
Commitment-Based SOA∗

Munindar P. Singh, Amit K. Chopra, and Nirmit Desai

{singh, akchopra, nvdesai}@ncsu.edu

Abstract

The vision of service-oriented computing is centered on business services. By contrast,

existing service-oriented architectures are formulated in terms of low-level abstractions far re-

moved from business services. We describe a new architecture whose components are business

services and whose connectors are patterns (modeled in terms of commitments) that support

key elements of service engagements. We contrast this architecture with existing SOAs.

Introduction

The services vision promises the creation of a dynamic web of value. According to this vision,

anyone with something of value to offer can easily create and deploy a corresponding service;

anyone needing to benefit from that value need simply select such a service and incorporate it into a

desired solution. In other words, services are software components created, deployed, and flexibly

composed to yield desired applications—or more services.

Current SOAs purport to support the services vision. But there is a fundamental discrepancy be-

tween the vision and its realization in current SOAs. When the services vision is promulgated—and

the reason many find it compelling—the implication is that the services are business services. How-

ever, current SOAs interpret services far more narrowly—as surrogates for (computational) objects.

Whereas business services are engaged (often involving subtle business considerations), objects are

invoked (with business considerations hidden within computational artifacts). More importantly,

business services are usually autonomous entities that come together in a service engagement.

Let’s consider the familiar purchase scenario as modeled in the leading SOA approaches. The

purchase (of, say, books) is a business service, which combines services such as ordering a book,

paying, and shipping. Any or all of these services could be provided by different organizations.

Both BPMN1 (Business Process Modeling Notation) and BPEL2 (Business Process Execution Lan-

guage) represent composed services as processes specified via control and data flows over tasks

(the differences3 between them are syntactic). For example, BPMN would model purchase as three

tasks—ordering, paying, shipping—where control and data (book identifier and price) flow from

ordering to both paying and shipping. WS-CDL4 (Choreography Description Language), another

∗This research was partially supported by the US National Science Foundation under grant DST-0139037.
1http://bpmn.org
2http://docs.oasis-open.org/wsbpel/2.0
3http://bpmn.org/Documents/Mapping%20BPMN%20to%20BPEL%20Example.pdf
4http://www.w3.org/TR/ws-cdl-10

1

leading approach, specifies how services exchange messages. WS-CDL would specify how the or-

dering service sends messages to both the paying and shipping services, which perform their work

upon receipt of such messages. Declarative approaches for constraining task or message order and

occurrence improve over the above with respect to modularity and inspectability [1, 2], but continue

to emphasize control and data flow.

Commitments and CSOA

In contrast with existing approaches, our commitment-based SOA (CSOA) gives primacy to the

business meanings of service engagements, which are captured through the participants’ commit-

ments to one another. CSOA constrains tasks or messages only where doing so affects the business

meaning. Computationally, each participant is modeled as an agent; interacting agents carry out a

service engagement by creating and manipulating commitments to one another.

A commitment relates three parties: a debtor who is committed to a creditor typically within

the scope of an organizational context. The context may be an institution—for example, a market-

place (such as eBay) or a legal jurisdiction (such as California)—in which the interaction occurs.

Members of an institution who fail to discharge their commitments risk sanction. UCC5 (Uniform

Commercial Code) applies in many US jurisdictions, and dictates conditions such as when a cus-

tomer need not pay for goods he bought (for instance, if the goods arrive damaged and the customer

returns them immediately). In general, the context is crucial in handling exceptions, which are rife

in business settings. For modeling purposes, we treat the context as an agent in its own right.

Importantly, commitments can be manipulated, which supports flexibility. A debtor may create

a commitment thus activating it, or discharge it thus satisfying it. Given a commitment, its creditor

may assign it (to a new creditor) and its debtor may delegate it (to a new debtor). A debtor may

cancel a commitment, whereas a creditor may release the debtor from the commitment.

Consequently, CSOA offers the following benefits:

Enactment and Compliance Service enactments can be judged correct as long as the parties don’t

violate their commitments. This enhances flexibility over traditional approaches by expanding

the operational choices for each party [3]. For example, if the customer substitutes a new way

to make a payment or elects to pay first, no harm is done, because the behavior is correct at

the business level. And, the seller may employ a new shipper; the buyer may return damaged

goods for credit; and so on. Conversely, a customer would be in violation if he keeps the goods

but fails to pay. In this manner, commitments support business-level compliance and don’t

dictate specific operationalizations [4]. By contrast, without business meaning, exercising

any such flexibility would result in noncompliant executions.

Specification and Composition Commitment-based specifications can explicitly reflect require-

ments at the business level, which is natural for stakeholders. For example, upon placing

an order, the customer becomes conditionally committed to the merchant to paying for the

goods if they are delivered. The delivery of the goods commits the customer to paying for

them. When the customer pays, this commitment is discharged. Commitments provide clean

conceptual boundaries at which we can compose engagements. For example, we can reuse

5http://www.law.cornell.edu/ucc

2

order placement in specifying a more complex service engagement in which independent de-

livery and payment services are employed. By contrast, without business meaning, we would

lack a basis to establish the validity of any reuse or composition.

Figure 1: Classifying CSOA patterns

CSOA is characterized by a family of reusable patterns that arise in a variety of service engage-

ments. Figure 1 shows three elements of a service engagement, which help classify our patterns.

Transactional refers to the dealings among two or more participants. Structural refers to how a

participant (including subcontractors) is organized. Contextual refers to the organizational context

in which the engagement takes place. A typical service engagement model would include several

patterns, each applied to some participants and their commitments.

What follows are descriptions of illustrative patterns of each category. These patterns are in-

duced from existing processes including UCC, RosettaNet6, TWIST7 (Transaction Workflow Inno-

vation Standards Team), the MIT Process Handbook (MITPH)8, and extended transaction models

[5].

Commitments as a Basis for Patterns

The formula C (debtor , creditor , context , precondition , condition) means that debtor commits

to creditor in context that if precondition becomes true, the debtor would bring about condition .

When precondition holds, the commitment undergoes a detach, meaning that the debtor becomes

unconditionally committed to bringing about condition .

Background: Statecharts

Figures 2–4 depict patterns as statecharts [6], which are more expressive than finite state machines.

Let’s review Figure 2(a) to illustrate our notation. Rounded rectangles with labels denote states.

6http://www.rosettanet.org
7http://www.twiststandards.org
8http://ccs.mit.edu/ph

3

States may contain other states. For example, null and active (containing conditional and base) are

states. Arrows labeled with events denote transitions between states. Transitions without labels are

always enabled. An arrow from a containing state denotes a transition from each of its substates

(for example, discharge).

Figure 2(a) captures the lifecycle of a commitment: null means it does not exist, active means it

is fully in force, satisfied means it has been discharged, and violated means it cannot be discharged.

A commitment in base may become violated, whereas a commitment in conditional cannot directly

become violated, but goes to null on expiration. For example, a customer may offer to buy some

goods by creating the commitment: “if you ship I will pay.” The commitment may expire or the

customer may pay. If the merchant delivers, that would detach the commitment, unconditionally

committing the customer to pay.

We underline commitment labels in the patterns: the big rectangle labeled commitment is a state

that contains the other states. This reflects the system being in a state where commitment is in force.

Importantly, create is performed explicitly whereas detach and discharge are caused automati-

cally when precondition and condition respectively hold; expire is caused implicitly upon timeout;

but cancel may be performed explicitly or occur via timeout.

An active commitment must be either in state conditional or base, and this depends solely on

whether its precondition holds (base) or not (conditional).

Most patterns involve more than one commitment. Such patterns are described via a composite

state that has a concurrent component for each commitment. For example, in Figure 2(c), a dotted

vertical line separates original and new. A composite state can be thought of as a list of its compo-

nents, which in logical terms are ANDed together. Thus, if original is in state null and new is in state

active, the composite state is given by original being in null AND new being in active.

A solid bar with incoming and outgoing arrows is a synchronization primitive: when all events

corresponding to the incoming arrows happen, the transitions corresponding to each outgoing arrow

also execute. (Throughout, SMALL CAPS indicate comments.)

Pattern Language

Of the 13 attributes in the classical template for object-oriented design patterns [7], the following

attributes are relevant for commitment-based patterns: name and classification; intent; motivation;

applicability; consequences; implementation; known uses. A common consequence is that the par-

ties involved be proactive and able to communicate flexibly: this is why we model them as agents.

Engagements at the level of business entities is what each pattern is about. The implementation,

specified via a statechart, incorporates the participants and structure. To make the patterns modular,

we include in its statechart only the relevant states and transitions for each commitment involved.

(In this sense, our statecharts are not individually complete, and rely upon other patterns to have

brought about the states from which they begin.) The commitment operations corresponding to a

transition would be realized via business actions such as sending purchase orders, delivering goods,

and so on, thus enacting the corresponding business scenarios.

Transactional Patterns

The core of a service engagement concerns the business transaction that it seeks to accomplish.

Transactional patterns describe the corresponding interactions in terms of how the associated com-

mitments are created and manipulated. These patterns deal with common transactional primitives

4

Figure 2: Transactional patterns

such as initiating a business transaction, formally creating suitable commitments, satisfying the

commitments, and possibly updating, retrying, or compensating actions in light of stated gating

conditions. Each of these patterns involves the same two participants.

Commit

Intent: Expressing an offer

Motivation: Explained in the text

Applicability: Whenever an offer is made as part of setting up a service engagement

Consequences: For progress, the creditor should be ready to bring about the precondition

Implementation: Figure 2(a)

Known uses: Purchase, MITPH purchase, RosettaNet purchase order (PIP3A4)

Relieve

Intent: The creditor releases the debtor from the commitment

Motivation: If the customer obtains the book he needs before the merchant has shipped it, he may

release the merchant from the commitment to ship

Applicability: This reduces cleanup work for both customer and merchant, and helps maintain good

business relations

Consequences:

Implementation: Figure 2(b). Upon release, commitment becomes null

Known uses: Purchase, MITPH notify, RosettaNet purchase order cancel (PIP3A9)

5

Update

Intent: A commitment is updated

Motivation: An update is needed when the customer asks for a hardcover book instead of a paperback;

the original commitment is nullified

Applicability: A participant’s needs might change while a long-lived engagement is in progress

Consequences:

Implementation: Figure 2(c). Upon update, original becomes null, and new is created

Known uses: Purchase, MITPH update, RosettaNet purchase order change (PIP3A8)

Compensate

Intent: Some business action needs to be undone

Motivation: A customer sends payment, which commits the merchant to sending the goods; later, if the

merchant fails to deliver the goods on time thus violating its commitments, it needs to make amends,

for example, by refunding the payment

Applicability: Supporting an extended form of transactional rollback, so as to maintain an all or none

effect despite exceptions [5]

Consequences: Typical usage is when the debtor is unable to bring about the condition of original

Implementation: Figure 2(d). Upon violation of original, creation of compensating is enforced

Known uses: Purchase, RosettaNet return product (PIP3C1)

Retry

Intent: Some business action needs to be redone

Motivation: When a shipment doesn’t arrive, the merchant resends it

Applicability: Supporting an extended form of transactional rollforward, so as to maintain an all or none

effect despite exceptions [5]

Consequences: Typical usage is when the debtor made an attempt to bring about the condition of

original, but the effort proved unsatisfactory

Implementation: Figure 2(e). Upon violation of original, creation of retry is enforced

Known uses: Purchase, MITPH rework

Structural Patterns

Service engagements involve subtle relationships among the parties involved. The structural pat-

terns capture such relationships in terms that are not directly involved in a transaction. Specifically,

the structural patterns may capture constraints on which party may play which role, or whether a

party may delegate or assign certain commitments to another party. Each of these patterns involves

two or more participants, all of who are debtors (delegators or delegatees) of commitments. For

brevity, we elide the dual cases of creditors assigning commitments.

Structural patterns can be most simply illustrated when a service engagement involves an orga-

nization with internal structure. A participating organization may delegate its commitments under

the engagement to appropriate members (who could themselves be organizations). For example,

auto insurance companies often delegate their customer service commitments to a regional branch,

which might further delegate the commitments to a specific agency.

Transfer Responsibility

Intent: A debtor nullifies its original commitment by delegating it to another party, and is no longer

concerned with the delegated commitment’s satisfaction or violation

6

Motivation: If the customer delegates to his credit card bank to pay the merchant, the subsequent

interactions for the payment are between the bank and the merchant; the customer need no longer

be involved

Applicability: When the delegatee and creditor have a business relationship

Consequences: The creditor must accept the delegation, and perhaps seek proof that the delegatee

accepts it; the delegation may be risky for the creditor

Implementation: Figure 3(a). Upon delegate, original is null whereas delegated becomes active

Known uses: When an airline “endorses” a ticket over to another airline based on a passenger’s request,

the second airline becomes responsible for transporting the ticketed passenger

Retain Responsibility (in Delegation)

Intent: A debtor delegates its commitment but doesn’t give up responsibility for its ultimate satisfaction

Motivation: The merchant delegates its commitment to ship goods to a shipping service, but remains

committed to the customer to have the goods delivered; discharging the delegated commitment dis-

charges the original pending commitment

Applicability: When the delegatee and creditor don’t have a longstanding business relationship

Consequences: The creditor is safe because the delegator remains responsible; this pattern enables and

coheres with Escalate and Withdraw patterns

Implementation: Figure 3(b). Upon delegate, original becomes pending whereas delegated becomes

active

Known uses: When an insurance company delegates a claimant’s auto repair work to a mechanic, it

remains responsible if the mechanic fails to make adequate repairs

Escalate (Delegated Commitment)

Intent: The delegatee bailing out of a delegated commitment reactivates the original commitment

Motivation: If a shipper fails to deliver the goods, the merchant becomes responsible again

Applicability: When the delegatee may not provide guaranteed service

Consequences: The creditor would be the instigator

Implementation: Figure 3(c). If delegated is escalated and goes to null, original goes from pending to

active, thus reactivating it

Known uses: When a customer pays with a check, it delegates its commitment to pay to the bank; if the

bank fails to pay (say because of insufficient funds), the escalation reactivates the customer’s original

commitment to pay

Withdraw Delegation

Intent: Withdrawing a delegation reactivates the original commitment

Motivation: When a delivery is unacceptably delayed, the merchant may withdraw a delegation from

the first shipper and delegate it to another shipper

Applicability: When costs can be saved by cutting off an unproductive delegation

Consequences: Should allow withdrawal to occur only if delegated has not been satisfied: this would

arise automatically when this pattern is applied in conjunction with Retain Responsibility, as a result of

which satisfaction of delegated would bring original out of its pending state

Implementation: Figure 3(d). Upon withdraw, original once again becomes active whereas delegated

becomes null

Known uses: When an airline with an over-booked flight delegates its commitment (to transport a

passenger) to another airline. If the second airline’s flight is excessively delayed due to weather, the first

airline may reactivate its commitment to transport the passenger

Divide Labor

Intent: Split service commitment among service providers

Motivation: Assign subtasks to subcontractors

Applicability: Whenever a service can be partitioned based on capabilities or capacity

Consequences:

7

Implementation: Figure 3(e) with retained responsibility. When the delegatees discharge their commit-

ments, original becomes satisfied. Similarly for transferred responsibility

Known uses: Common, RosettaNet distribute work (PIP7B1)

Contextual Patterns

The business context of a service engagement dictates the rules of encounter to which it is subject.

For example, eBay users are subject to the terms and conditions of the eBay marketplace, such as

that users may not attempt to place false bids. More pertinently, the rules for dispute resolution are

also contextual in nature. Each of these patterns involves the three participants: debtor, creditor, and

context, with the context explicitly acting as a debtor of a metacommitment (whose precondition and

condition involve commitments). The context has the power to create and manipulate commitments

among the agents in its scope. Metacommitments provide guarantees to the participants.

Whereas all commitments involve a context, in the contextual patterns, the context agent itself

features as a debtor or creditor. Often, in contextual patterns, the context commits to another party

that if some conditions prevail, it will cause a specified commitment to transition to a suitable state.

Penalize

Intent: To impose a penalty upon a party that violates its commitment

Motivation: The context imposes another commitment upon a debtor in violation. For example, if the

original commitment means paying $10 by Monday, the penalty commitment could mean paying $11

by Tuesday. Or, if the original means delivering the goods, the penalty could mean refunding the deposit

and an additional 10%

Applicability: When the engagement is subject to a regulatory agency

Consequences: The context has the means to determine that the requisite conditions hold; it has power

over the debtor such as removing it from a marketplace or voiding its license to operate

Implementation: Figure 4(a). If original is violated, then the precondition of the context’s commitment

context is met, which in turn makes penalty active

Known uses: Uniform Commercial Code

Revert offer

Intent: To enable a party to back out of a transaction

Motivation: A customer commits to paying for some goods, which are delivered; if the customer returns

the goods before paying, he is released from paying; if the customer has paid, the merchant should

refund the payment

Applicability: As in Penalize

Consequences: As in Penalize

Implementation: Figure 4(b). An undo(precondition) undoes the precondition of the offer. If progress

is in state base, then the debtor is released (progress becomes null)—no further action is needed. If

progress is satisfied, then undo(precondition) creates revert

Known uses: Uniform Commercial Code

8

Figure 3: Structural patterns

Applying the Patterns

To design a service engagement using the above patterns requires three steps. One, identify the com-

mitments regarding the services involved. Two, apply selected patterns to appropriate commitments.

9

Figure 4: Contextual patterns

Three, map the operations occurring in the patterns to the business actions of the engagement.

Figure 5 illustrates how the above patterns apply in modeling our purchase example. Part (a)

shows the partner roles and their commitments toward one another: the customer offers to pay

if the merchant ships him the goods; the merchant offers to ship the goods if the customer pays.

Part (b) introduces a bank and shipper; the customer delegates the payment commitment to the

bank and the merchant delegates the shipping commitment to the shipper; the two apply different

structural patterns. Part (c) applies a contextual pattern enabling refunds upon return. Notice that

additional business requirements are accommodated simply by applying additional patterns; the

existing patterns stay as is. The CSOA patterns may need to be supplemented with operational

constraints such as data flow and event ordering among business actions, for example, to require

that payments should precede shipping.

By contrast, traditional approaches such as BPMN are based solely on such operational con-

straints. The resulting flows could be quite complex: imagine trying to achieve the effects of the

patterns in Part (c) purely through control and data flows. Not only do they hide the business mean-

ing, they complicate accommodating additional business requirements: even a simple change can

lead to many additional intricate changes in the existing control and data flows.

To instantiate an engagement, business partners adopt the specified roles and perform the ser-

vices and other business actions specified. The patterns refer to several explicit actions, including

create, delegate, assign, release, and update. Each such action is governed by the corresponding

partner’s policy; at enactment such policies would determine what computations occur. Our proto-

10

Figure 5: Successive CSOA models of a purchase service engagement

type tools map commitment patterns to computations [3] and produce role skeletons, which can be

used to implement agents who can participate in an engagement [4].

Traditional models emphasize operationalizations by describing engagements in terms of com-

putations (tasks or messages). They are unwieldy because even simple business requirements can

lead to many possible operationalizations. They lack a formal representation of business meaning

which is relegated to documentation. We need the operationalizations, of course, but the modeler

should be concerned with business meanings, not with low-level operationalizations.

The above patterns describe abstract possibilities. However, applying patterns involves match-

ing them to the concrete business realities of a service engagement. For example, a transactional

pattern allowing cancellation would make sense only if a commitment can be reasonably canceled.

11

And, it may not be possible to delegate a commitment if the intended delegatee would not accept the

delegation. Lastly, the context may not be able to ensure that an agent will discharge any commit-

ments created by the context. In general, the above patterns would work best when there is a suitable

prior business or legal relationship among the parties involved. The patterns can guide the creation

of the appropriate relationships or constraints so that desired service engagements are realized.

SOAs as Architectural Styles

An architectural style specifies a family of configurations of components and connectors subject to

stated constraints [8].

In these terms, existing SOAs are an architectural style whose major components are (service)

provider and consumer, and whose connector is a protocol by which a consumer invokes a provided

service. (For simplicity, we ignore registries, and service publication and discovery.) A practical

SOA includes specialized components and connectors, such as for resource management and other

enterprise functions (identity, billing, and so on), and imposes additional constraints so appropriate

components interoperate with the management and enterprise components.

Benatallah et al. propose patterns called business-level interfaces and protocols [9]. However,

their patterns ignore business meanings (like CDL and BPEL), thereby leading to rigid interopera-

tion. For example, if a message interface specifies that a customer should make a payment subse-

quent to the receipt of goods, then a service realizing such an interface must behave accordingly. It

ought not to take any liberties such as reversing the order of the messages, interposing other mes-

sages, or introducing another party such as a payment agency. But, real-life service engagements

typically presume such flexibility. Limiting flexibility subverts the services vision because it creates

avoidable friction in the web of value.

Table 1: A comparison of commitment-based and existing SOAs with respect to the main elements of an

architectural style (following [8])

Elements Existing SOAs Commitment-Based SOA

Components Service provider and consumer Business service provider and con-

sumer agents

Connectors Operations and message patterns (in,

out, in-out, out-in)

Commitment patterns

Invariants Match operation and message signa-

tures

Each party knows only the identity

of parties with whom it features in a

commitment

Model Control and data flow Operations on commitments

The motivation for considering business meaning is to improve the flexibility of enactments

and the naturalness, maintainability, and reusability of service specifications. Table 1 contrasts

commitment-based and existing SOAs. Thus, CSOA is not a unique style but has many flavors

depending on the patterns selected. Such flexibility is necessary to support the nuances of service

engagements. The primary constraint on a sound implementation of CSOA is that at runtime all

commitments are eventually null or satisfied.

12

The reader may reasonably wonder: if CSOA is so different why is it still a SOA? The answer

is twofold. One, CSOA is centered on services and is, arguably, more true to the services vision

than existing SOAs. Two, CSOA doesn’t seek to replace existing SOAs and their implementations.

CSOA is conceptualized in terms of business service engagements, but would be realized through

conventional means. For example, the service engagements modeled in CSOA would translate into

business processes expressed in BPMN.

Model-Driven Architecture9 (MDA) provides a useful way to think of the relationship between

CSOA and existing SOAs. In MDA terms, CSOA is a Computation Independent Model whereas

existing SOAs are Platform Independent Models. In other words, the move to CSOA would repre-

sent the step—often repeated in computer science—of moving from lower to higher abstractions.

Because commitments are computation independent, yet lend themselves to rigorous operational-

ization, CSOA can help bridge the well-recognized gap between business and IT [10]. Others have

begun to recognize the importance of high-level abstractions, but their work still employs opera-

tional abstractions.10

Kumaran [11] presents four abstraction layers for enterprise modeling: strategy (business con-

siderations), operation (business functions conceptualized via tasks and artifacts), execution (analo-

gous to existing SOAs), and implementation. CSOA would help extend Kumaran’s operation layer

to multienterprise service engagements, and commitment patterns would provide richer representa-

tions that facilitate modeling enterprise operations perspicuously and reusably.

Because of the subtleties of real-life service engagements, no finite set of patterns would be

provably complete. This is analogous to object-oriented design patterns, which are numerous and

unbounded even though the underlying programming languages need only a few primitives.

However, despite their subtlety, service engagements for the most part exhibit regularities in

how their transactions, structures, and contexts are applied. Consequently, a reasonably small set of

patterns can help describe a large number of practical engagements. Thus our main contributions

are introducing a SOA that gives primacy to business interactions and showing how to formalize the

concomitant patterns that provide an expressive vocabulary for modeling service engagements.

Typical service engagement models would include several of the above patterns applied in rou-

tine ways. Thus aggregate service patterns, which capture best practices in designing service en-

gagement, may potentially be abstracted, and applied in designing new engagements using CSOA.

References

[1] Munindar P. Singh. Distributed enactment of multiagent workflows: Temporal logic for service

composition. Proc. 2nd Intl. Joint Conf. Autonomous Agents & MultiAgent Systems, pages

907–914, 2003.

[2] Wil M. P. van der Aalst and Maja Pesic. DecSerFlow: Towards a truly declarative service flow

language. Proc. 3rd Intl. Workshop Web Services and Formal Methods, LNCS 4184, pages

1–23. Springer, 2006.

[3] Amit K. Chopra and Munindar P. Singh. Contextualizing commitment protocols. In Proc. 5th

Intl. Joint Conf. Autonomous Agents & Multiagent Systems, pages 1345–1352, 2006.

9http://www.omg.org/mda
10http://www.ip-super.org

13

[4] Nirmit Desai, Ashok U. Mallya, Amit K. Chopra, and Munindar P. Singh. Interaction pro-

tocols as design abstractions for business processes. IEEE Trans. Software Engineering,

31(12):1015–1027, December 2005.

[5] Ahmed K. Elmagarmid, editor. Database Transaction Models for Advanced Applications.

Morgan Kaufmann, 1992.

[6] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer

Programming, 8:231–274, 1987.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison-

Wesley, 1995.

[8] Mary Shaw and David Garlan. Software Architecture. Prentice-Hall, 1996.

[9] Boualem Benatallah, Fabio Casati, Farouk Toumani, Julien Ponge, and Hamid R. Motahari

Nezhad. Service Mosaic: A model-driven framework for web services life-cycle management.

IEEE Internet Computing, 10(4):55–63, 2006.

[10] Howard Smith and Peter Fingar. Business Process Management. Megan-Kiffer Press, 2002.

[11] Santhosh Kumaran. Model-driven enterprise. Proc. Global Enterprise Application Integration

Summit, pages 166–180, 2004.

Authors

Munindar P. Singh is a Professor of Computer Science at NCSU. He is a former EIC of IEEE

Internet Computing. Singh coauthored the textbook Service-Oriented Computing: Semantics,

Processes, Agents.

Amit K. Chopra is a doctoral candidate in Computer Science at NCSU. Chopra’s interests include

service-oriented architectures and multiagent systems.

Nirmit Desai is a postdoctoral fellow in Computer Science at NCSU. Desai’s interests include

cross-organizational business processes.

14

