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ABSTRACT

As sensitive information is increasingly available online through
various distributed protocols, the need for carefully controlling ac-
cess to that information is increasingly important. Control means
not only preventing the leakage of data but also permitting access
to necessary information.

To facilitate managing, maintaining, and analyzing access con-
trol, access control policies are often specified in domain-specific,
declarative languages. To increase confidence in the correctness of
specified policies, policy authors can use policy verification tools
to formally verify policies against a set of properties, which are
often manually specified. Policy verification is an important tech-
nique for high assurance of the correct specification of access con-
trol policies. The effectiveness of the verification is directly related
to the quality of the properties, i.e., how comprehensively the prop-
erties cover various behaviors of the policy and thus assure correct-
ness of these behaviors once verified.

In this paper, we propose a novel approach called Mutaver to
assess the quality of properties specified for a policy and, in doing
so, the quality of the verification itself. Similar to the way mutation
testing is used to assess the quality of a test suite in terms of fault-
detection capability, we propose mutation verification to assess the
quality of a set of properties. Given a policy and a set of properties,
we first mutate the policy to generate various mutant policies, each
with a single fault. We then verify whether the properties hold for
each mutant policy. If the properties fail to hold for a given mutant
policy, then the verification process accurately identifies the fault
in the mutant policy. We have implemented a mutation verification
tool for XACML and applied it to policies and properties from a
real-world software system.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification—
formal methods; D.2.5 [Software Engineering]: Testing and De-
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1. INTRODUCTION

Access control is one of the fundamental and widely used secu-
rity mechanisms for software and hardware resources, especially
for distributed systems. It controls which principals such as users
or processes have access to which resources in a system. It is prob-
lematic for programmers to hard code access control policies in
the program itself because (1) tracing the policy becomes diffi-
cult as the program is maintained and evolves, (2) it is difficult
to share the policy across systems, and (3) automated reasoning
about the policy becomes difficult since its logic is entangled with
other parts of the program. Furthermore, it is unnecessarily dif-
ficult to analyze and reason about a policy implemented in pro-
grams written in a general-purpose programming language, which
undoubtedly contains many operations, data, and language-specific
nuances unrelated to the policy itself. As a result, a growing trend
has emerged towards writing separate access-control-policy speci-
fications in standardized, declarative languages such as XACML [1]
and Ponder [7]. These policy specifications are integrated with var-
ious components of a system in a standardized manner. At runtime,
a software component called a Policy Decision Point (PDP) evalu-
ates an access request against the specified access control policies,
and permits or denies the request accordingly.

Implementing and maintaining these policies are important and
yet challenging tasks, especially as access control policies become
more complex and are used to manage a large amount of distributed
and sensitive information. Identifying discrepancies between pol-
icy specifications and their intended function is crucial because cor-
rect implementation and enforcement of policies by applications
are based on the premise that the policy specifications are correct.
As aresult, policy specifications must undergo rigorous verification
and validation to ensure that the policy specifications truly encap-
sulate the desires of the policy developers.

Testing is an important and practical technique to detect errors
in complex software systems. In policy testing [24-28], test inputs
are access requests and test outputs are access responses. Policy au-
thors can inspect request-response pairs to check whether they are
as expected. Testing, while useful, suffers from the hindrances of
requiring oracles to alleviate manual effort in test-output inspection
and may not necessarily be exhaustive. Exhaustive testing, while



possible, is impractical due to the sheer number of test inputs whose
outputs still require manual inspection. The value of both availabil-
ity and privacy of information demands a high degree of confidence
in a policy specification. Policy developers would thus benefit from
complementing testing with more exhaustive formal verification
methods. Property verification [10, 17, 19, 20, 38, 45] consumes a
policy and a property, and determines whether the policy satisfies
the property. Unfortunately, property elicitation is rarely complete
and identifying missing properties is difficult.

One relatively straightforward idea is to assess which policy el-
ements (such as rules or their conditions) are accessed during the
verification of the policy against the given property and then con-
sider these accessed policy elements as being covered by the prop-
erty. Then if verifying a property does not access certain policy ele-
ments, it seems natural to consider that the property does not cover
the behavior related to these policy elements. In fact, the preceding
idea is related to structural coverage measurement [46] in tradi-
tional software testing for measuring the quality of test inputs (i.e.,
how well the test inputs cover various parts of the software under
test).

The underlying mechanism of this preceding idea is also re-
lated to the instant consistency checking approach proposed by
Egyed [9] for UML models. In particular, his approach treats con-
sistency rules (analogous to policy properties) as black-box entities
and observes their behavior during their evaluation to detect what
model elements (analogous to policy elements) they access. Then
his approach decides what consistency rules to evaluate when some
model elements are changed in the model. Although his approach
targets at instance checking instead of assessing the quality of prop-
erties, the underlying mechanism seems similar to the preceding
idea. Unfortunately, this idea has two major issues. First, it heavily
depends on the way that a verification tool conducts verification.
For example, a policy verification tool may access more policy ele-
ments such as rules than needed in order to verify a property due to
the tool’s un-optimized implementation. Second, in policy verifi-
cation, verifying whether a simple property is satisfied may need to
access all or most of the policy elements such as rules. Considering
this simple property to cover all or most of these policy elements
is too optimistic, giving policy developers false confidence on the
quality of the property.

In this paper, we propose a novel approach called Mutaver that
assesses the quality of properties for a policy based on mutation
verification, a counterpart of mutation testing [8] in verification.
Our approach is not sensitive to the internal implementation of a
policy verification tool and alleviates the issue of false confidence.

Mutation testing [8] has historically been applied to general-
purpose programming languages in assessing the quality of a test
suite in terms of fault-detection capability. Recently mutation test-
ing has been applied to XACML policy specifications [27] to assess
the quality of a request set (test set). In our approach, we pro-
pose mutation verification as a means to assess the quality of a set
of properties. In addition, mutation verification determines which
properties interact with which rules in a policy. This information is
useful in not only determining the quality of elicited properties but
also during the property elicitation process.

Given a policy, our approach automatically seeds it with faults
to produce numerous mutant policies, each containing one fault.
Then given a property for this policy, our approach conducts prop-
erty verification on this policy (called the original policy) and each
mutant policy. If a property that holds for the original policy fails
to hold for the mutant policy, then the mutant is said to be killed by
the property. The ratio of the number of killed mutants to the total
number of mutants serves as a metric to quantify the comprehen-

1 If role = Faculty
2 and resource = (ExternalGrades or InternalGrades)
3 and action = (View or Assign)
4 Then

5 Permit
6 If role = Student

7 and resource = ExternalGrades
8 and action = Receive

9 Then

0 Permit

Figure 1: Rules in an example XACML policy.

siveness of the elicited properties.
This paper makes the following main contributions:

e We propose a novel approach for assessing the quality of
properties for a policy in policy verification. Within the best
of our knowledge, our approach is the first one to tackle this
problem in policy verification and even in general software
verification. The underlying idea shall have a broader impli-
cation in developing new approaches for assessing the qual-
ity of properties for other types of software artifacts.

e We implement the proposed approach with an automatic tool
that facilitates automated mutation verification of access con-
trol policies written in XACML [1].

e We present a case study on an access control policy from a
real-world software system to demonstrate the feasibility of
this approach.

The rest of the paper is organized as follows. Section 2 presents
an example to illustrate the high-level idea of the approach, Sec-
tion 3 describes the background information for our mutation veri-
fication approach. Section 4 presents the mutation verification ap-
proach. Section 5 describes our experiences of applying mutation
verification on a real-world policy and Section 6 discusses issues in
the approach. Finally Section 7 presents related work and Section 8
concludes.

2. EXAMPLE

This section illustrates our approach to mutation verification through

a simple example. The example and corresponding properties come
from an example used by Fisler et al. [10]. This access control
policy formalizes a university’s policy on assigning and access-
ing grades. It is a role-based access control policy with two roles:
FACULTY and STUDENT, two resources: INTERNALGRADES and
EXTERNALGRADES, and three actions: ASSIGN, VIEW, and RE-
CEIVE. For this example, we expect the following properties to
hold:

Pri There do not exist members of STUDENT who can ASSIGN
EXTERNALGRADES.

Pro All members of FACULTY can ASSIGN both INTERNALGRADES

and EXTERNALGRADES.

Prs There exists no combination of roles such that a user with
those roles can both RECEIVE and ASSIGN the resource EX-
TERNALGRADES.

Property Pry is intuitive since we certainly do not want students
to assign grades. Property Pr> is to ensure that indeed faculty
members can assign grades (otherwise who would assign them?).
Finally, Pr3 is an example of separation-of-duty since we do not
want anyone to assign their own grade, an apparent conflict of in-
terest.



1 If role = Faculty

2 and resource = (ExternalGrades or InternalGrades)
3 and action = (View or Assign)

4 Then

5 Deny

6 If role = Student

7 and resource = ExternalGrades

8 and action = Receive

9 Then

10 Permit

Figure 2: The first mutant XACML policy.

1 If role = Faculty

2 and resource = (ExternalGrades or InternalGrades)
3 and action = (View or Assign)

4 Then

5 Permit

6 If role = Student

7 and resource = ExternalGrades

8 and action = Receive

9 Then
10 Deny

Figure 3: The second mutant XACML policy.

Figure 1 shows the example XACML policy. To keep the exam-
ple readable and concise, the policy is written as simple IF-THEN
statements. This representation over-simplifies the complexity of
XACML policies but suffices for illustrative purposes (more back-
ground information on XACML is described in Section 3). The
policy in Figure 1 does not immediately satisfy these three prop-
erties. In order for the properties to hold, the policy must first be
constrained. Specifically the “resource” and “action” attributes are
constrained to contain single values only. Furthermore, the “sub-
ject” attribute is constrained in a slightly different manner by what
Fisler et al. [10] describe as constrain-policy-disjoint. 1t is essen-
tially a separation-of-duty constraint that restricts any request from
having both the FACULTY and STUDENT roles. After constraining
the policy in Figure 1, all three properties hold.

The first step of mutation verification is to generate mutant poli-
cies. We use only one of the mutation operators proposed in our
previous work [27], namely Change Rule Effect (CRE). The CRE
mutation operator simply states to invert each rule’s EFFECT by
changing PERMIT to DENY or DENY to PERMIT (one at a time for
each mutant policy). The number of mutant policies created by this
operator is equal to the number of rules in the policy. This operator
should never create equivalent mutants, which are mutant policies
with the same behavior as the original policy', unless a rule is un-
reachable. The example policy has only two rules and thus only
two mutant policies are generated. Figures 2 and 3 show these two
mutant policies.

The second step of mutation verification is to determine which
properties hold for the original policy and each mutant policy. The
mutant is said to be killed by a property if the property holds for
the original policy but does not hold for the mutant policy. In
other words, the property reveals the fault seeded in the mutant
policy. Similar to mutation testing, the greater the number of mu-
tants killed, the more comprehensive the properties are in covering
policy behaviors, and thus the more effective the properties are at
interacting with the rules in the policy.

As already stated, with a properly constrained policy, the original

'In other words, there exists no request to make an equivalent mu-
tant policy and the original policy to make different policy deci-
sions.

1 Counterexample:

2 1:/Action, command, Receive/

3 2:/Action, command, OTHER/

4 3:/Resource, resource-class, ExternalGrades/
5 4:/Resource, resource-class, OTHER/

6 5:/Subject, role, Student/

7 6:/Subject, role, OTHER/

8 7:/Action, command, View/

9 8:/Action, command, Assign/

10 9:/Resource, resource-class, InternalGrades/
11 10:/Subject, role, Faculty/

12 1

13 1234567890

14 {

15 00000-0111
16 00100-0101
17 }

Figure 4: Counterexamples for the mutant policy in Figure 2.

policy satisfies all three properties; therefore, if any property does
not hold for a mutant policy, then that mutant policy is killed by the
property.

The first mutant policy in Figure 2 does not satisfy Pr2 and thus
the first mutant is killed. Recall Pr; seeks to ensure that all faculty
members can assign grades. Since the fault in Figure 2 is precisely
the rule that grants this access, the property is apparently violated.
Figure 4 illustrates the output from the property verification on the
first mutant policy. Each counterexample (i.e., request) is repre-
sented as a bit mask where each bit corresponds to the specific
attribute-id on Lines 2—11. If the bit is 0, then the correspond-
ing attribute value is not present whereas if the bit is 1 then the
corresponding attribute value is present. As expected, the given
concrete counterexamples are for a FACULTY to ASSIGN INTER-
NALGRADES and for a FACULTY to ASSIGN EXTERNALGRADES.
These two counterexamples correspond to Lines 15 and 16 in Fig-
ure 4, respectively. Access is denied for both requests, indicating a
violation of property Pra.

The second mutant policy in Figure 3 is not killed by any of the
three properties, reflecting that the properties are not comprehen-
sive and do not completely “cover” the policy. The mutant cover-
age (i.e., the mutant-killing ratio) for the given policy by the given
properties is computed as 50% since only one of two mutants is
killed. This realization leads to the elicitation of our fourth prop-
erty, which was not originally specified by Fisler et al. [10]:

Pry All members of STUDENT can RECEIVE EXTERNALGRADES.

Property Pry fails to hold for the second mutant policy in Fig-
ure 3, thus killing the mutant, revealing its fault, and increasing
the mutant-killing ratio to 100%. Mutation verification serves two
purposes: (1) to quantify how thorough a set of properties interacts
with or covers the rules defined in the policy and (2) to facilitate
property elicitation such that a property set interacts with or covers
all rules defined in the policy.

3. BACKGROUND

This section presents background information including a de-
scription of XACML, policy mutation testing, and Margrave, a pol-
icy verification tool used in our approach.

3.1 XACML

The eXtensible Access Control Markup Language (XACML) is
an XML-based syntax used to express policies, requests, and re-
sponses. This general-purpose language for access control policies



is an OASIS (Organization for the Advancement of Structured In-
formation Standards) standard [1] that describes both a language
for policies and a language for requests or responses of access con-
trol decisions. The policy language is used to describe general ac-
cess control requirements and is designed to be extended to include
new functions, data types, combining logic, etc. We implement our
approach to mutation verification in XACML.

The five basic elements of XACML policies are POLICYSET, POL-
ICY, RULE, TARGET, and CONDITION. A policy set is simply a
container that holds other policies or policy sets. A policy is ex-
pressed through a set of rules. With multiple policy sets, policies,
and rules, XACML must have a way to reconcile conflicting rules. A
collection of combining algorithms serves this function [1]. Each
algorithm defines a different way to combine multiple decisions
into a single decision. Both policy combining algorithms and rule
combining algorithms are provided. Seven standard combining al-
gorithms are provided but user-defined combining algorithms are
also allowed [2].

To aid in matching requests with the appropriate policies, XACML
provides a target [1], which is basically a set of simplified condi-
tions for the subject, resource, and action that must be met for a
policy set, policy, or rule to apply to a given request. Once a pol-
icy or policy set is found to apply to a given request, its rules are
evaluated to determine the response.

XACML provides attributes, attribute values, and functions. At-
tributes are named values of known types that describe the subject,
resource, and action of a given access request [1]. A request is
formed of attributes that will be compared to attributed values in a
policy to make the access decisions. Attribute values from a request
are resolved through two mechanisms: the ATTRIBUTEDESIGNA-
TOR and the ATTRIBUTESELECTOR [1]. The former lets the policy
specify an attribute with a given name and type, whereas the latter
allows a policy to look for attribute values through an XPath query.

Figure 5 shows an example XACML policy, which is revised and
simplified from a sample Fedora® policy. Fedora is an open source
software that gives organizations a flexible service-oriented archi-
tecture for managing and delivering digital content. Fedora uses
XACML to provide fine-grained access control to the digital con-
tent it manages. This policy has one policy element which in turn

contains two rules. The rule composition function is “first-applicable”,

meaning the first applicable rule encountered during evaluation is
returned as the decision. Lines 2 — 13 defines the target of the
policy, which indicates that this policy only applies to those ac-
cess requests of an object “demo:5”. The target of Rule 1 (Lines
15 — 25) further narrows the scope of applicable requests to those
asking to perform action “Dissemination” on object “demo:5”. Its
condition (Lines 26 — 35) indicates that if the subject’s “loginld” is
“testuser1”, “testuser2”, or “fedoraAdmin”, then the request should
be denied. Otherwise, according to Rule 2 (Line 37) and the rule
composition function of the policy (Line 1), a request applicable to
the policy should be permitted. We implement our mutation verifi-
cation approach for XACML access control policies.

3.2 Policy Mutation Testing

Policy mutation testing is used to measure the fault-detection ca-
pability of a request set [27]. Mutation testing [8] has historically
been applied to general-purpose programming languages. The pro-
gram under test is iteratively mutated to produce numerous mu-
tants, each containing one fault. A test input is independently ex-
ecuted on the original program and each mutant program. If the
output of a test executed on a mutant differs from the output of the

http://www.fedora.info

1<Policy Id="demo" RuleCombAlgId="first-applicable">

2 <Target>

3 <Subjects> <AnySubjects/> </Subjects>
4 <Resources>

5 <Resource>

6 <ResourceMatch MatchId="equal">

7 <AttrValue>demo:5</AttrValue>

8 <ResourceAttrDesignator AttrId="objectid"/>
9 </ResourceMatch>

10 </Resource>
11 </Resources>
12 <Actions> <AnyAction/></Actions>

13 </Target>
14 <Rule RuleId="1" Effect="Deny">
15 <Target> <Subjects><AnySubject/></Subjects>

16 <Resources> <AnyResource/> </Resources>

17 <Actions>

18 <Action>

19 <ActionMatch MatchId="equal">

20 <AttrValue>Dissemination</AttrValue>

21 <ActionAttrDesignator AttrId="actionid"/>
22 </ActionMatch>

23 </Action>

24 </Actions>

25 </Target>

26 <Condition FunctionId="not">

27 <Apply FunctionId="at-least-one-member-of">

28 <SubjectAttrDesignator AttrId="loginid"/>
29 <Apply FunctionId="string-bag">

30 <AttrValue>testuserl</AttrvValue>

31 <AttrValue>testuser2</AttrvValue>

32 <AttrValue>fedoraAdmin</AttrValue>

33 </BApply>

34 </Apply>

35 </Condition>

36 </Rule>

37 <Rule RuleId="2" Effect="Permit"/>
38</Policy>

Figure 5: An example XACML policy

same test executed on the original program, then the fault is de-
tected and the mutant is said to be killed. The fundamental premise
of mutation testing as stated by Geist et al. [12] is that, in practice,
if the software contains a fault, there will usually be a set of mutants
that can only be killed by a test that also detects that fault. In other
words, the ability to detect small, minor faults such as mutants im-
plies the ability to detect complex faults. Because fault detection is
the central focus of any testing process, mutation testing provides
an external measure of the effectiveness of that process. The higher
the percentage of killed mutants, the more effective the test set is at
fault detection.

In order to measure the fault-detection capability of a request
set, our previous work [27] developed an automated policy muta-
tion testing approach. Given a policy, a mutator generates a num-
ber of mutant policies. Given a request set, this approach evaluates
each request in the request set on both the original policy and a
mutant policy. The request evaluation produces two responses for
the request based on the original policy and the mutant policy, re-
spectively. If these two responses are different, then the approach
determines that the mutant policy is killed by the request; other-
wise, the mutant policy is not killed.

Unfortunately, there are various expenses and barriers associated
with mutation testing. The first and foremost is the generation and
execution of a large number of mutants. For general-purpose pro-
gramming languages, the number of mutants is proportional to the
product of the number of data references and the number of data
objects in the program [36]. For XACML policies, the number of
mutants is proportional to the number of policy elements, namely
policy sets, policies, targets, rules, conditions, and their associated
attributes. Techniques to reduce the cost of mutation testing fall



into two basic approaches: test with fewer mutants and test smarter.
The test-fewer approach simply involves generating and/or execut-
ing fewer mutants; selective mutation and mutant sampling both
fall into this category. Constrained mutation [36,41] later refined
into selective mutation [31,32,36] is an approximation technique
that tries to select only mutants that are truly distinct from other
mutants. Results show that 5 out of 22 mutation operators are
key operators and these 5 provide almost the same coverage with
cost reductions of four times with small programs and up to 50
times for larger programs [31, 32]. Mutant sampling, first pro-
posed by Acree [3] and Budd [5], involves randomly selecting a
subset of mutant programs which are then evaluated. Results from
Wong [40] show that a 10% random sample of mutants is only 16%
less effective than a full set in ascertaining fault-detection capabil-
ity. Another sampling approach selects mutant programs based on
a Bayesian sequential probability ratio test until sufficient evidence
has been collected to determine that a statistically appropriate sam-
ple size has been reached [37].

Various test smarter approaches involve optimizations for spe-
cific computer architectures [6,21, 29, 34] and techniques that ex-
ploit the classic space-time trade-off [11]. For example, weak mu-
tation [16] is an approximation technique that reduces execution
costs by comparing the internal states of the mutant and original
programs instead of their output at program termination. Weak mu-
tation has been discussed theoretically [15, 30, 42], studied empir-
ically [13,23,35], and probed with variants that differ on exactly
when the program states should be compared [30,42]. Weak muta-
tion has been shown to generate tests that were almost as effective
as test generated with strong mutation and that at least 50% or more
of the execution time was saved [33, 35].

Lots of work has been done to help overcome the expenses and
barriers associated with mutation testing of general-purpose pro-
gramming languages. Fortunately, policy mutation testing is not
as expensive as classical mutation testing simply because policy
specification languages are far simpler than general-purpose pro-
gramming languages. Similarly, formal verification of policy spec-
ification are less costly. This distinction is one of the primary rea-
sons mutation verification is feasible. Formal methods for general-
purpose programming languages can be computationally expen-
sive. The space and time cost of verification on a large number of
mutant programs quickly renders mutation verification of general-
purpose programming languages impractical. We use a variant of
the policy mutation testing framework developed in our previous
work [27] to facilitate the implementation of our mutation verifica-
tion approach presented in Section 4.

3.3 Margrave

We leverage an existing verification tool called Margrave [10,14]
that consumes a policy and property and determines whether the
policy satisfies the property. Margrave is a software tool suite writ-
ten in PLT Scheme for analyzing access control policies written in
XACML. In addition to providing a PLT Scheme API for defining
and verifying properties, Margrave also performs change-impact
analysis between two versions of a policy, and allows the speci-
fication of environment constraints [10]. Environment constraints
are analogous to the environment models used in model checking,
which bound the behaviors of the system by explicating details of
the operating context in which the model will execute. In prac-
tice, to perform property verification on a policy using Margrave, a
Scheme program is written that leverages the Margrave API to (1)
load the policy, (2) optionally specify environment constraints on
the policy, and (3) define the set of properties that the policy must
satisfy.

Mutant

Policy 1
Policy

Mutant
™ z> Mutator C> Policy 2
Mutation .
Operators

Mutant

Policy n

Figure 6: Mutant generation.

4. MUTATION VERIFICATION

This section presents our approach for policy mutation verifica-
tion to assess the quality of policy properties. We next describe the
details of each step in the approach: mutant generation, property
verification, and mutant-killing determination.

4.1 Mutant Generation

Given a policy, the first step is to generate a set of mutant poli-
cies. Our previous work [27] presents a fault model for access con-
trol policies and a mutation testing framework to investigate the
fault model. The framework includes mutation operators used to
implement the fault model, mutant generation, equivalent-mutant
detection, and mutant-killing determination. The mutant genera-
tion component [27] leverages Sun’s XACML implementation [2]
to iteratively manipulate an in-memory model of the XACML pol-
icy and serialize its XML representation out to disk. Previously
we used mutation testing to measure the quality of a request set in
terms of fault-detection capability. In our new approach, we use the
mutant generation component to generate mutants based on a sin-
gle mutation operator, namely Change Rule Effect (CRE). We use
the generated mutants not to measure the quality of a request set,
but to measure the quality of a set of properties used for property
verification.

Figure 6 illustrates the necessary inputs and resultant outputs of
the mutant generation. The inputs are the policy under test and,
in this case, a single mutation operator. The mutator then gener-
ates a set of mutant policies, each with a single fault. The CRE
mutation operator generates a mutant for each rule in the policy.
The mutant for a rule is generated by negating the decision of that
rule. Other mutation operators have been implemented [27] but for
this implementation of mutation verification we have restricted the
mutator to CRE for several reasons. Mutation operators that ma-
nipulate rule conditions and the combining algorithms of POLICY-
SETS, POLICIES, and RULES are excluded because Margrave does
not support all standard XACML combining algorithms and many
condition functions. Although property verification executes rela-
tively quickly, large policies can be used to easily generate thou-
sands of mutant policies. We restrict ourselves to CRE not only to
reduce the number of generated mutant policies but because CRE
should never create equivalent mutants. An equivalent mutant is a
mutant that is syntactically different from the original policy while
being semantically equivalent. In other words, an equivalent mu-
tant will produce the same result as the original policy for all inputs
and thus provides no benefit, either for classical mutation testing or
mutation verification. As a result, equivalent mutants cannot be
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Figure 7: Property verification.

killed and would thus result in an artificial lowering of the mutant-
killing ratio, giving an underrated and inaccurate quality measure
for the set of properties.

4.2 Property Verification

Given a policy, a set of properties, and a set of mutant policies,
the next step is to determine which properties hold and which prop-
erties do not hold for both the original policy and each mutant pol-
icy as illustrated in Figure 7. We leverage an existing policy veri-
fication tool called Margrave [10, 14] to perform property verifica-
tion. Margrave is a PLT Scheme API for analyzing access control
policies. Margrave represents XACML policies as multi-terminal
binary decision diagrams (MTBDDs). MTBDDs are a type of deci-
sion diagram that maps bit vectors over a set of variables to a finite
set of results. Margrave is implemented on top of the CUDD pack-
age [39]. CUDD provides an efficient implementation of MTB-
DDs. In addition to property verification, Margrave also provides
semantic differencing information between version of policies [10].

To perform property verification on a policy using Margrave, a
Scheme program is written that leverages the Margrave API. This
program must load the policy, optionally specify any environment
constraints, and define the set of properties that the policy must sat-
isfy. In order to perform property verification programmatically, we
develop an executable script and Scheme program for the original
policy and each mutant policy. The script and program generation
and output processing are implemented on top of tooling from the
Eclipse Modeling Framework (EMF?) Project and the Model To
Text (M2T*) Project. EMF is a modeling framework and code gen-
eration facility for defining a model specification and generating
a set of Java classes that implement that model specification. We
specified and generated an EMF model that encapsulates the nec-
essary information to generate the executable scripts and Scheme
programs. Given the file directory containing the mutant policies,
we programmatically create an instance of this EMF model, which
is then used as input to a JET transformation. The JET component
of M2T is typically used in the implementation of a code generator

‘http://wuw.eclipse.org/modeling/emf/
*http://www.eclipse.org/modeling/m2t/
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Figure 8: Venn diagram illustrating the four property states.

for model-driven development. We use JET and a set of corre-
sponding Java Emitter Templates to create executable shell scripts
that essentially pipe a generated Scheme program to a command-
line interpreter. The output of the Scheme interpreter is then piped
to a trace file for further processing. These trace files contain the
necessary information for determining which properties hold and
which properties do not hold for the original policy and each mu-
tant policy.

4.3 Mutant-Killing Determination

Finally, the next step is to compute the mutant-killing ratio. The
mutant-killing ratio is the ratio of the number of mutants killed
to the total number of mutants. This ratio serves as a metric to
quantify the coverage of a given policy by a set of properties. A
high mutant-killing ratio indicates the property set interacts with or
covers a high number of rules defined in the policy.

The trace files generated by the property verification described
carlier are parsed in order to divide the property set into four sub-
sets for each mutant. A Venn diagram is illustrated in Figure 8 that
describes the relationship of these four sets for a single mutant pol-
icy. The area inside the box represents the set of all properties. The
area inside the left-most circle represents the set of properties that
hold true for the original policy. Thus the area outside the left-most
circle and inside the box is the set of properties that do not hold true
for the original policy (i.e., these properties fail to be satisfied by
the original policy). The area inside the right-most circle represents
the set of properties that hold false for the mutant policy. Therefore,
the area outside the right-most circle and inside the box represents
the set of properties that hold true for the mutant policy. The area
of interest is the intersection of the two circles. If at least one prop-
erty holds true for the original policy but fails to hold true for the
mutant policy, then the mutant is killed. If the two circles do not in-
tersect (i.e., there are no properties that satisfy this condition), then
the mutant is not killed. A property that holds true for the original
policy and the mutant policy has no value in exposing the fault in
the mutant policy because the property does not apply to the por-
tion of the policy that contains the fault. A property that holds false
for the original policy has no value because it is unclear if this false
property is caused by an error in the policy or the property itself.
More specifically, before mutation verification is conducted, these
properties must be manually inspected to determine whether they
fail due to an error in the policy, an error in the property, or an error
in the environment constraints.



Table 1: Policies used in the case-study.

Subject | # PolicySet | # Policy | # Rule | # Property |

CONTINUE-A 111 266 298 9
CONTINUE-B 111 266 306 9
SIMPLE-POLICY 1 2 2 3

Table 2: Mutant-killing ratios.
Subject | mutant-kill ratio | # mutants | #killed |

CONTINUE-A 24.16% 298 72
CONTINUE-B 24.84% 306 76
SIMPLE-POLICY 50.00% 2 1

S. CASE STUDY

We have applied our mutation verification tool to an access con-
trol policy for CONTINUE [22]. CONTINUE is a web-based con-
ference manager that supports the submission, review, discussion,
and notification phases of conferences. The CONTINUE policy was
used as a case study to explore property verification and change-
impact analysis for Margrave by Fisler et al. [10]. The conference
management system itself has been used to manage several con-
ferences. Table 1 lists the policies used in our case study. Each
row corresponds to a policy and Columns 2, 3, and 4 denote the
number of POLICYSET, POLICY, and RULE elements in each pol-
icy, respectively. Column 5 denotes the number of properties used
for each policy. The SIMPLE-POLICY was presented in Section 2
and CONTINUE-A and CONTINUE-B are two versions of the CON-
TINUE policy. All three policies and property sets are available at
the Margrave web site>.

Table 2 shows the results of mutation verification, specifically
the number of mutants (Column 3), number of killed mutants (Col-
umn 4), and the mutant-killing ratio (Column 2) for each policy. As
discussed in Section 2, the SIMPLE-POLICY has only two rules and
thus two mutant policies. One mutant is killed so the mutant-killing
ratio is simply % or 50%. The complexity of the CONTINUE poli-
cies make them far more interesting. Each version of CONTINUE
has approximately 300 rules and roughly % of them are killed. This
result is not quite surprising considering the number of rules com-
pared to the number of properties.

To further visualize and discuss the results, let each property and
each mutant be identified by an integer number. For example, let
the original policy be denoted Py, each mutant policy be denoted
P1, P», ... Py, and each property Pro, Pri,... Pr,—1 where m
and p are the number of mutants and properties, respectively. A
policy-property pair (P;, Pr;) is mapped to a point (7, ) in Fig-
ures 9 and 10. A data point is plotted on the chart at (4, 75) if
the property Pr; fails to hold for Policy F;. Therefore, Figures 9
and 10 illustrate all property failures for each policy-property pair.
More specifically, each integer value along the z-axis denotes a
single property and each integer value along the y-axis denotes a
single policy. Furthermore, the policy at y = 0 is the original (un-
mutated) policy. These scatter plots allow us to quickly determine
which properties interact with which rules in the policy.

Property Pr fails to hold for the first version of CONTINUE (Fo
in Figure 9) and thus also fails to hold for any mutant policies as
indicated by the numerous data points along = 0. The natural
language for this property is as follows:

Prq If the subject is a pc-member, it is not the discussion phase,

Shttp://www.cs.brown.edu/research/plt/
software/margrave/
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Figure 9: CONTINUE-A property failures for each policy-
property pair.
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Figure 10: CONTINUE-B property failures for each policy-
property pair.



and unsubmitted for the review for a paper despite being as-
signed it, then the subject cannot see all parts of other’s re-
views for that paper.

This property fails simply because CONTINUE-A is an earlier
version of the policy. All properties including Pro do hold for the
revised version in Figure 10. Another readily noticeable peculiarity
of Figure 9 is the absence of Prg. Recall that nine properties are
verified against each policy implying one property, Prs, does not
appear to interact with any rule explicitly defined in the policy. The
natural language for the “missing” property is:

Prg No legal request is mapped to Not Applicable, that is every
legal request is decided by either deny or permit.

Prsg is an excellent example of a valid property that is not explicitly
specified in the policy itself. A policy should certainly be written
such that every legal request returns a deny or permit response. This
property, however, is a generic property potentially applicable to a
wide range of policies. Although the property is quite relevant, it is
not (and arguably should not) be specified explicitly in the policy
itself. An argument against its inclusion in the policy itself is that
the property is generic; in particular, it is unrelated to the access
control logic of the system but is rather a best practice. This type
of generic property is not accounted for in this implementation of
mutation verification. Further investigation is needed to determine
how to incorporate such properties. For instance, mutation opera-
tors that consider not only the policy but also the properties may
account for these types of properties.

The second version of CONTINUE (P in Figure 10) satisfies all
properties as indicated by the lack of data points along y = 0.
Again, Prg (i.e., x = 8) is not plotted because this generic prop-
erty does not interact directly with any rules specified in the policy.
Properties Prs and Prr are interesting because they fail for only a
single rule for both versions of CONTINUE. The natural language
for these properties are:

Prs If a subject is not a pc-chair or admin, then he may not set the
meeting flag.

Pr If some one is not a pc-chair or admin, then he can never see
paper-review-rc for which he is conflicted.

By manual inspection, we determine the mutant killed by Prs
is the same for both versions of the policy. The killed mutant cor-
responds to the last rule in the POLICYSET that specifies access to
the meeting flag. More specifically, once all permitted combina-
tions of subjects and actions are specified, the final rule ensures all
other requests for the meeting flag are denied. Because the mutant
policy changed this rule’s decision to permit, the mutant was killed
by Prs. In a similar fashion, the killed mutant for Pr7 is identical
for both versions and corresponds to precisely the rule that ensures
the denial of requests for paper reviews when the isConflicted flag
is set.

The CONTINUE policy heavily uses the first-applicable combin-
ing algorithm. As a result, it is often the case that, for a given
resource, all permitting requests are specified first followed by a
more general denying request. When these types of denying rules
are mutated to permit, the policy leaks sensitive information (i.e.,
access is granted when it should not). A general property for en-
suring that sensitive information remains protected is effective at
identifying these leaks. For example, properties Pr; in Figure 9
and Pr3 in Figure 10 are in fact the same property. This property
interacts with a large number of policy rules indicated by the large
number of data points. This property in natural language states

that if the subject role attribute is empty and the resource class is
not conference info, then return deny. This property effectively
identifies information leakage introduced through the mechanism
described earlier. This result indicates that this property set is ef-
fective at identifying information leakage in the policy.

On the other hand, the mutants that are not killed are generally
those that mutate a permitting rule to deny. For example, when the
rule that allows the admin to read the pcMember-info-isChairFlag
is switched from permit to deny, no property identifies the restricted
access. Similar to having general properties for ensuring that sen-
sitive information remains protected, you also want to have proper-
ties for ensuring access is granted when appropriate. The fact that
the un-killed mutants are generally of this type indicates that the
property set can be improved by adding properties for ensuring that
access is granted when appropriate.

6. DISCUSSION

Our approach to mutation verification provides a coverage mea-
sure of a policy by a set of properties. If a property set achieves
a mutant-killing ratio of 100%, can we say the property set is ex-
haustive or complete? This situation is similar to statement cov-
erage in software testing. If a test suite achieves 100% statement
coverage for a given program, can we say the test suite can find
all defects in the program? The answer, of course, is absolutely
not. While mutation verification serves as a quality measure for
a property set and, with the current mutation operator, identifies
which properties interact with which rules in the policy, it may not
consider more abstract, generic properties. For example, Pr; of
the illustrative example in Section 2 ensures a student cannot as-
sign grades. While this property is an intuitive one of the problem
domain, it is not explicitly expressed in the policy itself. This par-
ticular policy contains only rules that allow access whereas this
property is concerned with denying access. The fact that this prop-
erty does not interact with the rules in the policy does not imply it
is not needed. A better example is discussed in Section 5 where the
property serves as more of a best practice that is not related to the
problem domain of the access control.

Further exploration of mutation operators for mutation verifica-
tion is needed to investigate how to reflect relevant properties (that
are not necessarily specified in the policy itself) in the mutation
verification process. Despite this shortcoming, our investigation
supports the feasibility of mutation verification for large, complex
policies. Mutation verification provides a coverage metric for a
policy relative to a property set and can identify weak areas of the
properties that should be supplemented with additional properties.

7. RELATED WORK

To help ensure the correctness of policy specifications, researchers
and practitioners have developed formal verification tools for poli-
cies. Several policy verification tools are developed specifically for
firewall policies. Al-Shaer and Hamed [4] developed the Firewall
Policy Advisor to classify and detect policy anomalies. Yuan et
al. [43] developed the FIREMAN tool to detect misconfiguration
of firewall policies.

There are also several verification tools available for XACML
policies [1]. Hughes and Bultan [17] translated XACML policies to
the Alloy language [18], and checked their properties using the Al-
loy Analyzer. Schaad and Moffett also leverage Alloy to check that
role-based access-control policies do not allow roles to be assigned
to users in ways that violate separation-of-duty constraints [38].
Zhang et al. [45] developed a model-checking algorithm and tool
support to evaluate access-control policies written in RW languages,



which can be converted to XACML [44]. Kolaczek proposes to
translate role-based access-control policies into Prolog for verifi-
cation [19]. Kolovski et al. [20] formalize XACML policies with
description logics (DL), which are a decidable fragment of first-
order logic, and exploit existing DL verifiers to conduct policy ver-
ification. Fisler et al. [10] developed a tool called Margrave that
can verify XACML [1] policies against properties, if properties
are specified, and perform change-impact analysis on two versions
of policies when properties are not specified. Margrave performs
property verification by automatically generating concrete counter-
examples in the form of specific requests that illustrate violations
of the specified properties. Similarly, change-impact analysis is
performed by automatically generating specific requests that reveal
semantic differences between two versions of a policy. Most of
these approaches require user-specified properties to be verified.
Our new approach complements these existing policy verification
approaches because our approach helps assess the quality of the
properties during policy verification.

Our previous work proposed an approach to policy property in-
ference via machine learning [25]. Such properties are often not
available in practice and their elicitation is a challenging and te-
dious task. Furthermore, once properties are defined, it is difficult
to measure their effectiveness and identify potential problems ar-
eas that need improvement. Our mutation verification framework
intends to help alleviate that challenge. Our implementation lever-
ages Margrave’s property verification feature to to verify properties
against mutant policies.

Although various coverage criteria [46] for software programs
exist, only recently have coverage criteria for access control poli-
cies been proposed [28]. Policy coverage criteria are needed to
measure how well policies are tested and which parts of the poli-
cies are not covered by the existing tests. Our previous work [28]
defined policy coverage and developed a policy coverage measure-
ment tool. Because it is tedious for developers to manually generate
test inputs for policies, and manually generated tests are often not
sufficient for achieving high policy coverage, several test genera-
tion techniques have been developed. The first one iterates over all
possible requests for a given policy, if its domain set is finite [28].
The second one is a random test generation tool that randomly gen-
erates tests for XACML policies [28]. The third technique [26] is
a novel framework that automatically generates high-quality tests
based on a change-impact analysis tool such as Margrave [10]. Dif-
ferent from these policy testing approaches, our new approach fo-
cuses on assessing the quality of properties in policy verification.

To our knowledge, no metric has yet been defined to quantify the
coverage of a policy by some property set. Our previous work [27]
defined a fault model and corresponding automated mutator in or-
der to quickly evaluate test generators and techniques of test selec-
tion in terms of fault-detection capability. We leverage a variation
of this automated mutator in our implementation of the mutation
verification framework.

8. CONCLUSION

The need for carefully controlling access to sensitive informa-
tion is increasing as the amount and availability of data is growing.
In order to separate the semantics of access control from the dis-
tributed system itself, access control policies are increasingly spec-
ified in domain-specific, declarative languages such as XACML. Do-
ing so facilitates managing, maintaining, and analyzing of policies.
To increase confidence in the correctness of specified policies, pol-
icy authors can formally verify policies against a set of properties.
Policy verification is an important technique for high assurance of
the correct specification of access control policies. Since the effec-

tiveness of the verification process is directly related to the qual-
ity of the properties, we have proposed a novel approach to assess
the quality of a set of properties. We have presented an approach
to mutation verification of access control policies and a tool that
implements the approach on XACML policies. Similar to the way
mutation testing is used to measure the quality of a test suite in
terms of fault-detection capability, mutation verification is used to
measure the quality of a set of properties. In other words, mutation
verification allows us to quantify the coverage of a given policy
by a property set. Given a policy and a set of properties, our ap-
proach generates several mutant policies, each with a single fault.
Then our approach verifies the property set against the original pol-
icy and each mutant policy. The property set is then partitioned
into four subsets for each mutant policy in order to compute the
mutant-killing ratio. We applied our mutation verification tool to
policies and properties from a real-world software application. Our
experiences show that the performance of the property verification
is encouraging and mutation verification can scale to sufficiently
large access control policies. Furthermore, mutation verification is
a complementary approach to property verification by aiding in the
elicitation of properties.
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