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Abstract

Wireless sensor networks can support a wide variety of egatins ranging from military surveillance to health
care clinic monitoring. To carry out many of these tasks, gel@ss sensor network must obtain accurate location
for each sensor. A number of localization schemes have beegligped to allow each sensor node to acquire its
location. However, most of these techniques assume benigroements, and thus cannot survive malicious attacks
in hostile environments where external and/or compromigetes may launch attacks. This paper proposes a new
computationally efficient and resilient localization seteebased the clustering of benign location reference aachor
Moreover, this paper reports both simulation and field expents using a test-bed of MICAz motes performed to
compare the proposed approach with several recent seaakzhltion schemes. The experimental results demon-
strate that the proposed scheme has the fastest executierathong all resilient localization schemes that can be
used for the current generation of sensor platforms (e.tfCAkeries of motes).
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1 Introduction

Wireless sensor networks (WSN) have found a great variegppfications ranging from health monitoring in the
civilian world to military surveillance and reconnaissantocation information is the key to many networking proto-
cols such as geographical routing protocols (e.g., GPSRAMDGEAR [29]) or geographic data-centric storage (e.g.,
GEM [21], GHT [25])) . Further, location information is nesdito enable WSN applications such as target tracking
(e.g., ZebraNet [8]) and environmental monitoring. To sapghese protocols and applications, nodes in WSN need
to acquire and maintain accurate information of their lmoeg.

The Global Positioning System (GPS) [28] is a popular outdoealization system for mobile devices. However,
due to the cost reasons, it is highly undesirable to have a 1@8Sver on every sensor node. Moreover, in some
situations such as indoor sensor network applications, €&P8ot be used for localization because of interferences
and obstacles. This creates a demand for efficient and festiee location discovery algorithms in WSN.

There has been intensive investigation of localizatiohtégues that do not entirely depend on GPS in recent years.
Such techniques use some special nodes catietiors which know their own locations (e.g., through GPS recaiver
or manual configuration), to help the other nodes discowetions. Existing localization schemes can be classified
into range-basede.g., [4, 19, 22, 26, 27]) orange-freetechniques (e.g., [1, 5, 18, 23]). Range-based localizatio
uses Received Signal Strength Indicator (RSSI), Time oivAr(TOA), or Time Difference of Arrival (TDOA) to
estimate the distance between the node that needs to distsdeeation and each reachable anchor, and estimates the
node’s location based on these distances and the anchecaidns. To reduce the demand on sophisticated hardware,
computing power, and energy, range-free localization ea¢sequire physical distance measurement, but uses other
means (e.g., centroid of all reachable anchors [1], overapangles formed by reachable anchors [5], or hop counts
from anchors [23]) for location estimation.

WSN may be deployed in hostile environments, and locabnathay become the target of attacks due to its im-
portance. Most existing localization techniques assunmégbeenvironments and do not consider malicious attacks.
Though we may use cryptographic message authenticatioroteqp localization related messages, an attacker may
easily bypass such protections by, for example, compragpishattended anchors. The threats to WSN localization
in a hostile environment mandates the developmersecfire and resilienbcalization algorithms. Further, due to



the resource constraints of a typical sensor node, the sed resilient algorithm has to fedficientin terms of
computation and memory requirement.

There have been recent developments of secure and resiliatization schemes for WSN [2,11-15]. Attack-
Resistant Minimum Mean Square Estimation (ARMMSE) was fitgilished in [15], and later an improved algorithm
called Enhanced ARMMSE (EARMMSE) was developed in [14]slbased on the observation that a location refer-
ence introduced by a malicious attack is usually “diffetértm benign ones, since it is aimed at misleading location
estimation. Thus, ARMMSE uses the “inconsistency” amorngldication references provided by anchors to identify
the malicious injection, and discard them before makingd fonaation estimation. The voting-based location estima-
tion [14,15] has each location reference “vote” on the limeet at which the node of concern may reside. To facilitate
the voting process, this approach partitions the deployfiedd into a grid of cells, and has each node determine how
likely it is in each cell based on each location referencehdh selects the cell(s) with the highest vote and use the
“center” of the cell(s) as the estimated location. Li et &B][studied and developed an attack resilient locatiomesti
tor based on Least Median of Squares (LMS). The idea is to caiadom subsets of data from the original data pool
for individual subset estimation and then combine thesmagts based on estimation quality. There are several other
secure and resilient localization techniques, includie&ISoc [12], SPINE [2], and ROPE [11]. However, SeRLoc
requires directional antenna on sensor nodes, SPINE esguémo-second scale time synchronization among sensor
nodes, and ROPE, which is an integration of SeRLoc and SRi¢tfires both directional antenna and nano-second
scale time synchronization. These requirements cannotdb@mthe current generation of sensor platforms such as
MICA series of motes.

Given the severe resource constraints (e.g., limited ceimpypower, depleteable battery power) of the current
generation of sensor platforms, a usable resilient loaatin scheme must be lightweight and computationally effi-
cient. In this paper, we develop a novel computationallycigffit and resilient localization scheme, which is more
efficient than all the previous approaches with boundedilmeastimation error similar to the previous approaches.
The computation efficiency and attack resiliency make tloppsed approach suitable for resource constrained sensor
nodes. Moreover, with the exception of [14, 15], all the otlgproaches have not been validated on real sensor plat-
forms. To evaluate and compare the new algorithm with exdgthemes, we implemented all the resilient localization
schemes that can be used for the current generation of sglagimrms in TinyOS, and perform extensive evaluation
and comparison of all these approaches through both siimilabd experiments in a testbed of MICAz motes. Our
experimental results demonstrate that the new approagoged in this paper is fastest among all the ones evaluated.

The contribution of this paper is two-fold. First, we deyebnovel, computationally efficient and resilient local-
ization scheme for resource constrained sensor platfd@erond, we implement all the resilient localization scheme
that can be used for the current generation of sensor phasfaeind perform thorough experiments to compare their
localization accuracy and efficiency in presence of malisiattacks. In particular, our implementation offers a igad
available code base for integration into location-awareN/égplications.

The rest of this paper is organized as follows. The next sedafiescribes our assumptions and threat model.
Section 3 discusses the cluster-based minimum mean scatanaton (CMMSE) algorithm for secure and resilient
localization in wireless sensor networks. Section 4 prisséne implementation and the experiments of the proposed
schemes as well as several other resilient localizatioarsels through both simulation and field experiments. Section
5 concludes this paper and points out some future reseamttidns.

2 Assumptions and Threat Model

We first clarify our assumptions and threat model to fadditdne discussion. We assume that a WSN consists of a
large number of regular sensor nodes (e.g., MICA motes)rthatl to estimate their locations and a small fraction
of special anchors that are location aware (through, e.BS @ceivers or manual configuration). We assume that
the anchors are roughly uniformly distributed in the netey@nd each regular sensor node can obtain localization
information from a sufficient number of anchors. For simipficve assume that a WSN operates on a 2-dimension
plane, though the algorithms investigated in this paperatidre used for 3-dimension space with slight modification.
We focus on range-based localization in this paper. A regudéde gets two pieces of information from each anchor
that it communicates with for localization purpose: theationof the anchor and thdistancebetween them. While
the location of an anchor is usually provided by the anchaadly in a localization packet, there are multiple ways
to obtain the distance between them, for example, using RI®3I, or TDoA. We assume a sensor network may use
any method to obtain these two pieces of information. Fdhgw14, 15], we abstract the localization information



that a regular node obtains from an anchor &xation referencgrepresented as a triple, y, d), where(z, y) is the
coordinate of the anchor, anlds the estimated distance between these two nodes. We afiseiraenay be errors in

the estimated distances. However, when there is no masicttacks, all distance measurement errors are bounded
bY €maz, 1€, —€maz < € < €maz, Wheree is any distance measurement error obtained in attack-fréeomments.
Based on the location references received from multipléars; a regular sensor node runs a localization algorithm
to estimate its own location.

We assume all localization related packets are autheatidatg., using TinySec [9]). Moreover, we assume each
anchor is uniquely identified. This can be achieved with keynagement schemes that can provide unique pairwise
keys for different pairs of nodes (e.g., TinyKeyMan [16,,1idndom pairwise keys scheme [3]). Moreover, each
regular node uses at most one location reference from eadtoanThis is possible because each regular node can
uniquely identify each anchor using the unique pairwisedtered between them.

We consider both external and insider attacks. When langahiternal attacksthe adversary does not control
any valid node in the network. Though message authenticéieffective in preventing the adversary from forging
localization related packets, it cannot stop all exterticks. For example, the adversary may replay previously
intercepted localization related packets captured atwdfft locations. Moreover, the adversary may launch wolenho
attacks [6] by creating low latency and high bandwidth comiation channels between different locations in the
network, faking non-existing links. The adversary may coonpise anchors and laungfsider attacks The adversary
may send incorrect locations, or manipulate the transomssi localization related packets (e.g., by using overghhi
or low transmission power if RSSI is used for distance measent).

The adversary may jam the communication channel to launaleDef Service (DoS) attacks. However, we assume
that the adversary cannot constantly jam the communicatiannel without being detected and removed.

In both external and insider attacks, the adversary mayinoaevegular sensor nodes to accept malicious location
references. However, a regular node will accept at most acetibn reference from each compromised anchor or
benign anchor whose localization packets are manipulat¢okbadversary, regardless how the adversary launches the
attacks. Thus, in our security analysis, we only need toidenshe location references that a regular node accepts,
though there are many ways for the adversary to introduceimas references. Finally, we assume there are more
benign anchors than colluding malicious ones.

The primary objective of any secure and resilient locailimascheme is to ensure that adversaries cannot introduce
arbitrary localization errors under the above assumptibltseover, we would like to establish a good resiliency with
the least computation overhead. In other words, we wouéttkdevelop light weight location estimation algorithms
that can provide reasonably good location estimate witlptesence of injected errors from malicious anchors.

3 Cluster-Based Minimum Mean Square Estimation (CMMSE)

In this section, we present a new secure and resilient katadn scheme, callgdluster-Based Minimum Mean Square
Estimation (CMMSE)This approach achieves higher efficiency than existingagghes while providing comparable
resilience against malicious location references. Simila previous work, ARMMSE [15], CMMSE is based on the
Minimum Mean Square Estimation (MMSE) method proposed &).[th the following, we first give a brief overview
of the basic MMSE method, and then present our new approach.

3.1 Basic MMSE for WSN Localization [26]

Assume that a regular sensor node has obtained a k&t cdtion references from the reachable anchigrs, yo, do),
(z1,y1,d1), -, (Th—-1,Yk-1,dr—1)}. Suppose the estimated location(is §). Thus, the error of the measured
distance between the regular node andithé0 < i < k£ — 1) anchor can be expressed as the difference between the
measured distancg and the estimated distance, i€.~ d; — /(2 — ;)% + (§ — v;)2.

The basic MMSE method obtains the location estinf&tej) by minimizing the mean square error (MSE)

k—1 2

MSE = %Z [\/(i—xi)2+(ﬁ—m)2—di

i=0

Before we present our algorithm, we first obtain a propertyefbasic MMSE method when there is no malicious
location reference. We will use this property in the latescdission.



3.1.1 Bound of Minimum MSE in Normal Situations

As we discussed in Section 2, we assume a distance measuremwrs bounded by,, ... In the following, we
show that the location estimation error is also bounded ¢h sases.

Lemma 1 Assume aregular node &t, y) receives a set df location reference$(xo, o, do), - - -, (Tx—1, Ye—1, dr—1) }-
If all the location references are benign and the maximurtadise measurement error for each location reference is
bounded by, .., then the minimum MSE for the location estim@iej) obtained with MMSE is bounded b¥,,,,-

Proof: Since distance measurement error is bounded, Ry, we have
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To accommodate the limited computational power of curremiegation of sensor nodes (e.g., MICAzZ), the basic
MMSE method proposed in [26] uses an approximate approaehtimating the locatioz, g) [26]. This MMSE
method is used in the work of ARMMSE [15] and we adopts the sarathod in this paper. However, when such
an approximate method is used for MMSE calculation, the mimh MSE obtained from purely benign location
references could be greater thgy,, when the anchors providing the references are approxiynkteated on a
straight line (collinear case). Though there is no attacichsapproximation method results in similar impact to
malicious attacks, and thus is not desirable. Our algorithiinaddress such potentially large MMSE errors due to
approximation using an optional consistent set expandiasg(Section 3.2.1).

3.2 CMMSE: Achieving High Efficiency

A malicious anchor can provide an arbitrary location refieeeby either changing its declared locat{any) or ma-
nipulate the distance measurement (e.g., by changingahsrtrission power if RSSI is used). When both benign and
malicious location references co-exist and the maliciages inject arbitrary location reference errors, the miumm
MSE obtained with an MMSE method will exceed the normal MSEnmh giving us an opportunity to discover and
discard malicious location references.

Obviously the basic MMSE method cannot deal with malicimeation references, since it can't distinguish and
discard faulty location references from malicious nodegedgilient algorithm needs to filter out malicious location
references and uses the good location references to pddoatization.

Based on the assumption of majority benign anchor nodesARMMSE approaches developed in [14, 15] run
multiple rounds of basic MMSE operations to search for thigdat consistent benign location reference set. The
ARMMSE approaches start from the whole set of location efees, and runs MMSE based consistency check to
filter out malicious ones iteratively. This is inefficienhee MMSE calculation involves many matrix operations. The
larger the number of location references, the more costiyNMSE calculation.



In this paper, based on the same assumption of majority hdoaation references, we develop the cluster-based
MMSE (CMMSE) method, aiming at achieving a higher compotadi efficiency than the ARMMSE methods. Our
scheme takes an opposite approach by growing the largesistamt set from two randomly chosen location references
(as the seed). If the two seeds selected are benign, we cantlyedargest consistent location reference set within
one round by checking each remaining location referendeguke MMSE threshold. The efficiency of this scheme
depends on how quickly two benign location references caiolmed. When the percentage of benign ones is high,
two benign seeds can be chosen in just a few rounds. Anothpartant feature of this algorithm is that any MMSE
calculation is only performed on three location referenéesa result, the calculation can be performed very quickly.
Furthermore, we develop a variation of the cluster-basgardhm, which can provide location estimation once more
than half of benign location references are found. This jpies/further speedup of the algorithm. Section 3.3 provides
a detailed analysis on the performance of this new approach.

3.2.1 Algorithm

Our CMMSE algorithm is based on the examination of locatifiemrence triplets. Giveh location references, there
are a total of(’g) possible triplets (of location references) that can be @mmIf there are no malicious location
references, any one of tf(é) triplets may provide a good location estimate. However, wumalicious attacks, a
triplet may have 0 to 3 malicious location references. Ittigious to see that with a total &flocation references and

mmalicious ones(*") triplets are free of malicious location references, &l triplets contain malicious location

references only. The rest of tl@@) —(3) - (’“;m) triplets may contain one or two malicious location refesieach.

Each triplet of location references provides a locatiotineste (z, §) and a corresponding minimum MSE. In
the case of a benign triplet, the minimum MSE is bounded?y,, as shown in Lemma 1. (Note that when an
approximated MMSE method such as [26] is used, a set of thppeoaimately co-linear location references will
lead to large minimum MSE. We will address this problem withexpansion phase, as discussed later.) If all three
location references in a triplet are malicious and collgdiith each other, the minimum MSE may also be bounded.
In both cases, the minimum MSE is bounded because of thestensy of the three location references. However,
when a triplet has both benign and malicious location refees, or non-colluding malicious location references, the
minimum MSE is no longer bounded, and can be arbitrarilydaige to the injected error.

Based on the above intuition, we propose a lightweight, igeand resilient localization scheme, which we refer
to asCluster-Based MMSE (CMMSENhis scheme uses a simple MMSE threshold test to identifigistent triplets,
and to form a consistent reference set for the final locatimation.

The algorithm runs in rounds. In each round, we first perfotnipéet formation and examinatiophase to identify
the consistent set of location references. We use the bagiS®method [26] to perform location estimation. As
discussed earlier, the minimum MSE of a benign triplet magreater than the MSE bound due to the algorithm’s ap-
proximation error when the three reference anchors are ¢tolse collinear. To address this issue, a se@xpénsion
phase may be used to examine and include those benign locafeyences removed incorrectly in phase I.

For the sake of presentation, we denote the set of all inpatilen references &5 and the set of location references
to use for the final location estimation &s

Phase I: Partitioning S via Triplet Formation and Examination.

1. Settwo set§’ andL both as empty sets.

2. We randomly select two location referenegsandrs as the seeds, and perfornpeximity checlas follows:
Assuming that/; andd; are the measured distances from the node to be localizeé twthanchors and that
the maximum radio signal rangeds, .., if d; + d; < 2 * (dmaz + €maz), 1 @Ndry are accepted as seeds and
putintoC. Otherwise, reject these two seeds and repeat this step.

The rationale for this check is that two benign anchors frdmnitiva regular node receives localization references
cannot be more thatd,,,.,. away from each other.

3. Using the two seeds andry, we examine each of the remaining location referenceésone by one. Specifi-
cally, for each remaining location referencin S, it forms a triplet along with the two seedsandr,. Follow-
ing the basic MMSE method [26], we calculate the locatioimgion and its corresponding minimum MSE.
If the minimum MSE is smaller thas}, ..., the three anchors are consistent, and we- o the consistent set
C. Otherwise, it is not consistent with the two seeds and isgulan the sef..



After completing the above steps in Phase I, we split themaigetS of location references into the consistent set
C containing the two seeds and all nodes consistent with thaththe leftover sel = S inconsistent with the seeds.

Phase II: Expansion of Consistent SetDuring phase I, a location reference is placed into the VeftsetZ when
the minimum MSE is greater than the bousg,.. As mentioned earlier, the basic MMSE method may generege la
calculation error when the three corresponding anchorappeoximately collinear. In the expansion phase, each
location reference in the leftover sktis checked against the whole referenceGdb see if theseC| + 1 location
references will generate a minimum MSE lower thdp .. If yes, it is added intd@”. Any benign location reference
mistakenly rejected in phase | due to the approximate emotbe recovered.

After the execution of these two phases in one round, therénar possible outcomes:

1. |C| > £. In this case, there a@ has more thad consistent location references. Under the assumption that
there are more benign location references than the madicoas, we have obtained the benign set and can use
it to perform the final location estimate.

2. |C] < g In this case, we fail to grow a consistent set larger t§|arWe then remove the two seedsandrs
from S, since they cannot be used to form a consistent majority ffeminput location references. |If| > %
we start a new round by repeating Phase | and Phase Il. O#grthiere is no chance to form a consistent
majority based on the input, and thus the algorithm terrmeimat

Quick CMMSE (QCMMSE): A Variation. When all the location references used for the final locat&simeation
are benign, the more location references we have, the moveaay the final estimation can potentially be [26]. Thus,
when accuracy is the highest priority, we should follow bpltases in the above algorithm to get as many consistent
location references as possible, even the consistent dneeslya form the majority of the input. However, when the
execution time and the energy consumption is the highestifyi we may want to stop examining the remaining
location references once we have obtained more §1aonsistent location references, wheérés the total number
of input location references. This leads to the QCMMSE vanieof the proposed scheme. Specifically, we keep
track of the size of” in both Phase | and Phase Il. We terminate the algorithm wiegrie hasmaz{3, L% + 1]}
consistent location references, and thendder the final location estimation. This variation can effeely reduce
the computation required by CMMSE, with a trade-off of stiglincreased location estimation error.

3.3 Complexity

Each round of CMMSE is of complexi(k), givenk location references. We only need to run one round if the first
two seeds selected are benign. Otherwise, multiple rouredseseded until two benign seeds are selected. Obviously,
the number of rounds required depends on the number of madiddcation references. A malicious location reference
is in general not consistent with a benign one, and will nosélected as a seed along with a benign one. Thus, for
m malicious location references, at mgg} + 1| rounds are needed in the worst case when each round selects tw
colluding malicious location reference as the seeds. Bh®ssible probabilistically, but highly unlikely.

We can derive the probability of correctly selecting two iparseeds at rounidas follows:

(k—m)x (k—m-—1)

p(1) = (b= 1) ;
and
 (kem—(—1)x(k-m—(i-1)—1) ‘= m—(G—1))x(k—m—(—1)—1)
p(i) = (k—2x(i—1)x(k—2x(i—1)— H< T k- 2><( 1))><(/~c—2><(j—1)—1))

wheni = 2,3,..., | & + 1]. In this equation fop(i) (i = 2,3, ..., | + 1]), the first part represents the probability of
picking two benign location references in roundnd the second part represents the probability of not keddeyto
pick two benign seeds in the previous rounds. The averagdéeuai rounds required to find the complete set can be
found aszL 5 1) p(i) x i. Figure 1 shows the average number of rounds in CMMSE in a fessiple settings.

The average round required depends on the number of malitdmation references. For example, in figure 1,
whenk = 19, m = 3, the average number of roundslid6. Whenm increases t®, the average number of rounds
1.91. When there is no or a few malicious location references, G®\wan finish fairly quickly. The QCMMSE
variation performs less computation, and thus can finishergaickly than CMMSE.
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3.4 Security Analysis

In this section we provide the security analysis of our lizedion scheme. We show that our scheme can tolerate
arbitrary false messages introduced by compromised agselsdong as the benign anchors constitute the majority of
all reachable anchors.

Based on our assumption that the location reference mesaageryptographically protected, an adversary cannot
launch attacks simply by forging or modifying location nefece messages without the knowledge of correct crypto-
graphic keys. The adversary only has two ways to launchlattaieplay location reference messages captured in other
places, and send malicious location reference messagegthcompromised anchors. The first case is indeed equiv-
alent to a compromised anchor claiming to be in the sameitotas the original transmission location of the captured
location reference message. Thus, we will focus our atiargh attacks launched from compromised anchors. In this
case, once the adversary has access to the keys on a comga@ndchor, arbitrary but legitimate messages (that can
be verified cryptographically) can be sent. Neverthelessabse of the unique pairwise key shared between any two
nodes, each node will accept at most one location refereanedach (potentially compromised) anchor.

The security of CMMSE follows from Lemma 1. When the injectedation reference error is larger than the
normal measurement error bound, the resulting minimum M3Enat be bounded by the threshold,,... This
allows a normal sensor node to discover the malicious lonatferences. As mentioned in Section 3.2.1, once two
benign location references have been selected, we perfdh8B/heck on each triplet to filter out malicious location
reference.

Althoughindividual non-colluding malicious referencendze detected and removed easily, it is much harder to deal
with colluding references. If two colluding location reéeices are selected to be the triplet seeds, they will evigntua
be removed since they cannot be used to grow a majority densiset. However, in this case, a regular sensor node
has to run a full round of triplet examination before dis@agdhe two colluding location references. Nevertheless, a
discussed in Section 3.3, when the percentage of maliciocisoas is low, the probability of selecting two malicious
references as triplet seeds is low.

Similar to all previous work [2, 11-15], our scheme reliestba assumption that the majority of the location
references are benign. The adversary has to either inctikasaimber of colluding malicious nodes or reduce the
number of benign nodes in order to sabotage our localizatibheme. For example, the adversary may jam the message
sent by benign anchors. This can effectively reduce thef $erogn location references. When the malicious colluding
set has more nodes than the benign set, our algorithm fadslirigy with physical layer attacks such as jamming or
MAC layer denial of service attacks is outside the scopeisfper. There are techniques such as spread spectrum
communication, special coding, and frequency hoppingahatprovide an efficient mechanism to shield the physical
layer against jamming attacks.

Other possible attacks include wormhole attack [6] and ISttack [20]. We discuss them next.

Wormhole Attack: A wormhole is a direct tunnel between two points in the neknastablished by the adversary
[7]. Under normal network operations, there is no diredt between these two points due to the communication range
or other constraints. The direct wormhole link is estal@hy the adversary with the intention of eavesdropping and
recording messages at one end (origin) of the wormhole Imtkraplaying them at the other end (destination).

The wormhole attack can be launched against our localizattheme, but it will not be effective. When a remote



location reference beacon is replayed at local neighbathtbe location coordinates,y) in the replayed message
reflects the original anchor location. The attacker mayteably set the beacon signal strength to manipulate the
distance measurement. But the distance manipulation itelifby the maximum anchor transmission range, and thus
may not be consistent with the original anchor coordinglesleed, as pointed out in [15], if the manipulated location
reference is consistent with the other benign ones, it vatlintroduce localization error.) In addition, the repldye
anchor coordinates also conflict with the local anchor cioatés (since they are not supposed to be within the same
communication range to the node to be localized). As a regb@tminimum MSE will exceed the measurement error
bound, and the malicious location reference will be disedrd

For multiple remote location references to form a constget) the adversary not only has to replay these reference
messages, but also has to replay them at different locatidmsamirroring the same geographic layout at the origin
site. Otherwise, the replayed remote messages cannot feomplete consistent set and will be detected. Thus, a
simple wormhole link can not effectively disrupt our lo@aliion scheme.

Sybil Attack: The adversary can launch a Sybil attack when it has compeah@achor nodes and cloned the
victim anchors at different sites of a wireless sensor ngtj@0]. In a Sybil attack, the attacker has access to the
cryptographic keys on the compromised anchors and can essatine key in the cloned nodes. As a result, the
attacker can distribute arbitrary information using valiwte ID and keys and will not be detected by authentication
check. The Sybil attack poses a great threat to our scherme sloned nodes may invalidate our assumption of
majority benign anchors.

To defeat Sybil attack, we need to detect and identify noldassére cloned. A solution to detect the Sybil attack
was recently proposed in [24], which relies on a third pastwitness duplicated identity among the cloned nodes. In
our scheme, assuming that that each anchor node sharesvispaiey with the base station, we can rely on the base
station to detect cloning. Each anchor sends back to thedbaisen a cryptographically protected message reporting
all heard location references from other anchor nodes eShebase station has the knowledge of each anchor node’s
deployment location, it can detect Sybil attack when larationflicts among the reports are discovered. The base
station can then flood the whole network to revoke the clomethars.

4 Implementation and Experimental Evaluation

In this section, we report the implementation of the propasehemes, as well as the experimental evaluation per-
formed to compare the proposed schemes with all the secdreeaitient localization techniques that can be used on
the current generation of sensor platforms. In our evalnatie first perform outdoor field experiments to understand
the performance of the proposed schemes in a particulaoyt®gint, and then perform a large number of simulation

experiments to obtain the performance results in genesalsca

4.1 Implementation

To facilitate the experimental evaluation and comparisih the previous approaches, we implemented the proposed
CMMSE and QCMMSE schemes as well as all recent secure adignésbcalization techniques that can be used on
the current generation of sensor platforms (e.g., MICAeseof motes) running TinyOS, including EARMMSE [14],
voting-based scheme [14], and LMS-based scheme [13].

Given a maximum number of location references, severalsebaunder investigation require a few parameters
to be configured. These parameters must be set appropriatelysure a fair comparison. For the EARMMSE
scheme, we set the mean square error threshoid 0.8¢,,,,,. as discussed in [14], whegg, ., is the maximum
distance measurement error. Based on our measurementfielthexperiments, we set,,.. = 7.4feet andr =
0.8¢ = 5.92feet. The critical parameter for the voting-based scheme is thmber of cells) in the grid in each
iteration [14]. The cell number needs be the square of agémntd he voting-based scheme is in general much slower
than CMMSE and QCMMSE, no matter how we configille To ensure a fair comparison, we use two instances
of the voting-based scheme wifti = 100 andM = 225, respectively, representing two distinct trade-offs hestw
location estimation error and efficiency. Similar to theingtbased scheme, the LMS scheme [13] is much slower
than the proposed schemes. To ensure fair comparison, weesaibset size = 4. Moreover, we set the numbaf
of subsets to be examined in such a way that the LMS schembdaarne average execution time as the voting-based
scheme when the grid sizei80 and225, respectively, to match the above two instances of the gdigsed scheme.
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Figure 2: Nodes deployment in the field experiments (Test B&de:60feet x 60feet)

Table 1 shows the code sizes of these schemes compiled fokdMtdtes, assuming that each node uses up to 14
anchors. These numbers are obtained usinglileeksize.plscript provided in the TinyOS distribution. Note that the
RAM size does not include the memory consumed by local veesan stack. Since the nesC Compiler optimizes the
whole program by default, to compare the size of code faiwbydisabled the optimization of nesC compiler.

Scheme ROM (bytes)| RAM (bytes)
Basic MMSE 2,734 0
EARMMSE 5,146 248

Voting (M=100) 7,074 100
Voting (M=256) 7,074 256
LMS 5,262 237
CMMSE 8,058 276
QCMMSE 8,090 276

Table 1: Code sizes of secure and resilient localizatioes&s under comparison (up to 14 location references)

4.2 Field Experiments

We perform a series of outdoor field experiments using MICA#ten to compare the proposed schemes with the
other alternatives under investigation. These field expenis offer an opportunity to observe their performance in a
realistic setting. We use the RSSI method to measure theendist since this is the only option for MICAz motes.

In the outdoor field experiments, we deploy 15 MICAz motes difeet x 60feet target field, as shown in figure
2. We use 14 motes as anchors to replicate a dense deployhienanchors broadcast location reference messages
periodically. The sensor node with ID 0 (in the middle of thedd) is a regular node that needs to estimate its own
location.

With this deployment setup, we perform experiments undardittack scenarios. In the first scenario, one randomly
selected anchor is configured as being malicious, whichrtepofaulty location reference feet away from its true
location in a random direction. In the second scenario, weaenly select four malicious anchors. Each malicious
anchor adds a random location offsetiofleet from its true location. The third scenario mimics nodéusion. Four
randomly selected anchors collude with each other and sgifdlse but consistent location references. In this case,
all malicious anchors report a falsified position shiftedeet from its true location in the same direction. In the
fourth scenario, we experiment with a varying number ofuatithg anchors ranging from 1 to 8 (out of 14 anchors) to
examine the impact on the estimated location.
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Figure 3: Location estimation error in different scenaiiofield experiments

Under each attack scenario, we investigate the resiliehGMMSE and QCMMSE compared with the previous
approaches in terms of localization error and maliciouation reference detection rate, and the algorithm effigienc
in terms of execution time. In the experiment we vary theramected from10 to 150 feet with a 10 feet increment.

In all scenarios, we run each scheme 10 rounds for each raptim®ment of malicious anchors. We then compute
the average location estimation error and execution timedoh scheme.

From Figures 3(a), 3(b), 3(c), and 3(d), all schemes exaapte basic MMSE method have bounded location
estimation error, and they can tolerate not only non-cafigdnalicious anchors but also non-majority colluding
malicious anchors. The proposed CMMSE and QCMMSE schemas diigihtly higher location estimation errors
than EARMMSE, voting-based and LMS schemes; however, tailan estimation errors in CMMSE and QCMMSE
schemes are in general comparable with the other alteesaths shown in Figure 3(d), both CMMSE and QCMMSE
in fact has smaller location estimation errors than the Lid$ese when the number of colluding malicious anchors
is large.

To support our explanation, we investigate the effectigerad each scheme to filter out malicious location refer-
ences under different amounts of error injection. For eatleme in each attack scenario, we capture the number of
malicious location references that have been succes#glhtified in each round and calculate the average detection
rate over 10 rounds. Figures 4(a), 4(b), and 4(c) show theessaate of removing malicious location references in
our experiments. As we can see, all schemes, including thy@osed CMMSE and QCMMSE, have similar results in
these figures.

All the schemes under investigation fail to identify and ox® malicious location references when the injected
errors are small<€70 feet). When the injected error is at 10 feet, no schemeles tabidentify and remove the
malicious location references. This is because the makcamchors behave in a way very similar to benign anchors,
and the injected errors are indistinguishable from normedsarement errors. In such cases, the errors introduced by
malicious anchors do not introduce significant impact oafion estimation.

Figure 4(d) provides the results on the malicious locatefenence detection probability when we have8lma-
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Figure 4: Success rate of removing malicious location esfees in field experiments

licious location references. Since the injected error i8 fe®t, all schemes should be able to identify and remove
the malicious location references when the number of coitpdnes is small (6). The figure shows that the LMS
scheme is the first scheme to break down, and the EARMMSE migtiavides the best detection rate. Despite the
observable differences in Figure 4(d), all the schemes hamesimilar results.

The above results indicate that the proposed CMMSE and QCHEIBt®iemes have slightly worse but compa-
rable performance in terms of location estimation errommgared with the EARMMSE, the voting-based, and the
LMS schemes. In the remaining discussion for field experisieme focus on the efficiency of the schemes under
investigation.

Figure 5 shows the execution time of the schemes under igaéisin on MICAz motes. In all the four evaluation
scenarios, we can see the execution time of the voting-tmstthe LMS schemes are much more expensive than the
other schemes. EARMMSE and CMMSE have similar executioe fimall scenarios, and are much more efficient
than the voting-based and the LMS schemes, but observaslgfécient than QCMMSE. In most cases, QCMMSE is
at least twice as fast as EARMMSE. The most efficient one infei$ is the basic MMSE scheme, which is included
as a reference. Unfortunately, the basic MMSE scheme isasdtant to malicious anchors at all.

Combining the results obtained in the field experiments, are see that the proposed CMMSE and QCMMSE
schemes have slightly worse but comparable location estimarrors compared with the alternative schemes, but

are in general much more efficient in terms of computationpdrticular, QCMMSE requires the least computation
among all the resilient schemes while maintaining a siniéeel of resiliency against malicious anchors.

4.3 Simulation

A limitation of field experiments is that we cannot obtain gehensive evaluation results through a large number of
random deployments. To get better understanding of thepeéhnce results, we also perform simulation experiments
aimed at verifying and confirming the conclusion drawn fréma field experiments. Since the simulation is executed
in PC rather than motes, we focus on our evaluation on loc&stimation errors.

In all simulations, we use the same parameters for the téed@t signal range, and maximum measurement error
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Figure 5: Execution time in different scenarios in field expents

as in the field experiments. For simplicity, we simulate tigtathce measurement error using a uniform distribution
between—e,,q ande... In each simulation, a set of 14 anchors, including both d¢remind malicious anchors,
are deployed in the target field. The non-anchor sensor nagieh needs to localize itself, is located at the center
of this target field. So we know the true location of this nodée use the same four attack scenarios as in the field
experiments. In our evaluation, we run 1,000 rounds of satiarh in TOSSIM (the simulator of TinyOS) for each data
point to calculate the average location estimation erroedch round we randomize the location of each anchor.

We first use the same deployment of anchor nodes as in the figtdiments to verify the results obtained through
field experiments. Figure 6 shows the resulting locatioimesgton errors. We can see the location estimation err@rs ar
very similar to the results obtained in the field experimenitse difference is because of the simulated measurement
errors.

We then use random deployment of the 14 anchors in our simonldtigure 7 shows the location estimation error
for all evaluated schemes in each scenario. We can see thidation estimation errors in all these schemes are
consistent with the evaluation results obtained in the fedderiments. Thus, we can conclude that the CMMSE
and QCMMSE schemes indeed have comparable performance akdmative secure localization schemes. Further
considering the fast execution time of these two schemeganesee that these two schemes, especially QCMMSE,
are suitable for secure and resilient location estimatioresource constrained sensor nodes.

5 Conclusion

In this paper, we developed CMMSE and its variation QCMMSEffiwiently tolerate attacks against localization in
WSN. Through random seed selection and triplet examing@MMSE and QCMMSE use the basic MMSE method
to filter out malicious location references efficiently. Tdigorithm is well suited for the current generation of lovden

wireless sensor nodes. To evaluate the proposed scheméaspleenented CMMSE, QCMMSE, and all the recent
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Figure 6: Location estimation error in simulation (samelandocation as field experiments)

secure and resilient localization schemes that can be uséldeocurrent generation of sensor platforms, including
EARMMSE [14], the voting-based scheme [15], and the LMSedascheme [13]. We have performed thorough
experimental evaluation through both outdoor field expenrita and simulation. Our results conclude that the newly
proposed schemes, particularly QCMMSE, has the fastestigga among all the resilient localization schemes, and
at the same time provide a comparable degree of resilieraipsignalicious attacks.

All the existing secure and resilient localization scheniesluding CMMSE and QCMMSE, require a majority
of benign location references. In the future, we will invgate resilient and/or detection techniques complemgntar
to resilient estimation, so that we can still provide resitilocation estimation even when the colluding malicious
anchors form the majority.
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