph Markup Language (GraphML). These
artifacts help analysts validate whether the semantics of
the applied annotations match their intended
interpretation of the regulations.
4.1. The Upper Ontology

The upper ontology or meta-model [12] describes
domain-independent knowledge about the semantic
structure of regulatory requirements. Fig. 2 presents the
upper ontology using the Unified Modeling Language
(UML); this ontology has been validated in two case
studies in the accessibility and privacy domains. The
concepts in the upper ontology are connected by two
types of arrows: arrows that terminate with dark
triangles and lead from sub-classes to super-classes; and
arrows that terminate with white diamonds and lead
from properties to classes, containing those properties.
There are three types of concepts in the upper ontology:

1. Statement-level concepts (represented by boxes
with bold-line borders) classify individual
regulatory statements;

2. Phrase-level concepts (represented by grayed
boxes) classify individual phrases in a regulatory
statement; and

3. Abstract placeholder concepts (represented by
boxes with dotted-line borders) classify statement
and phrase-level concepts for analysts.

Figure 2: Regulatory Requirements
Upper Ontology

The statement-level concepts are defined below. Note
that an entity is any stakeholder, system or component,
including software or hardware:

• Exclusion means any state that an entity is not
required to achieve, maintain or avoid or any act
that an entity is not required to perform.

• Fact means any state or act that is assumed true.
• Permission means any state that an entity is

permitted to achieve, maintain or avoid or any act
that an entity is permitted to perform;
permissions include stakeholder rights [4].

• Obligation means any state that an entity is
required to achieve or maintain or any act that an
entity is required to perform.

• Refrainment means any state that an entity is
required to avoid or any act that an entity is
required to not perform.

The phrase-level concepts are defined as follows:

• Subject is the entity that performs an action.
• Act is the act performed by an entity.
• Object is the object on which an action is

performed by an entity.
• Purpose is the purpose for which, or why, an

action is performed by an entity.
• Instrument is the method by which, or how, an

action is performed by an entity.
• Target is the recipient in a transaction.
• Condition is the pre-condition(s) that must be

true before an entity acts.

North Carolina State University Computer Science Technical Report TR-2007-26

• Reference is a phrase that describes rules in
another section or paragraph.

• Exception is a reference that states that the rule
has an exception (another rule).
o Inverse exception is a reference that states one

rule is an exception to another rule.
• Refinement is a reference that states that the rule

has a refinement (another rule).
o Inverse refinement is a reference that states one

rule is a refinement to another rule.

The concepts in the upper ontology have been acquired
across multiple case studies that include an analysis of
privacy policies [2], a HIPAA consumer fact sheet [3]
and the HIPAA Privacy Rule [4, 6]. The upper ontology
has been formalized in Description Logic for the
purpose of reasoning about and comparing normative
goals using subsumption [5].
4.2. The Document Model

The document model enables forward and reverse-
mapping between requirements and the indices of
sections, paragraphs and sub-paragraphs in the
regulation that contain the originating statements for
these requirements. The indices are used in cross-
references that appear in reference phrases, which can
be formalized as exceptions [6] or refinements to
requirements. Regulatory statements may begin in one
paragraph and end in a sub-paragraph. Usually, these
continuations presents a set of shared constraints (e.g.,
subjects, actions, conditions, etc.) in the leading
paragraph followed by alternative permissions,
obligations and refrainments in sub-paragraphs that
reuse the shared constraints. Consider the division
syntax in HIPAA Privacy Rule excerpt §164.520(a)(2)
(i)(B)(ii); it describes two obligations to notify patients
of their privacy practices and shares the same subject
constraint (a group health plan) for these obligations:

(ii) A group health plan… must:

(A) Maintain a notice under this
section; and

(B) Provide such notice to any person…

To support traceability, the document model
formalizes the divisions within the regulatory text. The
document model semantics are expressed in the W3C
eXtensible Schema Language (XSL). The analyst
applies the model to the regulation text by replacing
division headers with an XML <div> tag that maps the
header index and sub-title, if any, to corresponding
attributes index and title in the tag; the analyst adds the
XML </div> tag at end of the division. The XSL is
used to debug syntax errors when applying the
document model. The above excerpt appears in Fig. 3,
annotated with the document model.

<document>
<!-- 164.520(a)(2)(i)(B) -->
...
<div index="(ii)">

A group health…, must:
<div index="(A)">

Maintain a notice under this
section; and

</div>
<div index="(B)">

Provide such notice to any person…
</div>
...

</div><!-- end of (ii) -->
</document>

Figure 3: The Document Model Applied to the
HIPAA §164.520(a)(2)(i)(B)(ii) Excerpt

Because a regulation text’s indentation and font
styles may be lost or corrupted when the text is
transferred to a plain text format, the analyst manually
applies the document model to the regulation plain text.
However, once applied, the supporting tools will
generate an HTML representation that is an indented
and stylized version of the original regulation text.
4.3. The Context-free Markup

Analysts use the context-free markup language to
codify their interpretation of a regulation text. To codify
this interpretation, analysts must align concepts from the
upper ontology with regulation sentences and phrases,
removing logical, attributive and referential ambiguities
and formalizing cross-references as dependencies
between requirements. The extended context-free
grammar for the markup appears in Appendix A. Table
1 presents concept codes employed in the markup
example below to align sentences and phrases with
concepts in the upper ontology.

Table 1: Codes Corresponding to
Upper Ontology Concepts

Code Concept Code Concept
a Act o Object
c Condition R Refinement
F Fact s Subject
O Obligation t Target

The running example from HIPAA Privacy Rule
§164.520(a)(2)(i)(B)(ii) appears below with the markup
in bold:

1 (ii) {#O [#s/1 A group health plan [that
2 provides health benefits solely through
3 an insurance contract with a health
4 insurance issuer or HMO, & and that
5 creates or receives [protected health
6 information in addition to [summary
7 health information [!R164.504/(a) as
8 defined in §164.504(a)]] | or information
9 on whether the individual is
10 participating in the group health

North Carolina State University Computer Science Technical Report TR-2007-26

11 plan, or is enrolled in or has
12 disenrolled from a health insurance
13 issuer or HMO offered by the plan]]],
14 {\2 must}:
15 (A) {{#a {*2} [Maintain]} [#o/3 a notice
16 under this section]; & and
17 (B) {#a {*2} [Provide]} [#o*3 such
18 notice] {#c upon [request]} {#t to
19 [any person]}}}. {#F [#s The
20 provisions of paragraph (c)(1) of
21 this section] {#a do not [apply]}
22 {#o to [*1 such group health plan]}}.

The markup structures regulatory text into two types
of nested blocks denoted by opening and closing
brackets: pattern blocks, denoted by curly “{}”
brackets, indicate the start of a requirements pattern or
sub-pattern; and value blocks, denoted by square “[]”
brackets, indicate spans of text that will be mapped to
slot values by the parser. A block is typed if the opening
bracket is followed by a number sign “#” and a letter.
Within a block, the English conjunctions “and” and “or”
can be mapped to logical connectives using the
operators “&” and “|” for logical-and and logical-or,
respectively (see lines 4, 8, 16).

To resolve attributive and referential context-
sensitive ambiguities, the analyst uses the copy “/”
operator, cut “\” operator and “*” paste operator
followed by a numbered clipboard location. Recall that
referential ambiguity includes words that have an
anaphoric or cataphoric function. The phrases “such
notice” (lines 17-18) and “such group health plan” (line
22) introduce referential ambiguity. To preserve this
original context, we replace these referential
ambiguities with the phrases to which they refer. If the
paste operator is applied to a block that contains text, as
is the case in this example, the text in the block will be
replaced by the pasted text.

To formalize cross-references, analysts demarcate
cross-reference phrases by using a value sub-block that
begins with a cross-reference “!” operator and is
followed by a reference code and path (see line 7). The
reference code corresponds to a reference concept in the
upper ontology and the path is a forward-slash delimited
list of section and paragraph indices that appear in the
document model. The tool parses the reference path,
identifies the rules that are located in the referenced
document divisions, and creates dependencies from the
rule that contains the reference to the rules referenced
by the path. For example, the reference on line 7
denotes a dependency from both obligations that start in
paragraph (ii) and continue into sub-paragraphs (A) and
(B). The code “R” defines this dependency as a
refinement relation and the path “164.504/(a)” identifies
the division as paragraph (a) of section 164.504 that
contains the target rules. The phrase “summary health
information” is the phrase refined by this dependency.

Some cross-references are relative to their
immediately encapsulating paragraph. For example, a
reference “(a)” in paragraph (a)(1) refers to the parent
paragraph of sub-paragraph (1); whereas a reference
“(b)” in paragraph (a) refers to the sibling paragraph (b).
While analysts may supply a fully qualify reference
when stating the path from a relative reference, they
may also let the parser attempt to systematically resolve
these relative references, directly. The parser detects
syntax and semantic errors, such as missing brackets,
cycles that occur in the copy/ cut/ paste operations,
unknown concept codes, dangling (possibly external)
cross-references, etc., and alerts the analyst who must
then resolve these errors.
4.4. Requirements

Parsing the annotated regulation text yields
requirement specifications that are formalized as frame
objects. Requirements knowledge structured by these
frames is serialized using XML and transformed into a
requirements document and exception/ refinement graph
using XSLT. The requirements document is expressed
in HTML and contains specifications that are presented
in a table format. Parsing the example markup from
Section 4.3 yields two requirements due to case splitting
[2]; the second requirement is presented in Fig. 4 using
the same table format that is used in practice.

Frame Type: Obligation
Pattern: [subject] {must [act]} [object]
 {upon [condition]} {to [target]}
Trace: ID 5, Line 1:0, Source: 164.520(a)(2)(i)(B)(ii)
Slots Values
condition upon… request
subject A group health plan that provides health

benefits solely through an insurance
contract with a health insurance issuer or
HMO

A group health plan that creates or
receives protected health information in
addition to summary health information
(Refinement: see §164.504(a))
A group health plan that creates or
receives information on whether the
individual is participating in the group
health plan, or is enrolled in or has dis-
enrolled from a health insurance issuer
or HMO offered by the plan

act must… Provide
object a notice under this section
target to… any person

Figure 4: Example HTML Table Generated from
Annotated Regulation

The table in Figure 4 begins with the statement frame
type (Frame Type), the requirements pattern (Pattern),
the traceability information (Trace) that contains the
requirement ID, the line number and line index and the

North Carolina State University Computer Science Technical Report TR-2007-26

corresponding paragraph number in the regulation text.
Each slot is listed with the slot type (a phrase-level
concept from the upper ontology) and the slot value.
Because the slot values may be expressed using logical
connectives (e.g. see the subject slot value in Fig. 4), the
values are presented as trees comprised of logical-and
branches (solid line) and logical-or branches (dotted
line). Dependencies derived from internal cross-
references are presented as hypertext links (underlined)
to the corresponding rules that appear in the referenced
paragraphs; the link is appended to the phrases from
which the cross-reference originated. If the dependency
is derived from an external cross-reference, the text
description of the section or paragraph is appended in
place of the hypertext link.

5. Case Study
The FBRAM was applied to four sections of the

HIPAA Privacy Rule §164.520–§164.526 that govern
privacy notices, individual rights to request access,
access restrictions and amendments to protected health
information. We chose these four sections for our case
study because they describe publicly visible, consumer-
related activities and to compare the FBRAM results
with other results that were manually-acquired from
these same sections [4]. We discuss the comparative
evaluation in Section 6.

The first author applied the FBRAM to the
aforementioned sections of the HIPAA Privacy Rule to
yield 146 requirements statements. These statements
consist of 34 permissions, 100 obligations, 3
refrainments, 2 exclusions and 7 facts. In addition, this
study yielded 76 requirements patterns, similar to the
pattern in Fig. 4, from the 146 statements; 52% of the
acquired statements use only seven of the 76 patterns.
5.1. Ambiguities

The HIPAA study identified logical, attributive and
referential ambiguities as discussed in Section 3.
Because this study lacks a sufficient number of
participants to evaluate alternate interpretations of
logical and attributive ambiguities, we limit this
discussion to referential ambiguity. In this study, we
found it was not always necessary to resolve each
referential ambiguity. For example, a referential
ambiguity that forward or backward-references a phrase
within the same statement (see “such group health
plans” in Section 4.2) is less likely to be confusing than
a referential ambiguity that refers to a phrase in a
different statement. This is because statements are often
parsed into separate requirements. Consider the
following obligation from HIPAA §164.524(d)(4):

1 {#O [#s The covered entity] [#m must]
2 [#a promptly refer] [#o a request for
3 review] {#t to [*12 such designated
4 reviewing official]}}

The referential ambiguity “such designated reviewing
official” (lines 3-4) refers to an official who is described
in another obligation, earlier in paragraph (d)(4).
Because this obligation stands alone, this reference is
confusing. To preserve original context, we extended
the parsing tool to create a refinement dependency from
the prior obligation, from which the source text is
copied, to the target obligation on lines 1-4 to which the
text is pasted. This refinement dependency is similar to
explicit cross-references that use phrases similar to “as
defined in §164.524;” however, in this case, the act of
the analyst copying text between statements provides
sufficient information to determine the source and target
of this implied dependency.
5.2. Dependencies and Cross-References

The study revealed 92 cross-references, each of
which was formalized as either a refinement or
exception dependency. The uniqueness of cross-
reference phrases affords maintaining a list of
corresponding regular expressions that are used by the
tool to assist analysts in identifying these dependencies.
The list is iteratively extended as new cross-references
patterns are identified. Table 2 presents the final list
obtained from this study that was used to check for
missed cross-references. The italicized regular
expressions correspond to dependencies that were
acquired from sub-paragraphs (vs. other paragraphs).

Table 2: Cross-Reference Regular Expressions

Freq. Phrase
3 as follows

40 paragraph (\(.+?\))+ of this section
1 paragraph (\(.+?\))+ or (\(.+?\))+ of this section
1 paragraph (\(.+?\))+ through (\(.+?\))+ of this

section
4 the following requirements

12 this (paragraph | section)
27 §\d+.\d+(\(.+?\))*

From the 91 cross-references, we identified 168
exception and refinement dependencies. Table 3
presents the total number of dependencies derived from
external and internal cross-references; these numbers
are further sub-divided into the different types of
dependency (as defined in Section 4.1).

After the annotated regulation text is parsed, the tool
generates a dependency graph from the serialized
frames using XSLT. The dependency graph helps
analysts visualize the broader context of normative
goals and simultaneously reason about refinement and
exceptions across multiple goals. Fig. 5 presents the
largest, connected dependency graph from all four
sections §164.520-164.526 in the HIPAA case study.
This graph connects 122 statements or 83% of the total
number of acquired statements. A significant challenge

North Carolina State University Computer Science Technical Report TR-2007-26

for analysts is coordinating this extensive volume of
data in a focused and concentrated effort to evaluate
software products and designs for regulatory
compliance; a topic of our ongoing research.

Table 3: Frequency and Types of Dependencies
in HIPAA §164.520-164.526

Dependency 164.520 164.522 164.524 164.526
External 39 6 7 10
Internal 47 6 28 25
Exception 2 3 3 0
Inv. Exc. 6 2 2 0
Refinement 59 0 11 2
Inv. Ref. 19 7 19 33

Figure 5: Refinement and Exception

Dependency Graph of HIPAA §164.520-164.526

To better understand this challenge, consider a
manageable subset of this graph that was derived from
the following summarized rules from §164.522(a) and
numbered in the order that they were parsed by the tool.

1. Obligation: A covered entity must permit an
individual to request a restriction to uses and
disclosures permitted under §164.510(b).

2. Exclusion: A covered entity is not required to agree
to a restriction.

3. Refrainment: A covered entity may not use or
disclose information restricted under paragraph
(a)(1)(i).

4. Permission: A covered entity may use restricted
information to provide emergency treatment.

5. Permission: A covered entity may disclose
restricted information to provide emergency
treatment.

6. Obligation: A covered entity must request the
restricted information disclosed under paragraph
(a)(1)(iii) is not further disclosed.

7. Fact: A restriction agreed to by a covered entity
under paragraph (a) is not effective to prevent uses
and disclosures under §164.502(a)(2)(i),164.510(a)
or 164.512.

8. Permission: A covered entity may terminate its
agreement to a restriction.

9. Obligation: A covered entity must document an
agreed restriction in accordance with §164.530(j).

The sub-graph appears in Fig. 6: circular nodes
represent statements; the node labels correspond to the
above numbered statements; the rectangular nodes are
cross references to sections that are external to
§164.522; the dotted-line arrows point from a statement
to one of its exceptions; the solid arrows point from a
statement to one of its refinements.

Figure 6: Dependencies from HIPAA

§164.524(a)

As previously mentioned, these graphs provide a
means to visualize the meaning of dependencies
between normative goals. For example, Permissions 4
and 5 (to use or disclose restricted information for
emergency treatment) are exceptions to Refrainment 3
(to not disclose such information). Obligation 6, visible
as a refinement of Permissions 4 and 5, requires the
covered entity to request that the recipient of such
information not further disclose the information. Fact 7
coordinates several exceptions to the permissions and
obligations in this graph. In this study, facts typically
coordinate groups of exceptions and refinements.

6. Comparative Evaluation
There are several important differences between the

manual method [4] and FBRAM [7]. The manual
method [4] uses terms with definitions similar to
FBRAM, including the terms definition, right (a kind of
permission), obligation, anti-right (refrainment), and

North Carolina State University Computer Science Technical Report TR-2007-26

anti-obligation (exclusions). However, the manual
method is viewed as less discriminating than FBRAM
because, the manual method: 1) limits rights and
obligations to “stakeholder actions” whereas FBRAM
extends permissions and obligations to include system
actions and states; 2) does not include the concept for
“fact;” and 3) does not distinguish cross-references as
typed dependencies. In addition, the FBRAM increases
coverage over the manual method largely by classifying
statements that were not previously classified using
these new concepts.

Table 5 presents the total number of statements
identified using FBRAM relative to the manual method
[4]. FBRAM appears to be more effective in identifying
obligations and references than the manual approach;
however, we are currently designing an experiment to
empirically validate this. We now discuss two important
insights from this evaluation:

Increased specificity in the upper ontology and
automation in the tool led to better coverage. Because
the upper ontology provides analysts with concepts
intended to classify every statement and every phrase in
the regulatory document, a significant number of
“content requirements” were identified using the
FBRAM that were missed with the manual method.
These requirements describe the required content of
privacy notices (520), written denials of access (524)
and amendments to electronic medical information
(526). Moreover, the formalization of cross-references
and use of regular expressions by the tool led to an
increase in the number of identified references.

Table 5: Total Number of Statements Identified
using FBRAM Relative to the Manual Method

for HIPAA §164.520-164.526

Element 164.520 164.522 164.524 164.526
Permissions –1 0 +3 0
Obligations +33 –2 +10 +13
Exclusions +2 0 0 0
Fact +6 +1 0 0
References +54 +7 +6 +3

The manual approach benefits from inferences by
domain experts. The analysts who applied the manual
method made inferences that enabled them to derive
additional permissions and obligations from facts. These
inferences are observable in this comparative evaluation
due to steps that have not yet been formalized in
FBRAM. The analysts inferred constraints from facts
and applied them to previously extracted rules (via
cross-references) or used them to create new rules. For
example, consider the following fact from HIPAA
§164.520(c)(3)(ii) annotated using FBRAM:

1 {#F [#s The provisions [!X(c)/(1) of
2 paragraph (c)(1) of this section]] [#a do
3 not apply] {#o to [*1 such group health

4 plan]}}

In this example, one analyst used the manual method,
to infer a logical expression of constraints that described
“such group health plan” from an earlier statement.
They then negated this expression using DeMorgan’s
Law and copied the new expression into the constraint
sets for permissions and obligations in paragraph (c)(1).
In contrast, using FBRAM an analyst annotates the
logical expression that describes “such group health
plan” and resolves the referential ambiguity on lines 3-4
by pasting the expression into the object slot; these tool-
supported actions further maintain this important
traceability. Because FBRAM maps rules to divisions in
the document model, the tool can present analysts with
the set of rules that correspond to paragraph (c)(1).
However, the analyst must still select the relevant rules
to which the logical expression should be copied.

7. Discussion and Summary
The FBRAM is designed to help analysts

systematically acquire requirements from regulations
while reducing ambiguity and maintaining traceability
to support compliance by demonstrating due diligence.
We applied the FBRAM to four sections §164.520–
§164.526 in the HIPAA Privacy Rule that we had
previously analyzed using an entirely manual variant of
this methodology [4] to assess any improvement gained
through automation. We are currently applying the
methodology to extract accessibility requirements from
the Telecommunications Act of 1996, Section 508.
These requirements will be compared with another set
of requirements that were acquired by an industry
partner from the same regulation using a different
approach. Extensions to the FBRAM that are under
development include algorithms to generate domain-
dependent, lower ontologies from definitions, expressed
in the W3C Web Ontology Language (OWL) and
identify missing slot values to improve requirements
coverage. We are also exploring new requirements
organization and presentation techniques to help
engineers restrict their focus to only those regulatory
requirements that affect their business practices.

The Frame-Based Requirements Analysis Method
(FBRAM) makes several assumptions about the
regulatory text and analysts’ skills. We assume the
markup is distinguishable from the regulation text, using
a separate character set, if necessary. The extent to
which the markup can be used to identify and resolve
ambiguity and to generate useful requirements patterns
relies upon the consistent and correct use of English
grammar. Although grammar checkers may assist
regulatory document authors in satisfying this
assumption, we do not expect this method to work on
interview transcripts that use verbal cues and similar
devices. In addition, we assume analysts can effectively:

North Carolina State University Computer Science Technical Report TR-2007-26

identify divisions within the regulation text; consistently
classify sentences and phrases using the upper ontology
concept definitions; and identify and resolve the logical,
attributive and referential ambiguities. We plan to
validate these assumptions in a case study with multiple
participants.

Acknowlegements
This work was partially supported by NSF ITR Grant

#0325269 and an IBM PhD Fellowship.

Appendix A: Context-free Grammar
The context-free grammar is presented in extended

Backus-Naur Form. The symbol TEXT is a sequence of
characters excluding curly and square brackets.

〈s〉 := (block | TEXT)*
〈block〉 := [〈body〉] | { 〈body〉 }
〈body〉 := 〈type〉? 〈op〉? (block | TEXT)* 〈alt〉*
〈type〉 := HASH LETTER
〈op〉 := (cbop)? (crop)?
〈cbop〉 := (COPY | CUT | PASTE) NUMBER
〈crop〉 := REF LETTER (INDEX SLASH)* INDEX
〈alt〉 := (AND | OR) 〈body〉

References
[1] A.I. Antón, Goal Identification and Refinement in the

Specification of Software-Based Information Systems,
PhD Thesis, Georgia Tech, 1997.

[2] T.D. Breaux, A.I. Antón, “Analyzing goal semantics for
rights, permissions and obligations,” IEEE 13th Int’l
Conf. Req’ts. Engr., pp. 177-188, 2005.

[3] T.D. Breaux, A.I. Antón, “Mining rule semantics to
understand legislative compliance,” ACM Workshop
Privacy in the Elec. Society, pp. 51-54, 2005.

[4] T.D. Breaux, M.W. Vail, A.I. Antón, “Towards
regulatory compliance: extracting rights and obligations
to align requirements with regulations,” IEEE 14th Int’l
Conf. Req’ts. Engr., pp. 49-58, 2006.

[5] T.D. Breaux, J. Doyle, A.I. Antón, “Semantic
parameterization: a conceptual modeling process for
domain descriptions,” To Appear: ACM Trans. Soft.
Engr. Methods, NCSU #TR-2006-35, 2006.

[6] T.D. Breaux, A.I. Antón, “Analyzing regulatory rules for
privacy and security requirements,” To Appear: IEEE
Trans. Soft. Engr., NCSU #TR-2007-9, 2007.

[7] T.D. Breaux, A.I. Antón, “A systematic method for
acquiring requirements from regulations: a frame-based
approach,” 6th Int’l Work. Req’ts for High Assurance
Sys., 2007.

[8] D.M. Berry, E. Kamsties, “Syntactically dangerous all
and plural specifications,” IEEE Software, pp. 55-57,
2006.

[9] Bureau of Labor Statistics, U.S. Dept. of Labor, Career
Guide to Industries, 2006-07 Edition, Health Care.

[10] N. Chomsky, Syntactic Structures, Janua Linguarum, no.
4, Mouton, p. 116, 1957.

[11] L.M. Cysneiros and J.C.S.P. Leite, “Nonfunctional
requirements: from elicitation to conceptual models,”
IEEE Trans. Knw. Data Engr., 30(5): 328-350, 2004.

[12] D. Dardenne, A. van Lamsweerde, S. Fickas, “Goal-
directed requirements acquisition,” Sci. Comp.
Programming, 20:3-50, 1993.

[13] C. Denger, D.M. Berry, E. Kamsties, “Higher quality
requirements specifications through natural language
patterns,” IEEE Int’l Conf. Soft. – Sci., Tech. & Engr., pp.
80-90, 2003.

[14] C.J. Fillmore, “The case for case,” In E. Bach and R.
Harms (eds.), Universals in Linguistic Theory, Holt,
Rhinehart, Winston, NY, 1967, pp. 1-90.

[15] A. Fuxman, L. Lin, J. Mylopoulos, M. Pistore, M.
Roveri, P. Taverso, “Specifying and analyzing early
requirements in Tropos,” Req’ts Engr., 9(2):132-150,
2004.

[16] S. Ghanavati, D. Amyot, L. Peyton, “Towards a
framework for tracking legal compliance in healthcare,”
Advanced Information Systems Engineering, LNCS v.
4495, pp. 218-232, 2007.

[17] L. Goldin, D.M. Berry, “AbstFinder: A prototype natural
language text abstraction finder for use in requirements
elicitation,” Auto. Soft. Engr., 4(4): 375-412, 1997.

[18] P. Giorgini, F. Massacci, J. Mylopoulos, N. Zannone,
“Modeling security requirements through ownership,
permission and delegation,” IEEE 13th Int’l Conf. Req’ts
Engr., pp. 167-176, 2005.

[19] J.F. Horty, Agency and Deontic Logic, Oxford University
Press, 2001.

[20] E. Kamsties, “Understanding ambiguity in requirements
engineering,” Engr’ing and Mng’ing Soft. Req’ts, pp.
245-266, Springer, 2006.

[21] S. Konrad, B.H.C Cheng, “Real-time specification
patterns,” IEEE 27th Int’l Conf. Soft. Engr., pp. 372-381,
2005.

[22] S-W. Lee, R. Gandhi, D. Muthurajan, D. Yavagal, G-J.
Ahn, “Building problem domain ontology from security
requirements in regulatory documents,” Int’l Workshop
Soft. Engr. Secure Sys., pp. 43-50, 2006.

[23] S. Overmyer, B. Lavoie, O. Rambow, “Conceptual
modeling trhough linguistic analysis using LIDA,” IEEE
23rd Int’l Conf. Soft. Engr., pp. 401-410, 2001.

[24] H.B. Reubenstein, R.C. Waters, “Requirements
Apprentice: automated assistance for requirements
acquisition,” IEEE Trans. Soft. Engr., 17(3), 1991, pp.
226-240.

[25] R.C. Schank, R.P. Abelson, Scripts, Plans, Goals and
Understanding: An Inquiry into Human Knowledge
Discovery. Lawrence Erlbaum Assoc., Hillsdale, NJ,
1977.

[26] K. Wasson, “Case study in systematic improvement of
language for requirements,” IEEE 14th Int’l Conf. Re’qts
Engr., pp. 6-15, 2006.

[27] P. Zave, M. Jackson, “Four dark corners of requirements
engineering,” ACM Trans. Soft. Engr. Methods., 6(1):1-
30, 1997.

