
Seluge: Secure and DoS-Resistant Code Dissemination
in Wireless Sensor Networks

Sangwon Hyun, Peng Ning, An Liu
North Carolina State University

Department of Computer Science

Wenliang Du
Syracuse University

Department of Electrical Engineering and
Computer Science

ABSTRACT
Wireless sensor networks are considered ideal candidates for a wide
range of applications, such as industry monitoring, data acquisition
in hazardous environments, and military operations. It is desirable
and sometimes necessary to reprogram sensor nodes through wire-
less links after they are deployed, due to, for example, the need
of removing bugs and adding new functionalities. The process of
propagating a new code image to the nodes in a wireless sensornet-
work is commonly referred to ascode dissemination. This paper
presents the design, implementation, and evaluation of an efficient,
secure, robust, and DoS-resistant code dissemination system named
Selugefor wireless sensor networks. Seluge is a secure extension to
Deluge, an open source, state-of-the-art code dissemination system
for wireless sensor networks. Besides the efficiency and robust-
ness offered by Deluge, Seluge provides security protections for
code dissemination, including the integrity protection ofcode im-
ages and resistance to various DoS attacks exploiting the expensive
signature verifications, possible authentication delays,and the epi-
demic propagation strategies used by Deluge. Seluge is superior to
all the previous attempts for secure code dissemination, and is the
only solution that seamlessly integrates the security mechanisms
and the Deluge efficient propagation strategies. In addition to the
theoretical analysis that demonstrates the security and performance
of Seluge, this paper also reports the experimental evaluation of
Seluge in a network of MicaZ motes, which further shows the high
efficiency of Seluge in practice.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—Wireless communication

General Terms
Security, Design, Algorithms

Keywords
Sensor Networks, Security, Code Dissemination, DoS Attacks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

1. INTRODUCTION
A wireless sensor network is expected to consist of a potentially

large number of low-cost, low-power, and multi-functionalsen-
sor nodes that communicate over short distances through wireless
links [6]. Due to their potential to provide fine-grained sensing and
actuation at a reasonable cost, wireless sensor networks are con-
sidered ideal candidates for a wide range of applications, such as
industry monitoring, data acquisition in hazardous environments,
and military operations.

It is desirable and sometimes necessary to reprogram sensornodes
through wireless links after they are deployed, due to, for example,
the need of removing bugs and adding new functionalities. The
process of propagating a new code image to the nodes in a network
is commonly referred to ascode dissemination. A few code dis-
semination protocols [9,16,18,19,26,32–34] have been developed
recently to propagate new code images using the ad-hoc wireless
network formed by the sensor nodes. In particular, Deluge [16]
uses an epidemic protocol [21] for efficient advertisement of code
meta data, and divides each code image into multiple pages toallow
simultaneous propagation of multiple parts of the image in different
regions of the network. Deluge is generally accepted as the state of
the art of code dissemination in wireless sensor networks, and has
been included in recent TinyOS distributions [5].

In hostile environments, where there may be malicious attacks
against wireless sensor networks, code dissemination faces threats
from both external attackers and potentially compromised nodes.
For example, the adversary may attempt to modify or replace the
real code image being propagated to sensor nodes, introducing ma-
licious code into the sensor network. As another example, the ad-
versary may inject bogus code dissemination packets and force nor-
mal sensor nodes to verify and/or forward them, thus exhausting
their limited battery power.

1.1 Related Work
Several recent works have attempted to provide secure code dis-

semination for wireless sensor networks [10, 13, 20]. All these ap-
proaches are extensions to Deluge [16]. Lanigan et al. proposed a
protocol named Sluice [20] to integrate digital signature and cryp-
tographic hash functions to provide efficient authentication for code
dissemination. This approach follows Deluge to divide eachcode
image into pages. The hash image of each page is included in the
previous page, while the hash image of the first page is signedand
included in a signature packet. This approach, however, is vulner-
able to Denial of Service (DoS) attacks. This is because in Sluice,
a node can only perform authentication when an entire page isre-
ceived, and thus it cannot authenticate a packet immediately after it
is received. To exploit this property, the adversary may send a large
number of bogus packets during code dissemination; a sensornode,

1

upon receiving a packet, cannot tell if it is authentic or not, and has
to save it if possible. As a result, the adversary can force the sensor
nodes to save bogus packets but drop some authentic ones.

A scheme similar to Sluice was independently proposed in [13].
In this approach, the hash image of each code dissemination packet
is included in the previous packet, and the hash image of the first
packet is signed and included in an advertisement packet. A code
dissemination packet can be authenticated only when the packet
immediately before it has been received and authenticated.The au-
thors of [13] proposed to optimistically store out-of-order packets.
Unfortunately, this decision opens a door to the same DoS attacks,
since the adversary can again send a lot of bogus packets to exhaust
receivers’ buffers. Not storing out-of-order packets is certainly an
option to avoid the DoS attacks. However, this effectively disables
the Deluge epidemic propagation mechanism, and leads to ineffi-
cient recovery. For example, losing one packet at a node willresult
in the retransmission of all the later packets in the same page.

Deng et al. proposed a scheme to improve the DoS-resilience of
secure code dissemination by using Merkle hash tree [10]. This ap-
proach can be considered as an extension to Sluice [20]. Besides
having the hash image of each page in the previous one, it alsouses
a Merkle hash tree to allow each packet to be immediately authen-
ticated upon receipt. However, this approach adds additional com-
munication overhead due to the transmission of a Merkle hashtree
for everypage [10]. More importantly, it distributes each hash tree
in a level-by-level fashion; only after every packet in one level is
received and verified can the packets in the next level be requested.
This effectively disables the efficient page-by-page propagation in
Deluge, resulting in higher propagation delays.

Although all the existing approaches [10, 13, 20] are based on
Deluge [16], none of them provide a satisfactory solution tothe
authentication of advertisement and Selective Negative Acknowl-
edgment (SNACK) packets. (In Deluge, such packets are used to
advertise new data and facilitate the request and retransmission of
packets.) Indeed, the approaches in [13, 20] did not consider the
authentication of such packets at all. As a result, the adversary can
forge such packets and exploit the Deluge epidemic and suppres-
sion mechanisms to launch DoS attacks. For example, the adver-
sary may repeatedly request (previously transmitted) packets from
a node (using SNACK) to exhaust its battery power. Moreover,the
adversary may request packets from a non-existing node; dueto the
Deluge suppression mechanism, others that overhear this request
will not send in request for packets (to real nodes). The authors
of [10] discussed the possibility of authenticating SNACK packets,
but overlooked the issue of advertisement packets.

Another issue common to all existing approaches [10, 13, 20]is
the vulnerability to DoS attacks against the signature packet, which
is used to bootstrap the authentication of code dissemination. The
approaches in [13,20] did not consider such threats at all. As a re-
sult, the adversary can broadcast packets with bogus signatures, and
force all the receivers to perform expensive signature verifications.
The approach in [10] proposes to release previously undisclosed
values in a one-way hash chain to mitigate such DoS attacks. How-
ever, this method is vulnerable to online attackers. Once the adver-
sary overhears a hash value during a legitimate code dissemination,
it can reuse the value to send forged signatures to other regions
of the network. Due to the multi-hop and low-bandwidth nature
of wireless sensor networks, the adversary has sufficient time to
launch DoS attacks against many sensor nodes.

1.2 Proposed Approach
In this paper, we present the design, development, and evaluation

of an efficient, secure, robust, and DoS-resistant code dissemina-

tion system namedSelugefor wireless sensor networks. Based on
the lessons learned from the previous approaches [10, 13, 20], Sel-
uge is able to address all the limitations identified in Section 1.1.
Seluge is an extension to Deluge [16], an open source code dis-
semination system included in TinyOS [5]. Seluge inherits the effi-
ciency and robustness properties from Deluge, and at the same time
provides security protections for code dissemination, including the
integrity protection of code images and resistance to various DoS
attacks. Seluge is targeted at the current and future generation of
sensor platforms, such as MicaZ [3], TelosB [4], and Imote2 [2].

The key contribution of Seluge is a novel way to organize the
packets used to distribute new code images. By carefully arranging
code dissemination data items and their hash images in packets,
Seluge provides immediate authentication of each packet when it is
received, without disrupting the efficient propagation mechanisms
used by Deluge. Thus, it can easily defeat the DoS attacks that
exploit possible authentication delays.

Seluge uses a signature to bootstrap the authentication of anew
code image. However, unlike the previous attempts, Seluge uses a
weak authentication along with the signature. This weak authen-
tication mechanism has some nice properties: It can be efficiently
verified by a regular sensor node, but it takes a computationally
powerful attacker a substantial amount of time to forge. Moreover,
it cannot be pre-computed. Thus, this weak authentication mecha-
nism provides an effective filter of forged signatures. As a result,
Seluge is not subject to the same DoS attacks against signature ver-
ifications as the previous approaches.

Seluge properly authenticates advertisement and SNACK pack-
ets. As a result, it can prevent DoS attacks that exploit the Deluge
epidemic propagation and suppression mechanisms. This is an-
other security property not available in the previous approaches.

Compared with the previous attempts [10, 13, 20], Seluge not
only provides integrity protection for disseminated code images,
but is also resistant to various DoS attacks exploiting the expen-
sive signature verification operations, possible authentication de-
lays, and the efficient epidemic propagation strategies used by Del-
uge. Indeed, Seluge is superior to all the previous solutions [10,13,
20], and is the only solution that seamlessly integrates thesecurity
mechanisms and the efficient Deluge propagation strategies.

Our contribution in this paper is three-fold. First, we develop the
Seluge suite of techniques for efficient, secure, robust, and DoS-
resistant code dissemination in wireless sensor networks.Our secu-
rity and performance analysis demonstrates that Seluge is superior
to all the previous solutions [10, 13, 20]. Second, we integrate the
proposed techniques into the Deluge code base in TinyOS distribu-
tions, providing a software packet that is readily available. Third,
we perform extensive experiments in a network of MicaZ motesto
evaluate the performance of Seluge.

1.3 Organization
The rest of this paper is organized as follows. The next section

clarifies our assumptions and the threats to code dissemination in
wireless sensor networks. Section 3 gives a brief overview of Del-
uge. Section 4 presents the techniques used in Seluge for secure
and DoS-resistant code dissemination. Section 5 provides theoret-
ical analysis of the security and performance of Seluge. Section 6
describes the implementation and experimental evaluationof Sel-
uge in a network of MicaZ motes. Section 7 concludes this paper
and points out some future research directions.

2. ASSUMPTIONS AND THREAT MODEL
Assumptions: We assume the source of the code images, i.e.,

thebase station, is a powerful node (e.g., a laptop PC), which also

2

has sufficient energy supply (e.g., charged in a vehicle). Weas-
sume that sensor nodes are resource constrained in terms of com-
putational power, communication capability, storage capacity, and
energy, due to cost reasons. We assume a sensor node can perform
a limited number of public key cryptographic operations. For ex-
ample, a MicaZ mote can perform a 160-bit ECC signature verifi-
cation operation in about 2.43 seconds using TinyECC [22]. How-
ever, a sensor node cannot afford performing many such operations
due to the intensive computation and energy consumption. Weas-
sume the packet size is large enough to hold a signature and other
information required by a signature packet. This is a commonas-
sumption used by all the previous approaches [10, 13, 20]; itcan
be satisfied on current sensor platforms with IEEE 802.15.4 com-
pliant radios [17], where the maximum payload size is 102 bytes.
We assume each sensor node has enough memory to store the code
image being disseminated (e.g., using the measurement flashon
MicaZ motes [3]).

We assume Deluge as the underlying code dissemination proto-
col. We assume the base station has a private and public key pair,
and each sensor node in the network is pre-configured with thebase
station’s public key. We also assume sensor nodes are able toes-
tablish pairwise keys between neighbor nodes, for example,using
one of the existing schemes [8,12,23,24,36].

Threat Model: We assume the adversary has access to compu-
tationally resourceful nodes such as laptops and workstations. We
assume the adversary may launch bothexternalandinsiderattacks.
In external attacks, the adversary does not control any valid node
in the network. The adversary may attempt to eavesdrop for sen-
sitive information, inject forged messages, replay previously inter-
cepted messages, and impersonate valid sensor nodes. Moreover,
the adversary may fake non-existing links by launching wormhole
attacks [15]. The adversary may use Sybil attacks [11, 27], where
one node presents multiple identities to defeat typical fault toler-
ant mechanisms. The adversary may launch DoS attacks by, for
example, forging a large number of signature packets or exploiting
weaknesses of the code dissemination protocol. The adversary may
jam the communication channel; however, we assume that the ad-
versary cannot constantly jam the communication channel without
being detected and removed.

The adversary may compromise some nodes to attack the rest of
the network. We call such attacksinsider attacks, since the com-
promised nodes are considered a part of the network before they
are identified and removed. However, we assume that the majority
of the nodes are not compromised. We also assume that the adver-
sary may exploit the compromised nodes in arbitrary ways to at-
tack the remaining nodes. For example, the adversary may instruct
the compromised nodes to intercept sensitive information even if
the messages are encrypted, (selectively) drop packets, and launch
Sybil attacks [27] using the identities and keying materials of com-
promised nodes. The adversary may also instruct the compromised
nodes not to cooperate with others, inject false data, and exploit
specific weaknesses of various protocols. However, we assume the
base station cannot be compromised.

With those capabilities, the adversary attempts to disseminate
illegal code images into the sensor network using the code dissem-
ination mechanism, or launch DoS attacks to consume the limited
resources (e.g., battery power, memory) on select sensor nodes.

3. BACKGROUND: DELUGE OVERVIEW
Deluge [16] is an open source code dissemination system for

wireless sensor networks running TinyOS [5]. In Deluge, a code
image is divided into fixed-size pages, and each page is further split
into same-size packets. The pages for a code image is delivered

in a sequential order; a receiver requests pagei only after having
successfully received all packets in page0 to page(i − 1).

Deluge uses an epidemic protocol [21] for efficient advertise-
ment of code meta data [16]. Specifically, each node periodically
advertises which version of a code image it has and how many
pages it has received for that version. For energy efficiency, the
advertisement rate is dynamically adjusted: If a node discovers its
own advertisement is different from those received from others, it
increases its advertisement rate. Otherwise, it decreasesits adver-
tisement rate. Using such dynamic adjustment of advertisement
rate, Deluge can achieve rapid propagation during dissemination of
a new code image, but consumes little resource in steady state.

Once a node finds out from an advertisement packet that a neigh-
bor node has the code page it needs, it uses Selective Negative Ac-
knowledgment (SNACK) packets to request transmission fromthis
neighbor. Each SNACK packet contains a requested page number
and a bit vector indicating the requested packets in that page. Upon
receiving several request packets for the same page, a node com-
putes the union of the requested packets (via the bit vectors), and
transmits the requested packets in a round-robin fashion.

Deluge uses a page-by-page dissemination strategy. After com-
pletely receiving a page, a node advertises the availability of the
newly received page, and may transmit the corresponding packets
upon request. This allows “spatial multiplexing” during the code
dissemination, so that multiple pages of a code image can be prop-
agated at the same time in different regions of the network.

Deluge uses various message suppression mechanisms for effi-
ciency reasons. To reduce redundant advertisements, each node
suppresses its own advertisement if the number of overheardad-
vertisement packets that contain the same information as its own
is over a predefined threshold. Moreover, if a node overhearsre-
quest (or data) packets for a page that it is about to request or has
already received, it suppresses its own request packet. Similarly,
if a node overhears request (or data) packets for the pages with
smaller indices than that of the page it is currently transmitting,
the node suppresses transmission of the subsequent data packets.
By using such suppression mechanisms, Deluge increases thepos-
sibility that nodes in the same region wait for the same page and
consequently maximizes the effect of overhearing. As discussed
in Section 1.1, though these suppression mechanisms improve the
efficiency of code dissemination, they also introduce opportunities
for the adversary.

4. DESIGN OF SELUGE
Seluge relies on Deluge [16] for efficiency (via epidemic prop-

agation and suppression) and robustness (via SNACK). To defend
against the security threats against code dissemination inwireless
sensor networks, Seluge further adds three layers of protection:
(1) Immediate authentication of code dissemination packets, (2) au-
thentication of page advertisement and SNACK packets, and (3) anti-
DoS protection for signature packets. The key contributionof Sel-
uge is that it provides authentication and DoS-resistant protections
by efficiently using cryptographic primitives, and at the same time
still allows the efficient code dissemination mechanisms provided
by Deluge, such as page-by-page propagation and suppression.

We use the following notations in our description:H(·) denotes
a cryptographic hash function;Sig(M) stands for the digital sig-
nature ofM signed by the base station;C ‖ D denotes the con-
catenation ofC andD; |E| denotes the size ofE in byte.

4.1 Immediate Authentication of Code Dissem-
ination Packets

Following Deluge [16], we partition the code image to be dis-

3

PktP,1

Pkt2,1 Pkt2,2 Pkt2,N-1 Pkt2,N...

Pkt1,1 Pkt1,2 Pkt1,N-1 Pkt1,N...

PktP-1,1 PktP-1,2 PktP-1,N-1 PktP-1,N...

.
.
.

.
.
.

PktP,N-1PktP,2

Hash Tree

...

Signature

.
.
.

.
.
.

...

Page 1:

Page 2:

Page P

Page P:

Page 0:

Signature Packet:

PktP,N

Figure 1: Authentication of code images

seminated into fixed-size pages. (For simplicity, we assumeall the
pages have the same size. In practice, the last page may have a
smaller size. Our description can be slightly modified to accom-
modate such cases.) Assume there areP pages in total, denoted as
page 1 through pageP . We then split each pagei (1 ≤ i ≤ P)
into N fixed-size packets, denoted asPkti,1 throughPkti,N .

As discussed earlier, due to the Deluge page-by-page dissemi-
nation strategy, only after successfully receiving all packets in the
current page does a node request the next page from a sender. We
exploit this property to enable immediate authentication of each re-
ceived packet at a sensor node.

Construction of Code Dissemination Packets:Figure 1 illus-
trates our authentication scheme for the code image to be dissem-
inated. In this scheme, we append the hash image of each packet
in pageP to the corresponding packet in pageP − 1. For exam-
ple, the hash image of packetPktP,1, H(PktP,1), is included in
packetPktP−1,1. We then include the hash image of each packet
in pageP −1 in the corresponding packet in pageP −2. This pro-
cess continues until we finish hashing all the packets in page2 and
including their hash images in the corresponding packets inpage 1.

As shown in Figure 1, we use Merkle hash tree [25] to facilitate
the authentication of the hash images of the packets in page 1. We
refer to the packets related to this Merkle hash tree collectively
aspage 0. Figure 2 illustrates the construction of page 0 and its
packets. Specifically, we concatenate the hash images of thepage 1
packets to formHashV alues = H(Pkt1,1) ‖ · · · ‖ H(Pkt1,N),
and then fragmentHashV alues into M = 2k pieces, wherek is
the minimum value that satisfies

N · |H(·)|

2k
+ k · |H(·)| ≤ Maximum payload size. (1)

(The condition in Equation 1 is to make sure each leaf node and
its authentication path can be transmitted in one packet.) We de-
note the resulting fragments asV0,1, V0,2, ...,V0,M , and construct a
Merkle hash tree usingV0,1, V0,2, ..., andV0,M as leaf nodes [25].
Figure 2 shows the construction of the Merkle hash tree whenN =
48 andM = 8. Specifically, we computeei = H(V0,i) (i =
1, 2, ..., M), and build a binary tree by computing internal nodes

e1 e6e5e4e3e2

e5-6 e7-8

e1-4 e5-8

e1-8

Signature

V0,1 V0,2 V0,3 V0,4 V0,5 V0,6 V0,7 V0,8

e7 e8

e3-4e1-2

H(Pkt1,1) H(Pkt1,6)... H(Pkt1,43) H(Pkt1,48)......

|| ||

Pa
ge

0:

Figure 2: The Merkle hash tree constructed for page 0 when
M = 8 and N = 48. Packet Pkt0,i (i = 1, ..., M) consists
of V0,i and the values in its authentication path. For example,
packetPkt0,1 consists ofV0,1, e2, e3−4, and e5−8.

from adjacent children nodes. Each internal node is the hashim-
age of the two children nodes. For example, in Figure 2,e1−2 =
H(e1||e2), ande1−4 = H(e1−2||e3−4).

We then constructM packets using this Merkle hash tree. Specif-
ically, we construct one packetPkt0,i for eachV0,i, wherei =
1, 2, ..., M ; each packetPkt0,i consists ofV0,i and the values in
its authentication path (i.e., the siblings of the nodes in the path
from V0,i to the root) in the Merkle hash tree. For example, packet
Pkt0,1 consists ofV0,1, e2, e3−4, ande5−8 in Figure 2.

We include the root of the Merkle hash tree, the meta data about
the code image (e.g., version number, size), and a signatureover
all of them in asignature packet. For the sake of presentation, we
refer to the packets in page 1 through pageP asdata packets, and
the packets in page 0 ashash packets. In addition to the payload
discussed earlier, each packet also has a header describingauxiliary
information about the code image, pages, and packets.

The reader may have noticed that we must choose parametersN

andM carefully to ensure that the hash packets are small enough
to be transmitted in wireless sensor networks, as indicatedin Equa-
tion 1. This is indeed well accommodated by the current generation
of sensor platforms that use IEEE 802.15.4 compliant radios[17],
such as MicaZ [3] and TelosB [4] motes. For example, we may set
the number of packets per pageN = 48, following the default con-
figuration in Deluge. We may use the 64-bit truncation of SHA-1 as
H(x), which provides sufficient pre-image resistance and has been
used previously (e.g., [13]). Moreover, we may set the number of
leaf nodes in the Merkle hash treeM = 8. As a result, each hash
packet consists of 6 hash images of page 1 packets (48 bytes) and
3 hash images (24 bytes) in the authentication path in the Merkle
hash tree. The total payload size is 72 bytes, smaller than the 102
bytes maximum payload size in the IEEE 802.15.4 standard [17].

Transmission & Authentication of Code Dissemination Pack-
ets: We rely on the underlying Deluge protocol to distribute packets
for a given code image (in apage-by-pagefashion). The additional
capability provided by the above packet construction is theimmedi-
ate authenticationof packets received by each node. This property
is critical to sensor nodes in order to prevent DoS attacks aimed at
exhausting receivers’ buffers. Note that the approaches in[13, 20]

4

do not provide this property, and thus are vulnerable to suchDoS
attacks. Though not vulnerable to such DoS attacks, the approach
in [10] is much less efficient than Seluge.

The base station first broadcasts the signature packet, which serves
as the advertisement of the new code image. Upon receiving a sig-
nature packet, each node verifies the signature, and thus authenti-
cates the root of the Merkle hash tree constructed for page 0.This
root allows the node to authenticate each hash packet in page0
upon receipt, using the values in the authentication path included
in the same packet. For example, in Figure 2, ife1−8 has been
authenticated in the signature packet, upon receiving a packet con-
sisting ofV0,1, e2, e3−4, ande5−8, a node can immediately verify
whetherH(H(H(H(V0,1)||e2)||e3−4)||e5−8) = e1−8. If yes, the
received packet is accepted; otherwise, it must be a forged packet
and should be discarded right away.

Since the hash packets include all the hash images of the page1
packets, successful receipt of them allows the node to further au-
thenticate page 1 packets immediately upon receiving them.To
continue the above example, the receipt of an authenticatedV0,1,
whereV0,1 = H(Pkt1,1)|| · · · ||H(Pkt1,6), implies the correct re-
ceipt ofH(Pkt1,1), ...,H(Pkt1,6). Thus, when this node receives
packetPkt1,i (i = 1, ..., N) in page 1, it can immediately verify
whether hashingPkt1,i results inH(Pkt1,i) and decide whether
the received packet should be accepted or discarded. Following the
same reasoning, receipt of the packets in pagei (i = 0, 1, ..., P−1)
allows a node to authenticate all the packets in pagei + 1 indepen-
dently and immediately after those packets are received.

4.2 Authentication of Page Advertisement and
SNACK Packets

Several efficient code propagation mechanisms used by Deluge
are vulnerable to exploits. First, Deluge relies on SNACK toallow
nodes to request unreceived code packets from those that have re-
ceived them. However, an attacking node may send bogus request
packets to trigger unnecessary transmission of (previously trans-
mitted) code packets.

Second, Deluge relies on overhearing and suppression mecha-
nisms to reduce the redundant transmission of page advertisement,
SNACK, and code packets. We have provided immediate authen-
tication of code packets in the previous subsection. However, the
adversary can still exploit page advertisement and SNACK pack-
ets. For example, the adversary may send page advertisementpack-
ets with forged, non-existing source addresses, which willsuppress
page advertisement packets from normal nodes. These non-existing
nodes will certainly not broadcast code packets upon request. As
another example, the adversary may send SNACK packets to non-
existing destination addresses, suppressing such packetsfrom nor-
mal nodes. In both cases, the adversary’s packets will disrupt the
normal code dissemination.

Third, Deluge uses Trickle [21] to adjust the page advertisement
rate. A node will increase its advertisement rate if it overhears the
transmission of advertisement packets different from its own adver-
tisement. Thus, the adversary can send such packets to increase the
advertisement rate at normal nodes and consume their resources.

The root cause of all the above vulnerabilities is the lack ofau-
thentication. Thus, advertisement and request packets must be au-
thenticated in addition to code packets. Because of the heavy use
of overhearing and suppression, such authentication must be (local)
broadcast authentication, i.e., a node can authenticate any packet
transmitted by its neighbors.

We investigate two complementary solutions for the authentica-
tion of page advertisement and SNACK packets. The first approach
is to useµTESLA [29, 31] for local broadcast authentication of

page advertisement and SNACK packets. Such an approach has
been used successfully for local broadcast authenticationin secure
and resilient time synchronization [35]. Specifically, each node pe-
riodically discovers its neighbor nodes and performs pairwise time
synchronization with each of them. Each node also maintainsa
µTESLA key chain. Using the same time synchronization packets,
two neighbor nodes exchange information about theirµTESLA key
chains (e.g., key chain commitments, the starting times of their key
chains in their local clocks). Based on the above time synchroniza-
tion and information exchange, each node can authenticate its local
broadcast packets, and all its neighbors can effectively verify these
packets following theµTESLA protocol.

ThisµTESLA-based approach has a clear advantage: It provides
true broadcast authentication of page advertisement and SNACK
packets; all receivers of a packet can identify the sender based on
the authentication result. However, it also has a few disadvantages:
Due to the use ofµTESLA, there has to be either receiver side or
sender side delay [29,30]. Receiver side delay will leave a vulner-
ability to DoS attacks, while sender side delay will have a negative
impact on the Deluge advertisement rate adjustment and suppres-
sion mechanisms.

The second approach is to usecluster keyfor local broadcast au-
thentication. (This approach was first discussed in [10]; however,
the authors of [10] did not give specific details.) Specifically, each
node generates a per-node cluster key, which is intended to authen-
ticate all the advertisement and SNACK packets transmittedfrom
itself. When a node is deployed, it periodically broadcastshello
packets for a while to notify its neighbors. We assume sensornodes
are able to establish pairwise keys between neighbor nodes using
an existing scheme (e.g., [8,12,23,24,36]). Upon receiving a hello
packet from a new neighbor, each node distributes its cluster key to
the sender encrypted with their pairwise key (after a randomdelay
to avoid potential collision). Moreover, a node that just distributes a
cluster key to a new neighbor also broadcasts a hello packet so that
the new neighbor can reply with its encrypted cluster key. Totoler-
ate potential packet losses, the node may broadcast a hello packet
for a few more times until it receives a cluster key back.

For each outgoing page advertisement or SNACK packet, the
sender includes a unique sequence number (to prevent replayat-
tacks), and authenticates the packet using its cluster key.Each
node stores the cluster keys of its neighbor nodes. For each incom-
ing page advertisement or SNACK packet, a node uses the sender’s
cluster key to verify its integrity. A node simply discards unauthen-
ticated or duplicate packets.

This cluster key based approach is simple and provides the same
degree of protection against external attackers as theµTESLA based
approach. In addition, it does provide immediate authentication of
received packets. However, it cannot uniquely identify thesender.
In other words, if a compromised node sends a malicious packet,
theµTESLA based approach can detect the sender, but the cluster
key based approach cannot.

These two approaches are complementary to each other. Unfor-
tunately, there is no easy way to integrate them together. Inthe
current version of Seluge, we adopt the cluster key based approach
due to its simplicity. We will explore theµTESLA based approach
in the future versions of Seluge.

4.3 Mitigating DoS Attacks against Signature
Packets

All the previous secure code dissemination schemes [10, 13,20]
as well as Seluge use a signature to bootstrap the authentication of
a new code image. This signature is vulnerable to DoS attacks: The
adversary can inject bogus signature packets into the network, force

5

the nodes that receive such packets to perform expensive signature
verifications, and eventually exhaust their limited battery power.

As discussed earlier, Deng et al. [10] proposed to use previously
undisclosed values in a one-way hash chain to mitigate such threats.
However, the adversary can still overhear a hash value during a le-
gitimate code dissemination, and reuse it to forge signature packets.
Due to the multi-hop and low-bandwidth nature of wireless sensor
networks, the adversary has sufficient time to launch DoS attacks
against many sensor nodes that have not received this hash value.

Seluge adapts a recently developed weak authentication mech-
anism calledmessage specific puzzles[28] to better mitigate DoS
attacks against the signature packets. This approach has a setup
phase before the deployment of sensor networks. During the setup
phase, the base station generates a one-way key chain consisting of
K0, K1, ...,Kn, whereKi = H(Ki+1) (i = n − 1, n − 2, ..., 0)
andH(·) is a cryptographic hash function. This is done by ran-
domly selectingKn and repeatedly performing hash functionH to
Kn, as shown in Figure 3. The base station then pre-distributesthe
key chain commitmentK0 to all sensor nodes before deployment.
The keysK1, K2, ..., Kn are calledpuzzle keys, and the puzzle key
Ki is used for theith version of the disseminated code image.

K0 Kn-1K1 K2 Kn
H H HHH

Figure 3: One-way key chain for puzzle keys

We use message specific puzzles to provide another layer of
protection for the signature packet of each code image. For each
new versioni, we use the puzzle keyKi to generate a puzzle.
Consider the signature packet of versioni code image, denoted
as i||Mi||Sig(i||Mi), wherei is the version number,Mi repre-
sents the collection of the other fields in the signature packet, and
Sig(i||Mi) is the signature generated by the base station. The sig-
nature packeti||Mi||Sig(i||Mi) and the puzzle keyKi constitute
a message specific puzzle. A valid solutionPi is such a value that
after applying the hash functionH to i||Mi||Sig(i||Mi)||Ki||Pi,
the firstl bits of the resulting image are all “0”, as illustrated in Fig-
ure 4. The parameterl determines the strength of the puzzle. Before
transmitting the signature packet, the base station first tries to solve
the puzzle by finding the puzzle solutionPi. Then the base station
broadcasts the final signature packeti||Mi||Sig(i||Mi)||Ki||Pi.

H

i || Mi || Sig(i ||Mi) || Ki || Pi

00 00 xx...xx
l bits

Figure 4: Message specific puzzles

Upon receiving a signature packet, each node first verifies that
the puzzle key is valid usingH andK0 (or a previously verified
puzzle key) and that the puzzle key has not been used along with
a valid signature before. Only when this verification is successful
does the node verify the puzzle solution. If the puzzle solution is
invalid, the receiver will simply drop the signature packet. Thus,
without first solving some message specific puzzles with a fresh
puzzle key, the adversary cannot force sensor nodes to verify sig-
natures in forged packets.

Message specific puzzles can effectively mitigate DoS attacks
against signature packets in code dissemination. The puzzle solu-
tion in each signature packet can be efficiently verified by a regular

sensor node through a few hash function operations and compar-
isons. However, a puzzle solution can only be found through brute-
force search due to the one-way property of the hash function. (The
authors of [28] gave a detailed cost analysis; we do not repeat it
here.) Moreover, puzzle solutions cannot be pre-computed without
the fresh puzzle keys disclosed only in the same signature packets
being protected by the puzzles.

Though it takes the same amount of effort for both the base sta-
tion and the adversary to solve a puzzle formed by a signature
packet, the base station has a clear advantage over the adversary
because of the prior knowledge of the puzzle keys: The base sta-
tion has enough time to solve a puzzle off-line before disseminating
a new code image. By contrast, the adversary has to solve puzzles
after seeing a puzzle key but before the puzzle key becomes in-
valid when the real signature packet reaches the target sensor nodes.
Thus, with an appropriate puzzle strength, the message specific
puzzle mechanism substantially increases the difficulty oflaunch-
ing DoS attacks against signature packets.

5. ANALYSIS

5.1 Security Analysis
As mentioned in the threat model, the security concerns are pri-

marily about theintegrity andavailability of code dissemination.
The following analysis discusses these two aspects, respectively.

Integrity of Code Images: In Seluge, the trusted base station
uses a digital signature to authenticate the root of the Merkle hash
tree in page 0, with the private key only known to itself. All the
sensor nodes know the public key of the base station, and thuscan
verify the signature. Under the assumption that the adversary can-
not compromise the base station, it is guaranteed that all sensor
nodes can authenticate any received signature packet as well as the
root of the Merkle hash tree contained in the signature packet. This
means that all the nodes can authenticate the hash packets inpage
0 once they receive such packets, based on the security of Merkle
hash tree [25]. The hash packets include the hash images of the data
packets in page 1. Thus, after verifying the hash packets, a sensor
node can easily authenticate the data packets in page 1 basedon the
one-way property of cryptographic hash functions. Likewise, once
verifying the data packets in pagei, a sensor node can easily au-
thenticate the data packets in pagei+1, wherei = 1, 2, ..., P − 1.

In summary, if the adversary injects a forged or modified code
image, each receiving node can detect it easily because of the (im-
mediate) authentication of code dissemination packets.

Resistance to DoS Attacks:As we analyzed in Section 1.1,
there are in general three types of DoS attacks against Deluge based
code dissemination: (1) DoS attacks exploiting authentication de-
lays, (2) DoS attacks exploiting the expensive signature verifica-
tions, and (3) DoS attacks exploiting the Deluge propagation and
suppression mechanisms.

Seluge is resistant to all three types of DoS attacks fromexter-
nal attackers. Specifically, due to the page-by-page dissemination
strategy, upon receiving a packet, each node should have already
received its hash image in the corresponding packet of the previous
page (or in a hash packet in page 0). As a result, it can immedi-
ately authenticate any packet it receives in the current page. Thus,
Seluge can successfully defeat DoS attacks exploiting authentica-
tion delays. Moreover, because of the use of message specificpuz-
zles [28], each node can perform a few efficient hash functionop-
erations and comparisons to detect fake signature packets.Thus,
Seluge provides resistance to DoS attacks that send fake signature
packets. Finally, Seluge uses cluster keys to authenticateevery ad-
vertisement or SNACK packet. As a result, an external attacker

6

cannot convince regular sensor nodes to misuse the propagation or
suppression mechanisms.

Seluge can successfully defeat the first two types of DoS attacks
even if there are compromised nodes. Indeed, without the private
key and the unreleased puzzle keys on the trusted base station,
even an inside attacker cannot forge any code disseminationpackets
without being detected. However, Seluge cannot entirely prevent
compromised nodes from launching the third type of DoS attacks
that exploit the Deluge propagation and suppression mechanisms.
A compromised node may misuse Deluge propagation and suppres-
sion mechanisms to mislead its neighbors. Fortunately, such DoS
attacks are hard to coordinate and easy to detect, and the impacts
are local to the compromised nodes. We will investigate mecha-
nisms that can detect such misbehaving nodes in the future work.

5.2 Performance Analysis
In this subsection, we analyze the communication, storage,and

computation overheads for Seluge. Section 6 will give more per-
formance results obtained through experimental evaluation.

Communication Overhead: We denote the code image asCI ,
and the maximum payload size per packet as|payload|. We first
analyze the communication overhead to set up cluster keys between
neighbor nodes, and then derive the communication overheadto
disseminate a code image. We omit the analysis of the overhead
due to advertisement and request messages, because this overhead
remains the same as in Deluge.

As described in Section 4.2, each new node periodically broad-
casts hello packets for a while to notify its neighbors. Whena node
hears a hello packet from a new neighbor, it sends its encrypted
cluster key to the sender, and requests the sender’s encrypted clus-
ter key back. This cluster key exchange phase is performed for a
limited period of time for each node. Thus, the total number of
hello and cluster key packets that each node transmits is limited,
though it varies depending on the actual deployment parameters
such as the node density.

The communication overhead for transmitting a code image con-
sists of asignature packet, hash packets, anddata packets.

The total number of data packets depends onP , the number
of the pages. Given the parametersN (number of packets per
page),|payload| (payload size available for code), and|H(·)| (size
of a hash image),P can be determined as follows: Since each
packet in all the pages except for the last one should delivera single
hash value, each packet in page 1 to pageP − 1 has|payload| −
|H(·)| bytes available for code, and each packet in pageP has
|payload| bytes all available for code. Thus, we can calculate
P − 1 = ⌈ |CI|−N·|payload|

N·(|payload|−|H(·)|)
⌉. The number of packets in the last

page can be calculated as⌈ |CI|−N(P−1)(|payload|−|H(·)|)
|payload|

⌉, which
may be less thanN . Thus, the total number of data packets is
(N(P − 1) + ⌈ |CI|−N(P−1)(|payload|−|H(·)|)

|payload|
⌉), whereP − 1 =

⌈ |CI|−N·|payload|
N·(|payload|−|H(·)|)

⌉.
Now let us consider the number of hash packets in page 0, which

is the number of leaves in the Merkle hash tree. As discussed in
Section 4.1, the number of hash packets isM = 2k(k ≥ 1),
wherek is the minimum value that satisfies the following inequal-
ity: N·|H(·)|

2k
+ k · |H(·)| ≤ |payload|.

Storage Overhead:Now we analyze the maximum buffer size
required on each sensor node by Seluge. Due to the memory con-
straint on sensor nodes, the required buffer size on each node is an
important factor in performance.

In Seluge, each node needs to authenticate advertisement and re-
quest packets from its neighbors using the right cluster keys. Thus,
each node should allocate memory to store these cluster keys. The

more cluster keys a node has, the more neighbors it can communi-
cate with. Suppose each node keeps at mostm cluster keys for its
neighbors. Moreover, each node needs to store the hash images of
the packets in the page to be received; such hash images are dis-
tributed in the corresponding packets in the previous page.Note
that once a packet is received correctly, its hash image doesnot
have to be stored any more, and the buffer entry can be reused to
save the hash image for the corresponding packet in the next page.
Thus, each sensor node needs to have buffer for at mostN hash
images. In total, the maximum buffer size required by Selugeon
each sensor node ism × |Kc| + N × |H(·)|.

Computation Overhead: Now we analyze the computation cost
that Seluge requires on regular sensor nodes. Let us first consider
attack-free cases. For each cluster key message, a sender adds
message integrity code (MIC) for authentication and then encrypts
the message for the secrecy of the cluster key. A received cluster
key packet is decrypted first and then verified with the MIC in the
packet. Therefore, one MIC generation and one encryption opera-
tion per transmission of a cluster key message are required,while
one decryption and one MIC verification operation are neededon
the receiver side. Each advertisement or SNACK packet requires a
MIC for authentication. Thus, a sender needs to generate a MIC,
and a receiver needs to perform one MIC verification.

Consider the computation required to authenticate one codeim-
age. For each signature packet, two hash operations are needed
to verify the puzzle key and the puzzle solution, respectively, and
a signature verification operation is performed. Each hash packet
is verified bylog M + 1 = k + 1 hash operations, and the hash
packets together requiresM(log M + 1) hash operations. Each
of the remaining data packets is verified by one single hash opera-
tion. We already analyzed the total number of data packets earlier
in this subsection. Thus, in attack-free situations, the total com-
putation cost required to verify a single code image includes one
signature verification and(2 + M(log M + 1) + N(P − 1) +

⌈ |CI|−N(P−1)(|payload|−|H(·)|)
|payload|

⌉) hash function operations, where

P − 1 = ⌈ |CI|−N·|payload|
N·(|payload|−|H(·)|)

⌉.
When there are attacks, a node being attacked must perform

more computation. The actual computation depends on the vol-
ume of the attacks. However, as discussed in Section 5.1, theextra
computations are mostly those that can be efficiently performed,
such as hash function operations.

5.3 Comparison with Previous Approaches
In this subsection, we provide a qualitative comparison between

Seluge and the previous approaches, including Sluice [20],the Berke-
ley approach [13], and the Colorado approach [10].

Comparison with Sluice [20] and Berkeley approach [13]:
Sluice and the Berkeley approach have similar constructions as well
as similar properties. They can prevent malicious code images from
being accepted at sensor nodes. However, both of them are highly
vulnerable to several types of DoS attacks. First, they are both
vulnerable to DoS attacks exploiting authentication delays. As dis-
cussed in Section 1.1, the adversary can send a large number of
bogus packets to exhaust the buffers at receiving nodes. Second,
both of them overlooked the authentication of advertisement and
SNACK packets. As a result, the adversary can easily attack sensor
nodes by misusing the Deluge propagation and suppression mech-
anisms. Finally, there is no protection for the signature packet in
either approach. This allows the adversary to exhaust the battery
power on sensor nodes by sending a large number of forged signa-
ture packets. In contrast, as discussed in Section 5.1, Seluge can
guarantee the code image integrity and deal with all these attacks.

7

Thus, Seluge is much superior to Sluice and the Berkeley approach.
Comparison with Colorado approach [10]: The Colorado ap-

proach can provide code image integrity protection. In addition,
it allows each code packet to be immediately authenticated upon
receipt, and thus is not vulnerable to DoS attacks exploiting au-
thentication delays. Though the Colorado approach achieves the
same property as Seluge in the resistance against such DoS attacks,
Seluge uses a much more efficient technique than the Coloradoap-
proach. The Colorado approach uses a per-page Merkle hash tree; a
node transmits a request packet for each level in the tree, and waits
for the packets only at the requested level. This essentially disrupts
the efficient page-by-page propagation mechanism used by Deluge.
As a result, this approach not only adds additional packets to trans-
mit on a per-page basis, but also requires much more interactions
between a sender and a receiver. In contrast, Seluge seamlessly
integrates the Deluge page-by-page propagation mechanism.

As discussed in Section 1.1, the Colorado approach is vulnerable
to DoS attacks against the signature packets, despite that it proposes
to use one-way hash chains to mitigate such attacks. Moreover,
though the Colorado approach discussed the possibility of authenti-
cating SNACK packets to partially address the DoS attacks exploit-
ing the Deluge propagation and suppression mechanisms, it over-
looked the authentication requirements for advertisementpackets.
Therefore, it is still vulnerable to such DoS attacks. In contrast,
Seluge can handle both types of DoS attacks gracefully.

In conclusion, Seluge is much superior to the Colorado approach,
though the latter has significant improvements over Sluice [20] and
the Berkeley approach [13].

6. IMPLEMENTATION & EXPERIMENTS

6.1 Implementation
We implement Seluge as an extension to Deluge 2.0 in the cur-

rent TinyOS distribution. Our implementation has both basestation
side and sensor side programs. The base station side programs are
Java programs expected to run on a PC, as the Deluge Java tools.
They extend the Deluge Java tools to construct and inject newcode
dissemination packets into the sensor network. The sensor side
program is written in nesC [14] and runs on regular sensor nodes.

We use the 64-bit truncation of SHA-1 as the hash functionH .
It provides sufficient pre-image resistance, and has been used pre-
viously (e.g., [13]). For digital signatures, we use ECDSA over
the 160-bit elliptic curvesecp160k1, which is defined in [7].
On the base station side, we use the JCE provider in the Bouncy
Castle Crypto APIs [1] for hash function, key generation, and sig-
nature generation operations. On each sensor node, we integrate
the TinyECC package [22] into Seluge to perform hash function
and signature verification operations. Moreover, we use thehard-
ware cryptographic support provided by the CC2420 radio compo-
nent on MicaZ motes [3] for symmetric cryptographic operations,
including the encryption (using AES) and authentication (using
CBC-MAC) of cluster keys, and the authentication of page adver-
tisement and SNACK packets.

We add the following functionalities in the Java tools on thebase
station side: Computation of the hash images of the data packets
from the last to the first page; construction of the page 0 Merkle
hash tree and then the hash packets from the hash images of the
page 1 packets; generation of the signature packet from the root
of the above Merkle hash tree and the meta data about the code
image (e.g., version number, size). We also implement the message
specific puzzle mechanism proposed in [28], and include the sender
functionalities in the Java tools.

We add aPacketVerifier module into the Deluge nesC li-

brary to perform the verification of signature packets (including
both puzzle and signature verification), hash packets, and data pack-
ets. The commitment of the puzzle key chain used in message
specific puzzles and the public key of the base station, whichare
generated by the Java tools, are pre-distributed to all sensor nodes.
The pairwise keys, which are used to distribute cluster keys, are
pre-distributed to all sensor nodes as well.

Table 1: Code size (bytes) on MicaZ
ROM RAM

Deluge 23,052 1,123
Seluge 46,434 2,424
TinyECC in Seluge 13,324 426

Table 1 shows the ROM and RAM usage of Seluge on MicaZ
motes. The code size of Deluge and that of TinyECC are also in-
cluded for reference purposes. It is easy to see that Seluge increases
both the ROM and RAM consumption compared with Deluge, and
the majority of the ROM increase is due to TinyECC.

6.2 Experimental Evaluation
We have provided theoretical analysis of the security and per-

formance properties of Seluge in Section 5. In this subsection, we
report the experimental evaluation of Seluge in a network ofMicaZ
motes [3]. For comparison purposes, we perform the same set of
experiments with Deluge [16]. Moreover, we also implement the
Colorado approach [10] and include it in our experimental evalu-
ation. However, we do not include Sluice [20] and the Berkeley
approach [13] in the experiments, since they offer much weaker
security properties than Seluge and the Colorado approach [10].

We use two performance metrics in our evaluation:Propagation
delayandcommunication overhead. The propagation delay is the
time required to finish disseminating a code image to all the nodes
in the network. As mentioned in [16], for performance reasons,
Deluge requires that every node keep its radio on. Thus, the propa-
gation delay is closely related to the energy consumption required
by a code dissemination. The communication overhead is mea-
sured as the total number of packets transmitted by all the nodes
during a code dissemination, which is also related to radio power
consumption. In addition, we also examine the propagation dynam-
ics on individual nodes during the code dissemination to understand
how each node receives different pages of the code image.

n1

n2

Figure 5: The testbed (31 MicaZ motes; 82 feet×59 feet)

We perform the experiments in a testbed of 31 MicaZ motes.

8

Figure 5 shows the layout of the testbed. The sensor nodes arede-
ployed in 20 rooms, including offices and labs, covering an area of
82 feet× 59 feet. We equip each node with an Ethernet program-
ming board, which provides remote access to the node. We only
use the programming boards to gather evaluation results from the
sensor nodes; they do not interfere with the radio communication
between sensor nodes at all. We set the transmission power level
of the MicaZ radio module (CC2420) as−3dBm to allow multiple
hops in the network.

Similar to Deluge, we need to configure a number of parameters
for Seluge before code dissemination. We divide each code page
into 48 packets, as the default setting in Deluge. To integrate the
security mechanisms and the Deluge propagation mechanisms, we
have to make certain changes to some Deluge parameters. Del-
uge uses a 2ms gap between two packet transmissions. However,
a SHA-1 hash verification operation takes about 15ms. Thus, we
increase the transmission gap from 2ms to 17ms to accommodate
this time requirement. Moreover, we increase the SNACK packet
delay from 256ms to 1 second, so that a requesting node gives the
sender enough time to transmit all the requested packets. Due to
the dependency between the SNACK delay and advertisement de-
lay, we also change the lower bound of the advertisement period to
2 seconds. The upper bound of the advertisement period remains
the same default value of 60 seconds as in Deluge.

In these experiments, we use two different packet payload sizes,
102 bytes and 62 bytes, to examine the performance in different sit-
uations. (Note that the maximum payload size in IEEE 802.15.4 [17]
is 102 bytes.) To investigate and compare the impact of dissemi-
nated code size on performance, we use four different code image
sizes: 10K bytes, 20K bytes, 30K bytes, and 40K bytes. In each
experiment, we inject a new code image at the circled node located
at the bottom-left corner in Figure 5. For each test case, we perform
the same experiment 10 times and then take an average over them.

6.2.1 Propagation Delay
Figure 6 shows the propagation delays of the three schemes in

the experiments. As the code image size increases, the propaga-
tion delays of all three schemes almost linearly increase. Since the
number of packets required for a given code image increases as the
packet payload size decreases, for all three approaches, the prop-
agation delays for 62 bytes payload size are longer than those for
102 bytes payload size.

0

100

200

300

400

500

600

700

0 10 20 30 40

Code size (KB)

D
el

ay
 (

se
c)

Seluge-102
Colorado approach-102
Deluge-102
Seluge-62
Colorado approach-62
Deluge-62

Figure 6: Propagation delay

Now let us first compare the propagation delays in Seluge and the
Colorado approach. For all the code image sizes, the propagation
delays in Seluge are much less than those in the Colorado approach,

and the gap between them becomes larger as the code image sizein-
creases. Among all the experiments, the average propagation delay
of the Colorado approach is 67% longer than that of Seluge. When
the packet payload size is 62 bytes, it takes the Colorado approach
48% to 92% longer time than Seluge to disseminate a code image.
In the worst case, when the code image size is 30K bytes, the delay
of the Colorado approach is about 92% longer than that of Seluge.
Similarly, when the packet payload size is 102 bytes, it takes the
Colorado approach 51% to 75% more time to finish disseminating
a code image, where the worst case (i.e., 75%) happens when the
code image size is 10K bytes.

As we explained earlier, the main reason for this performance
difference is that the Colorado approach propagates each code page
and the corresponding per-page Merkle hash tree in a level-by-level
fashion. This approach increases the interaction between asending
node and its receivers, and disrupts the page-by-page propagation
in Deluge. In contrast, Seluge integrates the authentication and
DoS-resistance mechanisms seamlessly with the Deluge page-by-
page propagation and suppression mechanisms.

Let us now compare Seluge with Deluge. In all the experiments,
Seluge introduces on average 37% longer propagation time than
Deluge. When the packet payload size is 62 bytes, it takes Seluge
41% to 85% longer time than Deluge. When the packet payload
size is 102 bytes, the propagation delay of Seluge is 10% to 55%
longer than Deluge. The worst case scenarios in both packet pay-
load sizes happen when the code image size is 10K bytes.

The additional delay introduced by Seluge is due to the propaga-
tion and verification of the signature packet, the dissemination of
the (additional) hash packets, and the increase of the number of the
data packets due to the inclusion of hash images. Nevertheless, as
shown in Figure 6, the additional propagation delay introduced by
Seluge is much smaller than that by the Colorado approach.

These experimental results demonstrate that Seluge introduces
much less propagation delay into code dissemination than the Col-
orado approach, in addition to the stronger security properties.

6.2.2 Communication Overhead
Figure 7 shows the communication overheads of all three schemes,

which are measured as the total number of packets transmitted by
all the nodes in each test case. For the communication overheads of
Seluge and the Colorado approach, we consider SNACK packets,
hash packets (called index packets in the Colorado approach[10]),
and data packets because those three types of packets are addition-
ally required for a dissemination. Likewise, we consider SNACK
and data packets for the communication overhead of Deluge. As
in the evaluation results for propagation delays, for all three ap-
proaches, the communication overheads increase approximately lin-
early as the code image size grows, and the communication over-
heads for 62 bytes payload size are larger than those for 102 bytes
payload size. In all the experiments, the Colorado approachhas the
largest communication overheads among all three approaches.

Now let us provide a more detailed comparison of Seluge and
the Colorado approach in terms of the communication overhead.
When the packet payload size is 62 bytes, the average communica-
tion overhead of the Colorado approach is about 601 packets more
than that of Seluge. In the worst case, the Colorado approachre-
quires 1,070 more packets than Seluge, when the code image of
30K bytes is disseminated. Similarly, when the packet payload size
is 102 bytes, the Colorado approach requires on average 676 more
packets than Seluge. In the worst case, where the code image size is
10K bytes, the Colorado approach requires 724 more packets than
Seluge.

Now consider the comparison of Seluge and Deluge. When the

9

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40

Code size (KB)

N
um

be
r

of
 tr

an
sm

ite
d

pa
ck

et
s

 .
Seluge-102
Colorado approach-102
Deluge-102
Seluge-62
Colorado approach-62
Deluge-62

Figure 7: Communication overhead

payload size is 62 bytes, Seluge requires on average 877 morepack-
ets than Deluge. In the worst case, Seluge requires 1,743 more
packets than Deluge, when the code image size is 40K bytes. When
the payload size is 102 bytes, Seluge requires on average 441more
packets than Deluge. In the worst case, when the code image size
is 40K bytes, Seluge requires 791 more packets than Deluge.

Overall, the Colorado approach requires 22% more packets than
Seluge, while Seluge requires 20% more packets than Deluge.The
communication overhead that Seluge introduces is mainly due to
the inclusion of the signature, the hash packets, and the hash images
of each packet. The experimental results indicate that Seluge has
less communication overhead than the Colorado approach, though
it can achieve even stronger security properties.

6.2.3 Propagation on Individual Nodes
We also investigate how code pages are propagated on individual

nodes to get more insights. In the following, we select two nodes
in the testbed, which are marked asn1 andn2 in Figure 5, to see
how they receive code pages over time. (We select these two nodes
to present, becausen1 is close to the source andn2 is far away
from the source. They are expected to have different situations
during code dissemination.) In the following, we show the dynamic
propagation features on these two nodes, using the test casewhere
we inject a code image of 30K bytes with 102 bytes payload size.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350

Time (sec)

C
om

pl
et

io
n

ra
te

Seluge-n1
Seluge-n2
Colorado-n1
Colorado-n2
Deluge-n1
Deluge-n2

Figure 8: Dissemination progress over time on selected nodes

Figure 8 shows the time points whenn1 or n2 finishes receiv-
ing every page of the code image under all three approaches. The
x-axis represents the completion time for a page, and the y-axis

represents the ratio of the number of completed pages to the total
number of pages in a code image. As time goes on,n1 andn2 grad-
ually complete the receiving of the code image. Due to the effect
of spatial multiplexing,n2 receives some pages of the code image
beforen1 finishes to receive all the pages of the code image.

Figure 8 confirms at individual node level that Seluge allows
much faster propagation than the Colorado approach. Indeed, in
some cases, Seluge propagates even faster than Deluge, though it
involves additional security mechanisms such as signatureverifica-
tion and hash packet distribution.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented the design, implementation, andeval-

uation of Seluge, an efficient, secure, robust, and DoS-resistant
code dissemination system for wireless sensor networks. Besides
the efficiency and robustness inherited from Deluge, Selugepro-
vides security protections for code dissemination, including the in-
tegrity protection of code images and resistance to variousDoS at-
tacks exploiting the expensive signature verifications, possible au-
thentication delays, and the epidemic propagation strategies used
by Deluge. Seluge is superior to all the previous attempts for se-
cure code dissemination, and is the only solution that seamlessly
integrates the security mechanisms and the Deluge efficientprop-
agation strategies. Our experiments in a network of MicaZ motes
also demonstrated that Seluge is an efficient and practical solution
for secure code dissemination in wireless sensor networks.

In our future work, we will perform more experimental evalua-
tion in different situations, such as with larger testbeds and more
severe conditions. In addition, we plan to develop techniques to
prevent and detect insider DoS attacks exploiting the Deluge epi-
demic and suppression mechanisms. Finally, we will exploretech-
niques that can address the secrecy of code images during code
dissemination besides providing integrity protection andDoS re-
sistance.

8. REFERENCES
[1] Bouncy castle crypto apis.

http://www.bouncycastle.org.
[2] Imote2: High-performance wireless sensor network node.

http:
//www.xbow.com/Products/Product_pdf_
files/Wireless_pdf/Imote2_Datasheet.pdf.

[3] Micaz: Wireless measurement system.http:
//www.xbow.com/Products/Product_pdf_
files/Wireless_pdf/MICAz_Datasheet.pdf.

[4] Telosb mote platform.http:
//www.xbow.com/Products/Product_pdf_
files/Wireless_pdf/TelosB_Datasheet.pdf.

[5] TinyOS: An open-source OS for the networked sensor
regime.http://www.tinyos.net/.

[6] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. Wireless sensor networks: A survey.Computer
Networks, 38(4):393–422, 2002.

[7] Certicom Research. Standards for efficient cryptography –
SEC 2: Recommended elliptic curve domain parameters.
http:
//www.secg.org/collateral/sec2_final.pdf,
September 2000.

[8] H. Chan, A. Perrig, and D. Song. Random key predistribution
schemes for sensor networks. InIEEE Symposium on
Research in Security and Privacy, pages 197–213, 2003.

10

[9] Crossbow Technology Inc. Mote in-network programming
user reference, 2003.

[10] J. Deng, R. Han, and S. Mishra. Secure code distributionin
dynamically programmable wireless sensor networks. In
Proceedings of the Fifth International Conference on
Information Processing in Sensor Networks (IPSN ’06),
April 2006.

[11] J. R. Douceur. The sybil attack. InFirst International
Workshop on Peer-to-Peer Systems (IPTPS’02), Mar 2002.

[12] W. Du, J. Deng, Y. S. Han, and P. Varshney. A pairwise key
pre-distribution scheme for wireless sensor networks. In
Proceedings of 10th ACM Conference on Computer and
Communications Security (CCS’03), pages 42–51, October
2003.

[13] P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler. Securing
the deluge network programming system. InProceedings of
the Fifth International Conference on Information
Processing in Sensor Networks (IPSN ’06), April 2006.

[14] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to
networked embedded systems. InProceedings of
Programming Language Design and Implementation (PLDI
2003), June 2003.

[15] Y.C. Hu, A. Perrig, and D.B. Johnson. Packet leashes: A
defense against wormhole attacks in wireless ad hoc
networks. InProceedings of INFOCOM 2003, April 2003.

[16] J. W. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In
Proceedings of the Second International Conference on
Embedded Networked Sensor Systems (SenSys ’04),
November 2004.

[17] IEEE Computer Society. IEEE 802.15.4: Ieee standard for
information technology – telecommunications and
information exchange between systems local and
metropolitan area networks – specific requirements part 15.4:
Wireless medium access control (MAC) and physical layer
(PHY) specifications for low-rate wireless personal area
networks (LR-WPANs).
http://standards.ieee.org/getieee802/
download/802.15.4-2003.pdf, October 2003.

[18] S.S. Kulkarni and M. Arumugam. Infuse: A TDMA based
data dissemination protocol for sensor networks. Technical
Report MSU-CSE-04-46, Department of Computer Science,
Michigan State University, November 2004.

[19] S.S. Kulkarni and L. Wang. MNP: multihop network
reprogramming service for sensor networks. InProceedings
of the 25th International Conference on Distributed
Computing Systems (ICDCS ’05), pages 7–16, June 2005.

[20] P.E. Lanigan, R. Gandhi, and P. Narasimhan. Sluice: Secure
dissemination of code updates in sensor networks. In
Proceedings of the 26th International Conference on
Distributed Computing Systems (ICDCS ’06), July 2006.

[21] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code propagation and
maintenance in wireless sensor networks. InProceedings of
the 1st Symposium on Network System Design and
Implementation (NSDI ’04), March 2004.

[22] A. Liu, P. Kampanakis, and P. Ning. Tinyecc: Elliptic curve
cryptography for sensor networks (version 0.3).http://
discovery.csc.ncsu.edu/software/TinyECC/.

[23] D. Liu and P. Ning. Establishing pairwise keys in distributed
sensor networks. InProceedings of 10th ACM Conference on

Computer and Communications Security (CCS’03), pages
52–61, October 2003.

[24] D. Liu and P. Ning. Improving key pre-distribution with
deployment knowledge in static sensor networks.ACM
Transactions on Sensor Networks, 1(2):204–239, November
2005.

[25] R. Merkle. Protocols for public key cryptosystems. In
Proceedings of the IEEE Symposium on Research in Security
and Privacy, Apr 1980.

[26] V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprinkler: A
reliable and scalable data dissemination service for wireless
embedded devices. InProceedings IEEE International
Real-Time Systems Symposium, pages 277–286, December
2005.

[27] J. Newsome, R. Shi, D. Song, and A. Perrig. The sybil attack
in sensor networks: Analysis and defenses. InProceedings of
IEEE International Conference on Information Processing in
Sensor Networks (IPSN 2004), April 2004.

[28] P. Ning, A. Liu, and W. Du. Mitigating DoS attacks against
broadcast authentication in wireless sensor networks.
Technical Report TR-2005-39, North Carolina State
University, Department of Computer Science, August 2005.
Revised September 2006.

[29] A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient
authentication and signing of multicast streams over lossy
channels. InProceedings of the 2000 IEEE Symposium on
Security and Privacy, May 2000.

[30] A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient and
secure source authentication for multicast. InProceedings of
Network and Distributed System Security Symposium,
February 2001.

[31] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and D. Tygar.
SPINS: Security protocols for sensor networks. In
Proceedings of Seventh Annual International Conference on
Mobile Computing and Networks, pages 521–534, July 2001.

[32] L.A. Phillips. Aqueduct: Robust and efficient code
propagation in heterogeneous wireless sensor networks.
Master’s thesis, University of Colorado at Boulder, 2005.

[33] N. Reijers and K. Langendoen. Efficient code distribution in
wireless sensor networks. InProceedings of the 2nd ACM
International Conference on Wireless Sensor Networks and
Applications (WSNA ’03), pages 60–67, September 2003.

[34] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code
update mechanism for wireless sensor networks. Technical
Report CENS-TR-30, University of California, Los Angeles,
Center for Embedded Networked Computing, November
2003.

[35] K. Sun, P. Ning, C. Wang, A. Liu, and Y. Zhou.
TinySeRSync: Secure and resilient time synchronization in
wireless sensor networks. InProceedings of 13th ACM
Conference on Computer and Communications Security
(CCS ’06), pages 264–277, October/November 2006.

[36] S. Zhu, S. Setia, and S. Jajodia. LEAP: Efficient security
mechanisms for large-scale distributed sensor networks. In
Proceedings of 10th ACM Conference on Computer and
Communications Security (CCS’03), pages 62–72, October
2003.

11

