Seluge: Secure and DoS-Resistant Code Dissemination
in Wireless Sensor Networks

Sangwon Hyun, Peng Ning, An Liu
North Carolina State University
Department of Computer Science

ABSTRACT

Wireless sensor networks are considered ideal candidataside
range of applications, such as industry monitoring, datmisition

in hazardous environments, and military operations. lesirble
and sometimes necessary to reprogram sensor nodes thriegh w
less links after they are deployed, due to, for example, texin
of removing bugs and adding new functionalities. The preads
propagating a new code image to the nodes in a wireless segisor
work is commonly referred to asode disseminationThis paper
presents the design, implementation, and evaluation offiareat,
secure, robust, and DoS-resistant code disseminatioensystmed
Selugdor wireless sensor networks. Seluge is a secure exterwsion t
Deluge an open source, state-of-the-art code disseminatioarayst
for wireless sensor networks. Besides the efficiency andsteb
ness offered by Deluge, Seluge provides security protestfor
code dissemination, including the integrity protectiorcoéle im-
ages and resistance to various DoS attacks exploiting fensive
signature verifications, possible authentication delays, the epi-
demic propagation strategies used by Deluge. Seluge isisupe
all the previous attempts for secure code disseminatiathjsathe
only solution that seamlessly integrates the security migisms
and the Deluge efficient propagation strategies. In addtiothe
theoretical analysis that demonstrates the security aridrpgance
of Seluge, this paper also reports the experimental evatuaif
Seluge in a network of MicaZ motes, which further shows thyhhi
efficiency of Seluge in practice.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection C.2.1 [Computer-Communication Networks]:
Network Architecture and DesignWireless communication

General Terms
Security, Design, Algorithms

Keywords

Sensor Networks, Security, Code Dissemination, DoS Atack

Permission to make digital or hard copies of all or part o tvork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Wenliang Du
Syracuse University
Department of Electrical Engineering and
Computer Science

1. INTRODUCTION

A wireless sensor network is expected to consist of a patinti
large number of low-cost, low-power, and multi-functiorsan-
sor nodes that communicate over short distances throughess
links [6]. Due to their potential to provide fine-grained sieng and
actuation at a reasonable cost, wireless sensor netwoeksoar
sidered ideal candidates for a wide range of applicationsh sis
industry monitoring, data acquisition in hazardous envinents,
and military operations.

Itis desirable and sometimes necessary to reprogram senses
through wireless links after they are deployed, due to, fangple,
the need of removing bugs and adding new functionalitiese Th
process of propagating a new code image to the nodes in ametwo
is commonly referred to asode disseminationA few code dis-
semination protocols [9, 16, 18, 19, 26, 32—34] have beealdped
recently to propagate new code images using the ad-hocessrel
network formed by the sensor nodes. In particular, Delugg [1
uses an epidemic protocol [21] for efficient advertisemdrdonle
meta data, and divides each code image into multiple pagdoto
simultaneous propagation of multiple parts of the imageffer@nt
regions of the network. Deluge is generally accepted asttte sf
the art of code dissemination in wireless sensor networid has
been included in recent TinyOS distributions [5].

In hostile environments, where there may be malicious kstac
against wireless sensor networks, code disseminatios faceats
from both external attackers and potentially compromisedes.
For example, the adversary may attempt to modify or replaee t
real code image being propagated to sensor nodes, intragpoe-
licious code into the sensor network. As another exampteath
versary may inject bogus code dissemination packets and far-
mal sensor nodes to verify and/or forward them, thus exirayst
their limited battery power.

1.1 Related Work

Several recent works have attempted to provide secure ésde d
semination for wireless sensor networks [10, 13, 20]. Adisth ap-
proaches are extensions to Deluge [16]. Lanigan et al. paxpa
protocol named Sluice [20] to integrate digital signatund aryp-
tographic hash functions to provide efficient authentaafor code
dissemination. This approach follows Deluge to divide ecatie
image into pages. The hash image of each page is includeé in th
previous page, while the hash image of the first page is signdd
included in a signature packet. This approach, howeveunligev-
able to Denial of Service (DoS) attacks. This is becauseurc&|
a node can only perform authentication when an entire page is
ceived, and thus it cannot authenticate a packet immewliafir it
is received. To exploit this property, the adversary maylselarge
number of bogus packets during code dissemination; a senser

upon receiving a packet, cannot tell if it is authentic or, moid has
to save it if possible. As a result, the adversary can foreesémsor
nodes to save bogus packets but drop some authentic ones.

A scheme similar to Sluice was independently proposed ih [13
In this approach, the hash image of each code disseminaikep
is included in the previous packet, and the hash image of tbie fi
packet is signed and included in an advertisement packebdéa c
dissemination packet can be authenticated only when thkepac
immediately before it has been received and authenticates au-
thors of [13] proposed to optimistically store out-of-argeckets.
Unfortunately, this decision opens a door to the same DaSkaf
since the adversary can again send a lot of bogus packethaostx
receivers’ buffers. Not storing out-of-order packets igaialy an
option to avoid the DoS attacks. However, this effectivaatiles
the Deluge epidemic propagation mechanism, and leads ffo ine
cient recovery. For example, losing one packet at a nodeaeslllt
in the retransmission of all the later packets in the same.pag

Deng et al. proposed a scheme to improve the DoS-resiliehce o
secure code dissemination by using Merkle hash tree [10%
proach can be considered as an extension to Sluice [20] d&esi
having the hash image of each page in the previous one, itia&s
a Merkle hash tree to allow each packet to be immediatelyeauth
ticated upon receipt. However, this approach adds additicom-
munication overhead due to the transmission of a Merkle tragh
for everypage [10]. More importantly, it distributes each hash tree
in a level-by-level fashion; only after every packet in opedl is
received and verified can the packets in the next level beestgd.
This effectively disables the efficient page-by-page pgapian in
Deluge, resulting in higher propagation delays.

Although all the existing approaches [10, 13, 20] are based o
Deluge [16], none of them provide a satisfactory solutiorthi®
authentication of advertisement and Selective Negativienfwl-
edgment (SNACK) packets. (In Deluge, such packets are used t
advertise new data and facilitate the request and retrasgmi of
packets.) Indeed, the approaches in [13, 20] did not conside
authentication of such packets at all. As a result, the adwgrcan
forge such packets and exploit the Deluge epidemic and sappr
sion mechanisms to launch DoS attacks. For example, the-adve
sary may repeatedly request (previously transmitted) gtadkom
a node (using SNACK) to exhaust its battery power. Moreaber,
adversary may request packets from a non-existing nodepdhe
Deluge suppression mechanism, others that overhear tsse
will not send in request for packets (to real nodes). Theasth
of [10] discussed the possibility of authenticating SNAC&Ckets,
but overlooked the issue of advertisement packets.

Another issue common to all existing approaches [10, 13i20]
the vulnerability to DoS attacks against the signature gaetkhich
is used to bootstrap the authentication of code dissernmaiihe
approaches in [13, 20] did not consider such threats at alia fe-
sult, the adversary can broadcast packets with bogus sigisaaind
force all the receivers to perform expensive signatureieations.
The approach in [10] proposes to release previously uradied!
values in a one-way hash chain to mitigate such DoS attaaks- H
ever, this method is vulnerable to online attackers. Oneativer-
sary overhears a hash value during a legitimate code disaéion,
it can reuse the value to send forged signatures to otheonegi
of the network. Due to the multi-hop and low-bandwidth natur
of wireless sensor networks, the adversary has sufficierg tb
launch DoS attacks against many sensor nodes.

1.2 Proposed Approach

In this paper, we present the design, development, andagi@iu
of an efficient, secure, robust, and DoS-resistant code miss-

tion system name8&elugefor wireless sensor networks. Based on
the lessons learned from the previous approaches [10, 13580

uge is able to address all the limitations identified in Secti.1.
Seluge is an extension to Deluge [16], an open source code dis
semination system included in TinyOS [5]. Seluge inhehiseffi-
ciency and robustness properties from Deluge, and at the 8ara
provides security protections for code disseminatioriyiiog the
integrity protection of code images and resistance to uaridoS
attacks. Seluge is targeted at the current and future georeet
sensor platforms, such as MicaZ [3], TelosB [4], and Imo®&2 [

The key contribution of Seluge is a novel way to organize the
packets used to distribute new code images. By carefulbnging
code dissemination data items and their hash images in {sacke
Seluge provides immediate authentication of each packetvilis
received, without disrupting the efficient propagation hedsms
used by Deluge. Thus, it can easily defeat the DoS attacks tha
exploit possible authentication delays.

Seluge uses a signature to bootstrap the authenticatiomefa
code image. However, unlike the previous attempts, Selage a
weak authentication along with the signature. This weakeut
tication mechanism has some nice properties: It can beegftigi
verified by a regular sensor node, but it takes a computdljona
powerful attacker a substantial amount of time to forge. ddoer,
it cannot be pre-computed. Thus, this weak authenticatiechar
nism provides an effective filter of forged signatures. Agsulit,
Seluge is not subject to the same DoS attacks against signeti
ifications as the previous approaches.

Seluge properly authenticates advertisement and SNACK-pac
ets. As a result, it can prevent DoS attacks that exploit thkeidpe
epidemic propagation and suppression mechanisms. This-is a
other security property not available in the previous apphes.

Compared with the previous attempts [10, 13, 20], Seluge not
only provides integrity protection for disseminated codages,
but is also resistant to various DoS attacks exploiting tkpee-
sive signature verification operations, possible autbatitn de-
lays, and the efficient epidemic propagation strategied bgdel-
uge. Indeed, Seluge is superior to all the previous solstidg, 13,
20], and is the only solution that seamlessly integrateséuarity
mechanisms and the efficient Deluge propagation strategies

Our contribution in this paper is three-fold. First, we depethe
Seluge suite of techniques for efficient, secure, robust, oS-
resistant code dissemination in wireless sensor netw@ussecu-
rity and performance analysis demonstrates that Selugperier
to all the previous solutions [10, 13, 20]. Second, we irdaggthe
proposed techniques into the Deluge code base in TinyO&hdist
tions, providing a software packet that is readily ava#abrhird,
we perform extensive experiments in a network of MicaZ mttes
evaluate the performance of Seluge.

1.3 Organization

The rest of this paper is organized as follows. The next @ecti
clarifies our assumptions and the threats to code dissdonniat
wireless sensor networks. Section 3 gives a brief overvielyed-
uge. Section 4 presents the techniques used in Seluge faresec
and DoS-resistant code dissemination. Section 5 provivEsét-
ical analysis of the security and performance of Selugeti@e6é
describes the implementation and experimental evaluaticel-
uge in a network of MicaZ motes. Section 7 concludes this pape
and points out some future research directions.

2. ASSUMPTIONS AND THREAT MODEL

Assumptions: We assume the source of the code images, i.e.,
thebase stationis a powerful node (e.g., a laptop PC), which also

has sufficient energy supply (e.g., charged in a vehicle). agfe
sume that sensor nodes are resource constrained in terrosef ¢
putational power, communication capability, storage céapaand
energy, due to cost reasons. We assume a sensor node camperfo
a limited number of public key cryptographic operationsr &x-
ample, a MicaZ mote can perform a 160-bit ECC signature verifi
cation operation in about 2.43 seconds using TinyECC [22wH
ever, a sensor node cannot afford performing many such tiqpesa
due to the intensive computation and energy consumptionasi/e
sume the packet size is large enough to hold a signature aed ot
information required by a signature packet. This is a comamn
sumption used by all the previous approaches [10, 13, 2@arit
be satisfied on current sensor platforms with IEEE 802.16m-c
pliant radios [17], where the maximum payload size is 102&yt

in a sequential order; a receiver requests pagely after having
successfully received all packets in pape page(i — 1).

Deluge uses an epidemic protocol [21] for efficient advertis
ment of code meta data [16]. Specifically, each node perdiglic
advertises which version of a code image it has and how many
pages it has received for that version. For energy efficietingy
advertisement rate is dynamically adjusted: If a node disits
own advertisement is different from those received fromerhit
increases its advertisement rate. Otherwise, it decré@sadver-
tisement rate. Using such dynamic adjustment of advergsém
rate, Deluge can achieve rapid propagation during disssmmof
a new code image, but consumes little resource in steady stat

Once a node finds out from an advertisement packet that a-neigh
bor node has the code page it needs, it uses Selective Negativ

We assume each sensor node has enough memory to store the codenowledgment (SNACK) packets to request transmission fitam

image being disseminated (e.g., using the measurementdtash
MicaZ motes [3]).

We assume Deluge as the underlying code dissemination-proto
col. We assume the base station has a private and public key pa
and each sensor node in the network is pre-configured withetbe
station’s public key. We also assume sensor nodes are abk to
tablish pairwise keys between neighbor nodes, for exanugiag
one of the existing schemes [8, 12,23, 24, 36].

Threat Model: We assume the adversary has access to compu-

tationally resourceful nodes such as laptops and worksistiWe
assume the adversary may launch bmtternalandinsiderattacks.
In external attacks, the adversary does not control any vedde
in the network. The adversary may attempt to eavesdrop for se
sitive information, inject forged messages, replay prasip inter-
cepted messages, and impersonate valid sensor nodes. Véoreo
the adversary may fake non-existing links by launching wuota
attacks [15]. The adversary may use Sybil attacks [11, 2Fgres
one node presents multiple identities to defeat typical faler-

neighbor. Each SNACK packet contains a requested page mumbe
and a bit vector indicating the requested packets in thag.pdgon
receiving several request packets for the same page, a ooae c
putes the union of the requested packets (via the bit vectansl
transmits the requested packets in a round-robin fashion.

Deluge uses a page-by-page dissemination strategy. After c
pletely receiving a page, a node advertises the avaibalfithe
newly received page, and may transmit the correspondinkepsc
upon request. This allows “spatial multiplexing” duringetbode
dissemination, so that multiple pages of a code image camdpe p
agated at the same time in different regions of the network.

Deluge uses various message suppression mechanisms for effi
ciency reasons. To reduce redundant advertisements, eaeh n
suppresses its own advertisement if the number of overhard
vertisement packets that contain the same informationsaswh
is over a predefined threshold. Moreover, if a node overhesars
quest (or data) packets for a page that it is about to requésD
already received, it suppresses its own request packetilaBim

ant mechanisms. The adversary may launch DoS attacks by, forif a node overhears request (or data) packets for the pagés wi

example, forging a large number of signature packets ooéxm
weaknesses of the code dissemination protocol. The adyersy
jam the communication channel; however, we assume thattthe a
versary cannot constantly jam the communication channtblonrt
being detected and removed.

smaller indices than that of the page it is currently trartngj,
the node suppresses transmission of the subsequent dé&tgac
By using such suppression mechanisms, Deluge increaspsshe
sibility that nodes in the same region wait for the same pagk a
consequently maximizes the effect of overhearing. As dised

The adversary may compromise some nodes to attack the rest ofin Section 1.1, though these suppression mechanisms iejinev

the network. We call such attackssider attackssince the com-
promised nodes are considered a part of the network befese th
are identified and removed. However, we assume that the ityajor

efficiency of code dissemination, they also introduce opputies
for the adversary.

of the nodes are not compromised. We also assume thatthe adve 4, DESIGN OF SELUGE

sary may exploit the compromised nodes in arbitrary ways-to a
tack the remaining nodes. For example, the adversary mayas
the compromised nodes to intercept sensitive informati@m &f
the messages are encrypted, (selectively) drop packetdaanch
Sybil attacks [27] using the identities and keying materadlcom-
promised nodes. The adversary may also instruct the conigedm
nodes not to cooperate with others, inject false data, aptbiex
specific weaknesses of various protocols. However, we assuen
base station cannot be compromised.

With those capabilities, the adversary attempts to dissat@i
illegal code images into the sensor network using the costeedi-
ination mechanism, or launch DoS attacks to consume théelimi
resources (e.g., battery power, memory) on select sensi@sno

3. BACKGROUND: DELUGE OVERVIEW

Deluge [16] is an open source code dissemination system for

wireless sensor networks running TinyOS [5]. In Deluge, deco
image is divided into fixed-size pages, and each page issusthiit
into same-size packets. The pages for a code image is daliver

Seluge relies on Deluge [16] for efficiency (via epidemicgpro
agation and suppression) and robustness (via SNACK). Tendef
against the security threats against code disseminatioriratess
sensor networks, Seluge further adds three layers of pimtec
(1) Immediate authentication of code dissemination pack2) au-
thentication of page advertisement and SNACK packets, 2rahti-
DoS protection for signature packets. The key contributib8el-
uge is that it provides authentication and DoS-resistasteptions
by efficiently using cryptographic primitives, and at thengatime
still allows the efficient code dissemination mechanisnwyioled
by Deluge, such as page-by-page propagation and suppressio

We use the following notations in our descriptia(-) denotes
a cryptographic hash functio$iig(M) stands for the digital sig-
nature of M signed by the base statio6; | D denotes the con-
catenation of”' and D; | E/| denotes the size df in byte.

4.1 Immediate Authentication of Code Dissem-
ination Packets

Following Deluge [16], we partition the code image to be dis-

Signature Packet: Signature

Page 0:

Hash Tree

aip

N AR N RN
page | Pty | o | Phtsa | 4 EZNEN
1 1 _ 1

Page P-1: | Phtpay | o | Phtpaz | 4 | [Phtpans | o | Pt | 4 |

pPager: | Phtpy | Phtpa | | Petova | Pitey |

Figure 1: Authentication of code images

seminated into fixed-size pages. (For simplicity, we assalfrtbe

Figure 2: The Merkle hash tree constructed for page 0 when
M = 8 and N = 48. Packet Pkto; (i = 1,..., M) consists
of Vu,; and the values in its authentication path. For example,
packet Pkto 1 consists oflp 1, e2, e3—4, and es_s.

from adjacent children nodes. Each internal node is the mash

pages have the same size. In practice, the last page may have age of the two children nodes. For example, in Figure.2, =

smaller size. Our description can be slightly modified tooace
modate such cases.) Assume therefagages in total, denoted as
page 1 through pagf. We then split each page(l1 < i < P)
into N fixed-size packets, denoted B&t;,1 throughPkt; n .

H(61||62), and6174 = H(6172||6374).

We then construct/ packets using this Merkle hash tree. Specif-
ically, we construct one packd®kt,; for eachV; ;, wherei =
1,2, ..., M; each packePkt, ; consists ofl, ; and the values in

As discussed earlier, due to the Deluge page-by-page dissem its authentication path (i.e., the siblings of the nodeshia path

nation strategy, only after successfully receiving allkgs in the

from Vp ; to the root) in the Merkle hash tree. For example, packet

current page does a node request the next page from a sengler. WPkto,1 consists ofy 1, e2, e3—4, andes—s in Figure 2.

exploit this property to enable immediate authenticatibeazh re-
ceived packet at a sensor node.

Construction of Code Dissemination PacketsFigure 1 illus-
trates our authentication scheme for the code image to kerdis

We include the root of the Merkle hash tree, the meta datatabou
the code image (e.g., version number, size), and a signauare
all of them in asignature packetFor the sake of presentation, we
refer to the packets in page 1 through pdgasdata packetsand

inated. In this scheme, we append the hash image of eachtpackethe packets in page 0 &ssh packetsIn addition to the payload

in pageP to the corresponding packet in paffe— 1. For exam-
ple, the hash image of packétip i, H(Pktp,1), is included in
packetPktp_1,1. We then include the hash image of each packet
in pageP — 1 in the corresponding packet in page- 2. This pro-
cess continues until we finish hashing all the packets in Raayel
including their hash images in the corresponding packgtage 1.

As shown in Figure 1, we use Merkle hash tree [25] to fac#itat
the authentication of the hash images of the packets in pagéel
refer to the packets related to this Merkle hash tree colielgt
aspage 0 Figure 2 illustrates the construction of page 0 and its
packets. Specifically, we concatenate the hash images patiel
packets to formH ashValues = H(Pkt1,1) || - -+ || H(Pkti,n),
and then fragmentl ashV alues into M = 2* pieces, wheré is
the minimum value that satisfies

N-[H()|

o+ [H(-)| < Maximum payload size

@)

discussed earlier, each packet also has a header deseibiitigry
information about the code image, pages, and packets.

The reader may have noticed that we must choose paraniéters
and M carefully to ensure that the hash packets are small enough
to be transmitted in wireless sensor networks, as indidatEdua-
tion 1. This is indeed well accommodated by the current geiter
of sensor platforms that use IEEE 802.15.4 compliant radiok
such as MicaZ [3] and TelosB [4] motes. For example, we may set
the number of packets per page= 48, following the default con-
figuration in Deluge. We may use the 64-bit truncation of SHas
H (x), which provides sufficient pre-image resistance and has bee
used previously (e.g., [13]). Moreover, we may set the nurobe
leaf nodes in the Merkle hash trd¢ = 8. As a result, each hash
packet consists of 6 hash images of page 1 packets (48 byigs) a
3 hash images (24 bytes) in the authentication path in thelsler
hash tree. The total payload size is 72 bytes, smaller trad Q2
bytes maximum payload size in the IEEE 802.15.4 standarid [17

(The condition in Equation 1 is to make sure each leaf node and Transmission & Authentication of Code Dissemination Pack-

its authentication path can be transmitted in one packet)d&/
note the resulting fragments ¥s,1, V5,2, ..., Vo,m, and construct a
Merkle hash tree usinyo,i, Vo2, ..., andVy, as as leaf nodes [25].
Figure 2 shows the construction of the Merkle hash tree wiiea

48 and M = 8. Specifically, we compute; = H (Vo) (1 =
1,2,..., M), and build a binary tree by computing internal nodes

ets: We rely on the underlying Deluge protocol to distribute petek
for a given code image (inpage-by-pagdéashion). The additional
capability provided by the above packet construction isrimaedi-

ate authenticatioof packets received by each node. This property
is critical to sensor nodes in order to prevent DoS attaakediat
exhausting receivers’ buffers. Note that the approach§k3i20]

do not provide this property, and thus are vulnerable to suz8 page advertisement and SNACK packets. Such an approach has
attacks. Though not vulnerable to such DoS attacks, theoappr been used successfully for local broadcast authenticatisacure
in [10] is much less efficient than Seluge. and resilient time synchronization [35]. Specifically, eaode pe-

The base station first broadcasts the signature packethwhiges riodically discovers its neighbor nodes and performs paiwime
as the advertisement of the new code image. Upon receivilgg as synchronization with each of them. Each node also maintains
nature packet, each node verifies the signature, and thherdiit uTESLA key chain. Using the same time synchronization packet

cates the root of the Merkle hash tree constructed for padig. two neighbor nodes exchange information about th@ESLA key

root allows the node to authenticate each hash packet in @age chains (e.g., key chain commitments, the starting timebaif key

upon receipt, using the values in the authentication patludged chains in their local clocks). Based on the above time syortha-

in the same packet. For example, in Figure 2¢,if s has been tion and information exchange, each node can authentisdtecal

authenticated in the signature packet, upon receiving kepaon- broadcast packets, and all its neighbors can effectiveijyviese

sisting of Vo1, e2, es—4, @andes_g, a node can immediately verify packets following the: TESLA protocol.

whetherH (H(H(H (Vo,1)|le2)||les—4)||es—s) = e1—s. If yes, the This uTESLA-based approach has a clear advantage: It provides

received packet is accepted; otherwise, it must be a forgekiep true broadcast authentication of page advertisement and SNACK

and should be discarded right away. packets; all receivers of a packet can identify the sendsedan
Since the hash packets include all the hash images of thelpage the authentication result. However, it also has a few disathges:

packets, successful receipt of them allows the node toduwh- Due to the use ofiTESLA, there has to be either receiver side or

thenticate page 1 packets immediately upon receiving th&m. sender side delay [29, 30]. Receiver side delay will leavalaer-

continue the above example, the receipt of an authentiddted ability to DoS attacks, while sender side delay will have gatize

whereVy,1 = H(Pkt1,1)|| - - - ||H(Pkt1,6), implies the correct re- impact on the Deluge advertisement rate adjustment andesipp

ceipt of H(Pkt1,1), ..., H(Pkt1,6). Thus, when this node receives sion mechanisms.

packetPkt.; (¢ = 1,..., N) in page 1, it can immediately verify The second approach is to udaester keyfor local broadcast au-

whether hashingPkt, ; results inH (Pkt1,;) and decide whether thentication. (This approach was first discussed in [10fyéneer,
the received packet should be accepted or discarded. Fofdihe the authors of [10] did not give specific details.) Specificaach

same reasoning, receipt of the packets in gdge= 0,1, ..., P—1) node generates a per-node cluster key, which is intendaghera
allows a node to authenticate all the packets in pagd indepen- ticate all the advertisement and SNACK packets transmftiad
dently and immediately after those packets are received. itself. When a node is deployed, it periodically broadcadwbso

packets for a while to notify its neighbors. We assume semsdes

4.2 Authentication of Page Advertisement and are able to establish pairwise keys between neighbor noglag u

SNACK Packets an existing scheme (e.g., [8,12,23,24,36]). Upon recgiaihello
packet from a new neighbor, each node distributes its alisieto
the sender encrypted with their pairwise key (after a randetay
to avoid potential collision). Moreover, a node that justdbutes a
cluster key to a new neighbor also broadcasts a hello packéas
the new neighbor can reply with its encrypted cluster keytoler-
ate potential packet losses, the node may broadcast a lzelkeip
for a few more times until it receives a cluster key back.

For each outgoing page advertisement or SNACK packet, the
sender includes a unique sequence number (to prevent raplay
tacks), and authenticates the packet using its cluster ksch
node stores the cluster keys of its neighbor nodes. For eaomi-
ing page advertisement or SNACK packet, a node uses thersende
cluster key to verify its integrity. A node simply discardsauthen-
ticated or duplicate packets.

This cluster key based approach is simple and provides the sa
degree of protection against external attackers agTiSLA based
approach. In addition, it does provide immediate authatita of
received packets. However, it cannot uniquely identifysbader.

In other words, if a compromised node sends a malicious packe
the uTESLA based approach can detect the sender, but the cluster
key based approach cannot.

These two approaches are complementary to each other.-Unfor
tunately, there is no easy way to integrate them togethethdn
current version of Seluge, we adopt the cluster key basedagip
due to its simplicity. We will explore the TESLA based approach
in the future versions of Seluge.

Several efficient code propagation mechanisms used by Belug
are vulnerable to exploits. First, Deluge relies on SNACKltow
nodes to request unreceived code packets from those thatréav
ceived them. However, an attacking node may send bogusseque
packets to trigger unnecessary transmission of (prewotiahs-
mitted) code packets.

Second, Deluge relies on overhearing and suppression mecha
nisms to reduce the redundant transmission of page acv@eis,
SNACK, and code packets. We have provided immediate authen-
tication of code packets in the previous subsection. Howékie
adversary can still exploit page advertisement and SNACtkpa
ets. For example, the adversary may send page advertispamat
ets with forged, non-existing source addresses, whichswppress
page advertisement packets from normal nodes. These nstirgx
nodes will certainly not broadcast code packets upon reques
another example, the adversary may send SNACK packets to non
existing destination addresses, suppressing such pdoketsor-
mal nodes. In both cases, the adversary’s packets will plishe
normal code dissemination.

Third, Deluge uses Trickle [21] to adjust the page adveriesat
rate. A node will increase its advertisement rate if it oeans the
transmission of advertisement packets different fromwits adver-
tisement. Thus, the adversary can send such packets tagectiee
advertisement rate at normal nodes and consume their cesour

The root cause of all the above vulnerabilities is the lackuf
thentication. Thus, advertisement and request packetsheusu-
thenticated in addition to code packets. Because of theyhese .- . . .
of overhearing and suppression, such authentication neu$btal) 4.3 Mltlgatmg DoS Attacks against Slgnature
broadcast authentication, i.e., a node can authenticgt@acket Packets
transmitted by its neighbors. All the previous secure code dissemination schemes [120]13,

We investigate two complementary solutions for the auibant as well as Seluge use a signature to bootstrap the autheriicd
tion of page advertisement and SNACK packets. The firstambro a new code image. This signature is vulnerable to DoS attdties
is to useuTESLA [29, 31] for local broadcast authentication of adversary can inject bogus signature packets into the mietfooce

the nodes that receive such packets to perform expensinatsig sensor node through a few hash function operations and gempa

verifications, and eventually exhaust their limited bat{gower. isons. However, a puzzle solution can only be found througteb

As discussed earlier, Deng et al. [10] proposed to use prskjio force search due to the one-way property of the hash funcfidre
undisclosed values in a one-way hash chain to mitigate $uehts. authors of [28] gave a detailed cost analysis; we do not tepea
However, the adversary can still overhear a hash value glarie- here.) Moreover, puzzle solutions cannot be pre-computétbut
gitimate code dissemination, and reuse it to forge sigegiackets. the fresh puzzle keys disclosed only in the same signaturieepa
Due to the multi-hop and low-bandwidth nature of wirelesssse being protected by the puzzles.
networks, the adversary has sufficient time to launch Do ledt Though it takes the same amount of effort for both the base sta

against many sensor nodes that have not received this hlagh va tion and the adversary to solve a puzzle formed by a signature
Seluge adapts a recently developed weak authenticatioh-mec packet, the base station has a clear advantage over thesadver
anism callednessage specific puzzl@8] to better mitigate DoS because of the prior knowledge of the puzzle keys: The base st
attacks against the signature packets. This approach hesia s tion has enough time to solve a puzzle off-line before dissating
phase before the deployment of sensor networks. Duringettup s a new code image. By contrast, the adversary has to solvéegsuzz
phase, the base station generates a one-way key chaintounefs after seeing a puzzle key but before the puzzle key becomes in

Ko, K1, ..., Kn, WhereK; = H(K;+1) i =n—1,n—2,...,0) valid when the real signature packet reaches the targeatiseodes.
and H(-) is a cryptographic hash function. This is done by ran- Thus, with an appropriate puzzle strength, the messagéfispec
domly selectingk,, and repeatedly performing hash functifinto puzzle mechanism substantially increases the difficultaonch-

K, as shown in Figure 3. The base station then pre-distritthéees ing DoS attacks against signature packets.
key chain commitmerk, to all sensor nodes before deployment.

The keysK, Ko, ..., K, are callecpuzzle keysand the puzzlekey 5 ANALYSIS

K is used for theth version of the disseminated code image.

5.1 Security Analysis

H H H H H
Ky «—— K «— K «—— - «—— Ky« K, As mentioned in the threat model, the security concernsriwe p
marily about theintegrity and availability of code dissemination.
Figure 3: One-way key chain for puzzle keys The following analysis discusses these two aspects, rixgglgc

Integrity of Code Images: In Seluge, the trusted base station
uses a digital signature to authenticate the root of the Mdrash
tree in page 0, with the private key only known to itself. Alket
sensor nodes know the public key of the base station, anccdius
verify the signature. Under the assumption that the adwersmn-
not compromise the base station, it is guaranteed that aiose
nodes can authenticate any received signature packet basibe
root of the Merkle hash tree contained in the signature pgadkes
means that all the nodes can authenticate the hash packetgen
0 once they receive such packets, based on the security ddéver
hash tree [25]. The hash packets include the hash images déth
packets in page 1. Thus, after verifying the hash packetsnsos
node can easily authenticate the data packets in page 1 trasieel
one-way property of cryptographic hash functions. Likeyisnce
verifying the data packets in pagea sensor node can easily au-
thenticate the data packets in pagel, wheres = 1,2,..., P — 1.

In summary, if the adversary injects a forged or modified code
image, each receiving node can detect it easily because gintiha
mediate) authentication of code dissemination packets.

Resistance to DoS Attacks:As we analyzed in Section 1.1,
there are in general three types of DoS attacks against Bekgpd

I bits code dissemination: (1) Do_S_ attacks exploit_ing a_uthetitip@le-
(0000 | xx..xx I{iys, (2) DoS attacks exploiting Fhe expensive S|gnature‘|q&-
tions, and (3) DoS attacks exploiting the Deluge propagatiod
suppression mechanisms.

Seluge is resistant to all three types of DoS attacks feater-

Upon receiving a signature packet, each node first verifigs th nal attackers. Specifically, due to the page-by-page disseimimna
the puzzle key is valid using/ and K, (or a previously verified strategy, upon receiving a packet, each node should hasadsir
puzzle key) and that the puzzle key has not been used alohg wit received its hash image in the corresponding packet of thequrs

We use message specific puzzles to provide another layer of
protection for the signature packet of each code image. &cdn e
new versioni, we use the puzzle ke¥; to generate a puzzle.
Consider the signature packet of versioeode image, denoted
asi||M;||Sig(i||M;), wheres is the version number); repre-
sents the collection of the other fields in the signature ggadnd
Sig(i||M;) is the signature generated by the base station. The sig-
nature packet||M;||Sig(i||M;) and the puzzle keys; constitute
a message specific puzzle. A valid solutiBnis such a value that
after applying the hash functioH to ¢||M;||Sig(¢||M;)|| K || P,
the firstl bits of the resulting image are all “0”, as illustrated in Fig
ure 4. The parametédetermines the strength of the puzzle. Before
transmitting the signature packet, the base station fiest to solve
the puzzle by finding the puzzle solutidh. Then the base station
broadcasts the final signature packet?;||Sig(i|| M:)|| K || P;.

|| M; || Sig(i|| M) || K || P;

H

Figure 4: Message specific puzzles

a valid signature before. Only when this verification is ssstul page (or in a hash packet in page 0). As a result, it can immedi-
does the node verify the puzzle solution. If the puzzle smiuis ately authenticate any packet it receives in the curren¢ pagus,
invalid, the receiver will simply drop the signature pack&tus, Seluge can successfully defeat DoS attacks exploitingeatita-
without first solving some message specific puzzles with shfre tion delays. Moreover, because of the use of message spaaific
puzzle key, the adversary cannot force sensor nodes tqy \&gi zles [28], each node can perform a few efficient hash funcijon
natures in forged packets. erations and comparisons to detect fake signature packéiss,
Message specific puzzles can effectively mitigate DoS kdtac Seluge provides resistance to DoS attacks that send fahkatsig
against signature packets in code dissemination. The @snhl- packets. Finally, Seluge uses cluster keys to authentivatey ad-
tion in each signature packet can be efficiently verified bygalar vertisement or SNACK packet. As a result, an external agiack

cannot convince regular sensor nodes to misuse the propagat
suppression mechanisms.

Seluge can successfully defeat the first two types of DoSkatta
even if there are compromised nodes. Indeed, without tivateri
key and the unreleased puzzle keys on the trusted basenstatio
even an inside attacker cannot forge any code dissemirdickets
without being detected. However, Seluge cannot entiredyemt
compromised nodes from launching the third type of DoS k#tac
that exploit the Deluge propagation and suppression mésnan
A compromised node may misuse Deluge propagation and s#ppre
sion mechanisms to mislead its neighbors. Fortunatelyy .S
attacks are hard to coordinate and easy to detect, and treeisnp
are local to the compromised nodes. We will investigate raech
nisms that can detect such misbehaving nodes in the futute wo

5.2 Performance Analysis

In this subsection, we analyze the communication, storage,
computation overheads for Seluge. Section 6 will give mane p
formance results obtained through experimental evalnatio

Communication Overhead: We denote the code image @94,
and the maximum payload size per packetasyload|. We first
analyze the communication overhead to set up cluster keyeba
neighbor nodes, and then derive the communication overtead
disseminate a code image. We omit the analysis of the ovdrhea
due to advertisement and request messages, because ttisaule
remains the same as in Deluge.

As described in Section 4.2, each new node periodicallydroa
casts hello packets for a while to notify its neighbors. Waemde
hears a hello packet from a new neighbor, it sends its eredypt
cluster key to the sender, and requests the sender’s eedrgjots-
ter key back. This cluster key exchange phase is performed fo
limited period of time for each node. Thus, the total numbeer o
hello and cluster key packets that each node transmits itetim
though it varies depending on the actual deployment paemnet
such as the node density.

The communication overhead for transmitting a code image co
sists of asignature packethash packetsaanddata packets

The total number of data packets dependsFynthe number
of the pages. Given the parametéy¥s (number of packets per
page),|payload| (payload size available for code), ajfd(-)| (size
of a hash image)P can be determined as follows: Since each
packet in all the pages except for the last one should dedigargle
hash value, each packet in page 1 to p&ge 1 has|payload| —
|H (-)| bytes available for code, and each packet in p&ghas
|[payload| bytes all available for code. Thus, we can calculate

CI|—N-:|payload H
P-1= [W]. The number of packets in the last

page can be calculated pg =D lpavioed —IHODT, which
may be less thaV. Thus, the total number of data packets is
CI|—N(P— ayload|—|H (-
(N(P —1) 4 [[H=HE=Dpavpadl- HODY), whereP — 1 =
’- |CI|—N-|payload| -‘
N-(payload|—|H(-)[) I*

more cluster keys a node has, the more neighbors it can commun
cate with. Suppose each node keeps at mostuster keys for its
neighbors. Moreover, each node needs to store the hashsmége
the packets in the page to be received; such hash imagessare di
tributed in the corresponding packets in the previous padete
that once a packet is received correctly, its hash image does
have to be stored any more, and the buffer entry can be reased t
save the hash image for the corresponding packet in the aget p
Thus, each sensor node needs to have buffer for at Kdsash
images. In total, the maximum buffer size required by Seloge
each sensor nodeis x |K.|+ N x |H(-)|.

Computation Overhead: Now we analyze the computation cost
that Seluge requires on regular sensor nodes. Let us firstdsn
attack-free cases. For each cluster key message, a sertter ad
message integrity code (MIC) for authentication and themrygris
the message for the secrecy of the cluster key. A receivesderiu
key packet is decrypted first and then verified with the MICha t
packet. Therefore, one MIC generation and one encrypti@naep
tion per transmission of a cluster key message are requireite
one decryption and one MIC verification operation are neexted
the receiver side. Each advertisement or SNACK packet resjai
MIC for authentication. Thus, a sender needs to generateG Ml
and a receiver needs to perform one MIC verification.

Consider the computation required to authenticate one itnde
age. For each signature packet, two hash operations aredeed
to verify the puzzle key and the puzzle solution, respelstivand
a signature verification operation is performed. Each hasiket
is verified bylog M + 1 = k 4 1 hash operations, and the hash
packets together required (log M + 1) hash operations. Each
of the remaining data packets is verified by one single hasheep
tion. We already analyzed the total number of data packeteea
in this subsection. Thus, in attack-free situations, thaltcom-
putation cost required to verify a single code image inciudee
signature verification an@2 + M(log M + 1) + N(P — 1) +
[IA=ME = pavad - [ELDT) hash function operations, where
P —1 = [oz - ,

When there are attacks, a node being attacked must perform
more computation. The actual computation depends on the vol
ume of the attacks. However, as discussed in Section 5. &xthe
computations are mostly those that can be efficiently peréak,
such as hash function operations.

5.3 Comparison with Previous Approaches

In this subsection, we provide a qualitative comparisomben
Seluge and the previous approaches, including Sluicef2@Berke-
ley approach [13], and the Colorado approach [10].

Comparison with Sluice [20] and Berkeley approach [13]:
Sluice and the Berkeley approach have similar construstsrwell
as similar properties. They can prevent malicious code @a&gpm
being accepted at sensor nodes. However, both of them dily hig

Now let us consider the number of hash packets in page 0, which yulnerable to several types of DoS attacks. First, they atl b

is the number of leaves in the Merkle hash tree. As discussed i
Section 4.1, the number of hash packets\is = Qk(k > 1),
wherek is the minimum value that satisfies the following inequal-
ity: 20U 4 - |H ()| < [payload).

Storage Overhead:Now we analyze the maximum buffer size

vulnerable to DoS attacks exploiting authentication delas dis-
cussed in Section 1.1, the adversary can send a large nurhber o
bogus packets to exhaust the buffers at receiving nodeson8gec
both of them overlooked the authentication of advertisenagal
SNACK packets. As a result, the adversary can easily atewckos

required on each sensor node by Seluge. Due to the memory con-odes by misusing the Deluge propagation and suppressioh-me

straint on sensor nodes, the required buffer size on eadhisah
important factor in performance.

In Seluge, each node needs to authenticate advertisenterg-an
quest packets from its neighbors using the right clustes k&fus,
each node should allocate memory to store these cluster Kags

anisms. Finally, there is no protection for the signaturekptiin
either approach. This allows the adversary to exhaust ttierpa
power on sensor nodes by sending a large number of forged-sign
ture packets. In contrast, as discussed in Section 5.1g&elkan
guarantee the code image integrity and deal with all theseld.

Thus, Seluge is much superior to Sluice and the Berkeleyoagpr

Comparison with Colorado approach [10]: The Colorado ap-
proach can provide code image integrity protection. In tholdlj
it allows each code packet to be immediately authenticapesh u
receipt, and thus is not vulnerable to DoS attacks explpitio-
thentication delays. Though the Colorado approach achitve
same property as Seluge in the resistance against such ogsat
Seluge uses a much more efficient technique than the Colagado
proach. The Colorado approach uses a per-page Merkle legskatr
node transmits a request packet for each level in the treleyaits
for the packets only at the requested level. This essgndatupts
the efficient page-by-page propagation mechanism used loyg&e
As a result, this approach not only adds additional packetsns-
mit on a per-page basis, but also requires much more intenact
between a sender and a receiver. In contrast, Seluge sshmles
integrates the Deluge page-by-page propagation mechanism

As discussed in Section 1.1, the Colorado approach is \aibher
to DoS attacks against the signature packets, despité fitaposes
to use one-way hash chains to mitigate such attacks. Moareove
though the Colorado approach discussed the possibilitytbiati-
cating SNACK packets to partially address the DoS attacfoéx
ing the Deluge propagation and suppression mechanismeetit o
looked the authentication requirements for advertiserpankets.
Therefore, it is still vulnerable to such DoS attacks. Intcast,
Seluge can handle both types of DoS attacks gracefully.

In conclusion, Seluge is much superior to the Colorado agmro
though the latter has significant improvements over SIl#6¢4nd
the Berkeley approach [13].

6. IMPLEMENTATION & EXPERIMENTS

6.1 Implementation

We implement Seluge as an extension to Deluge 2.0 in the cur-
rent TinyOS distribution. Our implementation has both bstagion
side and sensor side programs. The base station side pmgram

brary to perform the verification of signature packets (idahg

both puzzle and signature verification), hash packets, atedmhck-

ets. The commitment of the puzzle key chain used in message
specific puzzles and the public key of the base station, whieh
generated by the Java tools, are pre-distributed to albsemxles.

The pairwise keys, which are used to distribute cluster kays
pre-distributed to all sensor nodes as well.

Table 1: Code size (bytes) on MicaZ

ROM RAM
Deluge 23,052 1,123
Seluge 46,434 2,424
TinyECC in Seluge | 13,324 426

Table 1 shows the ROM and RAM usage of Seluge on Micaz
motes. The code size of Deluge and that of TinyECC are also in-
cluded for reference purposes. Itis easy to see that Selugeaises
both the ROM and RAM consumption compared with Deluge, and
the majority of the ROM increase is due to TinyECC.

6.2 Experimental Evaluation

We have provided theoretical analysis of the security arrd pe
formance properties of Seluge in Section 5. In this subsectie
report the experimental evaluation of Seluge in a netwoMiosZ
motes [3]. For comparison purposes, we perform the samef set o
experiments with Deluge [16]. Moreover, we also impleméset t
Colorado approach [10] and include it in our experimentalleyv
ation. However, we do not include Sluice [20] and the Berkele
approach [13] in the experiments, since they offer much eeak
security properties than Seluge and the Colorado apprd@gh [

We use two performance metrics in our evaluatiBropagation
delayandcommunication overheadl'he propagation delay is the
time required to finish disseminating a code image to all taes
in the network. As mentioned in [16], for performance reason
Deluge requires that every node keep its radio on. Thus,rbEap

Java programs expected to run on a PC, as the Deluge Java toolsgation delay is closely related to the energy consumptigaired

They extend the Deluge Java tools to construct and injectooele
dissemination packets into the sensor network. The sender s
program is written in nesC [14] and runs on regular sensoes.od

We use the 64-bit truncation of SHA-1 as the hash funcfibn
It provides sufficient pre-image resistance, and has beeth pre-
viously (e.g., [13]). For digital signatures, we use ECDSA&I0
the 160-bit elliptic curvesecp160k1, which is defined in [7].
On the base station side, we use the JCE provider in the Bouncy
Castle Crypto APIs [1] for hash function, key generatiord aig-
nature generation operations. On each sensor node, wedtdeg
the TinyECC package [22] into Seluge to perform hash functio
and signature verification operations. Moreover, we usenérd-
ware cryptographic support provided by the CC2420 radiopzpm
nent on MicaZ motes [3] for symmetric cryptographic opemadi,
including the encryption (using AES) and authenticatiorir{g
CBC-MAC) of cluster keys, and the authentication of pageeadv
tisement and SNACK packets.

We add the following functionalities in the Java tools onlhse
station side: Computation of the hash images of the dataepsmck
from the last to the first page; construction of the page 0 Merk

hash tree and then the hash packets from the hash images of the

page 1 packets; generation of the signature packet fromoibte r

of the above Merkle hash tree and the meta data about the code

image (e.g., version number, size). We also implement tresage
specific puzzle mechanism proposed in [28], and includeghdex
functionalities in the Java tools.

We add aPacket Veri fi er module into the Deluge nesC li-

by a code dissemination. The communication overhead is mea-
sured as the total number of packets transmitted by all tiieso
during a code dissemination, which is also related to radisgy
consumption. In addition, we also examine the propagatyoiih-

ics on individual nodes during the code dissemination tceustand

how each node receives different pages of the code image.

: «’\.Jt? . 7‘ . .]I\
=t

o r\ . °%;
o 2 I <« E
N S B L

Figure 5: The testbed (31 MicaZ motes; 82 feet59 feet)

We perform the experiments in a testbed of 31 MicaZ motes.

Figure 5 shows the layout of the testbed. The sensor nodeteare and the gap between them becomes larger as the code image size

ployed in 20 rooms, including offices and labs, covering @aaf creases. Among all the experiments, the average propagidiay

82 feetx 59 feet. We equip each node with an Ethernet program- of the Colorado approach is 67% longer than that of SelugeeWh

ming board, which provides remote access to the node. We only the packet payload size is 62 bytes, it takes the Coloradmapp

use the programming boards to gather evaluation results fhe 48% to 92% longer time than Seluge to disseminate a code image

sensor nodes; they do not interfere with the radio commtinita In the worst case, when the code image size is 30K bytes, thg de

between sensor nodes at all. We set the transmission powedr le of the Colorado approach is about 92% longer than that ofggelu

of the MicaZ radio module (CC2420) as3dBm to allow multiple Similarly, when the packet payload size is 102 bytes, it $atke

hops in the network. Colorado approach 51% to 75% more time to finish dissemigatin
Similar to Deluge, we need to configure a number of parameters a code image, where the worst case (i.e., 75%) happens waen th

for Seluge before code dissemination. We divide each code pa code image size is 10K bytes.

into 48 packets, as the default setting in Deluge. To integttze As we explained earlier, the main reason for this perforraanc

security mechanisms and the Deluge propagation mechanigens difference is that the Colorado approach propagates eahpage

have to make certain changes to some Deluge parameters. Deland the corresponding per-page Merkle hash tree in a |lgwivel

uge uses a 2ms gap between two packet transmissions. Howeverfashion. This approach increases the interaction betwsending

a SHA-1 hash verification operation takes about 15ms. Thes, w node and its receivers, and disrupts the page-by-page gatipa

increase the transmission gap from 2ms to 17ms to accommodat in Deluge. In contrast, Seluge integrates the authenticaaind

this time requirement. Moreover, we increase the SNACK pack DoS-resistance mechanisms seamlessly with the Delugelpage

delay from 256ms to 1 second, so that a requesting node ¢igest page propagation and suppression mechanisms.

sender enough time to transmit all the requested packets. t®u Let us now compare Seluge with Deluge. In all the experiments
the dependency between the SNACK delay and advertisement de Seluge introduces on average 37% longer propagation tiare th
lay, we also change the lower bound of the advertisemenbgéoi Deluge. When the packet payload size is 62 bytes, it takagy8el
2 seconds. The upper bound of the advertisement periodmemai 41% to 85% longer time than Deluge. When the packet payload
the same default value of 60 seconds as in Deluge. size is 102 bytes, the propagation delay of Seluge is 10% % 55
In these experiments, we use two different packet paylazatsi longer than Deluge. The worst case scenarios in both paeket p
102 bytes and 62 bytes, to examine the performance in diffeie load sizes happen when the code image size is 10K bytes.
uations. (Note that the maximum payload size in IEEE 802.[1] The additional delay introduced by Seluge is due to the mapa

is 102 bytes.) To investigate and compare the impact of gisse tion and verification of the signature packet, the dissetitineaof
nated code size on performance, we use four different codgem the (additional) hash packets, and the increase of the rnuofiiee
sizes: 10K bytes, 20K bytes, 30K bytes, and 40K bytes. In each data packets due to the inclusion of hash images. Nevestheais
experiment, we inject a new code image at the circled nodstéoc shown in Figure 6, the additional propagation delay intcadlby
at the bottom-left corner in Figure 5. For each test case esfepn Seluge is much smaller than that by the Colorado approach.
the same experiment 10 times and then take an average ower the These experimental results demonstrate that Seluge utdesd
. much less propagation delay into code dissemination thaCtt
6.2.1 Propagation Delay orado approach, in addition to the stronger security ptEser
Figure 6 shows the propagation delays of the three schemes in
the experiments. As the code image size increases, thegaopa §.2.2 Communication Overhead
tion delays of all three schemes almost linearly increaseelShe . L
. . . . Figure 7 shows the communication overheads of all threensebe
number of packets required for a given code image increastea . .
) which are measured as the total number of packets transnbijte
packet payload size decreases, for all three approactegprap- : o
. . all the nodes in each test case. For the communication cxeshaf
agation delays for 62 bytes payload size are longer thare tfoys .
102 bytes payload size Seluge and the Color.ado approach: we consider SNACK packets
' hash packets (called index packets in the Colorado appidagh
and data packets because those three types of packets dienadd
ally required for a dissemination. Likewise, we considerASK
and data packets for the communication overhead of Deluge. A
in the evaluation results for propagation delays, for ale¢éhap-

700

—¥— Seluge-102
600 4| —*— Colorado approach-102
—#&— Deluge-102

500 - - % - - Seluge-62 o > , =
o - - < - - Colorado approach-62 o proaches, the communication overheads increase appriekyia-
& 400 - - ® - - Deluge-62 early as the code image size grows, and the communicatian ove
2 r heads for 62 bytes payload size are larger than those for yit@2 b
23001 payload size. In all the experiments, the Colorado apprbastthe

200 | largest communication overheads among all three appreache

Now let us provide a more detailed comparison of Seluge and
the Colorado approach in terms of the communication overhea
When the packet payload size is 62 bytes, the average coroaiuni
tion overhead of the Colorado approach is about 601 packets m

100 +

0 10 20 80 40 than that of Seluge. In the worst case, the Colorado appn@ach
Code size (KB) quires 1,070 more packets than Seluge, when the code image of
30K bytes is disseminated. Similarly, when the packet Faykize
Figure 6: Propagation delay is 102 bytes, the Colorado approach requires on average 6 m

packets than Seluge. In the worst case, where the code irizage s
Now let us first compare the propagation delays in Selugetendt 10K bytes, the Colorado approach requires 724 more padhits t
Colorado approach. For all the code image sizes, the pripaga Seluge.
delays in Seluge are much less than those in the Coloradoagipr Now consider the comparison of Seluge and Deluge. When the

—X¥— Seluge-102

—— Colorado approach-102
—#— Deluge-102

- - % - - Seluge-62

- - < - - Colorado approach-62
- - 4 - - Deluge-62

Number of transmited packets

Code size (KB)

Figure 7: Communication overhead

payload size is 62 bytes, Seluge requires on average 87 7packe
ets than Deluge. In the worst case, Seluge requires 1,748 mor
packets than Deluge, when the code image size is 40K bytesnWh
the payload size is 102 bytes, Seluge requires on averagedel
packets than Deluge. In the worst case, when the code image si
is 40K bytes, Seluge requires 791 more packets than Deluge.
Overall, the Colorado approach requires 22% more packats th
Seluge, while Seluge requires 20% more packets than Dellge.
communication overhead that Seluge introduces is maingytdu
the inclusion of the signature, the hash packets, and theimages
of each packet. The experimental results indicate thatg@ehas
less communication overhead than the Colorado approashglth
it can achieve even stronger security properties.

6.2.3 Propagation on Individual Nodes

We also investigate how code pages are propagated on indlvid
nodes to get more insights. In the following, we select twde®
in the testbed, which are markedsas andn. in Figure 5, to see
how they receive code pages over time. (We select these tdesno
to present, because; is close to the source and; is far away
from the source. They are expected to have different sitnsti
during code dissemination.) In the following, we show thaaiyic
propagation features on these two nodes, using the testwtase
we inject a code image of 30K bytes with 102 bytes payload size

¥
XK

—*— Seluge-nl
- - % - - Seluge-n2
—H&— Colorado-nl
- -3 - - Colorado-n2
—<— Deluge-n1
- - < - - Deluge-n2

200 250

Completion rate

300 350

Time (sec)
Figure 8: Dissemination progress over time on selected node
Figure 8 shows the time points when or n: finishes receiv-

ing every page of the code image under all three approaches. T
x-axis represents the completion time for a page, and thdsy-a

10

represents the ratio of the number of completed pages twtak t
number of pages in a code image. As time goeswm@andn. grad-
ually complete the receiving of the code image. Due to theceff
of spatial multiplexingn. receives some pages of the code image
beforen; finishes to receive all the pages of the code image.

Figure 8 confirms at individual node level that Seluge allows
much faster propagation than the Colorado approach. Indeed
some cases, Seluge propagates even faster than Deluggh tihou
involves additional security mechanisms such as signaeniica-
tion and hash packet distribution.

7. CONCLUSION AND FUTURE WORK

In this paper, we presented the design, implementationeeald
uation of Seluge, an efficient, secure, robust, and DoSteeti
code dissemination system for wireless sensor networksidBg
the efficiency and robustness inherited from Deluge, Seprge
vides security protections for code dissemination, inicigdhe in-
tegrity protection of code images and resistance to vafimf at-
tacks exploiting the expensive signature verificationssie au-
thentication delays, and the epidemic propagation stiegagsed
by Deluge. Seluge is superior to all the previous attemptsdo
cure code dissemination, and is the only solution that sessth
integrates the security mechanisms and the Deluge effiprept
agation strategies. Our experiments in a network of MicaZeso
also demonstrated that Seluge is an efficient and practitatian
for secure code dissemination in wireless sensor networks.

In our future work, we will perform more experimental evalua
tion in different situations, such as with larger testbead more
severe conditions. In addition, we plan to develop techesqio
prevent and detect insider DoS attacks exploiting the Dekm-
demic and suppression mechanisms. Finally, we will expiech-
nigues that can address the secrecy of code images durirg cod
dissemination besides providing integrity protection &uab re-
sistance.

8. REFERENCES

[1] Bouncy castle crypto apis.
http://ww. bouncycast! e. org.
Imote2: High-performance wireless sensor network node
htt p:
/I www. xbow. conmf Pr oduct s/ Product _pdf _
files/Wrel ess_pdf/|note2_Datasheet. pdf.
Micaz: Wireless measurement systemt p:
/I www. xbow. comf Pr oduct s/ Product _pdf _
files/Wrel ess_pdf/ M CAz_Dat asheet . pdf.
[4] Telosb mote platformht t p:
/I www. xbow. comf Pr oduct s/ Product _pdf _
files/Wrel ess_pdf/ Tel osB_Dat asheet . pdf.
[5] TinyOS: An open-source OS for the networked sensor
regime.ht t p: // www. ti nyos. net/.
I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. Wireless sensor networks: A surv@gpmputer
Networks 38(4):393—-422, 2002.
Certicom Research. Standards for efficient cryptogyaph
SEC 2: Recommended elliptic curve domain parameters.
htt p:
/I www. secg. org/col | ateral / sec2_final . pdf,
September 2000.
H. Chan, A. Perrig, and D. Song. Random key predistrdouti
schemes for sensor networks.IEEE Symposium on
Research in Security and Privagyages 197-213, 2003.

(2]

(3]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Crossbow Technology Inc. Mote in-network programming
user reference, 2003.

J. Deng, R. Han, and S. Mishra. Secure code distribution
dynamically programmable wireless sensor networks. In
Proceedings of the Fifth International Conference on
Information Processing in Sensor Networks (IPSN,06)
April 2006.

J. R. Douceur. The sybil attack. First International
Workshop on Peer-to-Peer Systems (IPTPS'DR)r 2002.

W. Du, J. Deng, Y. S. Han, and P. Varshney. A pairwise key
pre-distribution scheme for wireless sensor networks. In
Proceedings of 10th ACM Conference on Computer and
Communications Security (CCS'QPrges 42-51, October
2003.

P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler. Secgrin
the deluge network programming systemPimceedings of
the Fifth International Conference on Information
Processing in Sensor Networks (IPSN "0&pril 2006.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to
networked embedded systemsRroceedings of
Programming Language Design and Implementation (PLDI
2003) June 2003.

Y.C. Hu, A. Perrig, and D.B. Johnson. Packet leashes: A
defense against wormhole attacks in wireless ad hoc
networks. InProceedings of INFOCOM 2002pril 2003.

J. W. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scate. |
Proceedings of the Second International Conference on
Embedded Networked Sensor Systems (SenSys '04)
November 2004.

IEEE Computer Society. IEEE 802.15.4: leee standard fo
information technology — telecommunications and
information exchange between systems local and
metropolitan area networks — specific requirements pa4t 15.
Wireless medium access control (MAC) and physical layer
(PHY) specifications for low-rate wireless personal area
networks (LR-WPANS).

http://standards. i eee. org/ geti eee802/

downl oad/ 802. 15. 4- 2003. pdf , October 2003.

S.S. Kulkarni and M. Arumugam. Infuse: A TDMA based
data dissemination protocol for sensor networks. Technica
Report MSU-CSE-04-46, Department of Computer Science,
Michigan State University, November 2004.

S.S. Kulkarni and L. Wang. MNP: multihop network
reprogramming service for sensor networksPhmceedings
of the 25th International Conference on Distributed
Computing Systems (ICDCS '0prges 7-16, June 2005.
P.E. Lanigan, R. Gandhi, and P. Narasimhan. Sluiceui®ec
dissemination of code updates in sensor networks. In
Proceedings of the 26th International Conference on
Distributed Computing Systems (ICDCS '0&yly 2006.

P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code propagation and
maintenance in wireless sensor networksPtaceedings of
the 1st Symposium on Network System Design and
Implementation (NSDI '04March 2004.

A. Liu, P. Kampanakis, and P. Ning. Tinyecc: Ellipticree
cryptography for sensor networks (version Olg)t p: / /

di scovery. csc. ncsu. edu/ sof t war e/ Ti nyECC .
D. Liu and P. Ning. Establishing pairwise keys in distried
sensor networks. IRroceedings of 10th ACM Conference on

11

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Computer and Communications Security (CCS'@3ges
52-61, October 2003.

D. Liu and P. Ning. Improving key pre-distribution with
deployment knowledge in static sensor netwoAGSM
Transactions on Sensor Networ$2):204—239, November
2005.

R. Merkle. Protocols for public key cryptosystems. In
Proceedings of the IEEE Symposium on Research in Security
and Privacy Apr 1980.

V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprinkler: A
reliable and scalable data dissemination service for egel
embedded devices. Proceedings IEEE International
Real-Time Systems Symposipages 277—-286, December
2005.

J. Newsome, R. Shi, D. Song, and A. Perrig. The sybikhtta
in sensor networks: Analysis and defense®?toceedings of
IEEE International Conference on Information Processing i
Sensor Networks (IPSN 20048pril 2004.

P. Ning, A. Liu, and W. Du. Mitigating DoS attacks agdins
broadcast authentication in wireless sensor networks.
Technical Report TR-2005-39, North Carolina State
University, Department of Computer Science, August 2005.
Revised September 2006.

A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient
authentication and signing of multicast streams over lossy
channels. IrProceedings of the 2000 IEEE Symposium on
Security and PrivacyMay 2000.

A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficientan
secure source authentication for multicastPhoceedings of
Network and Distributed System Security Symposium
February 2001.

A. Perrig, R. Szewczyk, V. Wen, D. Culler, and D. Tygar.
SPINS: Security protocols for sensor networks. In
Proceedings of Seventh Annual International Conference on
Mobile Computing and Networkpages 521-534, July 2001.
L.A. Phillips. Aqueduct: Robust and efficient code
propagation in heterogeneous wireless sensor networks.
Master’s thesis, University of Colorado at Boulder, 2005.

N. Reijers and K. Langendoen. Efficient code distribntin
wireless sensor networks. Rroceedings of the 2nd ACM
International Conference on Wireless Sensor Networks and
Applications (WSNA '03pages 60-67, September 2003.

T. Stathopoulos, J. Heidemann, and D. Estrin. A remotiec
update mechanism for wireless sensor networks. Technical
Report CENS-TR-30, University of California, Los Angeles,
Center for Embedded Networked Computing, November
2003.

K. Sun, P. Ning, C. Wang, A. Liu, and Y. Zhou.
TinySeRSync: Secure and resilient time synchronization in
wireless sensor networks. Rroceedings of 13th ACM
Conference on Computer and Communications Security
(CCS '06) pages 264277, October/November 2006.

S. Zhu, S. Setia, and S. Jajodia. LEAP: Efficient segurit
mechanisms for large-scale distributed sensor netwanks. |
Proceedings of 10th ACM Conference on Computer and
Communications Security (CCS'Q®rges 62—72, October
2003.

