
Empirical Software Change Impact Analysis using Singular Value Decomposition

Mark Sherriff
1,2

, Mike Lake
1
, and Laurie Williams

2

1
IBM,

2
North Carolina State University

mark.sherriff@ncsu.edu, johnlake@us.ibm.com, williams@csc.ncsu.edu

Abstract

During development, testing, and maintenance,

modifications made to a system can often have side

effects. Developers can minimize adverse side effects and

prevent fault injection resulting from these system

modifications through impact analysis techniques.

However, current impact analysis techniques often do not

include files that are not part of the source code, such as

media files, help files, and configuration files. We

propose a methodology for determining the impact of a

change by analyzing software change records through

singular value decomposition. This methodology

generates clusters of files that historically tend to change

together. We performed a post hoc case study using this

technique with three minor releases of an IBM software

product comprised of almost one million lines of code.

We determined that our technique narrows the size of the

impact set recommended for examination. Additionally,

approximately 40% of the files recommended for

examination appear with the changed files in future

system modifications.

1. Introduction

During development, testing, and maintenance,

modifications made to a system can often have side

effects. These side effects may not be handled by

developers because the developers might not be aware of

all the interconnections in the system and not make all the

changes necessary to properly enact a system

modification. We define a system modification as an

action taken by a developer on the system to repair a fault

or implement a feature change according to a given

requirement.

Developers can minimize adverse side effects and

prevent fault injection resulting from the system

modifications through impact analysis technique [1]. The

results from an impact analysis allows developers to

minimize adverse side effects and prevent latent faults

[1]. However, current impact analysis techniques that

utilize call graphs, dynamic executions of the system, or

static code analysis often do not include files that are not

part of the source code, such as media files, help files,

and configuration files [5, 9, 15, 17]. Additionally,

current impact analysis techniques based upon semantic

analysis may not consider trends in actual system usage

or the fault-proneness of the set of files impacted.

Without usage trends, the results of semantic impact

analysis require more effort to determine exactly which

areas of the system have the highest risk of containing a

latent fault [14].

To address these deficiencies, we propose an empirical

method for determining the impact of a change by

analyzing change records. A change record provides the

documentation for a change made to a single file for the

purpose of a system modification. All the change records

associated with a specific system modification are

referred to as a track. As a result, an analysis of tracks

can show how files interact with one another to perform

system modification [2, 3]. Tracks can then be used to

identify association clusters in a software system. An

association cluster consists of an empirically-derived set

of files that have tended to change together over a large

set of system modifications [3]. Quantification of the

frequency of occurrence of tracks can be used to rank the

“strength” of an association cluster.

The technique we describe in this paper provides a

methodology for generating association clusters from a

set of change records and then leveraging those clusters to

guide impact analysis. The data from change records are

compiled into a matrix that portrays the historically-based

change relationship between sets of files. A singular

value decomposition (SVD) [6] is performed on the

matrix to generate the association clusters. The results of

the SVD can then be utilized to identify the potential

effects of a change. Our hypothesis is that a methodology

based upon singular value decomposition using historical

change records can accurately surface additional files,

including non-source files, that may be impacted by a set

of changes. To examine the efficacy of our technique, a

post-hoc case study was conducted with an industrial

project at IBM. The product consisted of approximately

21,000 files and one million lines of code. During this

case study, we investigated two research questions:

1. Are the association clusters produced by SVD

intuitively identifiable by system experts and thus

represent actual system components?

2. Do the association clusters produced by SVD

accurately surface additional files that may be

impacted by a system modification?

Change records initiated from fault removal efforts

were gathered on three consecutive minor releases of an

IBM product. A minor release is contains small updates

to functionality and fault fixes; a major release includes a

significant change in functionality.

The rest of this paper is organized as follows. Section

2 provides information on background and related work.

Section 3 describes our technique methodology in detail,

while Section 4 describes our case study at IBM. Section

5 presents our summary and future work. Finally, Section

6 provides insights into how this work will evolve from

the case study as we extend the scope of this research.

2. Related Work

In this section, we will discuss related research and

background literature in impact analysis, software change

analysis, and singular value decomposition.

2.1 Impact analysis

Impact analysis is defined as “the determination of

potential effects to a subject system resulting from a

proposed software change.” [1, 4] The potential effects

from a system modification can range from

inconsequential to injecting a severe fault in the system.

Finding which files or areas of the system that could

contain these potential effects is the main goal of an

impact analysis technique. Impact analysis techniques

can be categorized based upon whether it requires

compilation and/or running of the code at some level or

whether the technique runs on static code.

Dynamic impact analysis techniques rely upon

information gathered from a system during runtime, often

gathered through execution of the system or test suites

with an instrumented code base [9, 15]. Orso et al.

compare two such dynamic techniques,

CoverageImpact and PathImpact, to determine the

major differences in cost and effectiveness. These two

techniques examine call graphs and execution records

from previous runs of the system. CoverageImpact

utilizes the coverage information of each system

execution with program slicing [18] to determine how

components of the system are linked together.

PathImpact uses similar information to build a directed

acyclic graph of the system. Both techniques are

considered safe, which means that the techniques will

catch all of the impacted areas of the system [18].

PathImpact and CoverageImpact require dynamic

runtime information to determine the impact of a

proposed change. Orso et al. performed an investigation

where they utilized field execution information instead of

simulated execution information to build their models

[14]. In this investigation, they used the operational

profile information about the system to further determine

the percentage of users that would be affected by a

change. During their study, they determined that using

actual field information can improve the accuracy of an

impact analysis effort because actual users of the system

utilize different portions of the system than simulated

users [14].

Static impact analysis techniques do not involve the

execution of the code base. Techniques that can be

classified as static impact analysis methods work by

analyzing information from the software development

lifecycle [9] or the semantics of the source code itself [1,

17, 19, 22]. However, Orso demonstrated that static

techniques that are “generally imprecise and tend to

overestimate the effect of a change” [14, 15]. Orso and

Huang both state that this imprecision, manifested as a

large number of false positives (up to 90%), comes from

the use of static source code with only assumptions as to

how the system is used and executed [9, 14].

Our technique is a static impact analysis technique and

addresses concerns expressed regarding static techniques.

Using SVD, our technique identifies association clusters

of files that help alleviate the concern that static

techniques generate a large amount of false positives.

These association clusters are generated using historical

information regarding how files tend to change together

in response to faults and field failures. Thus, the

association clusters represent general fault paths in the

system. Further, our technique does not require the

source code of the system. Using software change

records enables our technique to include non-executable

files (such as images, documentation, and configuration

files) in our impact analysis. Faults that arise in these

non-executable areas can be just as severe as a fault

within the source code itself [10].

2.2 Empirical impact analysis

Research is currently being performed in mining and

analyzing data from source control systems to identify

core components in a software system for use in impact

analysis [2, 3, 7, 12, 21, 22]. Zimmerman et al. [22] have

created an Eclipse plug-in that performs an impact

analysis with regards to the area that a developer is

currently modifying while the developer is in the act of

modifying the code. The plug-in mines source revision

records and creates a set of tuples that indicates what file

was modified, what type of object within that file was

modified (e.g. field, method, class, etc.), and the name of

the object. The plug-in then converts these sets of tuples

into transaction rules, indicating areas of the system that

tend to change together. As the plug-in builds a large set

of these transaction rules during development, the plug-in

can make recommendations to the developer as to

possible areas of the system that might need to be

modified based upon the revisions they are currently

making. With a relatively stable code base, Zimmerman

reports that 44% of related files can be predicted.

However, for evolving systems, the predictions could not

work well since the prediction would have to take into

account new functions being added constantly [22]. Our

technique is similar in that we are leveraging change

records in a like manner, except we use SVD as a

clustering algorithm to determine the connections

between files as opposed to generating transaction rules.

Ren et al. has also created an Eclipse plug-in to predict

the impact of code changes for developers to use in-

process through white-box techniques [17]. Their plug-

in, called Chianti, works by capturing atomic-level

changes in the code base. Dependencies are then

calculated between these atomic changes to predict what

other areas of the code might be affected by a change

through the use of call graphs. Ren performed two case

studies on 100 KLOC system and found that Chianti was

able to reduce the number of regression tests depending

on the degree of the change implemented. The primary

difference between the impact analysis technique used in

Chianti and our technique is that Chianti is based upon

semantically-based methods in which all associations are

created equal regardless of actual usage. The association

clusters created in our technique are based upon historical

data and, therefore, might be better for prioritization.

Canfora and Cerulo use the descriptions of faults and

change records from developers to determine the effect of

a change [5]. Their technique compares similarities in the

description of a new change to previous changes to

identify possible areas that have been affected. If the

description of a new fault matches keywords in previous

faults, then those files identified by the previous faults

may be affected by this new change. Canfora and Cerulo

found that, if fault records used consistent keywords and

phrases, a recall rate of nearly 98% was possible, with a

precision rate around 85% [5].

Our technique is similar to this prior work in that our

technique provides a methodology for identifying these

association clusters within a given system and then uses

that information to guide developers and testers. In the

techniques previously discussed, a file could only be

associated with one cluster. However, in actual systems,

files and subsystems can be interconnected in several

different ways. In our technique, files can be associated

with more than one cluster, each with a relative strength.

Multiple execution flows through a system could indicate

that a particular set of files is related to more than one

section of the system.

2.3 Clustering files based upon change records

While Zimmerman’s and Ren’s works focused on

guiding developer efforts, other research uses the same

sets of change records to improve program

comprehension. Ball et al. performed a clustering

analysis based on sets of change records to the P5CC

compiler that divided the system into five specific

functional groupings [2]. Each of these functional

groupings mapped directly to a particular functional

requirement for the compiler, including abstract syntax

tree (AST) creation and code generation. Their research

showed that data could be mined from sets of change

records to increase program comprehension and that

impact analysis could be performed using this

information [2]. Ball’s clustering algorithm used a

probability measure to determine if a file is likely to

change with another file. Our technique, provides a

similar measure of likelihood as represented by the

singular value of the cluster.

Further work expanded on the idea of mining change

records to isolate clusters of files within a software

system to drive program comprehension. Beyer and

Noack’s work expanded on Ball’s research by creating

clusters of files using a co-change graph to plot files onto

a two- or three-dimensional graph using an energy-based

graph layout [3]. Files that contained more edges

between them were closer together on the graph, thus

creating clusters of files. These clusters of files could be

directly identified and related to functional requirements

or third party components within the system [3]. Other

research by Gall also generated association clusters of

files within a system for program comprehension [7]. His

method used a set of commonalities that could be

detected from change logs (i.e. files that were edited on

the same day by the same person) to create his sets of

sub-modules.

2.4. Singular Value Decomposition

Singular value decomposition (SVD) is a linear algebra

technique that decomposes a given matrix into three

component matrices [6]: (1) the left singular vectors; (2)

a set of singular values; and (3) and the right singular

vectors. The two matrices that are made up of singular

vectors provide information about the structure of the

original matrix. The singular values describe the strength

of the given components of the original matrix.

The SVD theorem [6] states that given a matrix M, then

there exists a decomposition of M such that T
USVM = .

The SVD of a matrix can also be described geometrically.

The SVD shows that the values of any matrix M can be

reconstructed by a rotation (U), followed by increasing

the matrix values (S), followed by another rotation (V)

[20]. For example, if M represented coordinates that

generated a three-dimensional shape, then that shape

could be constructed from the rotational information in U

and V, along with stretching the shape out to its proper

size with the information in S [20]. This type of

decomposition can be important and useful in that the

rotational matrices isolate the key components of the

original matrix, finding relationships between the various

data points, while the strength matrix indicates which of

the key components illuminated in the rotational matrices

are the most important [6, 20]. In our research, this core

idea of isolating key components of the original matrix is

the basis for using the SVD with our technique. When

the matrix is comprised of change records, fault

information, or some other data from the development

process, these key components highlight underlying

structures in the code base.

Latent Semantic Analysis (LSA) uses SVD to find

lexical similarities between words and phrases [8].

Maletic and Marcus used LSA to look for semantic

similarity in blocks of code to identify similar files and to

construct association clusters as a form of program

comprehension analysis [13]. These association clusters

corresponded with logical structures within the code base

itself. Our technique works similiarly generate

association clusters between files, except our technique

uses software development artifacts as described in

previous sections as opposed to looking at the actual code

base itself.

Osinski et al. created a clustering algorithm based upon

SVD to improve search queries on a set of documents

[16]. They built an original matrix based upon keywords

in the document set. The SVD was performed on this

matrix to generate clusters of documents that were similar

based on their keywords. Enough clusters were gathered

to account for 90% of the variability of the original

matrix, with the remaining clusters discarded as signal

noise [16]. The documents were then assigned to clusters

based upon which cluster they had the closest association

with. Anecdotal evidence from users who were presented

with the clusters generated with this study found that 70-

80% of the clusters were useful and over 75% of

identified cluster labels were correct [16].

3. SVD-based impact analysis

Our technique provides a methodology that derives

associations using SVD based upon a set of change

records from testing and field failures. These association

clusters of files portray an underlying structure in the

system indicating how files tend to be executed, tested,

and changed together. We decided to use SVD in our

methodology to leverage its ability to illuminate

underlying structures in a data set in which the data could

be associated in multiple ways. In this section, we will

describe our technique, which includes deriving the

association clusters from change records and interpreting

the results of the analysis. An outline of our technique

can be found in Figure 1.

 3.1 Identifying data sources

 Source control systems are the primary source for

gathering change records. When a developer checks a file

in to a source control system, the system typically records

the time of the check-in along with information about the

developer and the nature of the change. Individual

changes can be often be linked together into tracks, either

through a specific mechanism in the source control

system that records that information or through the

examination of change record check-in information.

With information regarding tracks, we are able to

ascertain how files change together.

 Some more complex source control systems are also

integrated with a fault tracking system. With these more

complex systems, tracks can be associated directly with

the fault record that the changes are addressing, providing

detail about how tracks are linked together. Information

from fault tracking systems allows us to isolate tracks to

those made under specific circumstances. For example,

changes derived from faults found during system test

could be compared to changes derived from field failures

discovered by customers.

 3.2 Mining software development artifact data

After appropriate data sources have been identified, an

analysis matrix should be generated that contains the

system’s files along each axis. The values within the

analysis matrix show how the files are connected through

change records. For illustrative purposes on how to build

the analysis matrix, we will use a set of sample data to

generate this analysis matrix. Table 1 shows a small

sample of the set of the change records that were used to

1 Create matrix M where the values in the

matrix indicate the number of times two

files have changed together.

2 [U, S, V] = svd(M);

3 for i:size of U

4 Gather cluster i information

5 for j:size of U

6 if |U(j, i)| > threshold

7 Gather element of cluster i

8 end

9 end

10 end

11

12 X = list of files under change

13 Compare contents of X with each cluster

to find exact matches

14 if perfect matches found

15 return matched files

16 Search clusters for any files from X for

any cluster match

17 return any matched files

Figure 1. Psuedo-code for SVD-based impact analysis

create our example analysis matrix. This example uses a

small system consisting of five files.

Table 1. Sample Change Record Information.

Test Case

ID

Fault ID Track ID Files

Changed

T1 A1 988 1

T2 A2 989 2, 3

T3 B1 990 4, 5

T3 B2 991 4, 5

T1 B3 992 1, 2

T4 C1 993 2, 3

We have built an example analysis matrix M, shown

below in Equation 1 using the data from Table 1 and

additional change records. The values in the matrix

represent the number of times that each file appeared in a

track with another file. Thus, File 2 has appeared in a

track 10 times together with File 1, 21 times together with

File 3, and 0 times by itself (since M(2,2) = M(2,1) +

M(2,3)). Similarly, File 3 has changed 21 times with File

2 and 3 times by itself.

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

=

1712000

1215000

0024210

00213110

0001025

5

4

3

2

1

54321

F

F

F

F

F

M

FFFFF

 (1)

Upon initial examination of this matrix, we note that

Files 4 and 5 change together or by themselves. Based on

this, it appears that Files 4 and 5 are strongly linked in

isolation from the rest of the system. Similarly, Files 1, 2,

and 3 are also linked, with Files 2 and 3 having the

strongest bond of the three.

3.3 Perform the singular value decomposition

To determine the strength of the associations between

files and to generate the association clusters, we perform

a SVD of this matrix. The strength of the association is

determined by the frequency of time the files changed

together. A SVD of M provides the following matrices,

shown in Equations 2 and 3:

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

'

''

''

'''

'

==

68.0074.0

74.0068.0

069.43.059.

056.02.076.

031.9.029.

VU

 (2)

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

=

9.30000

01.4000

008.2400

0004.280

00001.51

S

 (3)

The U and V matrices provide information as to the

structure of the association clusters. The singular values

from the S matrix represent the amount of variability each

association cluster contributes to the original analysis

matrix. Note that U and V are equal, due to M being a

symmetric matrix.

A cluster’s strength, represented by the size of the

singular value coupled with it, indicates the amount of

variability that the association cluster provides to the

original analysis matrix [20]. Dividing a cluster’s

singular value by the sum of all the singular values

provides the percentage of how representative the cluster

is of the original matrix. In this example, a high singular

value indicates that that association cluster is more

prominent in the analysis matrix, due to a greater number

of changes that have occurred to that set of files. A high

singular value could be indicative of a particularly

problematic section of code or a new feature that has just

been introduced into the system and is experiencing its

first rigorous testing.

3.4 Gather the association clusters

The values in the U matrix correspond to the

composition of each association cluster. In this example,

there are five association clusters because the rank of M is

five. The first column of U, representing the structure of

the first association cluster, is coupled with the first

singular value in S, representing the strength of that

association cluster. Since it is coupled with the largest

singular value, the first association cluster represents the

greatest amount of variability in the original analysis

matrix and is the most prominent association cluster.

From the U matrix, we see that the first association

cluster is comprised of Files 1, 2, and 3, indicated by the

fact that the three files all have values with a similar sign.

Further, each of these values has a larger magnitude than

.1, the threshold we used in our research. A threshold is

used when selecting cluster members so that only files

with a strong association to the other files are included in

the cluster. This is similar to the threshold that Osinski

used in his algorithm [16]. In the third cluster, we see

that File 1 is its own cluster that can, at times, change

without Files 2 and 3. So, in effect, we get two

associations out of the third cluster, one with File 1 by

itself and one with Files 2 and 3 together.

Note that the values in each association cluster’s

column vector represents the degree to which that file is

likely to change in that cluster. In this way, each file is

weighted within that association cluster as to its degree of

participation. For example, the first association cluster is

primarily composed of File 2 and File 3 due to their

higher values. File 1 is a minor participant in this

association cluster. If we reexamine the original analysis

matrix M, we can see the strong correlation between Files

2 and 3 with a somewhat looser correlation with File 1,

since these files only tend to change together and not at

all with Files 4 and 5. The association cluster in the

second column portrays the next most significant cluster,

comprised of Files 4 and 5.

The singular values of these clusters found in the S

matrix provide some indication as to how they should be

analyzed. The first cluster represents 45% of the overall

variability in the matrix, which can be determined by

dividing the first singular value by the sum of all the

singular values. Further, the third cluster represents 22%

and the fourth represents 4%. These percentages show

that the first cluster defines the majority of the

information regarding these files. Clusters three and four

are, in effect, sub-clusters of the first cluster because they

contain a similar set of files. At this step in our

technique, the matrix U can provide information about the

likelihood of a change in an association cluster based

upon previous change information.

Using the U and S matrices generated from our

technique, we can determine the possible impact that a

new track might have on the system. We can compare the

associations gathered from the U matrix with a new track.

If all the files in a new track are present in a previously-

determined association cluster, we know that there is a

strong relationship between the changed files and the

other files in the cluster and that these files would be the

most likely files to be affected by this change. Further,

the magnitude of the corresponding singular value in S

indicates which cluster has churned more within the data

set under examination. If the files in a new track do not

all appear in the same cluster, then they represent a new

execution path through the system. In this instance, files

that are associated with each changed file separately can

possibly be affected by this change. Finally, the files may

have never changed before within the data set that was

used to build the U matrix. In this instance, no historical

evidence exists as to how these files may affect the

system, and a new association cluster is will form to

represent this new set of changes in a future analysis.

This technique is similar to the cluster rank algorithm

used by Osinski et al. in their SVD-based search term

clustering algorithm [16]. Osinski multiplied their

document matrix by a modified U matrix from the SVD

to derive the impact that each search term had on a given

document. In this fashion, the values from the result

vector were used to assign a document to its closest-

matching search term cluster [16].

3.5 Limitations

The association clusters are based upon the change

records that may or may not be accurate. For example,

the case study reported in this paper uses data from an

IBM system. IBM’s documented development process

and interviews from developers and managers indicated

that files that were changed together are related and are

addressing a specific fault. The process in place in IBM

helps to minimize opportunistic changes whereby a

developer makes changes unrelated to an open fault while

fixing that fault. If opportunistic changes occur during

fault removal efforts, we cannot be certain that the set of

files that change together are related to a particular fault.

Conversely, opportunistic changes and aggregating

multiple changes in one change record may be prevalent

in open source projects

Another limitation is that our technique is not

guaranteed to be safe. If there is no historical data

regarding a set of files, our technique cannot provide

guidance as to where the effects may be. However, our

technique may be more practical for a system with a large

percentage of non-executable files. Dynamic techniques

might not be able to find the same dependencies that our

technique finds among these files since dynamic

techniques operate primarily on source files.

Current impact analysis techniques typically calculate

the impact of a proposed change at the function or line of

code level, while our technique is currently being used at

the file level. Using a technique that has a granularity

level down to a line of code can be beneficial if a source

file is large in size, since a line of code granularity would

limit the area that a developer would have to analyze to

find the affected code. However, since our technique is

also focusing on non-executable parts of the system, the

file level is the most effective granularity level for our

purposes. In most cases, change information does not

exist to the line level of some non-executable files, such

as help files. Further, the file level is effectively the only

appropriate granularity for media files that are included in

a system.

4. IBM Case Study

From September 2006 to March 2007, research was

performed at IBM in Durham, NC. In this section, we

will discuss an industrial case study using our technique.

Our hypothesis is that a methodology based upon

singular value decomposition using historical change

records can accurately surface additional files, including

non-source files that may be impacted by a set of

changes. In this section, we will investigate the two

research questions posed in Section 1.

4.1 Case study setup

We began by examining available data sources. IBM’s

source control and fault management system generates

detailed logs on tracks. The project that was selected had

three consecutive minor releases. Each release of the

project contained approximately 21,000 files with over

one million lines of code. To protect proprietary

information, we cannot provide the quantity of change

records analyzed in this paper.

4.2 Cluster identification

Our first research question was to determine if the

association clusters produced by SVD are intuitively

identifiable by system experts and thus represent actual

system components. Beyer and Noack [3] evaluated their

clustering algorithms based upon how accurately the

clusters represented sub-systems compared to an actual

decomposition of the system. Osinski et al. [16]

performed a comparable exercise using multiple sets of

documents and interviewing users on whether the search

results from the algorithm were useful. We followed a

parallel approach to previous research to qualitatively

assess the accuracy of the clustering algorithm.

Once we generated the association clusters for the three

releases, two authorities on the system, a testing manager

and a senior technical staff member, were independently

shown the sets of files that comprise the clusters with the

highest singular values. The authorities were asked to

give each cluster a name based upon the types of files in

the cluster (e.g. system configuration files). This naming

step is not a required step in our technique, however, it

aids us in answering the research question For the

purposes of this cluster identification exercise only, we

limited the number of clusters for analysis to the first six

for each release (18 total), which accounted for

approximately 25% of the overall variability in the

original matrix. The first six in each release were chosen

for this case study because, after the sixth singular value,

the singular values drop off significantly and slowly

reduce to zero as shown in Figure 2. Thus, we selected

the most prominent clusters for our identification analysis

in this case study. Graphs of the top 250 singular values

for each release are shown Figure 2. The top 250 are

shown because the full graph of all 21,000 singular values

is difficult to interpret visually.

The two authorities on the system independently

provided similar names for each cluster. The

identifications and singular values for the six association

clusters for each minor release are shown in Table 2 and

are in order by singular value. Further, the main release

requirements for all three releases were evidenced in the

top six association clusters, indicating that the association

clusters can identify system components and order them

by velocity of change as indicated by the magnitude of

the singular values. Another thing to note about these

clusters is approximately 83% of these clusters include

files that are not source code, including license files, help

files, configuration files, and images from the graphical

user interface. This result indicates the importance of

non-executable files in this particular project.

Release 1

Release 2

Release 3

Figure 2. Graphs of top 250 singular values for the three minor releases.

Table 2. Results from association cluster creation.

Assoc.

Cluster

Release 1 Release 2 Release 3

1 Patch config

files

Release req. 2.1 Release req.

3.1

2 System config

files

Database Release req.

3.2

3 Database System config

files

Graphical user

interface

4 Patch

information

Release req. 2.2 Source control

files

5 Release req.

1.1

License files Release req.

3.3

6 License files Graphical user

interface

Installation

files

4.3 Impact analysis investigation

We addressed our second research question “Do the

association clusters produced by SVD accurately surface

sets of files that are indirectly impacted by a system

modification?” in two stages. We first wanted to

determine the size of the impact sets returned by our

technique, and then we investigated the accuracy of those

impact sets. First, we measured the size of the impact

sets generated by our technique to determine how much

our technique minimized the impact set. We used a

random data splitting technique with the three minor

releases of an industrial software system in this

investigation to create our data sets. We began by

randomly selecting two-thirds of the tracks for each

release as the “historical data” from which we generated a

set of association clusters. The remaining one-third of the

tracks were then used as our “future set,” which would

simulate incoming tracks made to perform a system

modification. We performed this data splitting exercise

ten separate times for each release.

The impact analysis techniques used by Orso et al. [14]

and Law and Rothermel [11] are considered safe. As a

result, these researchers showed the efficacy of their

impact analysis technique by comparing the size of the

impact set against that of other impact analysis

techniques. We utilized a similar methodology to first

investigate the relative reduction of the impact set.

We gathered impact sets from the system modification

in the future set using three different impact methods: two

using our algorithm found in Figure 1 (Impact Methods 1

and 2) and another as a baseline (Impact Method 3):

• Impact Method 1: gather all the files that appear in

clusters in which all of the newly-changed files

appear (for example, if a new track contains files

A, C, and Q, a file is considered in the impact set if

it appears in a cluster in which A, C, and Q all

appear together)

• Impact Method 2: gather all the files that appear in

clusters in which any of the newly-changed files

appear (for example, if a new track contains files

A, C, and Q, a file is considered in the impact set if

it appears in any cluster that contains at least one

of files A, C, or Q)

• Impact Method 3: gather all the files that have

changed in the “historical data” with any of the

newly-changed files (for example, if a new track

contains files A, C, and Q, a file is considered part

of the impact set if that file has been modified in

conjunction with either A, C, or Q in a system

modification in the historical data)

We compared the size of Impact Methods 1 and 2

impact sets to that derived by Impact Method 3. The goal

of this comparison is to show that using SVD can narrow

the scope of files that should be examined in the event of

a system modification to those files that are most strongly

connected to the changing files. An example result from

Release 3 can be found in Figure 3.

All three releases followed a similar pattern to the

result shown from Release 3 in Figure 3. The lines in the

chart represent the quantity of impacted files for each

track found in the future set. The chart shows that the

size of the impact set is generally significantly reduced

using either Impact Methods 1 or 2 that utilize the

association clusters. Further, the size of the impact set

remained relatively constant, despite spikes in the size of

Impact Method 3. This relative constant size is an

indication that the general size of clusters is relatively the

same, allowing for a more targeted impact analysis.

After we evaluated the reduction of the size of the

impact set using our technique, we investigated the

accuracy of those impact sets. Because our technique

Figure 3. Charts of Comparisons of Impact Sets.

generates an impact set based upon historical evidence,

the files in the impact set could be considered as a

recommendation for further inspection of additional files.

Thus, we evaluated the accuracy of the Impact Method 1

by determining whether the files in the impact set

appeared in the future set along with one of the files from

the new system modification.

For our the discussion of our accuracy analysis

technique, consider a track in the future set that contains

files A, B, and C. Impact Method 1 generates a cluster

that contains A, B, C, and D, thereby providing a

recommendation that D also be examined. We refer to

files A, B, and C as files in the “test track” and to file D

as a file in the “impact set.”

For our analysis, we considered a file in the impact set

a confirmed true positive if that file appeared in any track

in the future set with one or of the files from the test

track. For example, if D appears in a track in the future

set with either A, B, or C, we consider this matching

result as a confirmed true positive. However, if D does

not appear with A, B, or C in the future set, the conditions

of system activity may simply not have involved these

files. Thus, any recommendation that is not a confirmed

true positive may either be an unconfirmed true positive

or a false positive.

We performed this investigation of Impact Method 1

within each of the three minor releases. We also used the

results of Release 1 with the changes from Release 2, and

the results of Release 1 and 2 with the changes from

Release 3. In an industrial setting, the association clusters

adjust as new change records are gathered when new

features or faults are discovered. The technique evolves

along with the system itself. The results of this

investigation can be found in Table 3.

Note that between 21.1% and 55.3% of the files that

were indicated as impacted in any given system

modification were non-source files and would not have

been considered in current semantic impact analysis

techniques. This is partly the result of the type of system

under investigation in this case study, but the results do

indicate that often non-source files, such as images or

help files, can be impacted by a system modification.

Also note that the average number of impacted files is in

addition to the actual changed files in the system

modification.

 We discovered that the accuracy of our technique is

correlated with the quantity of the number of changes for

a set of files under change. For example, in Release 1

and Release 3, there were a small number of areas of the

system that were under change. The files in these areas

had a relatively large number of changes associated with

each of them. However, in Release 2, even though there

were a larger number of changes overall, the changes

were spread out evenly across the system. The SVD

creates associations based upon the velocity of change, so

areas with a higher change density cluster together better

than larger areas with a lower density. What this lower

change density yields is a larger impact set because the

SVD associates more files together, as is the case in

Release 2. However, with enough information about how

files change together with when the changes from Release

2 were combined with those from Release 1, the

confirmed true positive rate improved because the overall

change density increased.

In our background research for this work, we did not

discover any other empirical analysis of an impact

analysis technique that examined the accuracy of the

technique based upon future system modifications. Other

techniques were validated by examining the size of the

impact set, given that the technique was considered safe.

5. Summary and Future Work

In this paper, we propose an empirically-based impact

analysis methodology based upon structures discovered

through change records and singular value

decomposition. Our technique makes use of the

information in change records to discover and define

relationships between files within the system. The novel

aspect of our technique as compared to other impact

analysis techniques is the use of change records to drive

an impact analysis that requires no access to the source

code itself and also can incorporate all files in a system,

even non-source files. In some systems, faults in non-

source files can be just as severe as those in the code base

[10]. Further, our technique utilizes historical evidence

as to areas of the system currently under change to

highlight files that are most likely to change together.

To examine the efficacy of our technique, a post hoc

case study was performed with three releases of a product

from IBM. The generated association clusters from the

analysis were identifiable and directly relatable to specific

Table 3. Investigation results.

Release Confirmed True Positive Rate % Non-Source Files Avg./Med. Track

Size

Avg./Med. Size of

Impact Set

1 45.4% 35.2% 19.3 / 3 21.1 / 3

2 10.0% 55.3% 40.5 / 4 43.9 / 5

3 39.5% 34.4% 22.4 / 3 21.2 / 3

1 w/ 2 31.5% 21.1% 28.3 / 4 24.4 / 3

1+2 w/ 3 38.4% 35.6% 23.4 / 3 18.1 / 4

requirements for each release or for an identified internal

system component. The association clusters specifically

illuminated areas of the code base where cross-

component dependencies existed and components that

included files that would not normally be examined in an

analysis that used execution-based files, such as help files

and configuration files. With enough information about

how files change together, our technique has a confirmed

true positive rate of around 40%. The other files in the

impact set that are not confirmed true positives are either

unconfirmed true positives or false positives.

Our primary goal in future work is to do a comparison

with our technique and a dynamic impact analysis

technique, such as CoverageImpact. We are

interested to see if the results of an execution-based

impact analysis match how files tend to change together.

An investigation into this comparison could indicate that

files that change together are often related in execution.

We would also like to investigate further the importance

of non-executable files in an impact analysis. There also

may be a way to combine our technique with a dynamic

impact analysis technique. If we substituted files that call

each other (as shown in a call graph) for files that change

together, we would have a hybrid technique that utilized

dynamic information with the SVD technique.

6. Acknowledgments

We would sincerely like to thank J.B. Baker at IBM for

his input into this work. We would also like to thank the

Realsearch reading group for critiquing early versions of

this research. Partial funding was provided for NCSU

authors by the National Science Foundation.

7. References

[1] Arnold, R. and Bohner, S., "Impact Analysis -

Towards A Framework for Comparison," Conference on

Software Maintenance, Montreal, Canada, 1993.

[2] Ball, T., Kim, J., Potter, A., and Siy, H., "If your

version control system could talk," Workshop on Process

Modeling and Empirical Studies of Software Engineering, 1997.

[3] Beyer, D. and Noack, A., "Clustering Software

Artifacts Based on Frequent Common Changes," 13th IEEE

International Workshop on Program Comprehension, St. Louis,

MO, 2005.

[4] Bohner, S., ""A Graph Traceability Approach to

Software Change Impact Analysis"," in Department of

Computer Science, vol. PhD. Fairfax, VA: George Mason

University, 1995.

[5] Canfora, G. and Cerulo, L., "Impact Analysis by

Mining Software and Change Request Repositories,"

International Software Metrics Symposium, 2005.

[6] Demmel, J., Applied Numerical Linear Algebra.

Philadelphia: Society for Industrial and Applied Mathematics,

1997.

[7] Gall, H., Jazayeri, M., and Krajewski, J., "CVS

Release History Data for Detecting Logical Couplings," Sixth

International Workshop on Principles of Software Evolution,

2003.

[8] Hoffman, T., "Probabilistic Latent Semantic

Analysis," Conference on Uncertainty in Artificial Intelligence,

Stockholm, Sweden, 1999.

[9] Huang, L. and Song, Y.-T., "Dynamic Impact

Analysis Using Execution Profile Tracing," International

Conference on Software Engineering Research, Management,

and Applications, 2006.

[10] Jalote, P., Software Project Management in Practice.

New York: Addison Wesley Professional, 2002.

[11] Law, J. and Rothermel, G., "Whole Program Path-

Based Dynamic Impact Analysis," International Conference on

Software Engineering, Portland, OR, 2003.

[12] Livshits, B. and Zimmermann, T., "DynaMine:

Finding Common Error Patterns by Mining Software Revision

Histories," European Software Engineering Conference and

Symposion on the Foundations on Software Engineering,

Lisbon, Portugal, 2005.

[13] Maletic, J. I. and Marcus, A., "Using Latent Semantic

Analysis to Identify Similarities in Source Code to Support

Program Understanding," 12th IEEE International Conference

on Tools with Artificial Intelligence, Vancouver, British

Columbia, 2000.

[14] Orso, A., Apiwattanapong, T., and Harrold, M. J.,

"Leveraging field data for impact analysis and regression

testing," Symposium on the Foundations of Software

Engineering, Helsinki, Finland, 2003.

[15] Orso, A., Apiwattanapong, T., Law, J., Rothermel, G.,

and Harrold, M. J., "An Empirical Comparison of Dynamic

Impact Analysis Algorithms," International Conference on

Software Engineering, Scotland, 2004.

[16] Osinski, S., Stefanowski, J., and Weiss, D., "Lingo:

Search Results Clustering Algorithm Based on Singular Value

Decomposition," Advances in Soft Computing, Intelligent

Information Processing and Web Mining, Zakopane, Poland,

2004.

[17] Ren, X., Shah, F., Tip, F., Ryder, B., and Chesley, O.,

"Chianti: a tool for change impact analysis of Java programs,"

Conference on Object-Oriented Programming, Systems,

Languages, and Applications, Vancouver, Canada, 2004.

[18] Tip, F., "A survey of program slicing tecniques,"

Journal of Programming Languages, vol. 3, pp. 121-189, 1995.

[19] von Knethen, A. and Grund, M., "QuaTrace: A Tool

Environment for (Semi-) Automatic Impact Analysis Based on

Traces," International Conference on Software Maintenance,

2003.

[20] Will, T., "Introduction to the Singular Value

Decomposition," vol. 2006: UW-La Crosse, 1999.

[21] Ying, A., Murphy, G., Ng, R., and Chu-Carroll, M.,

"Prediction Source Code Changes by Mining Change History,"

IEEE Transactions on Software Engineering, vol. 30, pp. 574-

586, 2004.

[22] Zimmermann, T., Diehl, S., and Zeller, A., "Mining

Version Histories to Guide Software Changes," IEEE

Transactions on Software Engineering, vol. 31, 2005.

