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Abstract

Wireless sensor networks can support a wide variety of applications ranging from military surveillance to health
care clinic monitoring. To carry out many of these tasks, a wireless sensor network must obtain accurate location
for each sensor. A number of localization schemes have been developed to allow each sensor node to acquire its
location. However, most of these techniques assume benign environments, and thus cannot survive malicious attacks
in hostile environments where external and/or compromisednodes may launch attacks. This paper proposes a new
computationally efficient and resilient localization scheme based the clustering of benign location reference anchors.
Moreover, this paper reports both simulation and field experiments using a test-bed of MICAz motes performed to
compare the proposed approach with several recent secure localization schemes. The experimental results demon-
strate that the proposed scheme has the fastest execution time among all resilient localization schemes that can be
used for the current generation of sensor platforms (e.g., MICA series of motes).

Keywords: Localization, wireless sensor networks, robustness and attack resiliency

1 Introduction

Wireless sensor networks (WSN) have found a great variety ofapplications ranging from health monitoring in the
civilian world to military surveillance and reconnaissance. Location information is the key to many networking proto-
cols such as geographical routing protocols (e.g., GPSR [10] and GEAR [29]) or geographic data-centric storage (e.g.,
GEM [21], GHT [25])) . Further, location information is needed to enable WSN applications such as target tracking
(e.g., ZebraNet [8]) and environmental monitoring. To support these protocols and applications, nodes in WSN need
to acquire and maintain accurate information of their locations.

The Global Positioning System (GPS) [28] is a popular outdoor localization system for mobile devices. However,
due to the cost reasons, it is highly undesirable to have a GPSreceiver on every sensor node. Moreover, in some
situations such as indoor sensor network applications, GPScannot be used for localization because of interferences
and obstacles. This creates a demand for efficient and cost-effective location discovery algorithms in WSN.

There has been intensive investigation of localization techniques that do not entirely depend on GPS in recent years.
Such techniques use some special nodes calledanchors, which know their own locations (e.g., through GPS receivers
or manual configuration), to help the other nodes discover locations. Existing localization schemes can be classified
into range-based(e.g., [4, 19, 22, 26, 27]) orrange-freetechniques (e.g., [1, 5, 18, 23]). Range-based localization
uses Received Signal Strength Indicator (RSSI), Time of Arrival (TOA), or Time Difference of Arrival (TDOA) to
estimate the distance between the node that needs to discover its location and each reachable anchor, and estimates the
node’s location based on these distances and the anchors’ locations. To reduce the demand on sophisticated hardware,
computing power, and energy, range-free localization doesnot require physical distance measurement, but uses other
means (e.g., centroid of all reachable anchors [1], overlapof triangles formed by reachable anchors [5], or hop counts
from anchors [23]) for location estimation.

WSN may be deployed in hostile environments, and localization may become the target of attacks due to its im-
portance. Most existing localization techniques assume benign environments and do not consider malicious attacks.
Though we may use cryptographic message authentication to protect localization related messages, an attacker may
easily bypass such protections by, for example, compromising unattended anchors. The threats to WSN localization
in a hostile environment mandates the development ofsecure and resilientlocalization algorithms. Further, due to
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the resource constraints of a typical sensor node, the secure and resilient algorithm has to beefficient in terms of
computation and memory requirement.

There have been recent developments of secure and resilientlocalization schemes for WSN [2, 11–15]. Attack-
Resistant Minimum Mean Square Estimation (ARMMSE) was firstpublished in [15], and later an improved algorithm
called Enhanced ARMMSE (EARMMSE) was developed in [14]. It is based on the observation that a location refer-
ence introduced by a malicious attack is usually “different” from benign ones, since it is aimed at misleading location
estimation. Thus, ARMMSE uses the “inconsistency” among the location references provided by anchors to identify
the malicious injection, and discard them before making final location estimation. The voting-based location estima-
tion [14,15] has each location reference “vote” on the locations at which the node of concern may reside. To facilitate
the voting process, this approach partitions the deployment field into a grid of cells, and has each node determine how
likely it is in each cell based on each location reference. Itthen selects the cell(s) with the highest vote and use the
“center” of the cell(s) as the estimated location. Li et al. [13] studied and developed an attack resilient location estima-
tor based on Least Median of Squares (LMS). The idea is to drawrandom subsets of data from the original data pool
for individual subset estimation and then combine these estimates based on estimation quality. There are several other
secure and resilient localization techniques, including SeRLoc [12], SPINE [2], and ROPE [11]. However, SeRLoc
requires directional antenna on sensor nodes, SPINE requires nano-second scale time synchronization among sensor
nodes, and ROPE, which is an integration of SeRLoc and SPINE,requires both directional antenna and nano-second
scale time synchronization. These requirements cannot be met on the current generation of sensor platforms such as
MICA series of motes.

Given the severe resource constraints (e.g., limited computing power, depleteable battery power) of the current
generation of sensor platforms, a usable resilient localization scheme must be lightweight and computationally effi-
cient. In this paper, we develop a novel computationally efficient and resilient localization scheme, which is more
efficient than all the previous approaches with bounded location estimation error similar to the previous approaches.
The computation efficiency and attack resiliency make the proposed approach suitable for resource constrained sensor
nodes. Moreover, with the exception of [14, 15], all the other approaches have not been validated on real sensor plat-
forms. To evaluate and compare the new algorithm with existing schemes, we implemented all the resilient localization
schemes that can be used for the current generation of sensorplatforms in TinyOS, and perform extensive evaluation
and comparison of all these approaches through both simulation and experiments in a testbed of MICAz motes. Our
experimental results demonstrate that the new approach proposed in this paper is fastest among all the ones evaluated.

The contribution of this paper is two-fold. First, we develop a novel, computationally efficient and resilient local-
ization scheme for resource constrained sensor platforms.Second, we implement all the resilient localization schemes
that can be used for the current generation of sensor platforms, and perform thorough experiments to compare their
localization accuracy and efficiency in presence of malicious attacks. In particular, our implementation offers a readily
available code base for integration into location-aware WSN applications.

The rest of this paper is organized as follows. The next section describes our assumptions and threat model.
Section 3 discusses the cluster-based minimum mean square estimation (CMMSE) algorithm for secure and resilient
localization in wireless sensor networks. Section 4 presents the implementation and the experiments of the proposed
schemes as well as several other resilient localization schemes through both simulation and field experiments. Section
5 concludes this paper and points out some future research directions.

2 Assumptions and Threat Model

We first clarify our assumptions and threat model to facilitate the discussion. We assume that a WSN consists of a
large number of regular sensor nodes (e.g., MICA motes) thatneed to estimate their locations and a small fraction
of special anchors that are location aware (through, e.g., GPS receivers or manual configuration). We assume that
the anchors are roughly uniformly distributed in the network, and each regular sensor node can obtain localization
information from a sufficient number of anchors. For simplicity, we assume that a WSN operates on a 2-dimension
plane, though the algorithms investigated in this paper canall be used for 3-dimension space with slight modification.

We focus on range-based localization in this paper. A regular node gets two pieces of information from each anchor
that it communicates with for localization purpose: thelocationof the anchor and thedistancebetween them. While
the location of an anchor is usually provided by the anchor directly in a localization packet, there are multiple ways
to obtain the distance between them, for example, using RSSI, ToA, or TDoA. We assume a sensor network may use
any method to obtain these two pieces of information. Following [14, 15], we abstract the localization information
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that a regular node obtains from an anchor as alocation reference, represented as a triple(x, y, d), where(x, y) is the
coordinate of the anchor, andd is the estimated distance between these two nodes. We assumethere may be errors in
the estimated distances. However, when there is no malicious attacks, all distance measurement errors are bounded
by εmax, i.e.,−εmax < ε < εmax, whereε is any distance measurement error obtained in attack-free environments.
Based on the location references received from multiple anchors, a regular sensor node runs a localization algorithm
to estimate its own location.

We assume all localization related packets are authenticated (e.g., using TinySec [9]). Moreover, we assume each
anchor is uniquely identified. This can be achieved with key management schemes that can provide unique pairwise
keys for different pairs of nodes (e.g., TinyKeyMan [16, 17], random pairwise keys scheme [3]). Moreover, each
regular node uses at most one location reference from each anchor. This is possible because each regular node can
uniquely identify each anchor using the unique pairwise keyshared between them.

We consider both external and insider attacks. When launching external attacks, the adversary does not control
any valid node in the network. Though message authentication is effective in preventing the adversary from forging
localization related packets, it cannot stop all external attacks. For example, the adversary may replay previously
intercepted localization related packets captured at different locations. Moreover, the adversary may launch wormhole
attacks [6] by creating low latency and high bandwidth communication channels between different locations in the
network, faking non-existing links. The adversary may compromise anchors and launchinsider attacks. The adversary
may send incorrect locations, or manipulate the transmission of localization related packets (e.g., by using overly high
or low transmission power if RSSI is used for distance measurement).

The adversary may jam the communication channel to launch Denial of Service (DoS) attacks. However, we assume
that the adversary cannot constantly jam the communicationchannel without being detected and removed.

In both external and insider attacks, the adversary may convince regular sensor nodes to accept malicious location
references. However, a regular node will accept at most one location reference from each compromised anchor or
benign anchor whose localization packets are manipulated by the adversary, regardless how the adversary launches the
attacks. Thus, in our security analysis, we only need to consider the location references that a regular node accepts,
though there are many ways for the adversary to introduce malicious references. Finally, we assume there are more
benign anchors than colluding malicious ones.

The primary objective of any secure and resilient localization scheme is to ensure that adversaries cannot introduce
arbitrary localization errors under the above assumptions. Moreover, we would like to establish a good resiliency with
the least computation overhead. In other words, we would like to develop light weight location estimation algorithms
that can provide reasonably good location estimate with thepresence of injected errors from malicious anchors.

3 Cluster-Based Minimum Mean Square Estimation (CMMSE)

In this section, we present a new secure and resilient localization scheme, calledCluster-Based Minimum Mean Square
Estimation (CMMSE). This approach achieves higher efficiency than existing approaches while providing comparable
resilience against malicious location references. Similar to a previous work, ARMMSE [15], CMMSE is based on the
Minimum Mean Square Estimation (MMSE) method proposed in [26]. In the following, we first give a brief overview
of the basic MMSE method, and then present our new approach.

3.1 Basic MMSE for WSN Localization [26]

Assume that a regular sensor node has obtained a set ofk location references from the reachable anchors,{(x0, y0, d0),
(x1, y1, d1), . . . , (xk−1, yk−1, dk−1)}. Suppose the estimated location is(x̂, ŷ). Thus, the error of the measured
distance between the regular node and theith (0 ≤ i ≤ k − 1) anchor can be expressed as the difference between the
measured distancedi and the estimated distance, i.e.,ei = di −

√

(x̂ − xi)2 + (ŷ − yi)2.
The basic MMSE method obtains the location estimate(x̂, ŷ) by minimizing the mean square error (MSE)

MSE =
1

k

k−1
∑

i=0

[
√

(x̂ − xi)
2

+ (ŷ − yi)
2
− di

]2

.

Before we present our algorithm, we first obtain a property ofthe basic MMSE method when there is no malicious
location reference. We will use this property in the later discussion.

3



3.1.1 Bound of Minimum MSE in Normal Situations

As we discussed in Section 2, we assume a distance measurement error is bounded byεmax. In the following, we
show that the location estimation error is also bounded in such cases.

Lemma 1 Assume a regular node at(x, y) receives a set ofk location references{(x0, y0, d0), . . . , (xk−1, yk−1, dk−1)}.
If all the location references are benign and the maximum distance measurement error for each location reference is
bounded byεmax, then the minimum MSE for the location estimate(x̂, ŷ) obtained with MMSE is bounded byε2max.

Proof: Since distance measurement error is bounded byεmax, we have
∣

∣

∣
di −

√

(x − xi)2 + (y − yi)2
∣

∣

∣
≤ εmax.

This implies
(

di −
√

(x − xi)2 + (y − yi)2
)2

≤ ε2max,

and
1

k

k
∑

i=1

(

di −
√

(x − xi)2 + (y − yi)2
)2

≤ ε2max.

Since an MMSE method produces a location estimate(x̂, ŷ) that minimizes the MSE, we have

1

k

k
∑

i=1

(

di −
√

(x̂ − xi)2 + (ŷ − yi)2
)2

≤
1

k

k
∑

i=1

(

di −
√

(x − xi)2 + (y − yi)2
)2

≤ ε2max.

2

To accommodate the limited computational power of current generation of sensor nodes (e.g., MICAz), the basic
MMSE method proposed in [26] uses an approximate approach toestimating the location(x̂, ŷ) [26]. This MMSE
method is used in the work of ARMMSE [15] and we adopts the samemethod in this paper. However, when such
an approximate method is used for MMSE calculation, the minimum MSE obtained from purely benign location
references could be greater thanε2max when the anchors providing the references are approximately located on a
straight line (collinear case). Though there is no attack, such approximation method results in similar impact to
malicious attacks, and thus is not desirable. Our algorithmwill address such potentially large MMSE errors due to
approximation using an optional consistent set expansion phase (Section 3.2.1).

3.2 CMMSE: Achieving High Efficiency

A malicious anchor can provide an arbitrary location reference by either changing its declared location(x, y) or ma-
nipulate the distance measurement (e.g., by changing the transmission power if RSSI is used). When both benign and
malicious location references co-exist and the malicious nodes inject arbitrary location reference errors, the minimum
MSE obtained with an MMSE method will exceed the normal MSE bound, giving us an opportunity to discover and
discard malicious location references.

Obviously the basic MMSE method cannot deal with malicious location references, since it can’t distinguish and
discard faulty location references from malicious nodes. Aresilient algorithm needs to filter out malicious location
references and uses the good location references to performlocalization.

Based on the assumption of majority benign anchor nodes, theARMMSE approaches developed in [14, 15] run
multiple rounds of basic MMSE operations to search for the largest consistent benign location reference set. The
ARMMSE approaches start from the whole set of location references, and runs MMSE based consistency check to
filter out malicious ones iteratively. This is inefficient since MMSE calculation involves many matrix operations. The
larger the number of location references, the more costly the MMSE calculation.
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In this paper, based on the same assumption of majority benign location references, we develop the cluster-based
MMSE (CMMSE) method, aiming at achieving a higher computational efficiency than the ARMMSE methods. Our
scheme takes an opposite approach by growing the largest consistent set from two randomly chosen location references
(as the seed). If the two seeds selected are benign, we can grow the largest consistent location reference set within
one round by checking each remaining location reference, using the MMSE threshold. The efficiency of this scheme
depends on how quickly two benign location references can befound. When the percentage of benign ones is high,
two benign seeds can be chosen in just a few rounds. Another important feature of this algorithm is that any MMSE
calculation is only performed on three location references. As a result, the calculation can be performed very quickly.
Furthermore, we develop a variation of the cluster-based algorithm, which can provide location estimation once more
than half of benign location references are found. This provides further speedup of the algorithm. Section 3.3 provides
a detailed analysis on the performance of this new approach.

3.2.1 Algorithm

Our CMMSE algorithm is based on the examination of location reference triplets. Givenk location references, there
are a total of

(

k
3

)

possible triplets (of location references) that can be formed. If there are no malicious location
references, any one of the

(

k

3

)

triplets may provide a good location estimate. However, dueto malicious attacks, a
triplet may have 0 to 3 malicious location references. It is obvious to see that with a total ofk location references and
mmalicious ones,

(

k−m
3

)

triplets are free of malicious location references, and
(

m
3

)

triplets contain malicious location
references only. The rest of the

(

k

3

)

−
(

m

3

)

−
(

k−m

3

)

triplets may contain one or two malicious location references each.
Each triplet of location references provides a location estimate (x̂, ŷ) and a corresponding minimum MSE. In

the case of a benign triplet, the minimum MSE is bounded byε2max, as shown in Lemma 1. (Note that when an
approximated MMSE method such as [26] is used, a set of three approximately co-linear location references will
lead to large minimum MSE. We will address this problem with an expansion phase, as discussed later.) If all three
location references in a triplet are malicious and colluding with each other, the minimum MSE may also be bounded.
In both cases, the minimum MSE is bounded because of the consistency of the three location references. However,
when a triplet has both benign and malicious location references, or non-colluding malicious location references, the
minimum MSE is no longer bounded, and can be arbitrarily large due to the injected error.

Based on the above intuition, we propose a lightweight, secure and resilient localization scheme, which we refer
to asCluster-Based MMSE (CMMSE). This scheme uses a simple MMSE threshold test to identify consistent triplets,
and to form a consistent reference set for the final location estimation.

The algorithm runs in rounds. In each round, we first perform atriplet formation and examinationphase to identify
the consistent set of location references. We use the basic MMSE method [26] to perform location estimation. As
discussed earlier, the minimum MSE of a benign triplet may begreater than the MSE bound due to the algorithm’s ap-
proximation error when the three reference anchors are close to be collinear. To address this issue, a secondexpansion
phase may be used to examine and include those benign location references removed incorrectly in phase I.

For the sake of presentation, we denote the set of all input location references asS, and the set of location references
to use for the final location estimation asC.

Phase I: Partitioning S via Triplet Formation and Examination.

1. Set two setsC andL both as empty sets.

2. We randomly select two location referencesr1 andr2 as the seeds, and perform aproximity checkas follows:
Assuming thatdi anddj are the measured distances from the node to be localized to the two anchors and that
the maximum radio signal range isdmax, if di + dj < 2 ∗ (dmax + εmax), r1 andr2 are accepted as seeds and
put intoC. Otherwise, reject these two seeds and repeat this step.

The rationale for this check is that two benign anchors from which a regular node receives localization references
cannot be more than2dmax away from each other.

3. Using the two seedsr1 andr2, we examine each of the remaining location references inS one by one. Specifi-
cally, for each remaining location referencer in S, it forms a triplet along with the two seedsr1 andr2. Follow-
ing the basic MMSE method [26], we calculate the location estimation and its corresponding minimum MSE.
If the minimum MSE is smaller thanε2max, the three anchors are consistent, and we putr into the consistent set
C. Otherwise, it is not consistent with the two seeds and is placed in the setL.
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After completing the above steps in Phase I, we split the original setS of location references into the consistent set
C containing the two seeds and all nodes consistent with them,and the leftover setL = S inconsistent with the seeds.

Phase II: Expansion of Consistent Set.During phase I, a location reference is placed into the leftover setL when
the minimum MSE is greater than the boundε2max. As mentioned earlier, the basic MMSE method may generate large
calculation error when the three corresponding anchors areapproximately collinear. In the expansion phase, each
location reference in the leftover setL is checked against the whole reference setC to see if these|C| + 1 location
references will generate a minimum MSE lower thanε2max. If yes, it is added intoC. Any benign location reference
mistakenly rejected in phase I due to the approximate error can be recovered.

After the execution of these two phases in one round, there are two possible outcomes:

1. |C| > k
2
. In this case, there areC has more thank

2
consistent location references. Under the assumption that

there are more benign location references than the malicious ones, we have obtained the benign set and can use
it to perform the final location estimate.

2. |C| ≤ k
2
. In this case, we fail to grow a consistent set larger thank

2
. We then remove the two seedsr1 andr2

from S, since they cannot be used to form a consistent majority fromthe input location references. If|S| > k
2
,

we start a new round by repeating Phase I and Phase II. Otherwise, there is no chance to form a consistent
majority based on the input, and thus the algorithm terminates.

Quick CMMSE (QCMMSE): A Variation. When all the location references used for the final location estimation
are benign, the more location references we have, the more accuracy the final estimation can potentially be [26]. Thus,
when accuracy is the highest priority, we should follow bothphases in the above algorithm to get as many consistent
location references as possible, even the consistent ones already form the majority of the input. However, when the
execution time and the energy consumption is the highest priority, we may want to stop examining the remaining
location references once we have obtained more thank

2
consistent location references, wherek is the total number

of input location references. This leads to the QCMMSE variation of the proposed scheme. Specifically, we keep
track of the size ofC in both Phase I and Phase II. We terminate the algorithm whenever C hasmax{3, bk

2
+ 1c}

consistent location references, and then useC for the final location estimation. This variation can effectively reduce
the computation required by CMMSE, with a trade-off of slightly increased location estimation error.

3.3 Complexity

Each round of CMMSE is of complexityO(k), givenk location references. We only need to run one round if the first
two seeds selected are benign. Otherwise, multiple rounds are needed until two benign seeds are selected. Obviously,
the number of rounds required depends on the number of malicious location references. A malicious location reference
is in general not consistent with a benign one, and will not beselected as a seed along with a benign one. Thus, for
m malicious location references, at mostbm

2
+ 1c rounds are needed in the worst case when each round selects two

colluding malicious location reference as the seeds. This is possible probabilistically, but highly unlikely.
We can derive the probability of correctly selecting two benign seeds at roundi as follows:

p(1) =
(k − m) × (k − m − 1)

k × (k − 1)
,

and

p(i) =
(k − m − (i − 1)) × (k − m − (i − 1) − 1)

(k − 2 × (i − 1)) × (k − 2 × (i − 1) − 1)
×

i−1
∏

j=1

(

1 −
(k − m − (j − 1)) × (k − m − (j − 1) − 1)

(k − 2 × (j − 1)) × (k − 2 × (j − 1) − 1)

)

,

wheni = 2, 3, ..., bm
2

+ 1c. In this equation forp(i) (i = 2, 3, ..., bm
2

+ 1c), the first part represents the probability of
picking two benign location references in roundi, and the second part represents the probability of not beingable to
pick two benign seeds in the previous rounds. The average number of rounds required to find the complete set can be

found as
∑bm

2
+1c

i=1
p(i) × i. Figure 1 shows the average number of rounds in CMMSE in a few possible settings.

The average round required depends on the number of malicious location references. For example, in figure 1,
whenk = 19, m = 3, the average number of rounds is1.16. Whenm increases to9, the average number of rounds
1.91. When there is no or a few malicious location references, CMMSE can finish fairly quickly. The QCMMSE
variation performs less computation, and thus can finish more quickly than CMMSE.
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Figure 1: Average number of rounds in CMMSE in typical settings

3.4 Security Analysis

In this section we provide the security analysis of our localization scheme. We show that our scheme can tolerate
arbitrary false messages introduced by compromised anchors as long as the benign anchors constitute the majority of
all reachable anchors.

Based on our assumption that the location reference messages are cryptographically protected, an adversary cannot
launch attacks simply by forging or modifying location reference messages without the knowledge of correct crypto-
graphic keys. The adversary only has two ways to launch attacks: replay location reference messages captured in other
places, and send malicious location reference messages through compromised anchors. The first case is indeed equiv-
alent to a compromised anchor claiming to be in the same location as the original transmission location of the captured
location reference message. Thus, we will focus our attention on attacks launched from compromised anchors. In this
case, once the adversary has access to the keys on a compromised anchor, arbitrary but legitimate messages (that can
be verified cryptographically) can be sent. Nevertheless, because of the unique pairwise key shared between any two
nodes, each node will accept at most one location reference from each (potentially compromised) anchor.

The security of CMMSE follows from Lemma 1. When the injectedlocation reference error is larger than the
normal measurement error bound, the resulting minimum MSE will not be bounded by the thresholdεmax. This
allows a normal sensor node to discover the malicious location references. As mentioned in Section 3.2.1, once two
benign location references have been selected, we perform MMSE check on each triplet to filter out malicious location
reference.

Although individual non-colluding malicious reference can be detected and removed easily, it is much harder to deal
with colluding references. If two colluding location references are selected to be the triplet seeds, they will eventually
be removed since they cannot be used to grow a majority consistent set. However, in this case, a regular sensor node
has to run a full round of triplet examination before discarding the two colluding location references. Nevertheless, as
discussed in Section 3.3, when the percentage of malicious anchors is low, the probability of selecting two malicious
references as triplet seeds is low.

Similar to all previous work [2, 11–15], our scheme relies onthe assumption that the majority of the location
references are benign. The adversary has to either increasethe number of colluding malicious nodes or reduce the
number of benign nodes in order to sabotage our localizationscheme. For example, the adversary may jam the message
sent by benign anchors. This can effectively reduce the set of benign location references. When the malicious colluding
set has more nodes than the benign set, our algorithm fails. Dealing with physical layer attacks such as jamming or
MAC layer denial of service attacks is outside the scope of this paper. There are techniques such as spread spectrum
communication, special coding, and frequency hopping thatcan provide an efficient mechanism to shield the physical
layer against jamming attacks.

Other possible attacks include wormhole attack [6] and Sybil attack [20]. We discuss them next.
Wormhole Attack: A wormhole is a direct tunnel between two points in the network established by the adversary

[7]. Under normal network operations, there is no direct link between these two points due to the communication range
or other constraints. The direct wormhole link is established by the adversary with the intention of eavesdropping and
recording messages at one end (origin) of the wormhole link and replaying them at the other end (destination).

The wormhole attack can be launched against our localization scheme, but it will not be effective. When a remote
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location reference beacon is replayed at local neighborhood, the location coordinates (x,y) in the replayed message
reflects the original anchor location. The attacker may arbitrarily set the beacon signal strength to manipulate the
distance measurement. But the distance manipulation is limited by the maximum anchor transmission range, and thus
may not be consistent with the original anchor coordinates.(Indeed, as pointed out in [15], if the manipulated location
reference is consistent with the other benign ones, it will not introduce localization error.) In addition, the replayed
anchor coordinates also conflict with the local anchor coordinates (since they are not supposed to be within the same
communication range to the node to be localized). As a result, the minimum MSE will exceed the measurement error
bound, and the malicious location reference will be discarded.

For multiple remote location references to form a consistent set, the adversary not only has to replay these reference
messages, but also has to replay them at different local locations mirroring the same geographic layout at the origin
site. Otherwise, the replayed remote messages cannot form acomplete consistent set and will be detected. Thus, a
simple wormhole link can not effectively disrupt our localization scheme.

Sybil Attack: The adversary can launch a Sybil attack when it has compromised anchor nodes and cloned the
victim anchors at different sites of a wireless sensor network [20]. In a Sybil attack, the attacker has access to the
cryptographic keys on the compromised anchors and can use the same key in the cloned nodes. As a result, the
attacker can distribute arbitrary information using validnode ID and keys and will not be detected by authentication
check. The Sybil attack poses a great threat to our scheme since cloned nodes may invalidate our assumption of
majority benign anchors.

To defeat Sybil attack, we need to detect and identify nodes that are cloned. A solution to detect the Sybil attack
was recently proposed in [24], which relies on a third party to witness duplicated identity among the cloned nodes. In
our scheme, assuming that that each anchor node shares a pairwise key with the base station, we can rely on the base
station to detect cloning. Each anchor sends back to the basestation a cryptographically protected message reporting
all heard location references from other anchor nodes. Since the base station has the knowledge of each anchor node’s
deployment location, it can detect Sybil attack when location conflicts among the reports are discovered. The base
station can then flood the whole network to revoke the cloned anchors.

4 Implementation and Experimental Evaluation

In this section, we report the implementation of the proposed schemes, as well as the experimental evaluation per-
formed to compare the proposed schemes with all the secure and resilient localization techniques that can be used on
the current generation of sensor platforms. In our evaluation, we first perform outdoor field experiments to understand
the performance of the proposed schemes in a particular deployment, and then perform a large number of simulation
experiments to obtain the performance results in general cases.

4.1 Implementation

To facilitate the experimental evaluation and comparison with the previous approaches, we implemented the proposed
CMMSE and QCMMSE schemes as well as all recent secure and resilient localization techniques that can be used on
the current generation of sensor platforms (e.g., MICA series of motes) running TinyOS, including EARMMSE [14],
voting-based scheme [14], and LMS-based scheme [13].

Given a maximum number of location references, several schemes under investigation require a few parameters
to be configured. These parameters must be set appropriatelyto ensure a fair comparison. For the EARMMSE
scheme, we set the mean square error thresholdτ = 0.8εmax as discussed in [14], whereεmax is the maximum
distance measurement error. Based on our measurement in thefield experiments, we setεmax = 7.4feet andτ =
0.8ε = 5.92feet. The critical parameter for the voting-based scheme is the number of cellsM in the grid in each
iteration [14]. The cell number needs be the square of an integer. The voting-based scheme is in general much slower
than CMMSE and QCMMSE, no matter how we configureM . To ensure a fair comparison, we use two instances
of the voting-based scheme withM = 100 andM = 225, respectively, representing two distinct trade-offs between
location estimation error and efficiency. Similar to the voting-based scheme, the LMS scheme [13] is much slower
than the proposed schemes. To ensure fair comparison, we setthe subset sizen = 4. Moreover, we set the numberM

of subsets to be examined in such a way that the LMS scheme has the same average execution time as the voting-based
scheme when the grid size is100 and225, respectively, to match the above two instances of the voting-based scheme.
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Figure 2: Nodes deployment in the field experiments (Test field size:60feet× 60feet)

Table 1 shows the code sizes of these schemes compiled for MICAz motes, assuming that each node uses up to 14
anchors. These numbers are obtained using thechecksize.plscript provided in the TinyOS distribution. Note that the
RAM size does not include the memory consumed by local variables in stack. Since the nesC Compiler optimizes the
whole program by default, to compare the size of code fairly,we disabled the optimization of nesC compiler.

Scheme ROM (bytes) RAM (bytes)
Basic MMSE 2,734 0
EARMMSE 5,146 248

Voting (M=100) 7,074 100
Voting (M=256) 7,074 256

LMS 5,262 237
CMMSE 8,058 276

QCMMSE 8,090 276

Table 1: Code sizes of secure and resilient localization schemes under comparison (up to 14 location references)

4.2 Field Experiments

We perform a series of outdoor field experiments using MICAz motes to compare the proposed schemes with the
other alternatives under investigation. These field experiments offer an opportunity to observe their performance in a
realistic setting. We use the RSSI method to measure the distance, since this is the only option for MICAz motes.

In the outdoor field experiments, we deploy 15 MICAz motes in a60feet× 60feet target field, as shown in figure
2. We use 14 motes as anchors to replicate a dense deployment.The anchors broadcast location reference messages
periodically. The sensor node with ID 0 (in the middle of the field) is a regular node that needs to estimate its own
location.

With this deployment setup, we perform experiments under four attack scenarios. In the first scenario, one randomly
selected anchor is configured as being malicious, which reports a faulty location referencex feet away from its true
location in a random direction. In the second scenario, we randomly select four malicious anchors. Each malicious
anchor adds a random location offset ofx feet from its true location. The third scenario mimics node collusion. Four
randomly selected anchors collude with each other and send out false but consistent location references. In this case,
all malicious anchors report a falsified position shiftedx feet from its true location in the same direction. In the
fourth scenario, we experiment with a varying number of colluding anchors ranging from 1 to 8 (out of 14 anchors) to
examine the impact on the estimated location.
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Figure 3: Location estimation error in different scenariosin field experiments

Under each attack scenario, we investigate the resiliency of CMMSE and QCMMSE compared with the previous
approaches in terms of localization error and malicious location reference detection rate, and the algorithm efficiency
in terms of execution time. In the experiment we vary the error injected from10 to 150 feet with a 10 feet increment.
In all scenarios, we run each scheme 10 rounds for each randomplacement of malicious anchors. We then compute
the average location estimation error and execution time for each scheme.

From Figures 3(a), 3(b), 3(c), and 3(d), all schemes except for the basic MMSE method have bounded location
estimation error, and they can tolerate not only non-colluding malicious anchors but also non-majority colluding
malicious anchors. The proposed CMMSE and QCMMSE schemes have slightly higher location estimation errors
than EARMMSE, voting-based and LMS schemes; however, the location estimation errors in CMMSE and QCMMSE
schemes are in general comparable with the other alternatives. As shown in Figure 3(d), both CMMSE and QCMMSE
in fact has smaller location estimation errors than the LMS scheme when the number of colluding malicious anchors
is large.

To support our explanation, we investigate the effectiveness of each scheme to filter out malicious location refer-
ences under different amounts of error injection. For each scheme in each attack scenario, we capture the number of
malicious location references that have been successfullyidentified in each round and calculate the average detection
rate over 10 rounds. Figures 4(a), 4(b), and 4(c) show the success rate of removing malicious location references in
our experiments. As we can see, all schemes, including the proposed CMMSE and QCMMSE, have similar results in
these figures.

All the schemes under investigation fail to identify and remove malicious location references when the injected
errors are small (<70 feet). When the injected error is at 10 feet, no scheme is able to identify and remove the
malicious location references. This is because the malicious anchors behave in a way very similar to benign anchors,
and the injected errors are indistinguishable from normal measurement errors. In such cases, the errors introduced by
malicious anchors do not introduce significant impact on location estimation.

Figure 4(d) provides the results on the malicious location reference detection probability when we have 1∼8 ma-
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Figure 4: Success rate of removing malicious location references in field experiments

licious location references. Since the injected error is 100 feet, all schemes should be able to identify and remove
the malicious location references when the number of colluding ones is small (1∼6). The figure shows that the LMS
scheme is the first scheme to break down, and the EARMMSE method provides the best detection rate. Despite the
observable differences in Figure 4(d), all the schemes havevery similar results.

The above results indicate that the proposed CMMSE and QCMMSE schemes have slightly worse but compa-
rable performance in terms of location estimation errors compared with the EARMMSE, the voting-based, and the
LMS schemes. In the remaining discussion for field experiments, we focus on the efficiency of the schemes under
investigation.

Figure 5 shows the execution time of the schemes under investigation on MICAz motes. In all the four evaluation
scenarios, we can see the execution time of the voting-basedand the LMS schemes are much more expensive than the
other schemes. EARMMSE and CMMSE have similar execution time in all scenarios, and are much more efficient
than the voting-based and the LMS schemes, but observably less efficient than QCMMSE. In most cases, QCMMSE is
at least twice as fast as EARMMSE. The most efficient one in Figure 5 is the basic MMSE scheme, which is included
as a reference. Unfortunately, the basic MMSE scheme is not resilient to malicious anchors at all.

Combining the results obtained in the field experiments, we can see that the proposed CMMSE and QCMMSE
schemes have slightly worse but comparable location estimation errors compared with the alternative schemes, but
are in general much more efficient in terms of computation. Inparticular, QCMMSE requires the least computation
among all the resilient schemes while maintaining a similarlevel of resiliency against malicious anchors.

4.3 Simulation

A limitation of field experiments is that we cannot obtain comprehensive evaluation results through a large number of
random deployments. To get better understanding of the performance results, we also perform simulation experiments
aimed at verifying and confirming the conclusion drawn from the field experiments. Since the simulation is executed
in PC rather than motes, we focus on our evaluation on location estimation errors.

In all simulations, we use the same parameters for the targetfield, signal range, and maximum measurement error
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Figure 5: Execution time in different scenarios in field experiments

as in the field experiments. For simplicity, we simulate the distance measurement error using a uniform distribution
between−εmax andεmax. In each simulation, a set of 14 anchors, including both benign and malicious anchors,
are deployed in the target field. The non-anchor sensor node,which needs to localize itself, is located at the center
of this target field. So we know the true location of this node.We use the same four attack scenarios as in the field
experiments. In our evaluation, we run 1,000 rounds of simulation in TOSSIM (the simulator of TinyOS) for each data
point to calculate the average location estimation error. In each round we randomize the location of each anchor.

We first use the same deployment of anchor nodes as in the field experiments to verify the results obtained through
field experiments. Figure 6 shows the resulting location estimation errors. We can see the location estimation errors are
very similar to the results obtained in the field experiments. The difference is because of the simulated measurement
errors.

We then use random deployment of the 14 anchors in our simulation. Figure 7 shows the location estimation error
for all evaluated schemes in each scenario. We can see that the location estimation errors in all these schemes are
consistent with the evaluation results obtained in the fieldexperiments. Thus, we can conclude that the CMMSE
and QCMMSE schemes indeed have comparable performance as the alternative secure localization schemes. Further
considering the fast execution time of these two schemes, wecan see that these two schemes, especially QCMMSE,
are suitable for secure and resilient location estimation on resource constrained sensor nodes.

5 Conclusion

In this paper, we developed CMMSE and its variation QCMMSE toefficiently tolerate attacks against localization in
WSN. Through random seed selection and triplet examination, CMMSE and QCMMSE use the basic MMSE method
to filter out malicious location references efficiently. Thealgorithm is well suited for the current generation of low end
wireless sensor nodes. To evaluate the proposed schemes, weimplemented CMMSE, QCMMSE, and all the recent
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Figure 6: Location estimation error in simulation (same anchor location as field experiments)

secure and resilient localization schemes that can be used on the current generation of sensor platforms, including
EARMMSE [14], the voting-based scheme [15], and the LMS-based scheme [13]. We have performed thorough
experimental evaluation through both outdoor field experiments and simulation. Our results conclude that the newly
proposed schemes, particularly QCMMSE, has the fastest execution among all the resilient localization schemes, and
at the same time provide a comparable degree of resiliency against malicious attacks.

All the existing secure and resilient localization schemes, including CMMSE and QCMMSE, require a majority
of benign location references. In the future, we will investigate resilient and/or detection techniques complementary
to resilient estimation, so that we can still provide resilient location estimation even when the colluding malicious
anchors form the majority.
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