
NEGWeb: Detecting Neglected Conditions via Mining
Programming Rules from Open Source Code ∗

Suresh Thummalapenta
Department of Computer Science

North Carolina State University
Raleigh, USA

sthumma@ncsu.edu

Tao Xie
Department of Computer Science

North Carolina State University
Raleigh, USA

xie@csc.ncsu.edu

ABSTRACT
Neglected conditions, also referred as missing paths, are known
to be an important class of software defects. Revealing ne-
glected conditions around individual API calls in an appli-
cation requires the knowledge of programming rules that
must be obeyed while reusing those APIs. To mine those
implicit programming rules and hence to detect neglected
conditions, we develop a novel framework, called NEGWeb,
that substantially expands mining scope to billions of lines
of open source code available on the web by leveraging a
code search engine. We evaluated NEGWeb to detect viola-
tions of mined rules in local code bases or open source code
bases. In our evaluation, we show that NEGWeb finds three
real defects in Java code reported in the literature and also
finds three previously unknown defects in a large-scale open
source project called Columba (91, 508 lines of Java code)
that reuses 541 classes and 2225 methods. We also report a
high percentage of real rules among the top 25 reported pat-
terns mined for APIs provided by five popular open source
applications.

1. INTRODUCTION
Neglected conditions, also referred as missing paths, are

known to be an important class of software defects. In par-
ticular, neglected conditions refer to (1) missing conditions
that check the receiver or arguments of an API call before
the API call or (2) missing conditions that check the return
values or receiver of an API call after the API call. Ne-
glected conditions are considered to be one of the primary
reasons for many fatal issues such as security or buffer over-
flow vulnerabilities. A recent study conducted by Chang
et al. [5] shows that 66% (109/167) of bug fixes applied in
the Mozilla Firefox project are due to neglected conditions.
These facts reinstate the significance of neglected conditions
and a need for more research in this specific area.

∗This work is supported in part by NSF grant CNS-0720641
and Army Research Office grant W911NF-07-1-0431.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Neglected conditions can be revealed either through in-
spection or by applying static or runtime verification tools.
However, such processes require the knowledge of program-
ming rules that must be obeyed while reusing APIs. In prac-
tice, these programming rules are often not available due to
lack of documentation. Even when such documentation ex-
ists, it is often outdated [10]. To tackle the issue of lacking
programming rules, various approaches have been developed
in recent years to mine programming rules from program ex-
ecutions [4,7,19], program source code [1,2,5,6,11,13,14,16],
or version histories [12,17]. In particular, a recent approach
by Chang et al. [5] specifically addresses the problem of ne-
glected conditions. Their approach applies frequent sub-
graph mining on C source code to mine implicit condition
rules and applies mined condition rules to detect violations.
However, their approach is not scalable to large code bases
as frequent sub-graph mining suffers from scalability issues.
Moreover, their approach mines programming rules from a
small number of project code bases and there are often too
few relevant data points in these code bases to support the
mining of desirable patterns.

Mining patterns from a small number of code bases may
result in a low percentage of real programming rules and
thereby a high percentage of false positives (e.g., reported
warnings that do not indicate real defects or patterns that
do not reflect real programming rules) among detected vio-
lations. For example, 87.8% of violations in the AspectJ ap-
plication detected by the approach of Wasylkowski et al. [16]
are identified as false positives. Furthermore, among top 15
violations detected by their approach, 9 of them are classified
as false positives. The primary reason for a high percentage
of false positives could be that their approach mines pro-
gramming rules from a small number of code bases. These
figures indicate that there is certainly a need for an approach
that can mine patterns from a much larger number of code
bases and yet scalable. To address the preceding issues, we
develop a novel approach based on code searching, where we
search for related code examples of each API in existing open
source projects available on the web and mine those code ex-
amples to extract programming rules that must be obeyed
in reusing that API. To mine gathered code examples, we
use a simple statistical analysis that does not suffer from
scalability issues and yet effective in analyzing and mining
programming rules.

To reduce programmers’ effort in using our approach, we
define a few rule templates that capture programming rules
that must be obeyed while reusing APIs. We conducted

a preliminary investigation with the BCEL library1 by in-
specting the source code of the library to identify the per-
centage of programming rules that can be captured by our
pre-defined rule templates. In our investigation, we found
that our rule templates can capture up to 88% (441/497) of
programming rules available around method calls made in-
side the BCEL library. This percentage is already quite high
to indicate the wide scope of rules that can be potentially
mined by our approach. Moreover, programmers are free to
create new rule templates and our approach can easily be
extended to handle those new templates.

In particular, our approach accepts an input source appli-
cation and extracts APIs reused by the source application.
Our approach interacts with a code search engine (CSE)
such as Google code search [8] to gather related code ex-
amples for each API and mines gathered code examples to
extract implicit programming rules that must be obeyed in
reusing the API. Our approach creates programming rules as
instances of defined rule templates and uses those program-
ming rules to detect violations in the given source applica-
tion. Our new approach is the first bug finding approach
with this scale and based on a CSE.

While enjoying benefits provided by a CSE, our approach
faces one new challenge that existing approaches do not
face: the code examples returned by a CSE are often par-
tial and not compilable, because CSE retrieves individual
source files with usages of the given query API, instead of
entire projects. Code examples are not compilable means
that these code examples are syntactically correct but do not
contain required information to resolve object types. We de-
velop several new heuristics along with previously developed
heuristics [15] to tackle this challenge.

Our previous work, on MAPO [18] and PARSEWeb [15],
also developed approaches for mining source files returned by
a CSE but these previous approaches focus on mining API
usage patterns to assist programmers to write effective API
client code. In contrast, our new NEGWeb framework de-
veloped in our approach focuses on static bug finding based
on mining programming rules, which poses a different set of
mining requirements. In static bug finding based on mining,
one important challenge is to reduce false positives.

This paper makes the following main contributions:

• A novel framework for finding neglected conditions
based on a CSE. Our framework is the first bug finding
approach that can deal with that large scale of open
source code through a CSE.

• A set of rule templates for describing common ne-
glected conditions around individual API calls. In our
preliminary investigation, we found that our rule tem-
plates can capture up to 88% of programming rules
available around method calls made inside the BCEL
library.

• A set of heuristics for analyzing partial code samples
and a scalable mining algorithm that computes fre-
quent programming rules. Our mining algorithm in-
cludes several heuristics that attempt to reduce false
positives among mined programming rules.

• An Eclipse plugin implemented for the proposed frame-
work and several evaluations to assess the effectiveness
of the tool. In particular, NEGWeb confirms three real
defects in Java code reported in the literature and also

1http://jakarta.apache.org/bcel/

01:public static void verifyBCEL(String cName) {
02: VerificationResult vr0, vr1, vr2, vr3;
03: int mId = 0;
04: Verifier verf = VerifierFactory.getVerifier(cName);
05: if(verf != null) {
06: vr0 = verf.doPass1();
07: if(vr0 != VerificationResult.VR_OK)
08: return;
09: vr1 = verf.doPass2();
10: if (vr1 == VerificationResult.VR_OK) {
11: JavaClass jc = Repository.lookupClass(cName);
12: for(mId=0; mId<jc.getMethods().length; mId++){
13: vr2 = verf.doPass3a(mId);
14: vr3 = verf.doPass3b(mId);
15: if(Pass3aVerifier.do_verify(verf)) { ... }
16: } } } }

Figure 1: Code sample gathered from a code search

engine.

detects three previously unknown defects in a large-
scale open source project that reuses 541 classes and
2225 methods. We also report a high percentage of
real rules among the top 25 reported patterns mined
for APIs provided by five open source applications.

The rest of the paper is organized as follows. Section 2
describes rule templates defined by our approach. Section 3
explains the framework through an example. Section 4 de-
scribes key aspects of the framework. Section 5 discusses
evaluation results. Section 6 discusses our limitations and
future work. Section 7 discusses threats to validity. Sec-
tion 8 presents related work. Finally, Section 9 concludes.

2. RULE TEMPLATES
We next present the rule templates defined by our ap-

proach for capturing programming rules around individual
API calls (for generality, we refer methods in an API as
individual API calls). We use the code example shown in
Figure 1 as an illustrative example for describing our rule
templates.

In general, a method invocation in Java consists of four el-
ements: the receiver object, method name, arguments, and
return object. For example, the method invocation in State-
ment 13 of the code example has the receiver object verf, ar-
gument mId, and the return object vr2. The condition checks
for a method invocation can appear before the call site (say,
preceding conditions), or can appear after the call site (say,
succeeding conditions). More specifically, we are interested
in condition checks on the receiver object and arguments
before a call site and condition checks on the receiver object
and return object after the call site. To capture such condi-
tion checks as programming rules, we define a rule template
and a programming rule as follows:

Definition 1: A rule template is a five-tuple (Ttype, Otype,
MI, AI, POS), where

Ttype: template type
Otype: object type such as a receiver or return
MI: method invocation
AI: optional additional information
POS: location with respect to a call site

Definition 2: A programming rule is an instance of a
rule template.

The element Ttype (template type) of a rule template de-
scribes the type of the condition checks in the programming
rule, whereas the element Otype (object type) represents

the participating object of the individual API call such as
the receiver, argument, or return object. The element MI

(method invocation) stores the individual API call. The el-
ement AI is optional additional information associated with
each programming rule. The information stored in the AI

element is dependent on Ttype. As we capture both preced-
ing and succeeding programming rules, the element POS

describes the location of the programming rule with respect
to the call site of an individual API call. We next describe
each element in detail.

Table 1 shows several possible values for the Ttype element
of the rule template. For each template type, we present the
name, description with an example, and additional informa-
tion (AI) that is associated with the programming rule. The
additional information is dependent on the Ttype element.
For example, the template type direct-null-check captures
programming rules such as null checks done on the receiver,
arguments, or return objects. In the description of each
template type, we use notation var to denote a receiver, ar-
gument, or return object of the individual API call. The
additional information for the template type direct-null-

check stores the operator involved in the conditional expres-
sion such as “==” or “!=”. Column “Coverage” shows the
number of rules that belong to each template type divided
by the total number of rules that we found in our prelimi-
nary investigation with BCEL. All template types described
in the table include 88% of the rules we found during our
investigation.

Our template types are broadly classified into two differ-
ent categories: direct and indirect. The rationale behind
these two categories is that a condition check can be per-
formed directly on the variable or can be done indirectly
through another method invocation, say MI, where the cur-
rent variable is an argument of that method invocation. The
template type indirect-null-check in the table is an example
for the indirect template type. For indirect template types,
the optional additional information also stores the associ-
ated method invocation. This gathered additional informa-
tion for each programming rule is later used while detecting
violations.

Apart from template types shown in the table, we define
two more template types that are specific to the receiver
object of a method invocation.

must-happen-before. this template type represents con-
dition checks on other method invocations of the same re-
ceiver object preceding the call site of an individual API
call. For example, Statements 6 to 9 in the code example de-
scribe that before invoking the doPass2 method, the method
doPass1 must be invoked and a condition check must be per-
formed on the return value of the method doPass1. The
corresponding programming rule can be captured by this
template type as “direct-const-check on return of doPass1

must-happen-before doPass2”.
must-happen-after. this template type captures con-

dition checks on other method invocations of the same re-
ceiver object succeeding the call site of an individual API
call. In general, this template type is useful for methods
such as Iterator.next() and Iterator.hasNext() that are of-
ten used in loops, where one of the methods such as hasNext

is involved in the conditional expression of the loop. If not,
this template type can result in many false positives based
on our empirical investigation. Therefore, in the NEGWeb
framework, we limit this template type to those APIs (such

as Java Util APIs) that are often suggested to be used in
loops.

Definition 2 describes programming rules as instances of
a rule template. However, to provide better readability, we
present programming rules in a textual form in this paper.
For example, the programming rule “direct-null-check on
receiver before doPass1” indicates that a null check should
be done on the receiver object of doPass1 before its call
site. In this instance, Ttype is direct-null-check, Otype is
receiver, MI is doPass1, and POS is before.

3. EXAMPLE
We next use an example to describe how our NEGWeb

framework mines programming rules from code examples
gathered from a CSE and uses mined rules to detect vi-
olations in an input source application. We use the class
org.apache.bcel.verifier.Verifier and its methods doPass1,
doPass2, doPass3a, and doPass3b from the BCEL library for
explaining our framework. The Verifier class is used for
verifying generated class files.

Initially, NEGWeb constructs a query with the class name
and gathers related code examples from a CSE. A code ex-
ample gathered from a CSE is shown in Figure 1. NEGWeb
parses each method declaration of the code example and
builds a control flow graph. NEGWeb uses dominance and
data-dependency concepts, and gathers preceding and suc-
ceeding condition checks on receiver, argument, or return
objects around the nodes that include any of the methods
such as doPass1 or doPass2. NEGWeb creates rule candi-
dates that describe the captured condition checks. A few
rule candidates extracted from the code example are shown
below:
01: direct-null-check on receiver before doPass1
02: direct-const-check on return of

doPass1 must-happen-before doPass2
03: direct-const-check on return after doPass1

with VerificationResult.VR_OK
04: direct-expr-check on argument1 before doPass3a

The rule candidate in Line 1 describes that before invok-
ing the doPass1 method, a null check must be done on the
receiver variable of that method. An example of the tem-
plate type must-happen-before shown in Line 2 describes that
the method doPass2 must be invoked only after the doPass1

method. Line 3 describes that the return value of the doPass1

method should be compared with the constant Verification-
Result.VR_OK. Line 4 describes that the argument must be
verified before invoking the doPass3a method.

NEGWeb mines extracted rule candidates to compute fre-
quent rules, referred as mined programming rules. NEGWeb
applies these mined programming rules on the input source
application to detect violations. For example, consider the
code sample below with a potential violation.

Verifier v = VerifierFactory.getVerifier(args[k]);
VerificationResult vr;
vr = v.doPass1();
vr = v.doPass2();

NEGWeb detects a violation from the preceding code sam-
ple as the sample violated the rule candidate in Line 3.
Sometimes, the same violation can appear multiple times
because a code sample can violate multiple programming
rules. For example, the preceding code sample also violates
the rule candidate in Line 2. This example motivates the
idea of exploiting a CSE for gathering related code exam-
ples and applying analysis techniques to capture implicit

Table 1: Possible Ttype values of a rule template and associated additional information
Name Description Additional Info Coverage

direct-null-check direct null check. e.g., if(var != null) { .. } operator involved, e.g., != 97/497
indirect-null-check if variable is an argument of a operator involved, e.g., == 2/497

method invocation. e.g., if(MI(var) == null) { .. } method invocation, MI
direct-boolean-check if the variable type is boolean. e.g., if(var) { .. } 65/497
indirect-boolean-check indirect boolean check. e.g., if(MI(var)) { .. } method invocation, e.g., MI 25/497
direct-const-check if the variable is compared with a constant. operator involved, e.g., == 110/497

e.g., if(var == SUCCESS) constant value, e.g., SUCCESS
indirect-const-check indirect constant equality check. operator involved, e.g., == 1/497

e.g., if(MI(var) == FAILURE) constant value, e.g., FAILURE
method invocation, e.g., MI

direct-retval-check if the variable is compared with the operator involved, e.g., < 0/497
return value of a method invocation. method invocation, e.g., MIother()
e.g., if(var < MIother())

indirect-retval-check if the variable is compared indirectly with the operator involved, e.g., > 0/497
return value of a method invocation. method invocation, e.g., MI
e.g., if(MI(var) > MIother()) method invocation, e.g., MIother()

instance-check if the conditional check involves instanceof operator type-name, e.g., Integer 106/497
e.g., if(var instanceof Integer)

direct-expr-check if the variable is compared with an operator involved, e.g., < 35/497
expression such as another variable. e.g., if(var < expr) { ... } other expression, e.g., expr

programming rules for detecting violations in a given input
application. However, there are many other issues that are
not obvious in this illustrative example, as described next.
(1) How do we analyze partial code examples gathered from
a CSE? (2) How do we exploit program dependencies in the
source code while extracting rule candidates? (3) How do
we mine extracted rule candidates to make our approach
scalable to large code bases? We address these issues in
the subsequent section, where we present key aspects of our
NEGWeb framework.

4. FRAMEWORK
Our NEGWeb framework consists of seven major com-

ponents: the application scanner, code search engine, code
downloader, code analyzer, rule-candidate extractor, rule-
candidate miner, and anomaly detector. Figure 2 shows an
overview of all components in NEGWeb. The application
scanner accepts a source application as input and gathers
the external classes and methods reused by that applica-
tion. The code downloader interacts with a CSE to gather
related code examples of each external class. The code an-
alyzer analyzes these gathered code examples statically and
builds a control flow graph for each method declaration in
gathered code examples. The rule-candidate extractor ex-
ploits the control flow graph and extracts rule candidates
around call sites of each external method invocation. The
rule-candidate miner mines extracted rule candidates and
identifies programming rules, which are further used by the
anomaly detector to detect violations in the given applica-
tion. We next present the details of each component.

4.1 Application Scanner
The application scanner accepts a source application as

input and gathers the external classes and methods used by
that application. A class is recognized as an external class
if the package name of that class does not belong to the
set of package names of the given application. The appli-
cation scanner also gathers the set of methods referred by
the source application for each such external class. The set
of external classes and methods is provided as input to the
code downloader.

����
���� ��	��

� ��� ��	
�
��� ���

���� ���

�
� ���� ���
���

��
	 � � ��

�
� ��� � ���� ���
�

� ����
�
��
	�� ���

� � ���

� �� �� ��!�

��� ��
	 ����
�
	���

�"� �� � #
� " � �� � $

%%%

���� �
� ��

�

��� ��
	 ����

�� ��
� 	�� ��	 ��

� ���

� �
�
 ���
�
�
 ��

&
	���

� � ��
� 	�� ��	 ���

����
��	 ��'�

� � ��
� 	�� ��	 ��
� " �
	
 ��

� ��� 	 ��
� � ��
 ��

Figure 2: Overview of NEGWeb framework

4.2 Code Downloader
The code downloader accepts the set of external classes

and methods, and interacts with a CSE for searching and
gathering related code examples. A code example gathered
from CSE for the query “lang:java Verifier” related to the
Verifier class of the BCEL library is shown in Figure 1.
The code samples returned by a CSE are often partial and
not compilable, as CSE retrieves only individual source files
instead of entire projects. The code downloader stores gath-
ered code examples in local file system and is referred as a
local source code repository.

Our framework uses Google code search (GCSE) [8] for
collecting related code examples because of two main rea-
sons: (1) GCSE provides client libraries that can be used
by other tools to interact with and (2) GCSE has public fo-
rums that provide good support. However, our framework
is independent of GCSE and can leverage any other CSE to
gather related code examples.

4.3 Code Analyzer
The research question addressed by the code analyzer is

how to analyze the partial code examples stored in the lo-
cal source code repository and build a control flow graph
that can be exploited for extracting implicit programming
rules around individual API calls. To analyze these partial
code examples, the code analyzer uses several type heuristics
that help identify object types in these code examples. Our

heuristics are based on rules used by a type checker of a Java
compiler. For example, a type checker verifies whether left
and right hand sides of an assignment statement are com-
patible to each other. Our heuristics use an opposite form
of type checking, where we infer the type of an unknown
expression from expressions with known object types. For
example, consider the method invocation in Statement 6 of
the code sample shown in Figure 1. As we do not have ac-
cess to the method signature of the method doPass1 of the
Verifier class, we cannot directly look up the return type
of this method invocation. However, we can infer the return
type from the left hand side of the assignment statement as
VerificationResult or its sub class.

The code analyzer analyzes code examples statically through
abstract syntax trees and transforms into a Directed Acyclic
Graph (DAG). The constructed DAG consists of two kinds
of nodes: control and non-control. Control nodes, referred
as CT , represent the control-flow statements such as if,
while, and for, which control the flow of the program ex-
ecution. Non-control nodes represent other statements such
as method invocations or type casts. For example, State-
ment 5 in the code sample is a control node and Statement
6 is a non-control node. While encountering a control node,
say CTi (suffix indicates the statement id), the code analyzer
also extracts all variables, say {V1, V2, ..., Vn}, that partic-
ipate in the conditional expression of that node. The code
analyzer identifies the type of condition check that is used
to determine the template type. The extracted information
is associated with the control node in the constructed DAG.
Therefore, each control node CTi includes a set of pairs {(V1,
Ttype1) ,(V2, Ttype2),..,(Vn, TtypeN)}. For example, the con-
trol node CT5 includes the {(verf, direct-null-check)} pair.

While constructing the DAG, the code analyzer identifies
nodes in the graph that include external methods and marks
those nodes as API Nodes, referred as ANi. The constructed
DAG can contain one or more ANi nodes and this DAG
serves as a Control Flow Graph (CFG) for the rule-candidate
extractor that extracts rule candidates around each external
method invocation. In the example code sample, the code
analyzer identifies nodes related to Statements 6, 9, 13, and
14 as API Nodes.

4.4 Rule-Candidate Extractor
The research question addressed by the rule-candidate

extractor (RCExtractor) is how to extract rule candidates
around individual API calls by exploiting program depen-
dencies among rule elements. Failure to consider these pro-
gram dependencies may result in rules that are not semanti-
cally related as shown in the limitations of the PR-Miner [11]
and DynaMine [12] approaches. To exploit program depen-
dencies, RCExtractor uses the concept of dominance with
a blend of control-flow and data-flow dependencies. RCEx-
tractor performs an intra-procedural analysis through the
constructed CFG and uses different algorithms for captur-
ing preceding and succeeding rule candidates. If the same
rule candidate appears more than once among gathered code
examples, RCExtractor stores the number of times the rule
candidate is detected. We next describe how RCExtractor
identifies these preceding and succeeding rule candidates.

4.4.1 Preceding Rule Candidates
RCExtractor extracts preceding rule candidates by using

the concept of dominance. The definition of dominance [3]
is given below:

Definition 3: A node N dominates another node M in
a control flow graph (represented as N dom M) if every path
from the starting node of the CFG to M includes N .

Initially, RCExtractor identifies the dominant CTi nodes
for each ANk node. For example, CT5 dominates AP6.
RCExtractor computes the intersection between the vari-
able set associated with the CTi node, say {V1, V2, ..., Vn},
and the receiver or argument variables of the ANk node,
say {receiver, argument1, ..., argumentN}. If the intersec-
tion {V1, V2, ..., Vn} ∩ {receiver, argument1, ..., argumentN}
6= ∅, RCExtractor checks whether the ANk node is data-
dependent on the CTi node. The data-dependency check
ensures that the variable involved in the CTi node is not
redefined in the path between CTi and ANk nodes. If the
ANk node is data dependent on the CTi node, RCExtractor
instantiates a rule template to create a rule candidate. For
example, the associated rule candidate for nodes CT5 and
AN6 in the example code sample is “direct-null-check on

receiver before doPass1”, which indicates that a null check
must be done on the the receiver variable of the method
doPass1 before the call site of doPass1.

4.4.2 Succeeding Rule Candidates
RCExtractor extracts the succeeding rule candidates by

using the concept of post-dominance. Initially, RCExtrac-
tor identifies post-dominant CTi nodes for each ANk node
and computes the intersection between the receiver and re-
turn object of ANk node, say {receiver, return}, and the
variable set associated with the CTi node, say {V1, V2, ...,
Vn}. If the intersection {receiver, return} ∩ {V1, V2, ..., Vn}
6= ∅, RCExtractor checks whether the identified CTi node is
data-dependent on the ANk node. A succeeding rule can-
didate between AN6 and CT7 nodes is “direct-const-check
on return after doPass1 with VerificationResult.VR_OK”.

4.4.3 Absence of Rule Candidates
Sometimes the call sites of external method invocations

do not have any preceding or succeeding condition checks;
such call sites may include potential locations for neglected
conditions. To store the number of such call sites that do
not have any condition checks, the rule-candidate extractor
associates an attribute called No Rule Candidates (NRC) with
each such external method invocation. This attribute is used
by the rule-candidate miner while mining for frequent rule
candidates around an external method invocation.

4.5 Rule-Candidate Miner
The rule-candidate miner (RCMiner) mines frequent rule

candidates, referred as mined programming rules, among all
extracted rule candidates of an external method invocation.
The primary objective of RCMiner is to reduce the number
of false positives while computing the mined rules. We use
the notation RCi to refer to the ith rule candidate of an
external method invocation and RCFi to refer to frequency
of the rule candidate, i.e., the number of times the rule can-
didate is detected among gathered code examples. Initially,
RCMiner computes support for each rule candidate.

Definition 4: The support of a rule candidate, RCSi, is
defined as

RCSi = RCFi / (
∑N

j=1
RCFj + NRC)

where N is the number of RCi for a method invocation.

The rationale behind using NRC in computing RCSi is

Input: {(RC1,RCS1), ..., (RCn,RCSn)}, NRC, LT , UT

Output: Set of mined programming rules
Initialize MPRSet;
//Step 1
if (NRC ≥ UT) or (All RCSi < LT) then

return null;
end

//Step 2
if Any RCSi ≥ UT then

Append all RCi whose RCSi ≥ UT to MCPSet;
Set Confidence of those RCi to HIGH;
return MCPSet;

end

Set MAX SUP to max{RCS1, ..., RCSn};
//Step 3
if All RCSi are near to MAX SUP then

Append all RCi to MCPSet;
Set Confidence of all RCi to HIGH;
return MCPSet;

end

//Step 4
if MAX SUP < NRC then

Set CONF LEV EL to LOW ;
end

else
Set CONF LEV EL to AV ERAGE;

end

for each RCi do

if RCSi is near to MAX SUP then
Append RCi to MCPSet;
Set Confidence of CPi to CONF LEV EL;

end

end

return MCPSet;
Algorithm 1: Mining algorithm in NEGWeb.

to identify the actual support of a rule candidate among all
call sites of the method invocation. The consideration of
NRC can help reduce the number of false positives among
the mined programming rules.

RCMiner uses the algorithm shown in Algorithm 1 for
mining rule candidates. The algorithm is executed for each
external method invocation to identify mined programming
rules of that method invocation. RCMiner uses two thresh-
old values Upper Threshold (UT) and Lower Threshold (LT)
for computing mined programming rules and for classifying
the mined rules into three confidence levels: HIGH, AVERAGE,
and LOW. We describe the need for these confidence levels
while explaining our algorithm. These confidence levels are
later used for sorting the mined programming rules.

The mining algorithm accepts the set of extracted rule
candidates (and their support values) of an external method
invocation, along with the associated NRC value. We next
describe the steps in our algorithm along with the rationale
behind those steps.

Step 1. if the value of NRC is greater than UT or
the support values of all rule candidates are less than LT,
RCMiner ignores all the extracted rule candidates for the
current external method invocation. The rationale behind
this mechanism is that the external method invocation has
many call sites with no rule candidates around. Therefore,
all extracted programming rules of this external method in-
vocation may not be significant and can be ignored.

Step 2. RCMiner checks whether there are any rule can-
didates with support greater than UT and identifies those
candidates as mined rules with confidence HIGH. The ratio-
nale behind this mechanism is that these rule candidates are

of the highest support compared to other rule candidates of
the current external method invocation.

Step 3. if no rule candidate has support greater than UT,
instead, the support values of all rule candidates are near to
the maximum support value, referred as MAX_SUP, RCMiner
identifies all rule candidates as mined programming rules
with confidence level HIGH. The rationale behind this mech-
anism is that a group of rule candidates can often appear
together in gathered code examples. For example, consider
that two rule candidates of a method invocation MI, say
“direct-const-check on return after MI with SUCCESS” and
“direct-const-check on return after MI with FAILURE” ap-
peared together in 10 code examples. The computed support
values for each rule candidate will be 0.5, resulting in a low
confidence level. However, these rule candidates appeared
in all code examples and should have more importance. We
introduced confidence levels to handle these scenarios where
some rule candidates, although with low support values, are
classified as programming rules with HIGH confidence.

Step 4. we use the value of NRC to classify non-high
rule candidates into other confidence levels AVERAGE and LOW.
If the maximum support value is less than NRC, we set
the confidence level as LOW. The rationale behind this mech-
anism is that the number of call sites with no rule candi-
dates is greater than the number of call sites of the rule can-
didate with the maximum support. Therefore, these rule
candidates might not be of more importance. In case the
maximum support value is greater than NRC, we set the
confidence level as AVERAGE.

RCMiner sorts all mined programming rules based on
three attributes: confidence level, support (RCSi), and fre-
quency (RCFi). We used values 0.75 for UT and 0.1 for LT.
These values are based on our empirical investigation with
different subjects.

4.6 Anomaly Detector
The anomaly detector accepts mined programming rules

as input and detects violations of these programming rules in
an input application. The anomaly detector extracts the rule
candidates for each external method-invocation call site in
the input source application, and checks whether the newly
extracted rule candidates contain mined programming rules.
Any missing mined rules are reported as violations. For each
detected violation, the anomaly detector inherits attributes
such as confidence level and support of the associated pro-
gramming rule. The anomaly detector sorts all detected
violations based on confidence level and support.

In addition, the anomaly detector uses two heuristics to
reduce the number of false positives.

Anomaly Heuristic 1:A violation detected for succeed-
ing programming rules can be ignored if the corresponding
variable is a part of the return statement of the enclosing
method declaration or an argument of another method invo-
cation.

This heuristic is based on our experience with different
subjects where an expected condition check often appears
at the call site of the enclosing method declaration.

Anomaly Heuristic 2:A violation detected for a call site
with no condition checks around can be given higher prefer-
ence than violations detected for other call sites with a few
condition checks around.

The rationale behind this heuristic is that call sites with
no condition checks can have a higher chance of being a
defect than call sites with a few condition checks around.

5. EVALUATION
We conducted four different evaluations on NEGWeb to

show that NEGWeb can effectively mine real rules from re-
lated code examples gathered through a CSE, and can be
effective in identifying real defects. In the first evaluation,
we used two applications and three API libraries to mine
programming rules and manually confirmed the extracted
top 25 programming rules through the available documen-
tation and source code of the applications. For general-
ity, we refer all subjects as applications. In the second
evaluation, we applied the mined programming rules in a
novel way to detect violations in available open source ap-
plications. As NEGWeb mainly targets neglected conditions
that help increase the robustness of applications, we man-
ually confirmed the top 50 violations as defects or other
categories through inspection. In the third evaluation, we
verified whether NEGWeb can confirm known Java defects
reported in the literature by earlier related approaches. In
the fourth evaluation, we conducted a case study with a
large-scale application called Columba. The details of sub-
jects and results of our evaluation are available at http:

//ase.csc.ncsu.edu/negweb/.

5.1 Open Source Applications
In this section, we describe programming rules mined by

NEGWeb for five subject applications that vary in size and
purpose. Table 2 shows the subject applications used in our
evaluation and their characteristics. The Java Util pack-
age includes the collections framework and other popular
utilities used by many different applications. The BCEL li-
brary, developed by Apache, is mainly used to analyze, cre-
ate, and manipulate Java class files. The Hibernate frame-
work abstracts relational databases into an object-oriented
methodology. Java servlets and Java Transactions are in-
dustry standards for developing multi-tier server-side Java
applications. The common reason for selecting these appli-
cations is the presence of programming rules as described by
their associated documentations that can help confirm the
real rules.

NEGWeb usually accepts an input application and mines
programming rules for external APIs used by the input source
application. In this evaluation, as we plan to mine program-
ming rules of methods provided by input application, we
configured NEGWeb to accept a set of classes and meth-
ods directly, and mine programming rules of those classes
and methods. We extracted classes and methods of these
five subject applications and provided as input to NEGWeb.
Column “Input Application” and its sub-columns “Classes”
and “Methods” of Table 2 show the number of classes and
methods in each application.

Sub-column “Samples” shows the number of code exam-
ples gathered from CSE for each application. For exam-
ple, NEGWeb gathered and analyzed 49, 858 code exam-
ples for Java Util packages. The number of programming
rules mined for each application is shown in Column “Prog.
Rules”.

Column “Time” presents the amount of time taken by
NEGWeb for analyzing gathered code examples and min-
ing extracted programming rules. The amount of process-
ing time depends on the number of samples gathered for an
application. For example, NEGWeb took 7.98 minutes for
mining programming rules from 49, 858 code examples gath-
ered for Java Util packages. All experiments are conducted

Table 3: Mined programming rules of Java Util

package
Object Type Template Type #Total #Rule #UP #FP

receiver all types in table 1 5 3 0 2
argument all types in table 1 6 5 0 1
return all types in table 1 19 12 7 0
receiver must-happen-before 12 11 0 1
receiver must-happen-after 22 5 10 7
SUM 64 36 17 11

UP: usage pattern, FP: false positive

on a machine with 3.0GHz Xeon processor and 4GB RAM.

5.1.1 Analysis of Programming Rules
We manually analyzed the first 25 rules of each applica-

tion and classified them into three categories: real rules,
usage patterns, and false positives. Real rules describe the
properties that must be satisfied for using an API, whereas
usage patterns are common ways of using an API. We used
the available on-line documentations, JML specifications2,
or the source code of the application for classifying the mined
programming rules into these three categories.

As shown in Table 2, most of the programming rules are
classified as rules and a few are classified as false positives.
The number of false positives is a little more for Java Servlet,
because of one common programming rule that appeared
among these false positives. This common rule describes
that an instance-check with the class HttpServletRequest

must be performed on the receiver object before invoking
the methods of the class ServletRequest. Although this pat-
tern is a common usage, the available specification of Java
Servlet does not confirm this extracted programming rule
as a real rule. The primary reason for the lesser number of
false positives in other subjects is due to the large number
of analyzed data points gathered through CSE.

We manually classified all mined programming rules of
the Java Util package. The primary reason for selecting
the Java Util package for manual analysis is the availabil-
ity of JML specification that can help confirm the mined
rules. Table 3 shows classification categories of all mined
rules. Among all mined patterns, the real rules constitute
56.25% (36/64), usage patterns constitute 26.56% (17/64),
and false positives constitute 17.18% (11/64). However, the
number of false positives in the top 25 rules shown in Ta-
ble 2 is zero. This evaluation shows the effectiveness of our
mining heuristics that surface out real rules by ranking false
positives below. Table 3 further shows the classification of
the mined programming rules based on object types (Otype)
of a rule template. NEGWeb is effective in extracting and
mining real rules for object type return and template type
must-happen-before, which are usually the main sources of
neglected conditions. The template type must-happen-after

has the largest number of false positives.
We next describe mined rules for the Matcher class of Java

Util pacakges. The Matcher class is an engine that performs
matching operations on a character sequence by interpreting
a given regular expression. The rules detected by NEGWeb
are as follows:

01: direct-boolean-check on return after find
02: direct-boolean-check on return of find

must-happen-before start
03: direct-boolean-check on return of find

must-happen-before group
04: direct-boolean-check on return of find

2http://www.eecs.ucf.edu/~leavens/JML/

Table 2: Programming rules mined by NEGWeb
Application Input Application CSE Categories of first 25 prog. rules Time

#Classes #Methods #Samples #Prog. Rules #Real Rules #Usage Patterns #False Positivies (in min.)

Java Util APIs 19 144 49858 64 20 5 0 7.98
BCEL 357 2691 9697 322 13 8 4 1.04
Hibernate 1233 11452 32486 542 21 2 2 5.17
Java Servlet APIs 19 89 16628 53 18 0 7 2.92
Java Transaction APIs 7 37 5555 15 12 2 1 0.80

must-happen-after start
05: direct-null-check on return of group

must-happen-after find
06: direct-boolean-check on return of find

must-happen-after group

Rule 1 describes that a boolean check must be performed on
the return value of the find method. Rules 2,3,4, and 6 de-
scribe that the find method must precede and succeed meth-
ods start and group. These rules indicate that the methods
start and group are often used inside a loop with a boolean
check on the find method.

NEGWeb also mined undocumented programming rules in
the subject applications. We confirmed these programming
rules by inspecting the source code and comments in source
files. For example, in the BCEL library, the copy method of
the Instruction class cannot be used for its child class Se-

lect. Therefore, before using the copy method, a condition
check on the receiver variable must be performed. NEGWeb
detected the programming rule “instance-check on receiver

before copy with Select”, which describes that an instance
check with the Select class must be done before invoking
the copy method. Similarly, NEGWeb detected that while
using the methods doPass3a and doPass3b of the Verifier

class, the caller must make sure that the index value passed
as a parameter should be within the range of the number of
methods in the corresponding class. The reason is that these
methods operate on the Vector class that throws IndexOut-

OfBoundsException when the parameter value is not within
the required range.

5.1.2 Defects in Open Source World
As NEGWeb mines programming rules by gathering re-

lated code examples from available open source applications,
we applied the mined rules in a novel way to detect violations
in the gathered code examples themselves. This feature of
NEGWeb could be useful while dealing with APIs such as
security APIs to check whether there are any security holes
in applications on the web. We used the same subject appli-
cations used in the preceding evaluation and applied mined
programming rules on gathered code examples to detect vi-
olations.

Given the large number of detected violations, we man-
ually analyzed violations of a mined rule (from the top 25
mined rules of each application) that is used to detect the
largest number of violations. We classified the detected vi-
olations into five categories: defect, code smell, wrapper,
hint, and false positive. The violation categories of code
smell and hint are inspired by the approach of Wasylkowski
et al. [16]. A code smell indicates that something may go
wrong, whereas a hint helps increase the readability of the
program. We introduced the category of wrappers to repre-
sent the scenario where mined rules are spread across several
methods of a wrapper class. For example, a user-defined
class such as UIterator abstracts the functionality of the It-

erator by providing different methods such as next() and

hasNext(). In this scenario, the patterns mined for the It-

erator class are applicable to the wrapper class UIterator as
well.

The chosen programming rule from each application and
the classification categories for the first 50 violations of the
programming rule are shown in Table 4. Column “Support”
gives the support value of the programming rule. Column
“Open Source”gives the total number of open source projects
that contain those detected violations. The total number
of violations are shown in Column “Violations”. The man-
ual classification results of the first 50 violations are shown
in Columns “Defect”, “CS”, “WP”, “Hint”, and “FP”. Ex-
cept for BCEL, the number of false positives is quite low for
APIs of other applications. The reason for a high number of
false positives in BCEL is due to limitations in the current
NEGWeb implementation such as not handling conditional
expressions in assignment statements, which we plan to ad-
dress in near future work without difficulty.

We next describe details of defects detected in open source
applications for Java Servlet APIs. The method used from
this application is“ServletConfig,getInitParameter(String)”
and the programming rule used is “direct-null-check on re-

turn of getInitParameter”, which indicates that a null check
must be performed on the return value of the getInitPa-

rameter method. We confirmed this pattern from the JTA
specification, which describes that this method can return
null, if the input parameter does not exist. However, 31
open source projects violated this mined programming rule.
Among the top 50 violations, 38 violations are classified as
defects in our inspection. We found some interesting facts
during this evaluation. We use the below code sample that is
collected from the existing open source projects to describe
these facts.

...String jspCP = config.getInitParameter("jspCP");
if (jspCP != null) {...}
this.javaEncoding = config.getInitParameter("javaEncoding");

In the preceding code sample, the getInitParameter method
is used two times. However, the null check on the return
value is done only once, and is ignored during the second in-
vocation. As the getInitParameter method can return null,
the absence of null check can cause NullPointerException.
We also found that the same piece of code with violations
is used in different applications. For example, we found a
similar violated code in open source projects tomcat, fisheye,
and jboss for the getInitParameter method. As programmers
often tend to copy related code from existing applications,
violations can also propagate from applications to applica-
tions. Our results show the number of neglected conditions
that exist in the available open source applications and the
necessity for an approach such as NEGWeb.

5.2 Real defects from the literature
We evaluated NEGWeb to check whether it can confirm

known defects described in the literature. We picked two

Table 4: Analysis of violations detected in open source world
Application Programming rule Support #Open # Categories of first 50 violations

Source Violations #Defect #CS #WP #Hint #FP

Java Util APIs Matcher: direct-boolean-check on return 0.810 7 21 0 12 2 3 4
of find must-happen-before group

BCEL Type: direct-boolean-check on return 0.967 2 7 0 0 0 1 6
of equals

Hibernate Filter: direct-null-check on receiver of 0.875 1 4 4 0 0 0 0
setParameterList

Java Servlet APIs ServletConfig: direct-null-check on return 0.577 31 50 38 2 0 8 2
of getInitParameter

Java Transaction TransactionManager: direct-null-check on 0.283 40 230 22 3 0 19 6
APIs return of getTransaction

CS: code smell, WP: wrapper, FP: false positive

defects in the AspectJ application detected by JADET3 [16]
and two defects in Java SSE Library and Joeq detected by
DIDUCE [9]. We next describe details of these defects and
explain the evaluation results with NEGWeb.

5.2.1 Defects Detected by JADET
In the AspectJ application, JADET detected two defects

related to loops that are incorrectly executed at most once.
We show the code sample taken from JADET as below:

private boolean verifyNIAP (...) {...
Iterator iter = ...;
while(iter.hasNext()) {

... = iter.next(); ...;
return verifyNIAP(...); } }

As shown in the preceding code sample, the return state-
ment in the while loop causes the method to return with-
out iterating all elements in the Iterator. NEGWeb con-
firmed this defect with a support value of 0.895 (confidence
level: HIGH) as the code sample violated the pattern“direct-
boolean-check on return of hasNext must-happen-after next”
of the class Iterator. NEGWeb confirmed the other defect
reported by JADET that is also related to a similar scenario.

5.2.2 Defects Detected by DIDUCE
We collected two defects reported by DIDUCE in appli-

cations Java SSE and Joeq. The defect in the Java SSE li-
brary is related to not handling the return value of the read

method of the class InputStream. The method read returns
the number of bytes that are actually read; programmers
often forget to check whether the number of read bytes is
equal to the expected number of bytes to be read. NEGWeb
confirmed this defect with a support value of 0.708.

The second defect in the Joeq application is related to
not checking the return value of the method put of the class
Hashtable. When an object is inserted into the Hashtable

through the put method, the method either returns an ex-
isting associated object with that key value or returns null.
NEGWeb could not confirm this defect as the support for the
extracted pattern is low. Among 774 related code examples
gathered from the code search engine, NEGWeb detected
that only 5 code examples have the null check on their re-
turn object. However, this defect mainly depends on the
semantic logic of the application rather than the usage com-
monality of the API. Therefore, reporting violations based
on these kinds of patterns can result in a large number of
false positives. We want to emphasize that the motivation

3JADET reported three defects in the paper. One defect
with BCEL APIs is not related to neglected conditions and
does not fall into the scope of our current approach.

of NEGWeb is mainly to mine the most common program-
ming rules that can cause potential defects and to reduce
the number of false positives among the detected violations.

5.3 Case Study: Columba
Columba 1.44 is an open source email client application

written in Java. Columba provides a user-friendly graph-
ical interface and is suitable for internationalization sup-
port. The Columba application includes 1165 classes and
6894 methods that contain a total of 91, 508 lines of Java
code. We used NEGWeb to mine rules and detect viola-
tions in the Columba application. NEGWeb identified that
Columba reuses 541 external classes and 2225 external meth-
ods and mined programming rules for those external meth-
ods by interacting with a CSE. NEGWeb gathered and ana-
lyzed 309, 757 code examples (≈ 50 million LOC) for mining
these programming rules.

NEGWeb mined a total of 559 programming rules related
to the external methods reused by Columba. Among these
559 programming rules, 189 rules did not detect any vio-
lations. The remaining 370 programming rules were used
to detect 1647 violations. We manually analyzed violations
of the first 25 programming rules that were used to detect
70 violations. We classified these 70 violations into differ-
ent violation categories using the same classification criteria
described in Section 5.1.2.

The results of our evaluation are shown in Table 5. Each
row in the table represents a programming rule. Columns
“Supp.” and “RC” give the support and manually assigned
category of each rule, respectively. Column“Total”gives the
total number of violations detected by that rule. Among the
first 25 mined rules, 19 programming rules are classified as
real rules, 2 are classified as usage patterns, and 4 are classi-
fied as false positives. The results also show that the top 10
programming rules do not have any false positives. As each
programming rule can be used to detect multiple violations
of different categories, depending on the usage in the source
code, we show how many of the total violations of each rule
fall into different violation categories. In total, there are 70
violations among which, 3 are defects, 7 are code smells, 9
are wrappers, 37 are hints, and 14 are false positives. All
three defects among 70 violations are detected with the top
10 mined rules. In general, a false positive pattern leads
to a false positive violation. For example, Patterns 11 and
14 are false positives that caused 5 violations of the false
positive category. However, the additional 3 false positives
highlighted in the table are due to limitations in the current
NEGWeb implementation such as not handling conditional

4http://sourceforge.net/projects/columba/

Table 5: Evaluation results of Columba case study.
SNo Rank Supp. RC # Categories of violations

Total #Defect #CS #WP #Hint #FP

1 1 0.944 Rule 2 2
2 2 0.939 Rule 2 1 1
3 3 0.929 Rule 13 2 2 9
4 4 0.917 UP 13 2 11
5 5 0.875 Rule 1 1
6 6 0.869 Rule 3 3
7 7 0.861 Rule 2 2
8 8 0.850 Rule 2 1 1
9 8 0.850 Rule 1 1
10 8 0.850 Rule 1 1
11 8 0.850 FP 1 1
12 8 0.850 Rule 1 1

13 8 0.850 Rule 1 1
14 9 0.833 FP 4 4
15 10 0.800 FP 2 2
16 11 0.786 Rule 1 1
17 12 0.782 Rule 4 4
18 13 0.771 UP 6 6
19 14 0.762 Rule 1 1

20 15 0.756 Rule 1 1
21 16 0.750 Rule 1 1
22 16 0.750 Rule 1 1
23 17 0.727 FP 4 4
24 18 0.722 Rule 1 1

25 19 0.710 Rule 1 1

expressions in assignment statements. We plan to address
these limitations in near future work and these limitations
can be addressed without any difficulty.

We next describe defects detected by NEGWeb in Columba.
We confirmed these defects through inspecting the source
code of the associated class and call sites of the violated
methods. The first defect is in the method removeDoubleEn-

tries of the MessageBuilderHelper class. We show the code
sample of that method as below:

private static String removeDoubleEntries(String input) {
Pattern sP = Pattern.compile("s*(<[^s<>]+>)s*");
ArrayList entries = new ArrayList();
Matcher matcher = sP.matcher(input);
while (matcher.find()) {

entries.add(matcher.group(1)); }
Iterator it = entries.iterator(); ...
String last = (String) it.next(); ... }

The method removeDoubleEntries tries to identify char-
acter sequences that match with a regular expression. If
the given input string does not match with the regular ex-
pression “s*(<[ŝ<>]+>)s*”, no elements will be added to the
entries list. The preceding code sample violated the mined
rule“direct-boolean-check on return of hasNext must-happen-
before next”, which describes that hasNext must be invoked
before calling next of the Iterator class. In the code sample,
the first element from the it variable is retrieved without
checking whether there are any elements in the list through
hasNext. Moreover, the retrieved variable is type casted to
a string. This defect can cause NullPointerException in the
described scenario. Although the current method is private,
the other public caller methods of the current class do not
handle any exceptions, resulting in the propagation of the
exception to their call sites. The second defect is also related
to a similar scenario.

The third defect is related to the JPIM5 library used by
the Columba application. Columba invokes the method un-

5http://jpim.cvs.sourceforge.net/jpim/

marshallContacts of the class ContactUnmarshaller that is de-
fined by the JPIM library. NEGWeb identified the pattern
“direct-null-check on return after unmarshallContacts”, which
indicates that a null check must be performed on the return
value of the unmarshallContacts method. As this pattern is
not available in the documentation, we confirmed this pat-
tern by inspecting the source code of the JPIM library. In
Columba, this method is invoked in the class VCardParser

and no null check on the return variable was done. The
absence of the null check can cause a NullPointerException.

We next describe a code smell detected in the method
readInByteArray of the class StreamUtils. We show the code
example of the readInByteArray method as below:

...
byte[] result = new byte[in.available()];
in.read(result);
in.close();
return result;

The preceding code example violated the mined program-
ming rule “direct-const-check on return of read”, which de-
scribes that the return value of the read function must be
verified. This return value gives the number of bytes that
are actually read from the input stream. Although this vio-
lation can be a defect, we classified this violation as a code
smell because this public method is not currently invoked in
the application.

6. DISCUSSION AND FUTURE WORK
In our current implementation, we define a subset of pos-

sible template types that we found during our preliminary
investigation with the BCEL library. Our main objective
is to focus on the template types that are most common
and could detect real defects in a given application while
producing low false positives. We next describe an example
template type that is not defined by our current implemen-
tation. We defined a template type called must-happen-after

that is specific to the receiver object a method invocation.
This template type captures the succeeding calls of the cur-
rent method invocation on the same receiver object. A
similar template type can be defined related to succeeding
calls on the return object. In our future work, we plan to ex-
tend NEGWeb to handle several other template types that
we found during our preliminary investigation and develop
heuristics to reduce their induced false positives.

The current prototype does not handle a few Java con-
structs such as switch statements or conditional expressions
in assignment statements. In future work, we plan to extend
NEGWeb to handle those constructs. We also plan to extend
NEGWeb framework to the C programming language.

7. THREATS TO VALIDITY
The threats to external validity primarily include the de-

gree to which the subject programs and CSE used are repre-
sentative of true practice. The current subjects range from
small-scale applications such as Java Servlets to large-scale
applications such as BCEL, Hibernate, and Columba. We
used only one CSE, i.e., Google code search, which is a well-
known CSE. These threats could be reduced by more exper-
iments on wider types of subjects and by using other CSEs
in future work. The threats to internal validity are instru-
mentation effects that can bias our results. Faults in our
NEGWeb prototype might cause such effects. There can be
errors in our inspection of source code for confirming de-

fects. To reduce these threats, we inspected the available
specifications and also call sites in source code.

8. RELATED WORK
The most related work to our NEGWeb approach is the

approach developed by Chang et al. [5] that applies frequent
subgraph mining on C code to mine implicit condition rules
and to detect neglected conditions. Both NEGWeb and their
approach target at the same type of defects: neglected con-
ditions. NEGWeb significantly differs from Chang et al.’s
approach in three main aspects. First, their approach is
limited on a much smaller scale of code repositories (in fact,
only one project code base) than NEGWeb, which exploits
a CSE to search for related code examples from open source
code available on the web. Second, the scalability of their
approach is heavily limited by its underlying graph mining
algorithms, which are known to suffer from scalability issues,
whereas NEGWeb uses simple statistical approach to mine
programming rules, being much more scalable. Third, their
approach reports “few apparent violations of rules” in the
code base being analyzed, whereas NEGWeb detected not
only known bugs detected by other existing approaches but
also previously unknown bugs.

PR-Miner developed by Li and Zhou [11] uses frequent
itemset mining to extract implicit programming rules from
C code and detect their violations. DynaMine developed by
Livshits and Zimmermann [12] uses association rule mining
to extract simple rules from software revision histories for
Java code and detect bugs related to rule violations. PR-
Miner or DynaMine may suffer from issues of high false pos-
itives as their rule elements are not necessarily associated
with program dependencies. In addition, NEGWeb targets
at a much larger scale of code bases than PR-Miner or Dy-
naMine.

Williams and Hollingsworth [17] incorporates an API call
return value checker for C code, which checks that a value
returned by an API call is tested before being used. This
type of return-value testing before use falls into a subset
of the types of rules being mined by NEGWeb. Different
from their tool, NEGWeb does not require or rely on ver-
sion histories, which may not include the types of bug fixing
(required by their tool) related to the rules being mined.
Acharya et al. [2] developed a tool to mine interface details
(such as an API call’s return values on success or failure
and error flags) from model-checker traces for C code, and
then generate interface robustness properties for bug find-
ing. Similar to Williams and Hollingsworth [17], Acharya et
al.’s tool mines only a subset of neglected conditions (e.g.,
return-value testing before use) mined by NEGWeb. In ad-
dition, as shown by Acharya et al. [2], only the interface
details of 22 out of 60 POSIX API functions can be success-
fully mined by their tool, whereas NEGWeb exploits a CSE
to alleviate the issue by collecting relevant API call usages
from the web.

Engler et al. [6] proposed a general approach for finding
bugs in C code by applying statistical analysis to rank de-
viations from programmer beliefs inferred from source code.
Their approach allows users to define rule templates. NEG-
Web follows a similar methodology to find bugs. However,
beyond the general rule templates proposed in their ap-
proach, NEGWeb’s rule templates are more specific to de-
tecting neglected conditions around API calls and NEGWeb
incorporates various heuristics to help reduce false positives.

9. CONCLUSION
We developed a framework, called NEGWeb, that accepts

a source application as input and detects neglected condi-
tions around individual API calls in the application by min-
ing programming rules from the open source code available
on the web. NEGWeb attempts to address the issue of lack-
ing relevant data points faced by the existing static defect
finding approaches that mine programming rules from one or
a few project code bases by leveraging a code search engine.
NEGWeb defines rule templates for describing common ne-
glected conditions and uses analysis heuristics that can help
reduce false positives among detected violations. We evalu-
ated our framework with five open source projects and con-
firmed the top 25 mined condition patterns. We confirmed
three known Java defects in the literature and found three
new defects in a large-scale application called Columba. We
also detected defects in existing open source applications
that reuse a given API. In future work, we intend to extend
NEGWeb framework to the C programming language.

10. REFERENCES
[1] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API Patterns as

Partial Orders from Source Code: From Usage Scenarios to
Specifications. In Proc. ESEC/FSE, September 2007.

[2] M. Acharya, T. Xie, and J. Xu. Mining Interface Specifications
for Generating Checkable Robustness Properties. In Proc.
ISSRE, pages 311–320, November 2006.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Princiles,
Techniques, and Tools. Addison-Wesley, 1986.

[4] G. Ammons, R. Bodik, and J. R. Larus. Mining specifications.
In Proc. POPL, pages 4–16, 2002.

[5] R.-Y. Chang, A. Podgurski, and J. Yang. Finding what’s not
there: a new approach to revealing neglected conditions in
software. In Proc. ISSTA, pages 163–173, 2007.

[6] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: a general approach to inferring
errors in systems code. In Proc. SOSP, pages 57–72, 2001.

[7] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin.
Dynamically Discovering Likely Program Invariants to Support
Program Evolution. IEEE Trans. Softw. Eng., 27(2):99–123,
2001.

[8] Google Code Search Engine, 2006.
http://www.google.com/codesearch.

[9] S. Hangal and M. S. Lam. Tracking Down Software Bugs Using
Automatic Anomaly Detection. In Pro. ICSE, pages 291–301,
2002.

[10] T. Lethbridge, J. Singer, and A. Forward. How software
engineers use documentation: The state of the practice. In
IEEE Software, pages 35–39, 2003.

[11] Z. Li and Y. Zhou. PR-Miner: Automatically Extracting
Implicit Programming Rules and Detecting Violations in Large
Software Codes. In Proc. FSE, pages 306–315, 2005.

[12] V. B. Livshits and T. Zimmermann. DynaMine: Finding
Common Error Patterns by Mining Software Revision
Histories. In Proc. ESEC/FSE, pages 296–305, 2005.

[13] M. K. Ramanathan, A. Grama, and S. Jagannathan.
Path-Sensitive Inference of Function Precedence Protocols. In
Proc. ICSE, pages 240–250, 2007.

[14] S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static
specification mining using automata-based abstractions. In
Proc. ISSTA, pages 174–184, 2007.

[15] S. Thummalapenta and T. Xie. PARSEWeb: A Programmer
Assistant for Reusing Open Source Code on the Web. In Proc.
ASE, November 2007.

[16] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting Object
Usage Anomalies. In Proc. ESEC/FSE, September 2007.

[17] C. C. Williams and J. K. Hollingsworth. Recovering system
specific rules from software repositories. In Proc. MSR, pages
1–5, 2005.

[18] T. Xie and J. Pei. MAPO: Mining API usages from open
source repositories. In Proc. of MSR, pages 54–57, 2006.

[19] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das.
Perracotta: mining temporal API rules from imperfect traces.
Proc. ICSE, pages 282–291, 2006.

