
Toward Reducing Fault Fix Time: Understanding Developer Behavior for the
Design of Automated Fault Detection Tools, the Full Report

Lucas Layman, Laurie Williams, Robert St. Amant
Department of Computer Science

North Carolina State University, Raleigh, NC, USA
lmlayma2@ncsu.edu, {williams, stamant}@csc.ncsu.edu

Abstract

The longer a fault remains in the code from the
time it was injected, the more time it will take to fix the
fault. Increasingly, automated fault detection (AFD)
tools are providing developers with prompt feedback
on recently-introduced faults to reduce fault fix time.
If, however, the frequency and content of this feedback
does not match the developer’s goals and/or
workflow, the developer may ignore the information.
We conducted a controlled study with 18 developers to
explore what factors are used by developers to decide
whether or not to address a fault when notified of the
error. The findings of our study lead to several
conjectures about the design of AFD tools to
effectively notify developers of faults in the coding
phase. The AFD tools should present fault
information that is relevant to the primary
programming task with accurate and precise
descriptions. The fault severity and the specific timing
of fault notification should be customizable. Finally,
the AFD tool must be accurate and reliable to build
trust with the developer.

1. Introduction

 Long fault fix latency, the time between fault
injection and fault removal, could substantially
increase the cost of fixing a fault. Research [6, 7, 19]
indicates that the time a developer requires to fix a
fault is positively correlated with ignorance time – the
time between fault injection and the point at which the
developer becomes consciously aware of the details of
a reported fault. Increasingly, automated fault
detection (AFD) tools provide developers with prompt
feedback on recently-introduced faults, thereby
reducing ignorance time. AFD tools examine source
code using static and/or dynamic analysis techniques

to uncover potential faults in the code. Studies have
shown that the use of AFD tools can increase software
quality and developer productivity [28, 29]. Some
examples of AFD tools are FindBugs [18], Check ‘n
Crash [9], Continuous Testing [29], and the
continuous compilation in integrated development
environments (IDE) such as Eclipse.

Ideally, we want the developer to act upon an alert,
the notification of a potential fault, as soon as it is
displayed. However, alerts that are provided but not
acted upon may be an indication that the alerts are
being produced too often, are not informative, and/or
may be distracting to the developer. Systems that
automatically volunteer information can degrade
rather than improve performance if their behavior is
not closely matched to user needs and expectations;
users may begin to view such systems as a constantly-
ringing alarm clock and simply ignore them [22].

Typically, a developer will pick a certain point in a
programming task to suspend his or her thoughts and
investigate a fault. The goal of this paper is to
explore what factors are used by developers to decide
whether or not to address a fault when notified. These
factors can be used to guide the design of intelligent
fault notification systems that integrate AFD tools
with programming environments to reduce ignorance
time.

A controlled study was conducted with 18
developers of varying programming experience to
discover why developers interrupt a programming task
to debug a fault. The study participants performed
several programming tasks in the Eclipse IDE. During
the programming task, the IDE notified the
participants that a potential fault was found in the
code. The participants were then asked to discuss the
decision factors that weighed on whether to address
the alerts or not. The study sessions were audio
recorded, transcribed and coded for analysis. Several
themes emerged from our grounded theory [13]

approach to the qualitative analysis of the participant
responses.

The remainder of this paper is organized as
follows: Section 2 provides related work on memory
and task interruption, Section 3 discusses the details of
the study setup and execution, Section 4 contains the
analysis of the participants’ responses, Section 5
contains conjectures for further quantitative studies
into usable design of automated fault notification
systems during code development, and we provide
conclusions and future work in Section 6.

2. Related work

In considering when to notify a developer of a
potential fault, we address two fundamental areas that
underlie our research: cognitive processing and task
interruption. Understanding how and why an
interruption can interfere with a working task provides
a valuable starting point for examining developer
interruption in a coding environment.

2.1. Interruptions and cognitive processing

Human attention is recognized to have a limited
capacity. Limited cognitive resources require humans
to be selective about the information they process [2].
Limitations in human memory and attention result in
any interruption having the potential to cause
interference with a working task. An interruption
interferes with a working task by consuming cognitive
resources initially used by the working task [11, 24,
27]. The amount of resources a task uses in the brain
is the cognitive load of that task. The degree to which
an interrupting task interferes with a primary task is
dependent on several factors:

• the cognitive loads of the working and
interrupting tasks [12, 26]

• the similarity of the two tasks [12]
• personal attributes of the developer [3]
• attributes of the tasks (e.g. complexity) [4, 5].
The cognitive load of debugging tasks varies

according to task complexity and developer
experience [1, 8, 33]. Interrupting a complex task
with a complex debugging task may result in
destructive interference, whereas interrupting a low
complexity task with a low complexity debugging task
may cause no interference. For example, debugging a
recursive algorithm while in the midst of
implementing a tightly coupled method may result in
significant interference between tasks. However,
there may not be interference if a developer needed to
insert a semicolon in another line while writing a
print statement.

2.2. Interruptions in human-computer
interaction and decision theory

Human-computer interaction (HCI) studies have
shown that the similarity of the interrupting task to the
primary task and the interrupting task’s complexity
can affect user performance in environments that
support multiple activities [4, 5, 10, 31]. Design
guidelines for systems where user attention may be
divided between multiple activities [17, 23, 25] have
also been published. McFarlane [21] asserts that a
negotiated interruption style, where the system alerts
the user but does not force attention away from the
primary task is best in terms of user performance in
most situations.

Horvitz has studied decision theory for using
information about developer goals to guide the
decision of an intelligent notification system [15, 16].
He describes that an agent takes action based on utility
as a function of action or inaction given what the
system can infer about a user’s goals. Horvitz labels
the critical threshold of action versus inaction as p*.
In this study, we are investigating what factors may
contribute to a p* value that defines the threshold
between the user addressing an alert or not.

3. Study description

This section describes a controlled study of
developers working with an AFD system, the
Automated Warning Application for Reliability
Engineering (AWARE) [14, 30]. To achieve the goal
of our study, we examined factors that cause a
developer to interrupt the task at hand and devote time
to investigate a fault. All study materials, including
the example program, task descriptions, interviewer
scripts, and transcriptions and coding may be found at
http://agile.csc.ncsu.edu/aware/research/
resources_LWS07.zip. The task descriptions and
interviewer scripts may be found in the Appendices.

3.1. AWARE

AWARE is a plug-in for the Eclipse IDE that runs
third-party AFD tools. AWARE also estimates the
severity of a fault and ranks the fault according to the
likelihood that it is not a false positive. For a more
thorough discussion of AWARE, please see [30]. A
screenshot of AWARE can be seen in Figure 1. The
AWARE display shows a list of faults initially ordered
by true positive probability. Each fault in the list
contains the following information in order:

• a description of the problem, such as “possible
null pointer” or “uninitialized variable”

• the folder, class file, and the line number at
which the fault was detected in the code

• the probability at the fault is a true positive
• the severity of the fault from 1-3 with 3 being

the most severe
The version of AWARE used in this study did not

incorporate any fault analysis tools, but instead
displayed seeded fault notifications at scheduled
times.

At the beginning of the study, AWARE’s fault
notification was not attracting the attention of the
participants. AWARE was changed so that the fault
notification window would change from white to

yellow whenever a fault appeared. Six of the 18
subjects participated in the study before this change
was made. Some participants still did not notice the
fault notification after the change was made due to
their engrossment in the programming tasks. We
cannot provide a reliable analysis of any systematic
difference in the responses of the two groups due to
the variability in the responses. Anecdotally, we
observe that more participants noticed the fault
notifications after the yellow background change, but
did not necessarily begin debugging more than the
group prior to the interface change.

Figure 1. AWARE in the Eclipse IDE (cropped image)

3.2. Pre-study analysis

To guide our study, we needed to identify some
potential factors that may cause a developer to
interrupt a working task to address an alert. A
literature search yielded little information on this
topic, and so we performed a task analysis of
developer behavior while using an advanced IDE that

displays alerts from AFD tools. The analysis was
conducted with only one subject (the first author) and
yielded a behavior model similar to Latorella’s general
model of task interruption [22]. The analysis yielded
several factors that, in combination, may contribute to
a developer’s decision on when to address an alert.
These factors were: a) the complexity of the primary
programming task; b) the relevance of the fault to

current working context; c) the estimated cost of
fixing the fault in terms of time; and d) the potential
criticality of the fault as estimated by the system-
assigned priority of the fault notification.

3.3. Study participants

Participants were solicited from the North Carolina
State University Department of Computer Science
through a graduate student mailing list and by posting
fliers throughout the computer science building. A
$20 gift certificate to a location of the participant’s
choice was offered as incentive to participate in the
study. The requirements to participate in the study
were a working knowledge of Java and object-
oriented programming, participation in a 45 minute
live study session, and consent to be audio recorded.
No experience with AFD tools or IDEs was necessary.

All participants completed an online survey to sign
up for the study. The online survey collected the
participants’ contact information, gender, and times
available for the live portion of the study. The survey
also collected each participant’s years of
programming, Java, IDE, and professional
development experience. Participants were also
prompted to list any IDEs they may have used.
Finally, the survey asked for the study participants’
response on a scale from 1 to 9 in confidence in
solving programming problems (1 = not confident, 9 =
very confident) and their enjoyment of coding in
general (1 = I hate coding, 9 = I love coding). In total,
28 survey responses were collected.

Twenty subjects participated in the study and the
other eight missed their appointments. Of the 20
participants, one session was aborted because the
participant admitted to having no Java experience, and
one session was discarded because of problems with
AWARE. Thus, 18 live sessions were used in the
study analysis. The programming experience
responses of the 18 participants are summarized in
Table 1.

Table 1. Subjects counts - years of experience

 Programming Java ID
E

Professiona
l

Non
e

0 0 2 5

0-1 0 6 5 3
1-3 3 5 3 6
3-5 8 4 4 1
5-10 4 3 2 3
>10 3 0 2 0

At the beginning of each live session, the
participant was asked to rate his or her fatigue at that
time on a scale from 1-10 with 1 being rested and 10
being completed exhausted. The fatigue rating,
programming confidence and coding enjoyment of the
18 participants is summarized Table 2. This
information was used in assigning participants to the
different treatments for the experiment, discussed in
Section 3.5.

Table 2. Subject counts - miscellaneous

 1 2-3 4-6 7-8 9+
Programming confidence 0 1 6 11 0
Coding enjoyment 0 2 1 10 5
Fatigue 2 6 9 1 0

In general, the participant sample was widely

distributed over the survey questions, though the
sample size was too small to perform a statistical
analysis. The limitations in using this sample of
participants are discussed in Section 4.5.

3.4. Study programming tasks

The bulk of the live session required the
participants to complete four programming tasks while
interacting with AWARE. The programming tasks
required participants to modify and to add to an
existing example program – a simple medical
reporting and billing system written by the first author.
The example program was designed to be easily
comprehended and contained enough classes and
functionality (seven classes, 413 LoC) to simulate
cognitively complex programming and debugging
tasks.

The programming tasks were created to help
determine what criteria a developer uses when
deciding to interrupt their programming task to
address an alert. At a pre-determined time after the
start of each programming task, AWARE would alert
the participants that a fault had been detected. These
faults were purposefully injected into the example
program beforehand. The faults and associated alerts
exhibited all of the properties suggested by the pre-
study analysis (see Section 3.2). All of the faults were
designed to be relevant to the current programming
task; that is, the fault would directly impair the proper
functionality of the programming task. The faults also
had a high criticality and could crash the example
program. Finally, the faults required non-trivial
investigations to uncover the root of the fault, thus
increasing the developer effort required to fix the
fault.

3.5. Study procedure

In the main portion of the study, participants met
individually with the investigator (the first author) in a
private meeting room to perform programming tasks
and discuss alerts. These sessions were comprised of
five parts.

3.5.1. Part 1: Introduction. To provide some context
to the session, the investigator explained that the
purpose of the study was to examine how developers
interacted with advanced IDE environments. No
further detail was provided. The participants were
then given a brief demonstration of Eclipse and
AWARE on a research laptop. Study participants
were shown a sample program to demonstrate how
Eclipse compiles the source code every time a file is
saved and displays any resulting compiler errors or
warnings. The study participants were then told
AWARE works in a similar fashion, but uses different
tools to find different types of faults. The subjects
were also told that AWARE’s analysis takes more
time and runs in the background, so the timing of the
alert displays was unpredictable.

3.5.2. Part 2: Familiarization. Since the participants
were working on an unfamiliar program and using
unfamiliar tools, they were given several
familiarization tasks to reduce any learning effects.
First, the participants ran the example program and
used several of its features, including printing out
patient data and entering patient information. Second,
the subjects performed an informal code walkthrough
of the same features to familiarize them with the
general architecture of the example program.

3.5.3. Part 3: Example tasks. Two example
programming tasks (as discussed in Section 3.4) were
given to familiarize the participants with the main
tasks in Part 4 of the study. The participants were
given a written requirement to modify a feature in the
example program. The participants were told that they
must completely implement the requirement and
correct all errors detected by AWARE, but that the
ordering of these activities was unimportant. Finally,
the participants were instructed to “think out loud” to
verbalize their thoughts to the investigator while
working on the task. The subjects were told that they
will work on the task until it is completed or until
stopped by the investigator.

The investigator began audio recording as the
subjects commenced on the programming task. The
participants were stopped by the investigator
approximately one minute after the AWARE fault

notification was displayed. This one minute window
allowed the investigator to observe whether or not the
subject chose to interrupt the main programming task
to address the alert. The investigator also noted the
subject’s start time, the time of interruption and any
observations about the subject’s behavior at the time
of the alert. The participants performed two example
programming tasks. Both of the programming tasks in
Part 3 were injected with faults that were more trivial
to fix than in the Part 4 of the study.

3.5.4. Part 4: Main tasks. This portion of the study
involved two programming tasks with differing
complexities. The simpler task required finding and
changing numerical values in the code, and the more
complex task involved making changed to several
coupled methods. Again, AWARE displayed a fault
notification at a scheduled time during each task and
the same procedures were followed as in Part 3.

To reduce the effect of the ordering of the
programming tasks, the subjects were divided into two
groups that had similar numbers of students with IDE
experience and varying degrees of programming
experience. One group performed the more complex
task first, and the other group performed the simpler
task first. However, due to the variability of the
subjects’ data, neither the ordering of the
programming tasks nor the experience data were used
in our analysis.

After the investigator stopped the subjects on the
programming task, the participants were asked to
explain their rationale for either addressing an alert or
ignoring it. The investigator prodded the participants
to continue explaining their rationale until they had no
more information to share. Some participants
commented that they did not notice the alerts at all.

3.5.5. Part 5: Exit interview and debriefing. After
the programming portion had been completed, the
participants were asked to postulate on any additional
factors that might influence their decision to address
an alert or not. Participants were asked to think of
scenarios where they would stop working on a
programming task to address an alert and scenarios
where an alert would be deferred until later. After the
study, the participants were thanked and given a more
detailed explanation of the study’s purpose.

4. Analysis and findings

The audio recordings from the 18 study
participants were transcribed by the first author and
combined with notes taken by the investigator during
the recording sessions, yielding approximately 60

pages of information. The transcriptions were then
coded by the first author. Coding is the process that
categorizes qualitative data into different themes via
three steps: open coding, axial coding, and selective
coding [32]. Open coding is the process of identifying
the categories in the data and the properties of the
different categories. Axial coding is used to connect
the categories and find their interrelationships. In the
last step, selective coding identifies one or two central
categories and forms a conceptual framework.
Typically, coding should be performed by multiple
persons to ensure the reliability of the analysis.
Resource constraints prevented more than one person
performing the coding, and we accept this limitation
since our study is exploratory and designed to help
guide future work rather than draw final conclusions.

The coding process yielded 37 distinct themes
organized into seven categories dealing with task
interruption and fault assessment:

1. Strategies – describe developer behavior as
relates to addressing faults

2. Fault assessment criteria – the factors used by
developers to determine whether or not to
interrupt the primary task to address an alert

3. Interruption points – specifically when in time
the primary task will be interrupted

4. Environment – influences created by the
programming environment itself

5. Individual differences – attributes of the
developers

6. Perspectives – the impacts of developer
understanding of the example program or
AWARE tool that influenced interruptions

7. External influences – factors related to the
experimental setup that influenced developer
behavior

Once the themes were identified, a count was made
of the number of participants who mentioned a
particular theme. Those themes which were
mentioned by five or more subjects are discussed
below. A complete list of all 37 themes grouped by
category may be found in Appendix A.

4.1. Fault assessment criteria

The primary purpose of this study was to assess
what factors would contribute to a developer
interrupting their workflow to address a fault
presented during the coding process. The attributes of
the fault itself are critical components in the
developer’s decision to interrupt. Study participants
identified several of these fault assessment criteria.

Nine participants commented that the description of
the fault was critical in assessing the importance of a

fault. The fault description contained information
about the nature of the fault, such as whether it was a
potential null pointer exception, and array index out of
bounds, or an uninitialized variable. For example, one
subject noted, “the main thing that I’m going to look
at is null pointer exceptions … Something should not
happen that could cause the entire program to crash –
that is what I would look at first.” Speaking on the
fault description, another subject observed “I wasn’t
using the ranking and severity as much as I was using
my own programming experience and instinct in
deciding whether to inspect that error or not.”

Nine participants used the ranking and severity of
the AWARE fault notifications as part of their fault
assessment criteria. When AWARE displayed an alert
during a programming task, one subject had the
following reaction, “Array index too large – what’s
this? Line 10: RecordProcessor.getSize(). I don’t see a
reason why… oh, severity is 3, ranking is 0.9. Oh
okay, so this could definitely be a problem.” In
general, it appeared that the subjects used the fault
ranking and severity when they did not assess the
importance of the fault from description and personal
experience alone. The subjects may also have been
primed to look at this information due to the
introduction of the AWARE tool earlier in the
experiment.

Another important assessment criterion was the
relevance of the fault to the code currently being
written. When asked why she addressed an alert
immediately, one subject responded, “Well it seemed
connected to my problem. I’m losing some data, so
I’m trying to figure out – maybe it’s not been
initialized here.” Oftentimes, subjects stated that they
were quick to dismiss faults that did not seem relevant
to their current task. “If it’s something that’s not
really relevant to what I’m doing now, I’m going to go
back and finish what I was doing,” said one
participant. The criteria for assessing the relevance of
a fault to the current task varied from subject to
subject. Some participants spoke on a high level
about related tasks, while others specifically stated
that they would address alerts in the current class file.

4.2. Interruption points

Determining when to notify the developer of a fault
is of commensurate importance to understanding why
a developer would interrupt. Many subjects noted that
they would interrupt the primary programming task
after they finished a thought. When an alert popped
up during a programming task, one participant stated,
“I’ve got to finish this thought, but I see the warning
there.” When asked why he deferred addressing a

fault, one subject responded, “I wanted to finish what
I was doing and then investigate afterwards. I don’t
want to lose my current train of thought of what I was
working on.”

These statements reflect current theories of mental
task management and task switching. When given the
choice, people will tend to switch between tasks only
at a convenient breaking point between high level
mental tasks and not between low level details [10,
23]. One subject remarked, “If I had some logic in my
head, maybe an if-statement with a lot of different
attributes, different things that I wanted to get out of
my head and onto the code, I would have done that
before I interrupted.” These observations also go to
the heart of our motivation for this study: while fault
notifications may be beneficial during development,
they should be done with care so as not to impede the
mental workflow of programming.

Other subjects more precisely defined their
interruption points. Many participants interrupted
themselves after completing the current line of code.
For some subjects, finishing the line of code was a
convenient stopping point. Others wanted to finish
the line of code to determine if the alerts were the
result of an incomplete piece of code. For example,
one subject observed, “I figured I am not done with
[the code] yet, so once I might finish, the error might
disappear, which happens a lot with Eclipse.”

Other subjects interrupted only between sections of
code, which in some cases was an extended version of
finishing a line to see if alerts go away: “Instead of
fixing the line every time, [fix them] every now and
then after just 20 lines or 30 lines. After 30 lines I can
fix them and see these are the probable errors.” In
other cases, finishing a section of code seemed to
coincide with completing a thought. Said one
participant, “Let’s say I figure out certain logic, I want
to finish that and then see what the problem with it is.”

The variations in where to interrupt the
programming task, whether at the end of a line or at
the end of a code section, may derive from the
complexity of the current programming task. Though
the programming tasks were designed with varying
complexities to test the importance of primary task
complexity, the variability of the data precludes a
more rigorous analysis.

4.3. Environment and perspectives

Several themes arose related to the participants’
general interactions with AWARE and Eclipse. These
themes are grouped into two categories: Environment
and Perspectives. While the themes in these
categories do not always directly involve fault

interruption and interaction, the themes do present
some important design implications.

Five of the study participants expressed that they
needed to trust the fault detection system. Trust was
earned in the form of accurate, reliable fault
information. Many of the participants had several
years of programming and tool experience. This
experience led them to distrust some analysis tools
because of poor accuracy, and these participants
placed higher values on their own assessments of
potential faults. According to one subject, “If I used
[AWARE] regularly, and I saw this ranking of 1.0…
If I did it say, twice, and each time it was 1.0 and it
was definitely something that was an error, then I
think I would definitely, certainly start looking at
this.”

Other subjects were intrinsically interested in
AWARE’s fault information because it inspired them
“to think of something as potentially an error that I
hadn’t thought of when I previously developed.” Both
of these perspectives suggest that both developer
experience and familiarity with the code may play an
important role in the usage of AFD tools.

Another emergent category involved the difficulties
some subjects had in interpreting the fault
information. Some subjects incorrectly believed that
a fault was the cause of something directly related to
the code they were typing, when the actual cause of
the fault was rooted elsewhere. Six subjects made
such mistakes, though the investigator did not reveal
these mistakes to them at any point. This
mischaracterization of a fault was often the result of
developer expectations: the participant was
developing code that was incomplete and thus was
expecting a fault to be detected. Then, by chance, an
alert was displayed referring to a separate portion of
the code. The subject then drew the conclusion that
the coding and fault were related when in fact they
were not. The reverse of this scenario happened four
times when participants believed that a fault was not
related to programming task. Similarly, six
participants could not make the connection between
the fault and the programming task. These
participants observed the fault and investigated the
source line but could not understand the problem
enough to correct it. In some cases, the participants
stated that they could not discern what variable or
statement the fault description referenced. These
problems may be symptomatic of the version of
AWARE used in this experiment, which contained
less precise descriptions of the faults. The
aforementioned themes stress the need for concise and
accurate fault information.

4.4. Individual differences

The individual differences of the developers have
some bearing on the use of the AWARE system. Six
of the participants expressly stated that they were very
interrupt-driven, and that when something pops up,
they tend to address it right away. One subject stated,
“Every time I get a new mail icon, I’ll just stop
whatever I’m doing to go check. I’m just that type of
person.” The same subject later added rationale to the
interrupt-driven personality while programming, “I
guess any time I see errors or warnings I try to go and
address those before I do something new because they
might have a ripple effect.” A developer’s proclivity
for interruption may make the usage of an AFD
system more challenging since they may be more
prone to the destructive interference caused by
interrupting tasks.

4.5. Study limitations

The primary limitations of this study are external
validity limitations concerned with the sample
population and the study environment. Limitations
regarding the changing of the AWARE environment
and the coding procedure have been discussed in
Sections 3.1 and 4 respectively.

All 18 subjects were drawn from a student
population (though some had professional experience)
and thus the results of this study may not generalize to
professionals. Similarly, because of the controlled and
time-limited nature of the experiment, we could not
reproduce the project complexities and environmental
factors of the professional workplace. Therefore, the
responses of the sample subjects may not reflect the
diversity of professional developers in a professional
setting. However, since we are using this study to
provide conjectures and to form a basis for future
study, we do not believe that these limitations
significantly diminish our findings.

Some experimental validity concerns arose during
the study. With a few of the subjects, a Hawthorne
effect may have been present. Since they had been
told about the capabilities of AWARE, they
purposefully waited for alerts to appear and may have
investigated the alerts when they would not have
under normal, unobserved programming conditions.
Also, some subjects did not notice the alerts until they
were asked by the investigator if they observed the
alerts. For those subjects who did not initially notice
the alerts, a learning effect occurred wherein they
noticed the alert on the next task. However, while
these subjects did subsequently notice the faults, they

did not necessarily interrupt the primary task to
investigate them.

5. Conjectures

Based on our analysis, we identify several
conjectures to guide future quantitative research on
the integration of AFD systems with IDEs to reduce
fault ignorance time.

Conjecture 1: Fault descriptions should be as

informative and precise as possible.
At least half of the subjects used the fault

description to assess the importance of the fault and
weighed on the decision to interrupt the programming
task. Furthermore, some subjects had difficulty in
identifying the exact location of a fault because of the
imprecise nature of some fault descriptions.

Conjecture 2: System-assigned fault severity

should reflect the developer’s perceptions of fault
severity.

Developer assessment of fault severity was often
subjectively based on the fault description.
Developer’s perceptions of fault severity varied
between subjects. Therefore, the system-assigned
fault severity should be customizable (based on fault
type) so that the AFD systems can more accurately
estimate a developer’s decision to interrupt a
programming task.

Conjecture 3: Fault information should be

presented when the fault is relevant to the current
programming task.

Creating a mechanism to assess the relevance of a
fault to the developer’s current working context will
be difficult. However, the relevance of the fault is
central to some developer’s decisions to interrupt the
programming task. The location of the fault relative
to the currently active line of code, coupling between
code sections and data and control flow analysis may
provide avenues for estimating relevance.

Conjecture 4: The point at which the AFD tool

notifies the developer should be customizable by the
developer.

The developer should have ultimate authority in
deciding when alerts occur. The developers can
customize the interruptions to be displayed to suit
their personal preferences, which may increase both
the effectiveness and the perceived usefulness of the
AFD tool. Some developers may wish to only be
notified of faults at the end of typing a programming

statement, while others may only wish to know of
certain classes of errors such as null pointers.

Conjecture 5: The developer must trust that the

fault information from the AFD tool is accurate and
reliable.

If the developer cannot trust the accuracy of the
fault information provided by the AFD tool, the utility
of the tool will drop significantly and may be ignored
entirely. Trusting the accuracy of the tool seems to be
particularly important when the developer is not
familiar with the code. However, accurately
identifying faults can be problematic for tools that
employ static analysis, which is known to generate
high false positive rates [20]. In AWARE, each
detected fault is provided with a probability that the
fault is a true positive. Concurrent research on
AWARE is investigating techniques to improve the
accuracy of the true positive probability. Several
subjects believed that some faults were the result of
incomplete code. Therefore, deferring fault
notifications until a source statement is complete may
increase trust in the system.

6. Conclusion and future work

By leveraging the fault detection power of AFD
tools and integrating them with code development,
developers can reduce the ignorance time of faults
identified by AFD tools and lower the cost-of-fix of
these faults. If these tools are to be utilized by
developers, they must be of value in terms of both
information and usability. Programming is a complex
cognitive process, and developers must be notified of
fault information carefully to avoid valueless
disruption. We performed a controlled case study to
better understand how to create an intelligent interface
between the developer and AFD tools. Our study
revealed several important factors that contribute to a
developer’s decision to interrupt a programming task
to debug a fault when using AFD tools.

We have provided five conjectures to guide further
study on developer switches from programming to
debugging tasks. We will use the findings of this
study to guide the design and refinement of
AWARE’s alert system. We will investigate a means
of estimating developer’s fault assessment criteria to
create an intelligent system for identifying which
faults are of most importance to the developer and
observe developer’s actual decision criteria in live use
of the system. We will also incorporate customizable
notification options and learning algorithms based on
developer interactions with AWARE to help refine its
facilities. Our ultimate goal is to investigate

empirically the impact on fault fix latency and cost-of-
fix when AFD tools are integrated with IDEs to
reduce ignorance time.

Acknowledgements

The authors would like to thank the North Carolina
State University software engineering RealSearch
group for their helpful comments on this paper. This
work is supported by the National Science Foundation
under the Grant No. 00305917. Any opinions,
findings, and conclusions or recommendations
expressed in this material are those of the authors and
do not necessarily reflect the views of the National
Science Foundation.

References

[1] B. Adelson, D. Littman, K. Ehrleich, J. Black, and
E. Soloway, "Novice-Expert Differences in Software
Design," proceedings of Human-Computer Interaction
(INTERACT '84), 1984, pp. 187-192.

[2] A. Allport, "Visual Attention," in Foundations of
Cognitive Science, M. I. Posner, Ed. Cambridge, MA: The
MIT Press, 1989, pp. 631-682.

[3] J. W. Atkinson, "The Achievement Motive and
Recall of Interrupted and Completed Tasks," Journal of
Experimental Psychology, vol. 46, 1953, pp. 381-390.

[4] B. P. Bailey, J. A. Konstan, and J. V. Carlis, "The
Effects of Interruptions on Task Performance, Annoyance,
and Anxiety in the User Interface," proceedings of Human-
Computer Interaction (INTERACT 2001), Tokyo, Japan,
2001, pp. 593-601.

[5] B. P. Bailey, J. A. Konstan, and J. V. Carlis,
"Measuring the Effects of Interruptions on Task
Performance in the User Interface," proceedings of IEEE
International Conference on Systems, Man, and Cybernetics
2000 (SMC '00), Nashville, TN, 2000, pp. 757-762.

[6] W. Baziuk, "BNR/NORTEL: Path to improve
product quality, reliability, and customer satisfaction,"
proceedings of International Symposium on Software
Reliability Engineering, Toulouse, France, 1995, pp. 256-
262.

[7] B. W. Boehm, Software Engineering Economics,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

[8] R. Brooks, "Towards a Theory of the
Comprehension of Computer Programs," International
Journal of Man-Machine Studies, vol. 18, 1983, pp. 543-
554.

[9] C. Csallner and Y. Smaragdakis, "Check 'n' Crash:
Combining Static Checking and Testing," proceedings of
International Conference on Software Engineering (ICSE
'05), St. Louis, MO, 2005, pp. 422-431.

[10] E. Cutrell, M. Czerwinski, and E. Horvitz,
"Notification, Distruption, and Memory: Effectors of
Messaging Interruptions on Memory and Performance,"
proceedings of Human-Computer Interaction (Interact
2001), Tokyo, Japan, 2001, pp. 263-269.

[11] M. B. Edwards and S. D. Gronlund, "Task
Interruption and its Effects on Memory," Memory, vol. 6,
1998, pp. 665-687.

[12] T. Gillie and D. Broadbent, "What Makes
Interruptions Disruptive? A Study of Length, Similarity, and
Complexity?" Psychological Research, vol. 50, 1989, pp.
243-250.

[13] G. Glaser and L. Anselm, The Discovery of
Grounded Theory: Strategies for Qualitative Research,
Aldine de Gruyter, Chicagom, IL, 1967.

[14] S. Heckman, "AWARE Research Home Page,"
http://agile.csc.ncsu.edu/aware, accessed January 11, 2007.

[15] E. Horvitz, "Principles of Mixed-Initiative User
Interfaces," proceedings of Computer-Human Interaction
(CHI '99), Pittsburgh, PA, 1999, pp. 159-166.

[16] E. Horvitz, A. Jacobs, and D. Hovel, "Attention-
sensitive Alerting," proceedings of Conference on
Uncertainty and Artificial Intelligence (UAI '99),
Stockholm, Sweden, 1999, pp.

[17] E. Horvitz, C. Kadie, T. Paek, and D. Hovel,
"Models of Attention in Computing and Communication:
From Principles to Applications," Communications of the
ACM, vol. 46, 2003, pp. 52-59.

[18] D. Hovemeyer and B. Pugh, "Finding Bugs is
Easy," ACM SIGPLAN Notices, vol. 39, 2004, pp. 92-106.

[19] W. S. Humphrey, A Discipline for Software
Engineering, Addison Wesley, Reading, MA, 1995.

[20] T. Kremenek, K. Ashcraft, J. Yang, and D. Enger,
"Correlation Exploitation in Error Ranking," proceedings of
International Symposium on Foundations of Software
Engineering (ISESE '04), Newport Beach, CA, 2004, pp. 83-
93.

[21] D. C. McFarlane, "Comparison of Four Primary
Methods for Coordinating the Interruption of People in
Human-Computer Interaction," Human-Computer
Interaction, vol. 17, 2002, pp. 63-139.

[22] D. C. McFarlane and K. A. Latorella, "The Scope
and Importance of Human Interruption in Human-Computer

Interaction Design," Human-Computer Interaction, vol. 17,
2002, pp. 1-61.

[23] Y. Miyata and D. A. Norman, "Psychological
Issues in Support of Multiple Activities," in User Centered
System Design: New Perspectives on Human-Computer
Interaction, D. A. Norman and S. W. Draper, Eds. Hillsdale,
NJ: Lawrence Erlbaum Associates, 1986, pp. 267-284.

[24] D. A. Norman, "Categorization of Action Slips,"
Psychological Review, vol. 88, 1981, pp. 1-15.

[25] D. A. Norman, "Cognitive Engineering," in User
Centered System Design: New Perspectives on Human-
Computer Interaction, D. A. Norman and S. W. Draper, Eds.
Hillsdale, NJ: Lawrence Erlbaum Associates, 1986, pp. 31-
61.

[26] D. A. Norman and D. G. Bobrow, "On Data-
limited and Resource-limited Processes," Cognitive
Psychology, vol. 7, 1975, pp. 44-64.

[27] M. I. Posner and A. F. Konick, "On the Role of
Interference in Short-term Retention," Journal of
Experimental Psychology, vol. 72, 1966, pp. 221-231.

[28] D. Saff and M. D. Ernst, "An Experimental
Evaluation of Continuous Testing during Development,"
proceedings of International Symposium on Software
Testing and Analysis (ISSTA '04), Boston, MA, 2004, pp.
76-85.

[29] D. Saff and M. D. Ernst, "Reducing Wasted
Development Time via Continuous Testing," proceedings of
International Symposium on Software Reliability
Engineering (ISSRE '04), Denver, CO, 2004, pp. 281-292.

[30] S. E. Smith, L. Williams, and J. Xu, "Expediting
Programmer AWAREness of Anomalous Code,"
proceedings of International Symposium on Software
Reliability Engineering (ISSRE '05), Chicago, IL, 2005, pp.
4.49-4.50.

[31] C. Speier, J. S. Valacich, and I. Vessey, "The
Effects of Task Interruption and Information Presentation on
Individual Decision Making," proceedings of International
Conference on Information Systems (ICIS '97), Atlanta, GA,
1997, pp. 21-36.

[32] A. L. Strauss and J. M. Corbin, Basics of
Qualitative Research: Techniques and Procedures of
Developing Grounded Theory, Second ed., Sage
Publications, Thousand Oaks, CA, 1998.

[33] W. Visser and J. M. Hoc, "Expert Software Design
Strategies," in Psychology of Programming, J.-M. Hoc, T.
R. G. Green, R. Samurcay, and D. J. Gilmore, Eds. New
York, NY: Harcourt Brace Jovanovich, 1990, pp. 235-249.

Appendix A – Coded themes and
categories

The following table lists all categories (grey
background) and themes that emerged from the
participant transcriptions. The “#” column signified
the number of transcriptions that expressed a theme.

Assessment criteria #
Criticality – the potential impact of a fault 3
Description of the fault 9
Effort required to fix a fault 3
Interrelated – is the fault related to others 2
Is the fault a long standing problem 1
Actively ignore ranking and severity 1
Contemplate ranking or severity 8
Relevance/impact of the fault to the current task 9
Likelihood the fault will be difficult to fix later 3
Environment #
AWARE can be used to guide development 1
Low number of faults makes it easier to focus 1
AWARE may reveal unknown faults 5
Will ignore too many displayed faults 1
Necessary to trust AWARE’s accuracy 5
External influences #
Perceived fault because of overlap with example
code

1

Primed to look at the fault window because of
familiarization

1

Interruption points #
Interrupt the primary task after finishing a
section of code

5

Interrupt between different features 2
Interrupt after finishing a line of code 7
Finish thought before interrupting 5

Personal characteristics #
Code-Compile-Fix mentality 2
Focused solely on the editor and not AWARE 4
Interrupt-driven and will address any popup 5
Focus on AWARE because it is new and unique 1
Desire to fix all errors before they propagate 2
Perspectives #
Could not understand the connection between
the fault and the associated code

6

Incorrectly thought that a fault was related to a
line or section currently being coded

6

Incorrectly thought that a fault had to do with an
unrelated piece of code

4

Strategy #
Interrupt when it will be easy to resume 3
If the root cause of a fault is not apparent, defer
until later in hopes that the cause will be
revealed

2

Correct the error if it is in the line of code
currently being edited

1

Interrupt after line(s) of code are complete since
the fault may be resolved upon completion.

6

Defer investigation of the code is unfamiliar 1
Interruption depending on the development goal
(writing new code vs. comprehension)

1

Purse a fault persistently if the fault has high
criticality

2

Purse a fault persistently if the fault has high
rank

1

Correct only errors related to the primary code
task and defer unrelated errors

2

Appendix B – Investigator scripts

Script 1 - Introduction

“Welcome, and thank you for participating. My name is <name and I’m a graduate student and research assistant at
NC State. What about you?” <Wait for response>

“Thanks again for volunteering, <name>. The goal of our research is to determine how programmers interact with
advanced development environments. Basically, what we will do here today is have you work through some
programming problems on the computer and ask you questions about doing so. The whole process will take about
30 minutes.”

“The first thing I would like to do is have you fill out this consent form. It explains what information we are
collecting and what we intend to do with it. Please read it through and let me know if you have any questions.”

<Wait for completion of the consent form.>

“Okay, thank you. Now let’s go ahead and get started. First, I would like to ask you to rate your level of tiredness
or fatigue on a scale from 1 to 10, with 1 being normal, rested self and 10 being completely exhausted.

<Wait for response>

Script 2 – Familiarization with tasks and Eclipse

“Okay, let’s get started then. First, let me ask, have you ever worked with an IDE such as Eclipse or Visual Studio?
<Wait for answer> Respond with either “Okay, I will ask you to write down how much experience you have with
<IDE> now,” or “Okay, let me show you Eclipse, which is one such IDE.”

<The subject will be shown the Eclipse IDE, which will be running on the researcher’s laptop. The IDE will
have the first familiarization task already open on it.>

“This is Eclipse. [As you already know,] here is where you write your Java code. There is a navigation pane
through the Java file system on the left, and an outline of your current class on the left. The panel at the bottom tells
you if Eclipse has detected any errors in your code. As you can see, a few exist in this project. You can compile
the project by clicking the Run button at the top.”

“As you can see, Eclipse has highlighted a few lines of this program because it has detected syntax errors and
compiler warnings. In the code it works much like Microsoft Word’s spellchecker by underlining errors it finds. If
you look at the Problems View window at the bottom, Eclipse will give you a more complete description of what it
thinks the error is. All that Eclipse can detect are compiler errors and compiler warnings, so that’s what you see
here. Please go ahead and fix those errors. So now, the alerts at the bottom have gone away since you’ve fixed
them. Eclipse is compiling as you go so it can right away tell if the problem is fixed or not. Does that all make
sense? Do you have any questions?”

<Wait for response>

“So what our research is about is extending that functionality. Eclipse can tell you compiler warnings, but there are
all sorts of bugs that can occur that a compiler cannot detect. Buffer overruns, security errors, incorrect processing.
What we are trying to do in our research is tie in a wider variety of error detection to tell you about problems while
you’re coding. There are a variety of tools out there that can look at whole different classes of bugs. Let me show
you what I mean.”

“This version of Eclipse has functionality added to it that we wrote. We named this functionality AWARE. This is
the same program that you were just looking at, but now you can see there are more errors detected. The errors at
the bottom have different symbols next to them which means that our program, AWARE, detected them. There is
also some information there about how severe we think the error is and how confident we are that the error actually
exists. The main problem with the programs that search for errors is that they tend to turn up a lot of false positives,
so we are trying to help the programmer out by telling him/her whether or not we think that it’s really an error or
not. Any questions about what’s going on there?”

<Wait for response>

“Okay, go ahead and click on one of the alerts. As you can see, it jumps you through the code. We’re now in
another class file. AWARE has placed the cursor at the line where the error was detected, just like when you
clicked on the compiler error. Go ahead and see if you can fix the error.”

<Pause>

“Right now, since this is a prototype, if you fix the error, the alert won’t go away. But at least you know where it
thinks the error is. Okay, the last thing that you need to know about AWARE is that it’s not as fast as the Eclipse
compiler by itself. So it takes a few minutes to run sometimes to do all of the analysis in the background. It’s hard
to say exactly when AWARE will tell you that it has detected errors, but they will eventually pop-up down in the
Problems View. Those are the basics. Do you have any questions about AWARE or how it works?”

<Wait for response>

Script 3 – Black box tasks

Most of what we’ll be doing is having you work on an example program in Eclipse. First thing that we will do is
show you about the example program you’ll be working with and the basics of what it does. The idea is that it is a
Medical Reporter program. Imagine that you’re working at a hospital. This simple program prints out patient
records and calculates their bills. Every patient has a unique patient number assigned to them. Their patient records
contain a variety of information. The amount they’re charged for visiting the hospital depends on what they’re there
for and how long they’ve stayed. This is just a simple example program, and isn’t meant to be extremely robust. It
should work pretty well, but might not handle unexpected input very well.

Let’s go through a few simple tasks first.

First, try printing out all of the patients in the system. You can see what’s in a patient record there, and how some
of them have different types of status. Okay, now pick one of the patients and note their patient number.

Okay, second, try printing out just the patient record for the patient you selected.

Now, try looking up that patient’s bill.

Finally, go ahead and enter new a new patient. Remember what number you enter. So for status, you can enter
either ICU, OVERNIGHT, ROUTINE, or SURGERY.

All right, now look up that patient’s info, or print them all out and see if your patient is there.

Okay, any questions about what the example program does?

<Note the time>

Script 4 – Walkthrough

The next thing that we’ll do is try and familiarize you with the code structure of the example program a little bit.
What I would like you to do is trace the flow of events through the code for some of the tasks just to get a feel for
the system and where the functionality is located. You don’t need to worry about memorizing every line of code
and there won’t be a quiz, but you will be adding and modifying some of the functionality, so I want you to have an
idea of how the functionality is laid out so you don’t have to spend a ton of time searching for things later.

<Open up Eclipse and show the clean code>

Here is the code. Here’s what I would like you to do: just trace the way the order that a request is processed
through the system. Trace the flow of information, if you will, and talk your way through the code. So let’s start
with the UserMenu. Say that the user want’s to print out all patients. Here is the loop where it is listening for the
user to enter input. If they select the one to print all patients, it calls this function. Then this function calls this
function, etc. Now I’ll ask you to go ahead and complete the function call chain to complete the request. Feel free
to ask me if you have any general questions, but try to follow the functions by yourself.

Now try tracing through the code for creating a new patient.

Finally, try tracing through the code for printing out a patient’s bill.

<Note the time>

Script 5 – Preliminary tasks

Okay, now onto some programming tasks. We’re going to change it up here a little, and this is also where we’ll
start recording. I’m going to give you a short problem statement/requirements specification for you to add or
modify something in the medical reporter system. AWARE will also be running in the background working on its
analysis. Your goal will be to implement the requirement and also to correct any and all errors that AWARE
detects. While you’re working, I want you to talk out loud and tell me what you’re thinking as you go through the
code. I’d just like to hear your thoughts, what sort of things you’re thinking about, why you’re doing this and that.
The experiment isn’t about how well you program or how quickly you work through the problems or anything like
that. Understanding what you’re thinking is at the crux of the study, so it’s really important that you keep thinking
out loud and talking to me.

Feel free to ask me technical questions if something goes wrong with AWARE or Eclipse, but I can’t help you work
on the problem. You have a pen and some papers here if you need to scratch anything down, and I have a web
browser open to the Java API. Feel free to take advantage of any Eclipse features you know about. Other than that,
I’ll ask you not to use anything else on the web to help you work on the problem.

At some point, I will stop you and we’ll move on. If I haven’t stopped you, and you believe that you’ve completed
the problem, just let me know.

Do you have any questions?

<Wait for response>

Okay, here is the requirement. Read that and let me know if you have any questions while I get Eclipse ready.

<Wait until subject is finished reading the requirement>

Do you have any more questions about the problem? Okay, here we go.

<Start timer and hand over Eclipse. Remember to note times and what the subject is doing when interrupted
and what their reaction is. Time is limited to five minutes.>

Great, okay, let’s move on. Now we’re going to do the same thing again. Solve a different problem, think out loud,
and correct any errors that show up.

<Repeat previous steps of having the subject read a requirement, prepare Eclipse, work on it, and note the
times.>

Script 6 – Main tasks

All right, let’s move on to some more programming tasks. Same thing as before, solve the task, fix any errors, and
talk out loud. Ready?

<Wait for response>

Okay, here you go.

<Start timer and hand over Eclipse. Remember to note times and what the subject is doing when interrupted
and what their reaction is. Time is limited to five minutes/15 minutes. Stop after one minute.>

Okay, stop. Now, AWARE popped up an error while you were programming, just like it did in the previous tasks.
Can you tell me a little about why/why not you decided to go and work on the error? What was your reasoning for
addressing the error? What factors contributed to your addressing it? What would you say is the most important
thing? How important are the other things compared to that? Prod, prod, prod.

Script 7 - Exit Interview

Great, well that’s all I have for the programming tasks.

Now, let me ask, if you’re in that scenario where you’re programming and then you get some information at the
bottom that says something is broken, can you think of anything else that might affect your decision on whether to
address it or not. You mentioned a few things… can you think of anything else, maybe having to do with the code,
or your environment…. Anything at all that might make a difference?

<Listen, react, prod>

Okay, well that’s all I have. Thank you very much for participating. Here is the gift certificate. We really
appreciate you helping out, and I do in particular since this will go a long way toward helping me with my thesis
research. Thanks again!

Appendix C – Programming task requirements

Example task 1 – Record Display Format

The staff using the MedReporter system are not satisfied with the way that patient records are displayed. They want
the patients’ general information to be in one column and their vitals in another. They want all patient records to
appear like this:

Patient ID: xxx Age: xxx
Check in time: xxx Heart rate: xxx
First name: xxx Respirations: xxx
Last name: xxx Blood pressure: xxx
Status: xxx

Furthermore, they would like you to add a Health Index statistic below the Blood pressure information. The Health
Index is computed as (Heart rate + Respirations) / Age.

Make the necessary changes to the program to add this functionality.

Example task 2 – Height and Weight

The staff using the MedReporter system are rather appalled that we forgot to print out the patients’ height and
weight from their existing medical records. Fortunately, this information is already in the record data file
(records.txt) as the last two pieces of information (height and weight are the last two pieces of information for each
line, respectively). However, the height and weight information is not being read into the system. Read this
information into the system and make sure that the height and weight are displayed on separate lines in the first
column of a patient’s record.

Main programming task A – Account Changes

A new multibillion dollar conglomerate has taken over the hospital where the MedReporter is being used. They
didn’t get to be multibillionaires by being cheap, and they think that it’s time to up the prices of the hospital’s
services. Consequently, all of the accounting prices have to be modified. Currently, the bills are based on a service
fee ($25) that is multiplied by a factor depending on whether a patient is there for a routine visit, surgery, in the
Intensive Care Unit, or is just staying overnight. The new conglomerate thinks that the factors are not big enough.
Now, they want to charge all of the factors as follows:

• Surgery patients are charged 10x the service fee.
• ICU patients are charged 8x the service fee.
• Overnight patients are charged 5x the service fee.
• There is no change to routine patients.

Additionally, they want to add a new status for patients called SPECIAL_CARE. Special care patients must pay
20x the normal service fee.

Furthermore, the consulting fee for visiting the hospital needs to be increased to $150.

Make the necessary changes to the system to implement the billing changes.

Main programming task B – Fixing Bugs and Changing Data Format

Due to some shoddy testing, a few bugs have escaped into the MedReporter system and these need to be fixed as
soon as possible.

The system now reads and prints heights and weights from medical records, but it doesn’t save them. When you
create a new patient in the system, there is no option for the staff to enter the height and weight information.
Furthermore, whenever you create a new patient, the height and weight information for ALL patients is lost.
Fortunately, we have a copy of the records (Copy of records.txt). These bugs need to be fixed right away.

Additionally, one of the more high-strung project managers seems to think that the records file is not organized very
well. Change the order of the information in the data file such that each line appears like this:

<ID>, <Last Name>, <First Name>, <Status Code>, <Check-in Time>, <Age>, <Height>, <Weight>, <Blood
Pressure>, <Heart Rate>, <Respirations>

Make the necessary changes to the system to implement all of these changes.

