
Pallino: Automation to Support Regression Test Selection
for COTS-based Applications

Jiang Zheng
North Carolina State University

Room 3231, Engineering Building II
Raleigh, NC 27695-8206

jzheng4@ncsu.edu

Laurie Williams
North Carolina State University

Room 3272, Engineering Building II
Raleigh, NC 27695-8206

williams@csc.ncsu.edu

Brian Robinson
ABB Inc., US Corporate Research

940 Main Campus Drive
Raleigh, NC 27606

brian.p.robinson@us.abb.com

ABSTRACT
Software products are often built from commercial-off-the-shelf
(COTS) components. When new releases of these components are
made available for integration and testing, source code is usually
not provided by the vendors. Various regression test selection
techniques have been developed and have been shown to be cost
effective. However, the majority of these test selection techniques
rely on source code for change identification and impact analysis.
In our research, we have evolved a regression test selection (RTS)
process called Integrated - Black-box Approach for Component
Change Identification (I-BACCI) for COTS-based applications. I-
BACCI reduces the test suite based upon changes in the binary
code of the COTS component using the firewall regression test
selection method. In this paper, we present the Pallino tool.
Pallino statically analyzes binary code to identify the code change
and the impact of these changes. Based on the output of Pallino
and the original test suit, testers can determine the regression test
cases needed that cover the application glue code which is affected
by the changed areas in the new version of the COTS component.
Three case studies, examining a total of fifteen component releases,
were conducted on ABB internal products. With the help of
Pallino, RTS via the I-BACCI process can be completed in about
one to two person hours for each release of the case studies. The
total size of application and component for each release is about
340~830 KLOC. Pallino is extensible and can be modified to
support other RTS methods for COTS components. Currently,
Pallino works on components in Common Object File Format or
Portable Executable formats.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]

General Terms
Algorithms, Reliability, Verification.

Keywords
software testing, regression testing, commercial-off-the-shelf,
COTS.

1. INTRODUCTION
Companies increasingly incorporate a variety of commercial-off-
the-shelf (COTS) components in their products. Upon receiving a
new release of a COTS component, users of the component often
conduct regression testing to determine if a new version of a
component will cause problems with their existing software and/or
hardware system. Regression testing involves selective re-testing

of a system or component to verify that modifications have not
caused unintended effects and that the system or component still
complies with its specified requirements [12]. Rerunning all of the
test cases for the application can be prohibitively expensive in
both time and resources [10]. Therefore, a variety of regression
test selection (RTS) techniques have been developed (for example,
[5, 10, 22]) to reduce the number of tests that need to be executed
without significant risk of excluding important failure-revealing
test cases. However, most existing RTS techniques rely on source
code, and therefore are not suitable when source code is not
available for analysis, such as when an application incorporates
COTS components.

In our research, we have evolved a RTS process called the
Integrated - Black-box Approach for Component Change
Identification (I-BACCI1) for COTS-based applications. I-BACCI
uses static change identification of binary code and the firewall
analysis RTS technique [31-33]. In this paper, we present the new
comprehensive automation for the I-BACCI process, henceforth
called Pallino2. Pallino performs binary change identification and
impact analysis and can be modified to support other RTS
methods for COTS components. The input artifacts to Pallino are
the binary code of the components (old and new versions), which
is generally available to users of COTS components. Pallino
outputs a list of affected exported component functions. Affected
exported component functions are functions within the COTS
component that interface with the application, and are either
changed or are in the call chain of other changed functions.

Based on the list of affected exported component functions and
the original test suite, testers can identify glue code functions that
call affected exported component functions. Then the subset of
the regression test cases that cover the glue code which is affected
by the changed areas in the new COTS components can be
identified. Glue code is application code that interfaces with the
COTS components, integrating the component with the
application. The final output of the I-BACCI process is a reduced
suite of regression test cases. Currently Pallino works on
components in Common Object File Format (COFF) or Portable
Executable (PE) formats written in C/C++. COFF libraries
usually have the extension .lib. Typical PE files have the
extensions .exe, .dll, .ocx, .sys, .cpl and .scr. This
paper also reports the results of applying Pallino to identify a
reduced test suite for three industrial case studies.

1 We pronounce BACCI the way the bocce is pronounced when

referring to the Italian ball game: [bah-chee].
2 http://www4.ncsu.edu/~jzheng4/pallino.htm
 A pallino is the small ball used in the bocce ball game.

The rest of this paper is organized as follows. Section 2 outlines
the background and related work. Section 3 introduces the I-
BACCI process. Section 4 illustrates two examples of how Pallino
works. Section 5 and Section 6 describe the architecture and
algorithms of Pallino, respectively. Section 7 illustrates how to use
Pallino. Section 8 presents the results of case studies. Finally,
Section 9 presents the conclusions and future work.

2. BACKGROUND AND RELATED WORK
This section provides prior work in testing of software
components, regression test selection, binary code analysis and its
application for change identification and impact analysis and RTS,
I-BACCI process, and legal issues.

2.1 Testing of Software Components
Poor testability, due to the lack of access to the component's
source code and other artifacts, is one of the challenges in user-
oriented component testing [8, 9, 28]. When only binary code is
available, binary reverse engineering is a technically-feasible
approach for automatically deriving information that can inform
the RTS. The derived information can be a program structure of a
component from its binary code, such as call graphs [18].

Harrold et al. [11] presented techniques that use component
metadata for RTS of COTS components. They illustrated their
technique with a controlled example and seven releases of a real
component-based system, demonstrating an average savings of
26% of the testing effort [11]. Their techniques utilize three types
of metadata to perform the regression test selection: (1) the branch
coverage achieved by the test suite with respect to the component
to associate test cases with branches; (2) the component version;
and (3) a means to query the component for the branches affected
by changes in the component between two given versions [11].
However, the component vendors may not provide the metadata
information. In our research, we focus on using information that is
typically available to a COTS component user.

Recently Mariani et al. addressed both the problem of quickly
identifying components that are syntactically compatible with the
interface specifications, but badly integrate in target systems, and
the problem of automatically generating regression test suites [17].
Their technique relies on automatic inference of IO and interaction
models. IO models are boolean expressions over the values
exchanged during the computation, describing properties of data
values exchanged between components. Interaction models
describe sequences of invocations by finite state machines labeled
with method invocations. [17] As a dynamic analysis technique
that automatically synthesizes behavioral models from execution
traces, their technique requires runtime setup and reliable sets of
test suites. Our approach based on static binary code analysis
which will be discussed in Section 2.3.

2.2 RTS and Firewall Analysis
The purpose of RTS techniques is to reduce the high cost of retest-
all regression testing by selecting a subset of possible test cases
[10]. A variety of RTS techniques (for example, [5, 10, 22]) have
been proposed, such as methods based upon path analysis
techniques or dataflow techniques. Leung and White [16, 29]
developed firewall analysis for regression testing with integration
test cases in the presence of small changes in functionally-
designed software. Firewall analysis restricts regression testing to

potentially-affected system elements directly dependent upon
changed system elements [29, 30]. Dependencies are modeled as
call graphs and a "firewall" is "drawn" around the changed
functions on the call graph. All modules inside the firewall are
unit and integration tested, and are integration tested with all
modules not enclosed by the firewall [29]. Via empirical studies of
industrial real-time systems, firewall analysis was shown to be
effective [30]. The firewall analysis allowed an average savings of
36% of the testing time and 42% of the tests run. No additional
errors were detected by the customer on the studied software
releases that were due to the changes in these releases to date. [30]
Our I-BACCI approach extends the traditional concept and scope
of firewall analysis for use with binary code.

2.3 Binary Code Analysis
Binary code analysis (BCA) approaches and tools have been
developed and utilized in many software development-related
activities, including program comprehension, software
maintenance and software security, even by software developers
that have access to the source code [24]. For example, malicious
code or patterns in executable can be detected via BCA to enhance
software security [4].

Balakrishnan et al. presented the "What You See Is Not What You
eXecute" (WYSINWYX) phenomenon: There can be a mismatch
between what a programmer intends and what is actually executed
by the processor, e.g., presence or absence of procedure calls by
the optimizing compiler [3]. Therefore, analyses performed on
source code can fail to detect certain bugs and vulnerabilities.
Also, analyzing executables has other advantages, such as,
revealing more accurate information about the behaviors that
might occur during execution, because an executable contains the
actual instructions that will be executed [3].

Additionally, BCA can be dynamic or static. Dynamic BCA
monitors the execution of programs. In contrast, static BCA
provides a way to obtain information about the possible states that
a program reaches during execution without actually running the
program on specific inputs. Static techniques explore the
program's behavior for all possible inputs and all possible states
that the program can reach. [3] Srivastava et al. discussed the
advantages of comparing software at the binary level rather than
the source code level: binary comparison is (1) easier to integrate
into the build process because the recompilation step needed to
collect coverage data is eliminated; and (2) all the changes in
header files (such as constants and macro definitions) have been
propagated to the affected procedures, simplifying the
determination of program changes [24]. Our tool utilizes static
BCA to identify changes and change impact within the COTS
components where source code is not available.

2.4 BCA for Change Identification, Impact
Analysis and RTS
A key step in choosing regression tests is applying impact analysis
[19] to identify changes between the new release and the
previously-tested version with the same source code base.
However, similar to RTS, most change identification approaches
utilize the source code of the old and modified programs [2, 14,
21, 22, 25, 26]. These approaches are not suitable for component
testing when source code is not available.

Srivastava and Thiagarajan at Microsoft developed Echelon [24],
a test prioritization system. Echelon is used to prioritize tests
based upon changes between two versions identified by a binary
code comparison. Echelon takes as input two versions of the
program in binary form, and a mapping between the test suite and
the lines of code it executes. Echelon outputs a prioritized list of
test sequences (small groups of tests). Wang et al. [27] developed
the Binary Matching Tool (BMAT) which compares two versions
of a binary program without knowledge of the source code
changes. The implementation uses a hashing-based algorithm and
a series of heuristic methods to find correct matches for as many
program blocks as possible. The algorithm first matches
procedures, then basic blocks within each procedure. The
implementation of BMAT is built on Windows NT® for the x86
architecture, using the Vulcan binary analysis tool [23] to create
an intermediate representation of x86 binaries. Vulcan separates
code from data and identifying program symbols. The tool enables
good matching even with shifted addresses, different register
allocations, and small program modifications [27]. BMAT
underlies Echelon [24] to match blocks in the two binaries.

However, Echelon and BMAT are large proprietary Microsoft
internal products with a significant infrastructure and an
underlying binary code manipulation engine, and therefore cannot
be used by the community at large. Also, Echelon prioritizes, but
does not eliminate tests [24]. Our goal is to provide information
about which test cases are not necessary to rerun.

3. I-BACCI
We have evolved the I-BACCI process for RTS for COTS-based
applications [31-33]. For previous case studies of I-BACCI, the
process was supported by three separate tools, D-TIZ, TID-BITZ,
and CAAFI [31-33] which required the expertise and manual
intervention of the first author of this paper to understand the form
of the input and outputs from/for each tool to obtain the desired
output. Pallino integrates these three tools and provides a user
interface to enable it to be used and modified by others to support
RTS of COTS components in the general case.

The steps of I-BACCI are shown in Figure 1. The I-BACCI
process is an integration of (1) a static binary code change
identification process; and (2) firewall analysis RTS technique.
Our uniqueness is the combination of the two parts to identify and
localize change with the goal of reducing the regression test suite.

The I-BACCI process has been evolved to Version 4 through the
application of the process on both COFF and PE components
written in C/C++. The I-BACCI Version 4 involves seven steps.
The first four steps are completed via a BCA process (in dash-
dotted line frame) using the Pallino tool. The remaining three
RTS steps are completed via firewall analysis (in dashed line
frame). The input artifacts to the process are the binary code of
the COTS components (old and new versions); the source code
and test suite of the development application; and all test cases
which are mapped to the glue code functions they cover. These
input artifacts are generally available to users of COTS
components. The output of the I-BACCI process is a reduced suite
of regression test cases necessary to exercise the changed areas in
the new COTS components.

Lawyer and software engineering professor Dr. Cem Kaner deems
that we are reverse engineering [13]. The definition of "reverse

engineering" he provided is: "to study or analyze (a device, as a
microchip for computers) in order to learn details of design,
construction, and operation, perhaps to produce a copy or an
improved version." [1, p. 1326] His opinion is: if a license
indicates "no reverse engineering" then use of Pallino could
constitute a breach of contract. However, many software
components may not have this clause, for example, open source
and free software products, and many other scientific/educational
products distributed in binary. The interaction of patent law and
mass market license terms, as it affects interoperability, is being
actively debated within the legal profession [15]. The intent of I-
BACCI is to enable COTS purchases to gather change information
to inform their RTS. Kaner advises that purchasers of COT
software should contact their vendors and request waivers that
allow them to reverse engineer COTS components for the purpose
of managing their maintenance costs. He furthers that vendors of
these components would serve their customers well by revising
their licenses to specifically permit this kind of analysis.

Figure 1: I-BACCI Version 4

4. PALLINO
Pallino utilizes static binary code analysis to compare two
versions of a component, identifying semantic changes and their
impact within the new version of the component. Pallino first
decomposes the binary files of the component, i.e., breaking up
the binary code down into constituent elements, such as code
sections and relocation tables. Prior to distribution, component
source code is compiled into binary code, such as .lib or .dll
files. Information on the data structure, functions, and function
calling relationships of the source code is stored in the binary files
according to pre-defined formats, so that an external system is able

to find and call the functions in the corresponding code sections.
Often the first step can be accomplished by parsing tools available
for the specified language/architecture. Pallino uses Microsoft
COFF Binary File Dumper (DUMPBIN)3 to decompose COFF
and PE binary files.

The second step, filtering trivial information, is frequently
necessary because the output from the first step may contain trivial
information such as timestamps and file pointers that are irrelevant
to the change identification. Pallino removes the trivial
information and extracts the raw code section of each
function/data, and function/data calling relationships for the new
version of the component.

In the third step, Pallino identifies true changes in the raw binary
code of functions and data by removing the false positives caused
by differences due to trivial changes, such as shifted addresses and
register reallocations. Pallino also represents, generates and
analyzes call graphs for the new version of the component.

In the last step, Pallino identifies changed and new added
component functions according to the results of prior steps, and
then identifies affected exported component functions by tracing
along the call graphs within the component using directed graph
theory algorithms. Analysis starts from each component function
identified as changed, and that change is propagated along the call
graphs until the exported functions are reached.

The remainder of this section presents two examples to illustrate
how affected exported component functions are identified from
binary code. We will discuss the examples for COFF component
and PE component in Section 4.1 and Section 4.2, respectively.

4.1 COFF Component
Windows NT uses a special format for the executable (image)
files and object files. The format used in these files is referred to
as COFF files3. Object files created from C or C++ programs
using many compilers conform to COFF, including the Visual
C++ and the GNU Compiler Collection (GCC).

In the example to follow, Release 4 and Release 5 of an ABB
component are compared. We refer to these as the “old” and the
“new” releases. The input to Pallino is .lib binary files of the
two releases. Binary code fragments in the two releases are shown
in Figure 2. At first glance, we can not see any relationship
between the two binary code fragments because both the binary
code and the address ranges are different. We use the DUMPBIN
tool to translate the binary files into plain text. The counterparts in
the output of DUMPBIN for the two binary code fragments are
shown in Figure 3. The sections can be located and identified by
function signatures, e.g., function1 in this example. Directive
information, such as size of raw data and function signature, is
shown in the “SECTION HEADER” subsection. The “RAW
DATA” subsection displays the binary code that represents
function1 for each release, i.e. the code in boldface in Figure 2.
The “RELOCATIONS” subsection lists which other functions and
data are called by function1. Non-trivial difference for
function1 between the two releases is underscored in Figure 2
and 3. Thirty six bytes of code (three lines of source code), with
three functions and data calls were deleted in the new release.

3 MSDN Library - Visual Studio .NET 2003

00003830: /* Old Release */
00003840: 00 07 00 51 56 8B 74 24 0C 57 C6 44 24 0B 01 83
00003850: 7E 04 01 7D 07 5F 83 C8 FF 5E 59 C3 56 E8 00 00
00003860: 00 00 8B F8 83 C4 04 85 FF 74 15 6A FF 68 00 00
00003870: 00 00 E8 00 00 00 00 83 C4 08 8B C7 5F 5E 59 C3
00003880: 56 E8 00 00 00 00 8B F8 83 C4 04 85 FF 74 18 68
00003890: 80 00 00 00 68 00 00 00 00 E8 00 00 00 00 83 C4
000038a0: 08 8B C7 5F 5E 59 C3 56 E8 00 00 00 00 8B F8 83
000038b0: C4 04 85 FF 74 15 6A FF 68 00 00 00 00 E8 00 00
000038c0: 00 00 83 C4 08 8B C7 5F 5E 59 C3 8B 4E 04 8D 44
000038d0: 24 0B 6A 01 50 6A 04 68 FF FF 00 00 51 FF 15 00
000038e0: 00 00 00 85 C0 74 1B 6A 04 68 00 00 00 00 E8 00
000038f0: 00 00 00 6A 04 68 00 00 00 00 E8 00 00 00 00 83
00003900: C4 10 56 E8 00 00 00 00 83 C4 04 5F 5E 59 C3 90
00003910: 90 90 90 1B 00 00 00 96 00 00 00 14 00 2B 00 00
00003920:
00003a60: /* New Release */
00003a70: 00 01 00 00 14 00 00 00 00 A5 00 00 00 07 00 51
00003a80: 56 8B 74 24 0C 57 C6 44 24 0B 01 83 7E 04 01 7D
00003a90: 07 5F 83 C8 FF 5E 59 C3 56 E8 00 00 00 00 8B F8
00003aa0: 83 C4 04 85 FF 74 15 6A FF 68 00 00 00 00 E8 00
00003ab0: 00 00 00 83 C4 08 8B C7 5F 5E 59 C3 56 E8 00 00
00003ac0: 00 00 8B F8 83 C4 04 85 FF 74 18 68 80 00 00 00
00003ad0: 68 00 00 00 00 E8 00 00 00 00 83 C4 08 8B C7 5F
00003ae0: 5E 59 C3 8B 4E 04 8D 44 24 0B 6A 01 50 6A 04 68
00003af0: FF FF 00 00 51 FF 15 00 00 00 00 85 C0 74 1B 6A
00003b00: 04 68 00 00 00 00 E8 00 00 00 00 6A 04 68 00 00
00003b10: 00 00 E8 00 00 00 00 83 C4 10 56 E8 00 00 00 00
00003b20: 83 C4 04 5F 5E 59 C3 90 90 90 90 90 90 90 90 1B
00003b30:

Figure 2: Binary code fragments
SECTION HEADER #31 /* Old Release */
 .text name // section name
 // directive information
 Communal; sym= _function1 // signature
 // directive information
RAW DATA #31
00000000: 51 56 8B 74 24 0C 57 C6 44 24 0B 01 83 7E 04 01
00000010: // more binary code for function1
RELOCATIONS #31
Offset Type Index Symbol Name
-------- ----- ----- -----------
0000001B REL32 96 _function2
0000002B DIR32 B8 string_data1
00000030 REL32 152 _function3
0000003F REL32 9D _function4
00000052 DIR32 B5 string_data2
00000057 REL32 152 _function3
00000066 REL32 A4 _function5
00000076 DIR32 B2 string_data3
0000007B REL32 152 _function3
0000009C DIR32 6C _function6
000000A7 DIR32 AF string_data4
000000AC REL32 152 _function3
000000B3 DIR32 AC string_data5
000000B8 REL32 152 _function3
000000C1 REL32 BD _function7
SECTION HEADER #31 /* New Release */
 .text name // section name
 // directive information
 Communal; sym= _function1 // signature
 // directive information
RAW DATA #31
00000000: 51 56 8B 74 24 0C 57 C6 44 24 0B 01 83 7E 04 01
00000010: // more binary code for function1
RELOCATIONS #31
Offset Type Index Symbol Name
-------- ----- ----- -----------
0000001B REL32 97 _function2
0000002B DIR32 B6 string_data1
00000030 REL32 14F _function3
0000003F REL32 9E _function4
00000052 DIR32 B3 string_data2
00000057 REL32 14F _function3
00000078 DIR32 C _function6
00000083 DIR32 B0 string_data4
00000088 REL32 14F _function3
0000008F DIR32 AD string_data5
00000094 REL32 14F _function3
0000009D REL32 BB _function7

Figure 3: DUMPBIN output

Using the calling relationship information in the
“RELOCATIONS” subsection, Pallino then generates call graphs
and identifies the affected exported component functions in the
new release. Figure 4 shows how function1 (in black) affects
glue code. Although three exported component functions are
affected by function1, only one glue code function
(Glue_code_function1) calls one of the affected exported
component functions. Therefore, RTS will only need to select test
cases for Glue_code_function1 from the initial test suite.

Figure 4: Call graph: how component change affects glue code

4.2 PE Component
Many executables, such as .exe files, Object Linking and
Embedding Control Extension (OCX) controls, and Control Panel
applets (.cpl files) are in PE format. When loaded into main
memory by the Windows loader, PE files can be mapped directly
into memory, such that the data structures on disk are the same as
those Windows uses at runtime. If one knows how to find
something in a PE file, he can almost certainly find the same
information when the file is loaded in memory. [20] This aspect
facilitates static BCA. However, some characteristics of the PE
format make the change identification and call graph generation
more complex than analyzing COFF files. For example, only the
names of exported component functions can be obtained in the
binary code, such that functions have to be mapped between two
releases after generating the call graphs for exported component
functions. Also, the DUMPBIN output for PE files contains only
one .text section where the raw code fragments for all the
functions are consecutively arranged. Relocation information is
stored in the only .reloc section, as shown in Figure 5. Whereas
the information for each function, such as raw code fragment and
relocation table, locates in separated sections in the DUMPBIN
output for COFF files. Pallino needs to parse these sections and
integrate information to achieve the goal of change identification
and impact analysis.

This example illustrates how the exported function foo is affected
by changed data. Information related to foo in the DUMPBIN
output for the two .dll files are shown in Figure 5. The Relative
Virtual Address (RVA) of the raw code segment of foo can be
found in the exports table in the .rdata section, e.g., 00003BC0
in the old release and 000024D0 in the new release. Therefore,
the start virtual addresses of the raw code segment of foo can be
calculated by adding the image base address (0x10000000 in

this example) to the RVA, i.e., 0x10003BC0 in the old release.
The binary code that represents foo for each release is in boldface
in the "RAW DATA #1" subsections. Differences for the raw code
segment of foo between the two releases are gray highlighted in
Figure 5.

SECTION HEADER #1 /* Old Release */
 .text name // code section
 // directive information
RAW DATA #1
......
10003BC0: 8B 44 24 04 85 C0 74 13 8B 4C 24 08 51 68 34 82
10003BD0: 01 10 50 E8 88 6D 00 00 83 C4 0C 8B 44 24 0C 85
10003BE0: C0 74 13 8B 54 24 10 52 68 2C 82 01 10 50 E8 6D
10003BF0: 6D 00 00 83 C4 0C 8B 44 24 14 85 C0 74 13 8B 4C
10003C00: 24 18 51 68 24 82 01 10 50 E8 52 6D 00 00 83 C4
10003C10: 0C B8 01 00 00 00 C2 18 00 90 90 90 90 90 90 90
......
SECTION HEADER #2
 .rdata name // read only data section
 // directive information
 ordinal hint RVA name // exports table

 6 A 00003BC0 foo

SECTION HEADER #3
 .data name // read/write data section
 // directive information
RAW DATA #3
......
10018220: 00 00 00 00 41 53 43 49 49 00 00 00 31 2E 31 2E
10018230: 38 00 00 00 45 42 50 41 5F 4C 49 43 45 4E 53 49
......
SECTION HEADER #4
 .reloc name // relocation section
 // directive information
BASE RELOCATIONS #4

 3000 RVA
 BCE HIGHLOW 10018234 // call data3
 BE9 HIGHLOW 1001822C // call data2
 C04 HIGHLOW 10018224 // call data1

SECTION HEADER #1 /* New Release */
 .text name // code section
 // directive information
RAW DATA #1
......
100024D0: 8B 44 24 04 85 C0 74 13 8B 4C 24 08 51 68 08 7B
100024E0: 01 10 50 E8 78 84 00 00 83 C4 0C 8B 44 24 0C 85
100024F0: C0 74 13 8B 54 24 10 52 68 00 7B 01 10 50 E8 5D
10002500: 84 00 00 83 C4 0C 8B 44 24 14 85 C0 74 13 8B 4C
10002510: 24 18 51 68 F8 7A 01 10 50 E8 42 84 00 00 83 C4
10002520: 0C B8 01 00 00 00 C2 18 00 90 90 90 90 90 90 90
......
SECTION HEADER #2
 .rdata name // read only data section
 // directive information
 ordinal hint RVA name // exports table

 6 A 000024D0 foo

SECTION HEADER #3
 .data name // read/write data section
 // directive information
RAW DATA #3
......
10017AF0: 25 30 38 6C 78 00 00 00 41 53 43 49 49 00 00 00
10017B00: 31 2E 31 2E 39 00 00 00 45 42 50 41 5F 4C 49 43
......
SECTION HEADER #4
 .reloc name // relocation section
 // directive information
BASE RELOCATIONS #4

 2000 RVA
 4DE HIGHLOW 10017B08 // call data3
 4F9 HIGHLOW 10017B00 // call data2
 514 HIGHLOW 10017AF8 // call data1

Figure 5: DUMPBIN output

function13

function14 function15 function16

function11

Glue_code_function1

function10

function1

function12

Application

COTS
Component

They are all trivial shifted addresses to be ignored in semantic
differencing. However, according to the information in the
relocation sections, foo calls data2, which changes from
0x312E312E38 (ASCII string "1.1.8") to 0x312E312E39
(ASCII string "1.1.9"), as shown in underscored code in the
"RAW DATA #3" subsections. The one byte change exactly
reflected the modification in source code: the value of macro
definition VERSION changed from "1.1.8" to "1.1.9" in the
new release. Pallino then generates call graphs and identifies how
changed data2 affects foo, as shown in Figure 6.

Figure 6: Call graph: How changed data affects exported
component function

5. ARCHITECTURE
The overall architecture of Pallino conforms to the model-view-
controller (MVC) model, as shown in Figure 7. The solid lines
represent direct associations, and the dashed lines represent
indirect associations. An MVC architecture separates data (model)
and user interface (view) concerns, so that changes to the user
interface do not affect the data handling, and that the data can be
reorganized without changing the user interface.

Figure 7: Overall architecture

According to the object-oriented software design principle of
"program to an interface, not an implementation"[7], a generic
interface BinaryFileFormatModel was created to represent
the abstract concept of the binary file format model. The concrete
types of binary file format model, including COFFFormat and
PEFormat, implement the generic interface and represent the
data structure of COFF and PE binary file formats, respectively.
The client code accesses objects of a concrete binary file format
model only through their abstract interface. This pattern allows
for new derived types of binary file format model to be introduced
with no change to the code that uses the base object, increasing
the extensibility of the tool. Functionality that processes other
binary file format, such as Executable and Linking Format (ELF)4,
can be easily added into the system without affecting many other
modules, as shown in Figure 8.

4 A common standard file format for executables, object code,

shared libraries, and core dumps, which was chosen as the
standard binary file format for Unix and Unix-like systems.

Figure 8: Binary File Format Model

Additionally, we adapted the data structures to the functionality of
change identification and impact analysis. Not all information in
the binary file formats are needed to be described in the models
used in Pallino, for example, time date stamps and number of
symbols. The data structure of PEFormat is shown in Figure 9.

Class PEFormat {
PEFileHeader fileHeader; //File header
PEOptionalHeader optHeader; //Optional header
PESectionHeader textHeader; //.text section header
PESectionHeader rdataHeader; //.rdata section header
String rdataRaw; //.rdata section data
PESectionHeader dataHeader; //.data section header
String dataRaw; //.data section data
PESectionHeader idataHeader; //.idata section header
String idataRaw; //.idata section dara
PESectionHeader relocHeader; //.reloc section header
PEExportTable exportsTable; //Exports table
PEImportTable importsTable; //Imports table

}

Figure 9: PE format data structure

In the function/data model, we abstract function and data as the
same class (PEFunctionData) with the following main
attributes: signature, start virtual addresses, end virtual address,
raw binary code, and relocation list. Functions without explicit
signatures (e.g. non-exported functions in PE files) and all data
use start virtual addresses as their signatures.

The view module of the architecture includes the control panel,
and result representation and displaying, which will be described
in Section 7 with the illustration of use.

The controller module is responsible for processing and
responding the input event from the user interface. First, the
controller validates the input and recognizes the type of the input
binary file by the magic number to decide to which algorithm it
will pass the request. A magic number is a pre-defined constant,
typically located at the first few bytes of a binary file, used to
identify the file type. For example, PE files start with the ASCII
string 'MZ' (0x4D5A), and the magic number of a COFF file is the
ASCII string “!<arch>\n” (0x213C617263683E0A). The
controller then executes the algorithm and accesses the
corresponding model. Finally, the results are produced and
returned to the view module and user interface.

6. ALGORITHMS
In this section, the algorithms that were developed for components
in COFF and PE formats are described, respectively.

6.1 Algorithms for COFF components
At first, DUMPBIN was invoked to convert the binary library
code into plain text. An example of the DUMPBIN output is
shown in the Figure 10. Function names, binary code
representation of the functions, and relocation tables are all clearly
described in the output text of DUMPBIN. The algorithm scans
the output of DUMPBIN, saves the code sections of functions into
separate files, and collects and saves the relocation tables of the

BinaryFileFormatModel

COFFFormat PEFormat ELFFormat

noNameFunction1

foo

data1
data2

data3

Component

Controller
Input Validation

Model Dispatcher

View
Control Panel

Affected Functions
Call Graphs

Model
Binary File Format Model

Function/Data Model
Call Graph Model

functions into a text file (henceforth called "relocation table set").
The function list is fed into next step to perform differencing. The
relocation table set is utilized to generate and analyze call graphs
of the components in later steps.

int ClassA::functionA(int s) { /* Source Code */
 return state==s;
}
SECTION HEADER #78 /* Old Release */

 Communal; sym= "public: virtual int __thiscall
ClassA::functionA(int)"

RAW DATA #78
00000000: 8B 89 A0 06 00 00 8B 54 24 04 33 C0 3B CA 0F 94
00000010: C0 C2 04 00 90 90 90 90 90 90 90 90 90 90 90 90
SECTION HEADER #79 /* New Release */

 Communal; sym= "public: virtual int __thiscall
ClassA::FunctionA(int)"

RAW DATA #79
00000000: 8B 89 CC 06 00 00 8B 54 24 04 33 C0 3B CA 0F 94
00000010: C0 C2 04 00 90 90 90 90 90 90 90 90 90 90 90 90

Figure 10: Source code and DUMPBIN output for functionA in
ClassA

In the next step, it is necessary to reduce the number of false
positive changes identified due to trivial changes, such as shifted
addresses and register reallocations. A large number of false
positives were observed in the initial case study of the I-BACCI
Version 1 [31], which increased the number of glue code
functions that were identified for retesting. To explore the cause of
the false positives, the analyzer examined the source code and the
associated binary library files of the component. A large amount
of false positives were caused by changes in registers used and
addresses of variables and functions, which typically would not
cause functional changes in the code.

For example, as shown in bold in the Figure 10, the binary code
8B89A0060000 means "copy the operand in the address of
register ECX plus offset 0x06A0 to register ECX", where 8B89
is the instruction and A0060000 is the address offset5. Therefore,
in this example, the only difference in binary is that the address
offset was changed from A0060000 to CC060000. Further
examination of the source code showed that seven new function
declarations and one new variable definition were added before
the variable state was defined in one of the header files included in
the source file of the new release. As a result, the offset of the
variable state was changed accordingly. In this case, the binary
code change identified is not a real change and can be ignored in
the change identification. The binary code like 8B89A0060000
is called an example of a "binary code comparison false positive
pattern." Many such false positive patterns were found in the
initial case studies. The full list of these patterns can be found
online6. The algorithm did reduce the false positive rate to less
than 8% in the case studies [33].

The algorithm then builds and analyzes the call graphs of
components of COFF type automatically using the relocation table
set generated in the first step, and changed functions identified in
the second step. Due to the large number of functions in the
components, it is time-consuming to identify affected functions

5 http://developer.intel.com/design/pentium4/manuals/index_
 new.htm
6 http://www4.ncsu.edu/~jzheng4/895/tools.htm

given changed functions in the components according to the
calling relationships produced in Step 3 and 4 of the I-BACCI
Version 4 process. The relocation table set of a component is
converted into an adjacency-matrix [6] to represent call graphs of
the functions in the component. For each changed function, the
algorithm then backtracks the call graphs to identify all functions
that directly or indirectly call the changed function.

The outputs of Pallino for analyzing COFF components include:
(1) the call graph of each exported component function; (2) a
differencing report on the two releases; (3) a list of all affected
exported component functions in the new release.

6.2 Algorithms for PE components
The algorithm examines the binaries from coarse to fine
granularity step by step. First, the tool invokes DUMPBIN to
translate the illegible binary library files into readable plain text
files. This file-level granularity step assumes that file names do not
change between releases. Then a file reader automatically scans
the DUMPBIN output and loads useful information, such as
instructive information in file header, section headers, exports
table and imports table, into the predefined data structure
PEFormat which is constructed according to the PE file format
specification. File and section information is ready to facilitate
future lookup after this section-level step.

The next finer granularity is in function/data-level. Binary code of
functions and data are stored consecutively in .text section and
data sections (.rdata, .data, .idata, etc.), respectively. However,
only names of exported component functions are available. Other
functions and all data have to be labeled by their start virtual
addresses. The data structure PEFunctionData, as discussed in
Section 5, is used to represent the functions and data. The
relocation table is read from the .reloc section and then converted
into a Hashtable called relocation index. For each key-value
pair in the relocation index, the key is a calling virtual address
where the control flow jumps to another function or data, and the
start virtual address of the function or data being called (a.k.a.
target virtual address) is stored as the value. Function calling
virtual address and target virtual address can also be calculated
according to the position of each call instruction and the address
offset following each call instruction, respectively. Because only
binary code is available instead of assembly code, the tool
searches opcode E8 and E9 which represent "call near" in the
Intel instruction set6 to locate the position of each function call.
After finding all functions and data start virtual addresses, an array
in PEFunctionData type is constructed and the raw code of
the .text and data sections is decomposed into separate functions
or data.

The function/data call graphs and full code representation for all
exported component functions can be generated recursively
following the calling track. A few steps that remove trivial bytes
are also conducted during processing of this level. For example,
most raw code of functions/data is followed by a few useless bytes
(e.g. 90, CC) for the purpose of alignment.

Further instruction-level comparisons can be conducted after the
function/data level if the full code representations of an exported
component function in two releases are still different. For example,
false positives may be caused by register allocation changes from
build to build. After all of the above steps, a report on differencing

of exported component functions will be generated. We can use
this report to identify affected application code and then select
proper regression test cases.

The outputs of Pallino for analyzing PE components include: (1)
the call graph of each exported component function; (2) a full
binary code representation of each exported component function,
including all sub-functions and data that might be called by that
exported function; (3) a differencing report on the two releases; (4)
a list of all affected exported component functions in the new
release.

7. ILLUSTRATION OF USE
Although developed in Java, Pallino is transformed to a Windows
executable file (.exe) by exe4j7 to facilitate the use in the Windows
operating environment. An illustrative screen shot of the main
console of Pallino is shown in Figure 11.

Figure 11: Pallino screen shot

There are three panes on the main console: input pane, run pane,
and results pane. The user of Pallino first specifies the binary files
of both old and new versions of a component, and a working
directory in the input pane. The specified working directory is for
the purpose of saving results and running log. Once the input is
specified and the "Start to Run" button in the run pane is clicked,
Pallino accepts and validates the input, executes the corresponding
algorithms according to the file format, and upon completion,
refreshes the results in the results pane.

The exported component functions for both versions of the
component are shown in a table in the results pane, matched by

7 http://www.ej-technologies.com/products/exe4j/overview.html

the function signatures, i.e., functions with the same signatures are
shown in the same row. The user can clearly see which functions
are new added, changed, affected, or unaffected in the new version
of the component in the middle column of the result table. Further
explanation, including a list of all affected exported component
functions for the new version of the component, is shown in a text
area in the results pane. The results are also saved into files for
the RTS analysis of the I-BACCI process. The running log can
also be saved to a file by clicking on the "Save log..." button.

8. CASE STUDIES
The subjects examined in our case studies are summarized in
Table 1. These software combinations were chosen for these case
studies because (1) the numbers of test cases for each function of
the applications were available; (2) multiple releases of the
components were available; (3) the high cost of executing the
retest-all strategy demonstrates the potential value of achieving
regression test reductions.

The first author was the analyzer and the third author was the
verifier. The analyzer conducted the first six steps of the I-BACCI
Version 4. The results of the identified changes for all
comparisons and all call graphs for the components were
preliminarily verified by the analyzer, using source code for the
component to determine the accuracy of the analysis post hoc.
Then, the verifier determined the numbers and percent reduction
of the regression test cases needed, based on the list of all the
affected glue code functions and the original test suite. The
verifier also confirmed the efficacy of the RTS process by
examining the failure records of retest-all black-box testing.

Table 1. Summary of case study subjects

Case Application Component Releases
1 757 KLOC one 67 KLOC .lib file in C 1 ~ 6
2 40 KLOC eight .lib files in C, totally 300

KLOC
1 ~ 5

3 757 KLOC one 3 KLOC .dll file in C 1 ~ 4

8.1 Results
The results of applying the Pallino on the three case studies were
the same as when we used the original separated tools (D-TIZ,
TID-BITZ, and CAAFI) [33, 34]. Generally, the higher percentage
of affected exported component functions, the lower the
percentage of test cases reduction, as shown in Figure 12.

In the best case, as much as 100% regression test case reduction
can be achieved by the I-BACCI process if our analysis indicates
the changes to the COTS component are not called by the glue
code. This fact would not be known to the users of COTS
component without I-BACCI analysis, such that they would still
be tempted to do retest-all. When there are a lot of changes in the
new release of the component, the I-BACCI process suggests a
retest-all regression test strategy, similar to other RTS techniques.
Also, the I-BACCI process is more effective when there are small
incremental changes between revisions, as is true with all RTS
techniques.

Figure 12: Relationship between the percentage of affected

exported component functions and the percentage of test cases
reduction for each case study

8.2 Running Costs
Pallino were run on an IBM T42 laptop with one Intel® Pentium®
M 1.8 GHz processor and one gigabyte RAM. The comparisons
of total time costs among different RTS strategies for each release
of the three case studies are shown in Table 2. One assumption is
that the mapping of all test cases with the glue code functions they
cover is ready. Also, another limitation is that we only have rough
estimation on time costs of test execution. Although there is no
time costs in BCA and RTS, retest-all strategy takes a lot of time
in test execution. Conducting the I-BACCI process without
automation can be time consuming as well, especially for
analyzing PE components. With the help of Pallino, the I-BACCI
process can be completed in about one to two person hours for
each release of the case studies. Depends on the percentage of test
cases reduction determined by the I-BACCI process, the total time
cost of the whole regression testing process can be reduced from
five person months by retest-all strategy to one person hours in the
best case.

8.3 Limitations
Pallino works only when the releases of components are built by
the same compiler. If two compared releases are built by different
compilers or linkers, Pallino will yield a significant number of
false positives.

Table 2. Rough total time costs

Time Costs (for each release) Case Approach
BCA RTS Test Execution Total

Retest-all 0 0 1 months 1 months
I-BACCI

(manually)
5 days 2 hrs 0 ~ 1 months 5 days ~ 1.1

months

1
I-BACCI

(w/ Pallino)
2 mins 2 hrs 0 ~ 1 months 2 hrs ~ 1

months
Retest-all 0 0 5 months 5 months
I-BACCI

(manually)
15

days
1 hr 0 ~ 5 months 15 days ~

5.5 months

2
I-BACCI

(w/ Pallino)
5 mins 1 hr 0 ~ 5 months 1 hr ~ 5

months
Retest-all 0 0 4 days 4 days
I-BACCI

(manually)
>> 4
days

2 hrs 0 ~ 4 days >> 4 days

3
I-BACCI

(w/ Pallino)
15~19
mins

2 hrs 0 ~ 4 days 2.5 hrs ~ 4
days

9. CONCLUSIONS AND FUTURE WORK
In this paper, we present Pallino, a tool that statically identifies
binary code changes and their impact to support regression test
selection for COTS-based applications when source code of
components is not available. Based on the output of Pallino and
the original test suit, testers can determine the regression test cases
needed that cover the application glue code which is affected by
the changed areas in the new COTS components. Pallino was
designed to support the I-BACCI process but could be extended
and/or modified to support other RTS methods for COTS
components when source code is not available. Pallino can be
applied to binary files of components in either COFF or PE format
written in C/C++ at this stage. Three case studies, examining a
total of fifteen component releases, were conducted at ABB on
products written in C/C++. The results indicate Pallino can
efficiently identify affected exported component functions, and
therefore facilitate reducing the required number of regression test.
With the help of Pallino, the I-BACCI process can be completed
in about one to two person hours for each case study. Depends on
the percentage of test cases reduction determined by the I-BACCI
process, the total time cost of the regression testing process can be
reduced from five person months to one person hours in the best
case.

Besides expanding Pallino to adapt to more programming
language and more of the COTS file types, such as components of
Component Object Model (COM)3 type and in ELF format, we
plan to reduce the false positives caused by factors other than
source code (e.g. build tools and target platforms). Additionally,
extensive validation of both Pallino and I-BACCI RTS process
will require more industrial case studies and data collection.

10. ACKNOWLEDGMENTS
This research was supported by a research grant from ABB
Corporate Research. We would like to thank Dr. Cem Kaner for
his help on the legal aspects of this paper.

11. REFERENCES
[1] "Bowers v. Baystate Technologies," in Federal Reporter 3d.

vol. 320: United States Court of Appeals for the Federal
Circuit, 2003, p. 1317.

[2] T. Apiwattanapong, A. Orso, and M. J. Harrold, "A
Differencing Algorithm for Object-Oriented Programs," in
19th International Conference on Automated Software
Engineering (ASE'04), Linz, Austria, 2004, pp. 2-13.

[3] G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum,
"WYSINWYX: What You See Is Not What You eXecute,"
in The IFIP Working Conference on Verified Software:
Theories, Tools, Experiments, 2005.

[4] J. Bergeron, M. Debbabi, J. Desharnais, M. Erhioui, Y.
Lavoie, and N. Tawbi, "Static detection of malicious code in
executable programs," in The International Symposium on
Requirements Engineering for Information Security, 2001.

[5] J. Bible, G. Rothermel, and D. Rosenblum, "A Comparative
Study of Course- and Fine-Grained Safe Regression Test-
Selection Techniques," ACM Transactions on Software
Engineering and Methodology, 10(2), pp. 149-183, 2001.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd Edition Cambridge,
Massachusetts London, England: The MIT Press and
McGraw-Hill, 2001.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software:
Addison-Wesley Professional, 1995.

[8] J. Gao and Y. Wu, "Testing Component-Based Software -
Issues, Challenges, and Solutions," in 3rd International
Conference on COTS-Based Software Systems, 2004.

[9] J. Z. Gao, H.-S. J. Tsao, and Y. Wu, Testing and Quality
Assurance for Component-Based Software. Boston, 2003.

[10] T. L. Graves, M. J. Harrold, Y. M. Kim, A. Porter, and G.
Rothermel, "An Empirical Study of Regression Test
Selection Techniques," ACM Transactions on Software
Engineering and Methodology, 10(2), pp. 184-208, 2001.

[11] M. J. Harrold, A. Orso, D. Rosenblum, G. Rothermel, M. L.
Soffa, and H. Do, "Using Component Metacontents to
Support the Regression Testing of Component-Based
Software," in IEEE International Conference on Software
Maintenance (ICSM 2001), Florence, 2001, pp. 716-725.

[12] IEEE, "IEEE Standard Glossary of Software Engineering
Terminology," IEEE Standard 610.12, 1990.

[13] C. Kaner, J. Zheng, L. Williams, B. Robinson, and K.
Smiley, "Binary Code Analysis of Purchased Software:
What are the Legal Limits?," Submitted to the
Communications of the ACM, 2007.

[14] J. Laski and W. Szermer, "Identification of program
modifications and its applications in software maintenance,"
in International Conference on Software Maintenance, 1992.

[15] D. Laster, "The Secret Is Out: Patent Law Preempts Mass
Market License Terms Barring Reverse Engineering for
Interoperability Purposes."

[16] H. Leung and L. White, "A Study of Integration Testing and
Software Regression at the Integration Level," in
International Conference on Software Maintenance, San
Diego, 1990, pp. 290-301.

[17] L. Mariani, S. Papagiannakis, and M. Pezze, "Compatibility
and regression testing of COTS-component-based software,"
in 29th International Conference on Software Engineering,
Minneapolis, MN, 2007, pp. 85-95.

[18] A. M. Memon, "A process and role-based taxonomy of
techniques to make testable COTS components," in Testing
Commercial-off-the-shelf Components and Systems, S.

Beydeda and V. Gruhn, Eds. Berlin, Germany: Springer-
Verlag, 2005, pp. 109-140.

[19] A. Orso, R. Apiwattanapong, J. Law, G. Rothermel, and M.
J. Harrold, "An empirical comparison of dynamic impact
analysis algorithms," in International Conference on
Software Engineering, Edinburgh, 2004, pp. 491-500.

[20] M. Pietrek, "An In-Depth Look into the Win32 Portable
Executable File Format," in MSDN Magazine, March 2002.

[21] X. Ren, B. G. Ryder, M. Stoerzer, and F. Tip, "Chianti: A
Change Impact Analysis Tool for Java Programs," in the
27th International Conference on Software Engineering, St.
Louis, MO, USA, 2005, pp. 664-665.

[22] G. Rothermel and M. Harrold, "Analyzing regression test
selection techniques," IEEE Trans. on Software Engineering,
22(8), pp. 529-551, 1996.

[23] A. Srivastava, "Vulcan," Microsoft Research TR-99-76,
1999.

[24] A. Srivastava and J. Thiagarajan, "Effectively prioritizing
tests in development environment," in ACM SIGSOFT
International Symposium on Software Testing and Analysis,
Roma, Italy, 2002, pp. 97-106.

[25] F. Vokolos and P. Frankl, "Pythia: A regression test
selection tool based on textual differencing," in 3rd
International Conference on Reliability, Quality and Safety
of Software-intensive System, Athens, 1997, pp. 3-21.

[26] F. Vokolos and P. Frankl, "Empirical evaluation of the
textual differencing regression testing technique," in
International Conference on Software Maintenance, 1998.

[27] Z. Wang, K. Pierce, and S. McFarling, "BMAT: A Binary
Matching Tool for Stale Profile Propagation," The Journal
of Instruction-Level Parallelism, vol. Vol. 2, 2000.

[28] E. J. Weyuker, "Testing Component-Based Software: A
Cautionary Tale," IEEE Software, 15(5), pp. 54-59, 1998.

[29] L. White and H. Leung, "A Firewall Concept for both
Control-Flow and Data Flow in Regression Integration
Testing," in International Conference on Software
Maintenance, Orlando, 1992, pp. 262-271.

[30] L. White and B. Robinson, "Industrial Real-Time
Regression Testing and Analysis Using Firewall," in
International Conference on Software Maintenance,
Chicago, 2004, pp. 18-27.

[31] J. Zheng, B. Robinson, L. Williams, and K. Smiley, "An
Initial Study of a Lightweight Process for Change
Identification and Regression Test Selection When Source
Code is Not Available," in 16th IEEE International
Symposium on Software Reliability Engineering, Chicago,
IL, USA, 2005, pp. 225-234.

[32] J. Zheng, B. Robinson, L. Williams, and K. Smiley, "A
Lightweight Process for Change Identification and
Regression Test Selection in Using COTS Components," in
5th International Conference on COTS-Based Software
Systems, Orlando, FL, USA, 2006, pp. 137-143.

[33] J. Zheng, B. Robinson, L. Williams, and K. Smiley,
"Applying Regression Test Selection for COTS-based
Applications," in 28th IEEE International Conference on
Software Engineering, Shanghai, China, 2006, pp. 512-521.

[34] J. Zheng, L. Williams, B. Robinson, and K. Smiley,
"Regression Test Selection for Black-box Dynamic Link
Library Components," 2nd International Workshop on
Incorporating COTS Software into Software Systems: Tools
and Techniques, 2007.

