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ABSTRACT
Scientific databases often possess data models and query
workload quite different from commercial ones and are much
less studied. We look into one such instance by study-
ing high-throughput query processing on biological sequence
databases, a fundamental task performed daily by millions of
scientists. Here the databases are stored in large annotated
files and each query is an expensive dynamic programming
task based on a full-database scan. As both the database
size and search complexity call for parallel/distributed pro-
cessing, web-based online parallel searches have become pop-
ular. By efficiently utilizing and sharing high-end comput-
ing resources while keeping the interactiveness and sequen-
tial interface of query processing, it is an ideal choice for
research institutes and companies.

Our research presented in this paper indicates that intel-
ligent resource allocation and scheduling are crucial in im-
proving the overall performance of a parallel sequence search
database server. Failure to consider either the parallel com-
putation scalability or the data locality issues can signifi-
cantly hurt the system throughput and query response time.
In addition, no single strategy works best in all circum-
stances. In response, we present several dynamic schedul-
ing techniques that automatically adapt to the search work-
load and system configuration in making scheduling deci-
sions. Evaluation results using a simulator (which is veri-
fied against real-cluster experiments) show the combination
of these techniques delivers up to an order-of-magnitude per-
formance improvement across various workload and system
parameter combinations.

Keywords
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1. INTRODUCTION
Databases in the scientific computing community possess

a combination of unique characteristics. First, they are of-
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ten implemented as large flat files. Second, queries are both
computation- and data-intensive, performing non-trivial al-
gorithms over large amounts of data. Therefore, scientific
database processing, especially when carried out on parallel
or distributed platforms, requires careful examination of the
intertwined computation and data management issues.

In this paper, we address this problem in the biology field,
where fundamental sequence database search tasks such as
BLAST [1] are performed routinely by scientists. Given a
query sequence (typically a newly identified sequence), the
BLAST family tools search through a database of known se-
quences and returns sequences that are similar to the query
sequence. This process is very useful in determining the
function of new sequences, as well as in phylogenetic profil-
ing and bacterial genome annotation.

The growing database size as a result of the growing speed
of sequence discovery, however, has made the search job
increasingly expensive. Being both computation-intensive
and data-intensive, sequence search tasks are becoming over-
whelming for a single desktop workstation. For example, the
NT database hosted at NCBI (National Center for Biologi-
cal Information) currently is sized at 5.6 GB when format-
ted for search. As the size of the sequence databases and
the speed of generating new sequences through experiments
both grow, sequence database search tasks easily outgrow
the processing and storage capacity of a single workstation.

Designed to expedite sequence search query processing,
parallel BLAST tools have been built and become increas-
ingly popular (more details about them will be given in Sec-
tion 2). But such tools require to be used in a cluster envi-
ronment through parallel job submission and execution in-
terfaces, which involves large operational overhead. In con-
trast, building cluster web servers that provide transparent
parallel BLAST search services has become a desirable solu-
tion. It enables both seamless resource sharing and friendly
interface: users submit queries through a front-end node,
without dealing with the hassle of parallel execution. This
approach has become popular with institutes such as phar-
maceutical companies and public research organizations. As
of April 2005, the NCBI parallel BLAST web server received
about 400,000 BLAST queries per day [28]. These dedicated
sequence search web servers often host multiple databases,
with variable sizes and searched using different alignment
algorithms. Meanwhile, the search workload may be highly
dynamic [2].

This paper studies the scheduling strategies for parallel
BLAST web servers. We reveal that a careful choice in re-
source allocation and database-to-processor assignment may
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easily result in an order of magnitude difference in the aver-
age query response time. The problem is that different query
arrival rates, query composition, and system configurations
ask for different strategies, and there are no one-size-fits-all
solutions. In response, we propose a combination of adap-
tive scheduling strategies that automatically makes schedul-
ing decisions based on the search algorithms’ scalability, the
storage hierarchy, and the current system load.

We evaluate our proposed techniques using a simulator
verified with real cluster experiments. The results indi-
cate that the combination of the proposed adaptive strate-
gies achieves uniformly the best performance across a wide
range of workload/system configurations, with an order-of-
magnitude improvement in average query response time in
many test cases.

The rest of the paper is organized as follows. Section
2 introduces background information on sequence database
searches and gives the overview of our target system archi-
tecture. Section 3 presents our methodology and algorithms,
while Section 4 discusses the experiment setup as well as re-
sults. Section 5 talks about related work. Finally, Section 6
concludes the paper and suggests several future work direc-
tions.

2. PARALLEL BLAST WEB SERVER AR-
CHITECTURE

In this section, we first briefly describe how BLAST and
parallel BLAST work, then give an overview of our target
parallel BLAST web server architecture.

2.1 BLAST and Parallel BLAST
The BLAST [1] family algorithms search one or mul-

tiple input query sequences against a database of known
nucleotide (DNA) or amino acid sequences. The input of
BLAST is one or more query sequences and the name of the
target database to search. For each query sequence, BLAST
performs a two-phase search using dynamic programming
and returns those sequences in the database that are most
similar to it. This requires a full scan of all the sequences in
the database. For each of these sequences returned, BLAST
reports its similarity score based on its alignment with the
input query and highlight the regions with high similarity
(called hits). Therefore, the BLAST process is essentially a
top-k search, where k can be specified by the user, with a
default value of 500.

Many approaches have been proposed to execute BLAST
queries in parallel. Earlier work mostly adopts the query seg-
mentation method [6, 8, 10], which partitions the sequence
query set. This is relatively easy to implement, but can-
not solve the problem caused by growing database sizes or
speed up individual queries. In contrast, database segmen-
tation [5, 13, 21, 22] partitions databases across processors.
This approach is necessary to answer the challenge of rapidly
increasing database sizes and has been gaining popularity
in the BLAST user community. Hence we choose to study
this parallel BLAST execution model in this paper. With
database segmentation, a sequence database is partitioned
into multiple fragments and distributed to different cluster
nodes, where the BLAST search tasks are performed con-
currently on different database fragments. The local results
generated by individual nodes for a common query sequence
are merged centrally to produce the global result.

2.2 Parallel BLAST Web Server Architecture
Figure 1 illustrates the parallel BLAST web server archi-

tecture targeted in our study, with a sample query and part
of its output. As in a typical cluster setting, each node has
its own memory and locally attached secondary storage, as
well as access to a shared file system. One of the cluster
nodes serves as the front-end node, which accepts incom-
ing query sequences submitted online, maintains a query
waiting queue, schedule the queries, and return the search
results. The other nodes are back-end servers, often called
“processors” in the rest of the paper for brevity.

For each query, the front-end node determines the num-
ber of processors to allocate, select a subset of idle back-end
nodes (called a partition) when they are available, and as-
sign these node to execute this query. After the distributed
BLAST process, the search results are merged by one of
the node in the partition and returned to the client via the
front-end node. Note that by partitioning the cluster to run
multiple queries, this architecture takes advantage of both
the query- and database-segmentation models: queries are
distributed to separate hardware for concurrent processing,
while each query is executed in parallel through distributing
the database.

To save the database processing overhead, all the sequence
databases supported by the parallel BLAST web server are
pre-partitioned and stored in the shared storage. Figure 1
shows two sample databases, each partitioned into 4 frag-
ments. The required database fragments will be copied to
the appropriate back-end nodes’ local disk before each query
is processed, and are cached there using a cache management
policy. Existing parallel BLAST implementations allow mul-
tiple database fragments to be “stitched” into a larger vir-
tual fragment with little extra overhead. Therefore for the
maximum flexibility in scheduling without creating physical
fragments of many different sizes, we partition the database
into the largest number of fragments allowed to be searched
in parallel. To simplify the scheduling and to achieve better
load balance, both the database fragmentation and proces-
sor allocation are based on power-of-two numbers, which is
natural considering the way clusters are purchased or built.
Note that the fragments combined into a larger virtual frag-
ment do not need to be in consecutive order. For example,
when 16 processors are assigned to search a certain query
against a database partitioned 64-way in a 64-processor clus-
ter, one of them may be assigned to search fragments 0, 8,
45, and 57.

2.3 System Parameters and Assumptions
Before we move on to the scheduling strategies, we

summarize important system parameters considered in our
study:

• Local storage limit. This states how much disk stor-
age space is available at each back-end node. The
higher this limit, the more data can be cached locally
for better query performance.

• Shared storage performance. Shared file systems
equipped at clusters provide great convenience to ap-
plications, but usually have inferior performance and
scalability compared to local file systems, due to con-
tention at the interconnection networks, the file system
server, or the shared disks. This is especially true for
widely installed systems such as NFS [27], which were
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Figure 1: Target parallel BLAST web server architecture

not created for handling many concurrent large-size
accesses. Particularly, we pay attention to the relative
performance of the shared storage to the local storage,
which determines the cost of local storage cache misses
(when database fragments need to be copied from the
shared storage).
• Query workload. Different query arrival rates (dense

or sparse) need to be taken into account when consid-
ering the query service time vs. system throughput
tradeoff. Similarly, the query composition has an im-
pact on the data placement.

Also, we highlight our assumptions in this research. First,
we assume a homogeneous environment, which is the case
in most clusters. Second, to simplify our benchmarking and
simulation, we assume that each query contains only one
sequence to search. Although existing BLAST web servers
may allow users to upload multiple query sequences, the
standard NCBI BLAST engine processes input queries se-
quentially. The difference in search time between the shared
and separate BLAST sessions for multiple query sequences
is not significant and mainly lies in the initialization over-
head. Our research results can be easily extended to handle
multiple-sequence requests.

3. SCHEDULING STRATEGIES
In this section, we present scheduling strategies for paral-

lel BLAST web servers. We adapt existing scheduling algo-
rithms and propose new techniques, with an aim at design-
ing adaptive algorithms that automatically adjust to various
query workloads and cluster configurations. Our goal is to
optimize the average query response time.

Scheduling in our target environment has two compo-
nents. First, we perform efficiency-oriented scheduling. In
this step, we decide how many processors to allocate for
each query to be dispatched, according to the specific query
workload and the current system load. Next, we perform
data-oriented scheduling. In this step, we select a subset of
processors for the query in question and determine the map-
ping between individual processors to database fragments,
considering data locality issues. The next two sections dis-
cuss these two types of scheduling respectively.

3.1 Efficiency-Oriented Scheduling
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Figure 2: Parallel execution efficiency of BLAST

First, we examine parallel BLAST’s performance scalabil-
ity. Like most parallel applications, it is subject to the per-
formance tradeoff between absolute performance and system
efficiency when the level of concurrency is increased. One
obvious explanation is the higher parallel execution overhead
associated with searching a single query using more proces-
sors. Also, there is a higher degree of internal fragmentation
due to load imbalance when many processors participate in
a query and each of them only search a small fraction of the
database. In addition, as BLAST performs top-k search,
the task of processing and filtering of intermediate results
grows with the number of processors. Figure 2 illustrates
the performance trend of parallel BLAST from searching
two widely used databases, the NCBI nr and nt, as bench-
marked on our test cluster (to be described in Section 4.1).
For each search workload, we plot the efficiency, which is
defined as parallel speedup divided by the number of pro-
cessors. Therefore a perfect linear efficiency is a flat line,
as the result of linear speedup when the number of proces-
sors is increased. For both nr and nt, the efficiency slides
steadily as more processors are used for each query.

Systems such as the NCBI BLAST server reported peri-
odic variances in the query arrival rate [2]. One intuitive
heuristic is to control the number of processors allocated
to each query based on the current system load: when the
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load is light, allocate more processors for smaller query re-
sponse time; when the load is heavy and queries are piling
up in the queue, allocate fewer processors for better sys-
tem throughput (and consequently better average response
time). This intuition is backed up by queuing theory and has
been adopted in adaptive partitioning algorithms for paral-
lel job scheduling [32]. In this work, we select the MAP
algorithm [12], which improves upon the above work, as our
base algorithm.

With MAP, both the waiting jobs and the jobs currently
running are considered in determining the system load. It
chooses large partitions when the load is light and small
ones otherwise. More specifically, for each parallel job to be
scheduled, a target partition size is calculated as

target size = Max(1, d
n

q + 1 + f ∗ s
e),

where n is the total number of processors, q is the waiting
job queue length, s is the number of jobs currently running
in the system, and f (0 ≤ f ≤ 1) is an adjustable param-
eter that controls the relative weight of q and s. In our
experiments, we set the f value as 0.75, as recommended
in the original MAP paper [12]. Once the target partition
size is selected, the front-end node waits until these many
processors become available to dispatch the query.

One may notice that in Figure 2 the nt curve does not
monotonically decrease. Instead it peaks at 8 processors,
with a super-linear speedup at that point. This is due to
that the nt database cannot fit into the aggregate memory
of 4 or fewer processors on our test platform. As BLAST
makes multiple scans and random accesses to the sequence
database, out-of-core processing causes disk thrashing and
significantly limits the search performance. The nr database
is much smaller and can be accommodated in a single pro-
cessor’s memory, therefore does not show the same behavior.

This motivates us to propose Restricted MAP (RMAP),
which augments the base MAP algorithm with a database-
dependent and machine-dependent memory constraint. For
a given database supported by a given cluster server, we se-
lect Pmin and Pmax, which define the range of partition sizes
(in terms of the number of processors) allowed to schedule
queries against this database. Pmin is the smallest num-
ber of processors whose aggregate memory is large enough
to hold the database. Pmax is determined by looking up
the saturation point in the speedup chart: it is the largest
number of processors before the absolute search performance
declines. In other words, after this point deploying more
processors will not produce any performance gain. An ini-
tial benchmarking is needed to set Pmax for each database,
which is feasible considering the total number of different
databases supported by a web server is often moderate.

3.2 Data-Oriented Scheduling
One major motivation for parallel BLAST in the first

place is that the database cannot fit into the main memory
of a single computer node. As the database size increases
rapidly, it is common that the combined data size is larger
than the local disk space available at each cluster node. For
example, in 2004 the NCBI parallel BLAST server was al-
ready serving 175GB of data, which were stored in a shared
file system and copied to individual nodes on demand [2].

Like in other distributed or cluster web servers, data local-
ity is a key performance issue in parallel BLAST web servers.
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Figure 3: Impact of data placement on the BLAST

performance.

Figure 3 demonstrates the impact of going down the storage
hierarchy: main memory, local file system, and shared file
system. The experiments use the NCBI est-mouse and nr

databases, which can fit into the memory of a single pro-
cessor. In the “warm-cache” tests, we warm up the file sys-
tem buffer cache with the same query before taking mea-
surements, and in the “cold-cache” tests we flush the cache.
For “cold-cache-shared”, we force loading the database from
the shared file system. The results indicate that improving
buffer caching performance and in particular, reducing re-
mote disk accesses can significantly improve the search per-
formance.

In this section, we discuss and propose several data
scheduling strategies that enhance data locality through in-
telligent query scheduling and processor assignment.

These data scheduling strategies work atop the RMAP
processor scheduling algorithm, which determines p, the
number of processors to allocate to the query in question.
A data scheduling strategy then selects the subset of p idle
processors and decides the specific database fragments to as-
sign to each processor. On each selected processor, if some
of its assigned fragments are not available on the local disk,
they need to be copied from the shared file system.

3.2.1 Locality-enhancing Query Scheduling
When only a part of the database fragments can be cached

at each processor’s local storage, and a much smaller fraction
of those can be cached by the local file system in the main
memory, scheduling must be performed considering the data
locality issue. One intuitive locality-aware optimization is to
assign queries targeting different databases to disjoint pools
of processors and let each processor pool search the same
database repeatedly. This way, the effective working set
of each processor is reduced. Creating static per-database
processor pools, however, is not flexible enough to handle
the dynamic online query composition and will likely cause
serious system underutilization.

A similar problem has been addressed regarding general-
purpose content-serving cluster web servers. In this paper,
we extend the LARD algorithm proposed by Pai et al. [29] to
the parallel sequence search web server context. Given a set
of back-end servers, the LARD algorithm assigns partitions
of the target namespace to subsets of these servers. An
incoming web request will be routed to one of the servers
in its target pool, or the least loaded server if its pool is
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empty. Load balancing is performed periodically to move
servers from lightly loaded pools to heavily loaded ones.

Two major differences between our target system and a
general-purpose cluster web server are (1) instead of a sin-
gle processor, multiple processors need to be co-scheduled to
queries or co-transferred between pools, and (2) a processor
can handle only one query at any given time. To address
this, our extended LARD algorithm establishes one global
query queue (global queue) and multiple per-database query
queues (queue[DBi]). Similarly, we have a global idle pro-
cessor pool (global pool), and multiple per-database proces-
sor pools (pool[DBi]). Initially, all the processors are in the
global pool.

Queries arrived will be appended to the global queue. A
scheduling operation will be triggered by either a query ar-
rival or a query completion. Queries in the global queue
will be scheduled in the FCFS order. If the oldest query
has been immediately scheduled, the algorithm will proceed
to the next query in queue. Otherwise (when there are not
enough resources), it blocks until the next time a query com-
pletes. This helps ensure fairness and prevents starvation.
After a query is assigned to a per-database processor pool,
it goes to the local queue of that pool and is scheduled using
an internal scheduling algorithm (such as a fixed partition-
ing policy or RMAP). Algorithm 1 gives the detail of the
process of scheduling one query from the global queue.

Algorithm 1 Extended LARD

fetch the next query q from global queue
if pool[q.target db] is not empty then

append q to queue[q.target db]
else

partition size ← get recommended size()
m ← the number of queries waiting for q.target db in
global queue
while global pool.size < partition size do

size needed← partition size - global pool.size
find queue[DB i] with smallest queue length
if m > queue[DB i].length then

S ← release nodes(DBi, size needed)
add S to global pool

end if

end while

A← allocate(global pool, partition size, q.target db)
add A to partition[q.target db]
append q to queue[q.target db]

end if

balance load()

The intuition behind the extended LARD algorithm is to
assign groups of processors to processing different databases.
If an incoming query does not have a processor pool assigned
to its target database D, a pool will be created for D, whose
size is determined by the function get recommended size().
This function determines how many processors to allocate,
using algorithms such as RMAP. In case there are not
enough processors to allocate from the global pool, the algo-
rithm will seize processors from the most lightly loaded pool
if there are fewer queries waiting in that pool’s local queue
than those waiting for D in the global queue. Note that the
release nodes() function may “earmark” processors that are
currently running queries to be returned to the global pool
once they finish. Accordingly, the allocate() function blocks

until enough processors in the global queue are free.
Like in the original LARD, every time a query is sched-

uled the system performs load balancing. In the ex-
tended LARD, we move processors from the most lightly
loaded pool (pool[DBmin ]) to the most heavily loaded pool
(pool[DBmax]) if one of the following conditions is satisfied:

1. queue[DBmax].length - queue[DBmin].length > T and
queue[DBmax].length ≥ 2× queue[DBmin].length, or

2. queue[DBmin].length = 0 and
queue[DBmax].length > 1

T in the above is a manually selected threshold, which is
set as 10 in our implementation. The number of processors
moved during load balancing is set to be Pmin of DBmax,
the minimum partition size allowed for the heavily loaded
database. In the rest of the paper, we refer to the extended
LARD algorithm as LARD.

3.2.2 Locality-aware Processor Assignment
Once we determine a target partition size to assign to a

query and have a group of idle processors available, we must
choose a subset of the processors to schedule the query and
decide which processor is going to search which database
fragments. A naive way of doing this is to order the idle
processors by their processor ranks and allocate the first
p of them. Similarly, the fragments are partitioned into p
contiguous groups, which are assigned to the processors in
the fixed order by rank. For example, suppose the database
to be searched has 8 fragments, f1 through f8, and the query
is scheduled on processors p3 and p10, then p3 will search f1–
f4, while p10 will search f5–f8. We call this the first available
strategy (FA).

FA is easy to implement but it does not take into account
the existing data distribution on the idle processors. Below
we propose LC, an locality-aware optimization on processor
assignment that tries to minimize the file copying from the
shared file system. This algorithm can work together with
LARD and RMAP: within the processor group assigned to
each database, we use RMAP to determine the target parti-
tion size and use LC to make the fragment-to-processor as-
signment. While LARD reduces cache misses and data copy-
ing implicitly through controlling each processor’s working
set size, LC approaches the same goal by explicitly planning
the data placement according to the databases’ distribution
on idle processors.

As mentioned in Section 2, the back-end nodes’ local stor-
age space acts as a cache space to replicate a subset of
database fragments from the shared file system when the
total database size exceeds the local storage limit. Since it
is easy for the front-end node to keep track of which frag-
ments are cached at each node, locality-aware scheduling
algorithms can be developed to try to minimize the amount
of data copied from the shared file system.

However, we have discovered that this optimization is NP-
hard. Below we first give the formal problem definition and
the proof regarding its complexity, then proceed to propose
a greedy algorithm.

The least-copy problem: Consider scheduling a query
qi against database DBj , which has n fragments. Suppose
there are a idle processors in the system, each of which has
a subset of fragments of DBj in its local storage. Given
a pre-determined partition size p, a solution to the least-
copy problem is a mapping of the n fragments to a subset
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P (|P | = p) of the a available processors (p ≤ a), such that
each processor in P receives n/p fragments and the total
number or fragments to be copied from the shared storage
is minimum. In other words, such a selection and mapping
process finds a subset of processors, each of whose members
contributes no more than n/p fragments so that the union
of these fragments forms a maximum coverage of DBj .

Next let us consider the decision version of the least-
copy problem (DLC). Given the same input, the question is
whether there exist a p-subset of the a idle processors such
that an n/p-element subset from each of these p processors’
local fragments exactly covers the n database fragments.
Obviously this decision version has a lower complexity than
that of the original least-copy problem.

We then prove the decision problem of least-copy is NP-
hard, by reducing the NP-complete Exact Cover by 3-Sets
(X3C) problem [19], defined as follows: given a set X with
|X| = 3q and a collection C of 3-element subsets of X, the
X3C problem is to determine whether C contains an exact
cover of X, i.e., a sub-collection C ′ ⊆ C such that every
element of X occurs in exactly one member of C ′.

Proof. Given an instance of X3C, we construct an in-
stance of DLC as follows. Let each fragment of DBi corre-
spond to an element of X and let n = 3q. Let a = |C| and
for each member Ci of C, create an available processor that
has on its local storage the three fragments corresponding
to Ci’s content. Finally, let p = q. This construction can
be completed within polynomial time. It is easy to see that
the answer to the resulted DLC problem instance is also the
answer to the original X3C problem instance.

Recognizing the complexity of the least-copy problem, we
design a greedy algorithm (LC) that reduces data copy when
the local storage is not large enough.

Algorithm 2 Greedy least-copy scheduling

U ← D
S ← ∅
n← |D|
while |S| < p do

for i = 1 to |I| do

li = |Lpi
∩ U |

end for

Find pi ∈ I with the maximum li
S ← S ∪ {pi}
Fpi
← ∅

while |Fpi
| < n/p and |Lpi ∩ U | > 0 do

Find fj ∈ Lpi
∩U with the minimum number of repli-

cas among all pk ∈ (I − S)
Fpi
← Fpi

∪ {fj}
U ← U − {fj}

end while

I ← I − {pi}
end while

for all pi ∈ S do

if |Fpi
| < n/p then

m← n/p− |Fpi
|

Gi ← the m-prefix of U
Fpi
← Fpi

∪Gi

U ← U −Gi

end if

end for

Algorithm 2 gives the details of the greedy LC schedul-
ing strategy. It takes the following input parameters:
D = {f1, f2, ..., fn} (the database with n fragments), I =
{p1, p2, ..., pa} (a idle processors), each with Lpi

⊂ D denot-
ing the fragments cached on its local storage, and p (the tar-
get number of processors to allocate to the current query).
This algorithm iteratively selects an idle processor with the
largest number of unassigned database fragments on its local
storage, and assigns up to n/p cached fragments to this pro-
cessor, until p processors are selected. When choosing the
locally cached fragments, priority is given to the one with
the fewest replicas among the unselected processors. Fi-
nally, the unassigned fragments are assigned to the selected
processors in ascending order, to make sure each processor
receives n/p fragments. These are “remote fragments” that
must be copied from the shared file system. The output of
the LC algorithm is S, the p selected processors, and Fpi

,
the n/p distinctive database fragments assigned to each pi

in S.

3.2.3 Revisiting the RMAP Algorithm
After we consider the full storage hierarchy, during our

experiments on our test cluster we have discovered a limita-
tion of the RMAP algorithm. The problem occurs when the
system load is light. When data turnover happens to occur
and a large amount of data has to be copied, the slow data
transfer process may significantly delay the query processing
and accumulate queries in the queue. Then the system load
will be considered as heavier, and the RMAP algorithm will
shrink the partition size, causing additional data turnover.
When the partition size stabilize at the smallest end, data
turnover is reduced and the queue will quickly shorten due
to the light query arrival rate. Then the RMAP algorithm
begins to enlarge the partition size, resulting in repeated
thrashing between the “light load” and “heavy load” modes,
as well as excessive data movement.

To avoid this behavior, we propose RMAPRC, a restricted
version of RMAP using a range control mechanism. Since
the system maximum throughput of a given cluster server
can be benchmarked in advance, and the actual query arrival
rate can be measured at runtime using a sliding window, we
let RMAPRC monitor the real system load and adjust the
effective partition size range accordingly. In our implemen-
tation, RMAPRC calculates the ratio between the current
query arrival rate and the system maximum throughput, and
enables the corresponding fraction of partition size range
starting from the upper limit. For example, suppose a cer-
tain database’s partition size range is [2,16]. A load ratio
of 1 will enable the full range, while a load ratio of 0.5 will
enable the subrange of [8,16].

4. PERFORMANCE RESULTS

4.1 Benchmarking Configuration
In our experiments, we use five biological sequence

databases downloaded from the NCBI public sequence
repository. Table 1 summarizes several basic attributes of
these databases. Among them, the first two are protein
sequence databases (type “P”) and the other three are nu-
cleotide sequence databases (type “N”). The two types of
the databases are searched using the blastp and blastn

algorithms respectively. The size of each database shrinks
after the database is formatted for search using the standard
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Raw Formatted
Name Type Size Size Pmin Pmax

env nr P 0.25GB 0.38GB 1 8
nr P 1.6GB 2.3GB 2 16

est mouse N 2.7GB 2.0GB 1 8
nt N 17GB 5.6GB 4 16
gss N 11GB 6.7GB 2 16

Table 1: Database characteristics

formatdb tool. For each of the databases, we also give the
Pmin and Pmax pair, which defines the processor partition
size range. As discussed in Section 3.1, Pmin is determined
by the memory constraint and Pmax is determined by bench-
marking the parallel execution scalability of the individual
database search workload. Note that the gss database has a
larger formatted size than nt does, but has a smaller Pmin.
This is because a large part of the gss database contains
header information that does not need to be scanned during
query processing.

The parallel BLAST software we used is the popular mpi-
BLAST tool [13, 21], available at http://mpiblast.lanl.gov/.
For queries, we sampled 1000 unique sequences from the five
databases, with the number of samples from each database
set proportional to the database size, in terms of the num-
ber of sequences. Since sequence databases are constantly
appended with newly discovered sequences, we hope this
sampling method assembles the composition of real BLAST
search workloads, which are driven by sequence discoveries.
We compose online query traces by drawing queries ran-
domly from this pool of unique sequences, setting the arrival
interval with the Poisson distribution. Query sequences may
be repeated in making longer traces.

We benchmark the query processing performance of each
of the 1000 query sequences, with all the possible processor
partition sizes, on a Linux cluster. The cluster has 20 com-
pute nodes, each equipped with dual Intel Xeon 2.40GHz
processors sharing 2GB of memory. Due to its target work-
load, this cluster has 400GB per-node local storage space,
which is unusually large. The interconnection is using Gi-
gabit Ethernet and a shared storage space of over 10TB is
accessed through an NFS server.

For each query, two experiments are done to measure and
record a “cold-cache” and a “warm-cache” time respectively.
The former has the memory flushed before a query and the
latter warms up the memory cache with the same query
before taking measurements.

In addition to individual query’s cost, we also benchmark
the maximum throughput of the whole system. This maxi-
mum throughput is calculated in an aggressive manner: we
measure the maximum throughput of each database’ search
workload by executing the corresponding subset from the
1000-query pool on the whole cluster using the smallest par-
tition size (Pmin). This way the system achieves best effi-
ciency and data locality with the single-database workload
and small partition size. We then derive the multi-database
maximum throughput by taking an weighted average of the
single-database peak throughputs, according to the number
of queries going to each database.

4.2 Simulation Overview
To test different cluster configurations and to accelerate

experiments, we developed a parallel BLAST web server
simulator. It takes as input a set of system parameters
(such as the number of nodes, memory size, local disk size
and shared file system performance), a query trace, as well
as the processor/data scheduling algorithms, and generates
the query schedule.

The cost of each individual query is calculated based
on benchmarking results from the cluster described above,
along with resource allocation and data distribution infor-
mation. For each query sequence in our sample set, we loop
up its search time with the number of processors scheduled
from our benchmarking results. For partial cache hits, we
approximate the cost by estimating the cache status using
LRU, calculating the size of in-cache data, and performing
an interpolation between the cold-cache and the warm-cache
costs using that size. If certain fragments need to be copied
from the shared storage, we find out the number of proces-
sors reading from the shared file system simultaneously (n)
and roughly estimate the copy cost by dividing the data size
by the shared file system bandwidth at n concurrent readers.
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9(a) Cluster experiment results
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9(b) Simulation results

Figure 4: Simulator verification results.

We verify the simulator against real experiments run on
the aforementioned cluster, with the simulator configured
the same way as the cluster. This test is performed with a
short 300-query trace with a 200-query warm-up stage. Fig-
ure 4(a) and Figure 4(b) show the real experiment and simu-
lation results, respectively, with several scheduling policies.
Since the focus of this comparison is to verify the simula-
tor, we leave the performance analysis to the next section
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Figure 5: Results with unlimited buffer cache size.

and instead pay attention to the accuracy of the simulation.
Overall the simulation results are very close to those from
real cluster runs, with a maximum error of 10.08% and an
average error of 4.42%.

The rest of the paper reports results using our simulator.
As in Figure 4, all the charts uses log2 scale in the y axis due
to the large distribution of performance numbers. Except
when noted otherwise, the simulation is performed using
query traces that contain 5,000 query sequences drawn from
the 1,000-sequence pool sampled from the five databases
mentioned above. In addition, 800 queries are used for sys-
tem warm-up.

4.3 Efficiency-Oriented Scheduling Results
To isolate the impact of parallel BLAST algorithms’ scala-

bility on the scheduling performance from that of data place-
ment, we first simulate a situation with unlimited memory
cache size. Under this scenario, after the warm-up period all
the database fragments should be cached within each pro-
cessor’s memory. This idealization is achieved by using the
search performance measured with a warm cache, where we
make sure the target database fragments are cached in the
main memory.

Here we compare the performance of RMAP with three
versions of fixed partitioning strategies. With fixed par-
titioning, the number of processors allocated to queries
against the same database is fixed throughout the run. For
each database, we choose three fixed partition sizes within
its partition size range [Pmin, Pmax]: small (FIX-S), medium
(FIX-M), and large (FIX-L). Experiments are carried out
using different levels of system load by adjusting the query
arrival rate. A system load of 1 means the arrival rate is
equal to the maximum query throughput. All the strategies
here use the default FA policy in selecting idle processors to
schedule and making fragment-to-processor assignments.

Figure 5 portraits the simulation results. As expected,
no single fixed partitioning strategy performs consistently
well. When the system load is light, the large partition size
works best by using a large number of processors to reduce
each query’s response time. As the load increases, first the
medium, then the small partition size becomes the winner.
With heavier loads, smaller partition sizes help achieving
better overall resource utilization by improving the parallel
execution efficiency. The performance difference is signif-
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Figure 6: Results with unlimited local storage.

icant: across the x axis, the difference between the best
and worst average response time among the fixed partition-
ing strategies varies between 1.6 and 150 times. RMAP, on
the other hand, consistently matches the best performance
from the three fixed partitioning strategies by automatically
adapts to the system load.

4.4 Data-Oriented Scheduling Results
We begin the evaluation of data-oriented scheduling

strategies by first adding the effect of the memory buffer
cache. Here we simulate the situation where the local stor-
age space is large enough to hold all the database fragments,
which is the case for certain web servers. In our experiments,
by setting the local storage limit at 20GB, we allow all the
database fragments to be cached at individual processors’
local disk at the end of the warm-up period.

Figure 6 demonstrates the comparison between five
scheduling strategies: the three fixed partitioning strate-
gies, RMAP, and RMAP augmented with LARD. Again
all of them use FA, as with sufficient local storage space
it is relatively cheap to access arbitrary database fragments.
While RMAP still outperforms all fixed partitioning strate-
gies, when combined with LARD its performance is signifi-
cantly improved (by up to 96% percent). By stabilizing the
assignment from database to processors and reducing each
processor’s working set size, LARD reduces the average re-
sponse time through enhanced caching. The only occasion
where LARD does not help RMAP is with the system load of
0.4, where RMAP outperforms RMAP-LARD by 7%. One
possible reason is that with a medium load, RMAP is likely
to switch back and forth between different partition sizes,
causing frequent adjustment among processor groups and a
higher cache miss rate.

Note that LARD’s benefit is more evident with heavier
system load. This is because the RMAP algorithm will
automatically shrink the partition size when the query ar-
rival rate increases, the data footprint enlarges and smart
caching becomes more important. This also explains why
the FIX-L performance almost stays the same when com-
paring Figure 6 with Figure 5. When the partition size is
large, each database is stretched thin between many proces-
sors and the data footprint is small enough to be cached in
memory. Next, we investigate an extended storage hierar-
chy by adding shared file system accesses, and assess both
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5G-0.1 5G-0.5 5G-1.0 10G-0.1 10G-0.5 10G-1.0

Average Response Time RMAP+FA 67925 97259 98659 8869 37795 39195
(secs) RMAP-LARD+FA 256 314 1005 7 105 769

RMAP-LARD+LC 71 151 786 5 59 505
Cache Misses RMAP+FA 5.230 5.282 5.282 5.032 5.008 5.008

(#misses/query/proc) RMAP-LARD+FA 1.842 0.342 0.042 0.128 0.787 0.056
RMAP-LARD+LC 1.014 0.504 0.038 0.043 1.435 0.048

Copy Volume RMAP+FA 8408 8736 8736 3317 3477 3477
(GB) RMAP+LARD+FA 2644 289 47 124 302 31

RMAP+LARD+LC 1179 295 37 4 242 23

Table 2: Performance impact of LARD and LC.

the LARD and LC algorithms in exploiting data locality. To
simulate the case where the local storage space is insufficient
to accommodate all database fragments, we impose a local
storage limit to force copying data from the shared stor-
age. Considering the total database fragment size is 17GB
in our tests, we choose two storage limits at 5GB and 10GB
respectively. Although these storage limits look too small
for today’s cluster nodes, we use them to simulate the case
where the combined database size is much larger.

Table 2 shows the impact of using LARD and LC on the
performance of RMAP. We performed the experiments with
3 system load levels (0.1, 0.5, and 1) and two local storage
limit levels (5GB and 10GB). For each strategy, we list the
average response time, the average amount of cache miss per
query per processor (in terms of the number of fragments),
and the total volume of data copied from the shared file
system in Gigabytes.

We can see from Table 2 that LARD and LC both greatly
reduce the cache misses and the shared file system accesses.
In particular, by dynamically assigning different databases
to disjoint sets of processors, LARD eliminates the bulk of
buffer cache misses and file copying operations.

Without LARD and LC, the original RMAP algorithm
is not able to keep up with the pace of query arrivals due
to the small storage limit and slow shared file system, re-
sulting in hours-long response time for each query. With
LARD, however, the query response time shrinks to 5 sec-
onds with the light system load and 10GB storage limit, and
to about 13 minutes with the heavy system load and 5GB
storage limit. When the local storage space is insufficient,
the advantage of LARD is more evident than in Figure 6,
because its data-locality-enhancing scheduling also reduces
remote data copying.

LC further cuts down on the shared file system accesses,
especially with the light and medium system load. This is
because when the load is lighter there tend to be more idle
processors at every scheduling point, allowing a larger space
for the LC algorithm to play. Note that the enhanced data
placement also help the buffer cache performance in many
cases.

Finally, we compare our proposed combination of strate-
gies with fixed partitioning, under the scenario of having
insufficient local storage space. As we demonstrated the dra-
matic performance gain of using LARD and LC, the question
is whether they diminish the need for the adaptive RAMP
algorithm. Therefore, in the next group of experiments we
use LARD and LC for all the strategies, both fixed and
RAMP.

Here, we test with two shared file system bandwidth lev-

els. The low setting, with 50MB/s peak aggregate access
rate, is measured from the NFS system at our test cluster.
This is a very common configuration with small- or medium-
sized clusters. The high setting, with 200MB/s peak aggre-
gate access rate, is to simulate a cluster equipped with a
higher-end file system such as a parallel file system or a
SAN system.

Figures 7(a) and 7(b) show the results using the low
shared file system bandwidth setting, at three different sys-
tem load levels (0.1, 0.5, and 1). Though not shown in the
figures, the performance of each of the FIX strategies has
also been greatly improved by LARD and LC. Still, no sin-
gle fixed partitioning strategy always works the best. In
fact, each of them may excel under certain configurations.
RMAP, on the other hand, performs consistently well.

Figures 7(a) and 7(b) do illustrate the thrashing behav-
ior discussed in Section 3.2.3: under light system load and
small local storage space, the RMAP strategy may perform
significantly worse than FIX-L and FIX-M. As mentioned
earlier, this is due to the system oscillating between “light
load” and “heavy load” when the query processing is slowed
down by the database fragment copying cost. The constant
adjustment of partition size, in turn, generates more data
turnover. With the range control mechanism, however, this
behavior is eliminated and performance is further improved
from RMAP-LARD+LC. Across both storage limit levels
and all system load levels, RMAPRC-LARD+LC performs
the best, with up to an order-of-magnitude improvement
over the best fixed partitioning strategy, and at least a 3-
time improvement over the worst one.

Figures 7(c) and 7(d) repeat the above experiments, but
with a much faster shared file system (200MB/s). Here the
impact of data copying is much smaller compared to the
previous pair of tests, but the performance benefit of our
proposed optimizations is similar. Again the RMAPRC-
LARD+LC performs the best, with considerable advantage
over the fixed strategies.

5. RELATED WORK
Many projects have studied accelerating BLAST through

parallel processing on SMP machines or clusters [5, 7, 8, 10,
13, 20, 21, 23], with the current trend of enabling database
segmentation [13, 21]. Our study examines resource alloca-
tion and data placement issues related to handling online
BLAST queries on a cluster web server, which can poten-
tially work on top of any of the above underlying parallel
BLAST implementations. Instead of making an individual
parallel BLAST system more efficient, we focus on improv-
ing the overall resource utilization and exploiting data lo-
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Figure 7: Comparison between scheduling strategies with different local storage limits and shared file system

bandwidths.

cality.
There have also been studies on high throughput BLAST

online services. NCBI hosts a publicly accessible BLAST
server on a cluster of LINUX workstations [2, 24]. This
system optimizes its caching performance by assigning a
search task to the machines that have just searched the
same database when possible. However, there have not been
enough details released about their system design and imple-
mentation. Wang and Mu described a distributed BLAST
online service system [35], where the incoming query is as-
signed to the least-loaded SMP computation node and each
node searches one entire target database. Wang et. al. in-
troduced a service-oriented BLAST system built on peer-to-
peer overlay networks [34]. This work assumes an heteroge-
neous environment with high communication cost. To the
best of our knowledge, our paper presents the first system-
atic investigation, performing both processor utilization and
data access optimizations, on cluster web servers providing
sequence database searches.

There have been numerous studies on scalable distributed
web-server systems, most of which were focused on efficient
request routing and assignment for content serving, as sur-
veyed by Cardellini et al. [9]. One closely related project is
the LARD system [29], which performs content-based web
request distribution to back-end servers considering both
load balance and request locality for better memory cache
performance. Research in this category, along with that
on resource-intensive web request scheduling [36], often as-

sumes that multiple requests can be served by the same
back-end server simultaneously, or the request service time
is known or can be predicted. In our target scenario, time-
sharing the back-end servers is difficult given the closely-
coupled message passing model used by a subset of servers
performing parallel BLAST, and the cost of each BLAST
query has been shown as quite unpredictable [37]. Also, our
work can be viewed as extending cooperative caching [11,
16, 33, 18] and coupling it with task scheduling, to support
the concurrent processing of queries on multiple databases,
with each query executed in parallel on multiple nodes.

Regarding space-sharing of parallel computers, a wealth
of job scheduling algorithms have been proposed and eval-
uated, as summarized by Feitelson [17]. However, with the
prevailing use of message passing programming interfaces
such as MPI [25] and contemporary batch parallel job exe-
cution environments, adaptive or dynamic allocation of re-
sources is rarely used on parallel computers. Instead, jobs
are given the exact number of processors as requested, us-
ing simple strategies such as FCFS plus backfilling [26]. Our
work reveals a type of real-world workload that features so
called “moldable parallel jobs” (those can be run on a flex-
ible number of processors), where many existing scheduling
strategies can be applied to. In this paper, we extend ex-
isting adaptive parallel job scheduling algorithms [12, 32] to
the parallel sequence database search context.

We also connected the parallel job scheduling problem
with data replication and caching optimizations. To this
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end, there exist studies on data replication strategies for
high-performance, data-intensive applications, which mainly
target the grid environment [3, 4, 30, 31]. In comparison,
our target scenario is much more closely coupled and al-
lows dynamic data partitioning that is prohibited in the
grid settings due to the cost of wide-area data movement.
Again, some of the above projects assumed known compu-
tation time for jobs to be scheduled, which is not true in
BLAST searches.

Finally, although this paper discusses biological sequence
database searches in a parallel setting, the problem is
quite different from those addressed by traditional paral-
lel databases [14, 15]. With parallel relational databases,
the data distribution is far more static and handling a large
number of concurrent transactions has been a standard re-
quest. In contrast, we deal with a scenario where the data
can be dynamically partitioned, placed and cached, while
concurrent queries are processed on multiple replicas of the
databases separately.

6. CONCLUSION AND FUTURE WORK
Below we summarize the findings and contributions of this

paper:

• We systematically examined the performance of online
parallel bio-sequence searches, one important category
of scientific database processing workloads.

• Our experiments on a real cluster revealed the large
impact of both performance scalability and data local-
ity on a parallel sequence search server.

• We extended and designed several adaptive schedul-
ing strategies: RMAP for dynamic resource partition-
ing, LARD for locality-enhancing processor schedul-
ing, and LC for optimized database-to-processor map-
ping. These strategies automatically react to the inter-
play of query workload and machine configuration, as
well as the dynamic data placement along the storage
hierarchy.

• We performed extensive experiments using a simula-
tor verified with real-cluster tests. Our results demon-
strate that RMAP outperforms its static counterparts
across various query workloads and system configu-
rations. Also, LARD and LC can dramatically reduce
memory cache misses and data copying. Combined to-
gether, our proposed strategies often deliver an order-
of-magnitude performance gain.

This work can be extended in several directions. First,
we would like to study multiple-sequence queries. A related
direction is to enable out-of-order execution that bundles
together queries targeting the same database. Another in-
teresting topic is to investigate intelligent data prefetching
in this context.
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