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Abstract 

 

During development, testing, and maintenance, 

modifications made to a system can often have side 

effects.  Developers can minimize adverse side effects and 

prevent fault injection resulting from these system 

modifications through impact analysis techniques.  

However, current impact analysis techniques often do not 

include files that are not part of the source code, such as 

media files, help files, and configuration files.  We 

propose a methodology for determining the impact of a 

change by analyzing software change records through 

singular value decomposition. This methodology 

generates clusters of files that historically tend to change 

together.  We performed a post hoc case study using this 

technique with three minor releases of an IBM software 

product comprised of almost one million lines of code. 

We determined that our technique narrows the size of the 

impact set recommended for examination.  Additionally, 

approximately 40% of the files recommended for 

examination appear with the changed files in future 

system modifications. 

1. Introduction 

 

During development, testing, and maintenance, 

modifications made to a system can often have side 

effects.  These side effects may not be handled by 

developers because the developers might not be aware of 

all the interconnections in the system and not make all the 

changes necessary to properly enact a system 

modification.  We define a system modification as an 

action taken by a developer on the system to repair a fault 

or implement a feature change according to a given 

requirement.    

Developers can minimize adverse side effects and 

prevent fault injection resulting from the system 

modifications through impact analysis technique [1].  The 

results from an impact analysis allows developers to 

minimize adverse side effects and prevent latent faults 

[1].  However, current impact analysis techniques that 

utilize call graphs, dynamic executions of the system, or 

static code analysis often do not include files that are not 

part of the source code, such as media files, help files, 

and configuration files [5, 9, 15, 17].  Additionally, 

current impact analysis techniques based upon semantic 

analysis may not consider trends in actual system usage 

or the fault-proneness of the set of files impacted.  

Without usage trends, the results of semantic impact 

analysis require more effort to determine exactly which 

areas of the system have the highest risk of containing a 

latent fault [14]. 

To address these deficiencies, we propose an empirical 

method for determining the impact of a change by 

analyzing change records.  A change record provides the 

documentation for a change made to a single file for the 

purpose of a system modification.  All the change records 

associated with a specific system modification are 

referred to as a track.  As a result, an analysis of tracks 

can show how files interact with one another to perform 

system modification [2, 3].  Tracks can then be used to 

identify association clusters in a software system.  An 

association cluster consists of an empirically-derived set 

of files that have tended to change together over a large 

set of system modifications [3].  Quantification of the 

frequency of occurrence of tracks can be used to rank the 

“strength” of an association cluster.  

The technique we describe in this paper provides a 

methodology for generating association clusters from a 

set of change records and then leveraging those clusters to 

guide impact analysis.  The data from change records are 

compiled into a matrix that portrays the historically-based 

change relationship between sets of files.  A singular 

value decomposition (SVD) [6] is performed on the 

matrix to generate the association clusters.  The results of 

the SVD can then be utilized to identify the potential 

effects of a change.  Our hypothesis is that a methodology 

based upon singular value decomposition using historical 

change records can accurately surface additional files, 

including non-source files, that may be impacted by a set 

of changes.  To examine the efficacy of our technique, a 

post-hoc case study was conducted with an industrial 

project at IBM.  The product consisted of approximately 

21,000 files and one million lines of code.  During this 

case study, we investigated two research questions:  

1. Are the association clusters produced by SVD 

intuitively identifiable by system experts and thus 

represent actual system components? 

2. Do the association clusters produced by SVD 

accurately surface additional files that may be 

impacted by a system modification? 



Change records initiated from fault removal efforts 

were gathered on three consecutive minor releases of an 

IBM product.  A minor release is contains small updates 

to functionality and fault fixes; a major release includes a 

significant change in functionality. 

The rest of this paper is organized as follows.  Section 

2 provides information on background and related work. 

Section 3 describes our technique methodology in detail, 

while Section 4 describes our case study at IBM.  Section 

5 presents our summary and future work.  Finally, Section 

6 provides insights into how this work will evolve from 

the case study as we extend the scope of this research. 

2. Related Work 

 

In this section, we will discuss related research and 

background literature in impact analysis, software change 

analysis, and singular value decomposition.   

2.1 Impact analysis 

 

Impact analysis is defined as “the determination of 

potential effects to a subject system resulting from a 

proposed software change.” [1, 4]  The potential effects 

from a system modification can range from 

inconsequential to injecting a severe fault in the system.  

Finding which files or areas of the system that could 

contain these potential effects is the main goal of an 

impact analysis technique.  Impact analysis techniques 

can be categorized based upon whether it requires 

compilation and/or running of the code at some level or 

whether the technique runs on static code.   

Dynamic impact analysis techniques rely upon 

information gathered from a system during runtime, often 

gathered through execution of the system or test suites 

with an instrumented code base [9, 15].  Orso et al. 

compare two such dynamic techniques, 

CoverageImpact and PathImpact, to determine the 

major differences in cost and effectiveness.  These two 

techniques examine call graphs and execution records 

from previous runs of the system.  CoverageImpact 

utilizes the coverage information of each system 

execution with program slicing [18] to determine how 

components of the system are linked together.  

PathImpact uses similar information to build a directed 

acyclic graph of the system. Both techniques are 

considered safe, which means that the techniques will 

catch all of the impacted areas of the system [18].   

PathImpact and CoverageImpact require dynamic 

runtime information to determine the impact of a 

proposed change.  Orso et al. performed an investigation 

where they utilized field execution information instead of 

simulated execution information to build their models 

[14].  In this investigation, they used the operational 

profile information about the system to further determine 

the percentage of users that would be affected by a 

change.  During their study, they determined that using 

actual field information can improve the accuracy of an 

impact analysis effort because actual users of the system 

utilize different portions of the system than simulated 

users [14]. 

Static impact analysis techniques do not involve the 

execution of the code base.  Techniques that can be 

classified as static impact analysis methods work by 

analyzing information from the software development 

lifecycle [9] or the semantics of the source code itself [1, 

17, 19, 22].  However, Orso demonstrated that static 

techniques that are “generally imprecise and tend to 

overestimate the effect of a change” [14, 15].  Orso and 

Huang both state that this imprecision, manifested as a 

large number of false positives (up to 90%), comes from 

the use of static source code with only assumptions as to 

how the system is used and executed [9, 14].   

Our technique is a static impact analysis technique and 

addresses concerns expressed regarding static techniques.  

Using SVD, our technique identifies association clusters 

of files that help alleviate the concern that static 

techniques generate a large amount of false positives.  

These association clusters are generated using historical 

information regarding how files tend to change together 

in response to faults and field failures.  Thus, the 

association clusters represent general fault paths in the 

system.  Further, our technique does not require the 

source code of the system.  Using software change 

records enables our technique to include non-executable 

files (such as images, documentation, and configuration 

files) in our impact analysis.  Faults that arise in these 

non-executable areas can be just as severe as a fault 

within the source code itself [10]. 

2.2 Empirical impact analysis 

 

Research is currently being performed in mining and 

analyzing data from source control systems to identify 

core components in a software system for use in impact 

analysis [2, 3, 7, 12, 21, 22].  Zimmerman et al. [22] have 

created an Eclipse plug-in that performs an impact 

analysis with regards to the area that a developer is 

currently modifying while the developer is in the act  of 

modifying the code.  The plug-in mines source revision 

records and creates a set of tuples that indicates what file 

was modified, what type of object within that file was 

modified (e.g. field, method, class, etc.), and the name of 

the object.  The plug-in then converts these sets of tuples 

into transaction rules, indicating areas of the system that 

tend to change together.  As the plug-in builds a large set 

of these transaction rules during development, the plug-in 

can make recommendations to the developer as to 

possible areas of the system that might need to be 

modified based upon the revisions they are currently 



making.  With a relatively stable code base, Zimmerman 

reports that 44% of related files can be predicted. 

However, for evolving systems, the predictions could not 

work well since the prediction would have to take into 

account new functions being added constantly [22].  Our 

technique is similar in that we are leveraging change 

records in a like manner, except we use SVD as a 

clustering algorithm to determine the connections 

between files as opposed to generating transaction rules.   

Ren et al. has also created an Eclipse plug-in to predict 

the impact of code changes for developers to use in-

process through white-box techniques [17].  Their plug-

in, called Chianti, works by capturing atomic-level 

changes in the code base.  Dependencies are then 

calculated between these atomic changes to predict what 

other areas of the code might be affected by a change 

through the use of call graphs.  Ren performed two case 

studies on 100 KLOC system and found that Chianti was 

able to reduce the number of regression tests depending 

on the degree of the change implemented.  The primary 

difference between the impact analysis technique used in 

Chianti and our technique is that Chianti is based upon 

semantically-based methods in which all associations are 

created equal regardless of actual usage.  The association 

clusters created in our technique are based upon historical 

data and, therefore, might be better for prioritization.   

Canfora and Cerulo use the descriptions of faults and 

change records from developers to determine the effect of 

a change [5].  Their technique compares similarities in the 

description of a new change to previous changes to 

identify possible areas that have been affected.  If the 

description of a new fault matches keywords in previous 

faults, then those files identified by the previous faults 

may be affected by this new change.  Canfora and Cerulo 

found that, if fault records used consistent keywords and 

phrases, a recall rate of nearly 98% was possible, with a 

precision rate around 85% [5]. 

Our technique is similar to this prior work in that our 

technique provides a methodology for identifying these 

association clusters within a given system and then uses 

that information to guide developers and testers. In the 

techniques previously discussed, a file could only be 

associated with one cluster.  However, in actual systems, 

files and subsystems can be interconnected in several 

different ways.  In our technique, files can be associated 

with more than one cluster, each with a relative strength.  

Multiple execution flows through a system could indicate 

that a particular set of files is related to more than one 

section of the system.   

2.3 Clustering files based upon change records 

 

While Zimmerman’s and Ren’s works focused on 

guiding developer efforts, other research uses the same 

sets of change records to improve program 

comprehension.  Ball et al. performed a clustering 

analysis based on sets of change records to the P5CC 

compiler that divided the system into five specific 

functional groupings [2].  Each of these functional 

groupings mapped directly to a particular functional 

requirement for the compiler, including abstract syntax 

tree (AST) creation and code generation.  Their research 

showed that data could be mined from sets of change 

records to increase program comprehension and that 

impact analysis could be performed using this 

information [2].  Ball’s clustering algorithm used a 

probability measure to determine if a file is likely to 

change with another file.  Our technique, provides a 

similar measure of likelihood as represented by the 

singular value of the cluster.  

Further work expanded on the idea of mining change 

records to isolate clusters of files within a software 

system to drive program comprehension.  Beyer and 

Noack’s work expanded on Ball’s research by creating 

clusters of files using a co-change graph to plot files onto 

a two- or three-dimensional graph using an energy-based 

graph layout [3].  Files that contained more edges 

between them were closer together on the graph, thus 

creating clusters of files.  These clusters of files could be 

directly identified and related to functional requirements 

or third party components within the system [3].  Other 

research by Gall also generated association clusters of 

files within a system for program comprehension [7].  His 

method used a set of commonalities that could be 

detected from change logs (i.e. files that were edited on 

the same day by the same person) to create his sets of 

sub-modules.  

2.4. Singular Value Decomposition 

 

Singular value decomposition (SVD) is a linear algebra 

technique that decomposes a given matrix into three 

component matrices [6]:  (1) the left singular vectors; (2) 

a set of singular values; and (3) and the right singular 

vectors.  The two matrices that are made up of singular 

vectors provide information about the structure of the 

original matrix.  The singular values describe the strength 

of the given components of the original matrix.  

The SVD theorem [6] states that given a matrix M, then 

there exists a decomposition of M such that T
USVM = .  

The SVD of a matrix can also be described geometrically.  

The SVD shows that the values of any matrix M can be 

reconstructed by a rotation (U), followed by increasing 

the matrix values (S), followed by another rotation (V) 

[20].  For example, if M represented coordinates that 

generated a three-dimensional shape, then that shape 

could be constructed from the rotational information in U 

and V, along with stretching the shape out to its proper 

size with the information in S [20].  This type of 

decomposition can be important and useful in that the 



rotational matrices isolate the key components of the 

original matrix, finding relationships between the various 

data points, while the strength matrix indicates which of 

the key components illuminated in the rotational matrices 

are the most important [6, 20].  In our research, this core 

idea of isolating key components of the original matrix is 

the basis for using the SVD with our technique.  When 

the matrix is comprised of change records, fault 

information, or some other data from the development 

process, these key components highlight underlying 

structures in the code base. 

Latent Semantic Analysis (LSA) uses SVD to find 

lexical similarities between words and phrases [8].  

Maletic and Marcus used LSA to look for semantic 

similarity in blocks of code to identify similar files and to 

construct association clusters as a form of program 

comprehension analysis [13].  These association clusters 

corresponded with logical structures within the code base 

itself.  Our technique works similiarly generate 

association clusters between files, except our technique 

uses software development artifacts as described in 

previous sections as opposed to looking at the actual code 

base itself.   

Osinski et al. created a clustering algorithm based upon 

SVD to improve search queries on a set of documents 

[16].  They built an original matrix based upon keywords 

in the document set.  The SVD was performed on this 

matrix to generate clusters of documents that were similar 

based on their keywords.  Enough clusters were gathered 

to account for 90% of the variability of the original 

matrix, with the remaining clusters discarded as signal 

noise [16].  The documents were then assigned to clusters 

based upon which cluster they had the closest association 

with.  Anecdotal evidence from users who were presented 

with the clusters generated with this study found that 70-

80% of the clusters were useful and over 75% of 

identified cluster labels were correct [16]. 

3. SVD-based impact analysis 

 

Our technique provides a methodology that derives 

associations using SVD based upon a set of change 

records from testing and field failures.  These association 

clusters of files portray an underlying structure in the 

system indicating how files tend to be executed, tested, 

and changed together.  We decided to use SVD in our 

methodology to leverage its ability to illuminate 

underlying structures in a data set in which the data could 

be associated in multiple ways.  In this section, we will 

describe our technique, which includes deriving the 

association clusters from change records and interpreting 

the results of the analysis.  An outline of our technique 

can be found in Figure 1. 

 3.1 Identifying data sources  

 

 Source control systems are the primary source for 

gathering change records.  When a developer checks a file 

in to a source control system, the system typically records 

the time of the check-in along with information about the 

developer and the nature of the change.  Individual 

changes can be often be linked together into tracks, either 

through a specific mechanism in the source control 

system that records that information or through the 

examination of change record check-in information.  

With information regarding tracks, we are able to 

ascertain how files change together.   

 Some more complex source control systems are also 

integrated with a fault tracking system.  With these more 

complex systems, tracks can be associated directly with 

the fault record that the changes are addressing, providing 

detail about how tracks are linked together.  Information 

from fault tracking systems allows us to isolate tracks to 

those made under specific circumstances.  For example, 

changes derived from faults found during system test 

could be compared to changes derived from field failures 

discovered by customers.   

 

 3.2 Mining software development artifact data 

 

After appropriate data sources have been identified, an 

analysis matrix should be generated that contains the 

system’s files along each axis.  The values within the 

analysis matrix show how the files are connected through 

change records.  For illustrative purposes on how to build 

the analysis matrix, we will use a set of sample data to 

generate this analysis matrix.  Table 1 shows a small 

sample of the set of the change records that were used to 

1  Create matrix M where the values in the 

matrix indicate the number of times two 

files have changed together. 

2  [U, S, V] = svd(M); 

3  for i:size of U 

4    Gather cluster i information 

5    for j:size of U 

6       if |U(j, i)| > threshold 

7          Gather element of cluster i 

8       end 

9    end 

10 end 

11 

12 X = list of files under change 

13 Compare contents of X with each cluster 

to find exact matches 

14 if perfect matches found 

15    return matched files 

16 Search clusters for any files from X for 

any cluster match 

17 return any matched files 

Figure 1.  Psuedo-code for SVD-based impact analysis 



create our example analysis matrix.  This example uses a 

small system consisting of five files.   

 

Table 1.  Sample Change Record Information. 

Test Case 

ID 

Fault ID Track ID Files 

Changed 

T1 A1 988 1 

T2 A2 989 2, 3 

T3 B1 990 4, 5 

T3 B2 991 4, 5 

T1 B3 992 1, 2 

T4 C1 993 2, 3 

 

We have built an example analysis matrix M, shown 

below in Equation 1 using the data from Table 1 and 

additional change records.  The values in the matrix 

represent the number of times that each file appeared in a 

track with another file.  Thus, File 2 has appeared in a 

track 10 times together with File 1, 21 times together with 

File 3, and 0 times by itself (since M(2,2) = M(2,1) + 

M(2,3)).  Similarly, File 3 has changed 21 times with File 

2 and 3 times by itself.   
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Upon initial examination of this matrix, we note that 

Files 4 and 5 change together or by themselves.  Based on 

this, it appears that Files 4 and 5 are strongly linked in 

isolation from the rest of the system.  Similarly, Files 1, 2, 

and 3 are also linked, with Files 2 and 3 having the 

strongest bond of the three.   

3.3 Perform the singular value decomposition 

 

To determine the strength of the associations between 

files and to generate the association clusters, we perform 

a SVD of this matrix.  The strength of the association is 

determined by the frequency of time the files changed 

together.  A SVD of M provides the following matrices, 

shown in Equations 2 and 3: 
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The U and V matrices provide information as to the 

structure of the association clusters.  The singular values 

from the S matrix represent the amount of variability each 

association cluster contributes to the original analysis 

matrix.  Note that U and V are equal, due to M being a 

symmetric matrix.  

A cluster’s strength, represented by the size of the 

singular value coupled with it, indicates the amount of 

variability that the association cluster provides to the 

original analysis matrix [20].  Dividing a cluster’s 

singular value by the sum of all the singular values 

provides the percentage of how representative the cluster 

is of the original matrix.  In this example, a high singular 

value indicates that that association cluster is more 

prominent in the analysis matrix, due to a greater number 

of changes that have occurred to that set of files.  A high 

singular value could be indicative of a particularly 

problematic section of code or a new feature that has just 

been introduced into the system and is experiencing its 

first rigorous testing. 

3.4 Gather the association clusters 

 

The values in the U matrix correspond to the 

composition of each association cluster.  In this example, 

there are five association clusters because the rank of M is 

five.  The first column of U, representing the structure of 

the first association cluster, is coupled with the first 

singular value in S, representing the strength of that 

association cluster.  Since it is coupled with the largest 

singular value, the first association cluster represents the 

greatest amount of variability in the original analysis 

matrix and is the most prominent association cluster.  

From the U matrix, we see that the first association 

cluster is comprised of Files 1, 2, and 3, indicated by the 

fact that the three files all have values with a similar sign.   

Further, each of these values has a larger magnitude than 

.1, the threshold we used in our research.  A threshold is 

used when selecting cluster members so that only files 

with a strong association to the other files are included in 

the cluster.  This is similar to the threshold that Osinski 

used in his algorithm [16].  In the third cluster, we see 

that File 1 is its own cluster that can, at times, change 

without Files 2 and 3.  So, in effect, we get two 

associations out of the third cluster, one with File 1 by 

itself and one with Files 2 and 3 together. 

Note that the values in each association cluster’s 

column vector represents the degree to which that file is 

likely to change in that cluster.  In this way, each file is 



weighted within that association cluster as to its degree of 

participation.  For example, the first association cluster is 

primarily composed of File 2 and File 3 due to their 

higher values.  File 1 is a minor participant in this 

association cluster.  If we reexamine the original analysis 

matrix M, we can see the strong correlation between Files 

2 and 3 with a somewhat looser correlation with File 1, 

since these files only tend to change together and not at 

all with Files 4 and 5.  The association cluster in the 

second column portrays the next most significant cluster, 

comprised of Files 4 and 5. 

The singular values of these clusters found in the S 

matrix provide some indication as to how they should be 

analyzed.  The first cluster represents 45% of the overall 

variability in the matrix, which can be determined by 

dividing the first singular value by the sum of all the 

singular values. Further, the third cluster represents 22% 

and the fourth represents 4%.  These percentages show 

that the first cluster defines the majority of the 

information regarding these files.  Clusters three and four 

are, in effect, sub-clusters of the first cluster because they 

contain a similar set of files.  At this step in our 

technique, the matrix U can provide information about the 

likelihood of a change in an association cluster based 

upon previous change information.  

Using the U and S matrices generated from our 

technique, we can determine the possible impact that a 

new track might have on the system.  We can compare the 

associations gathered from the U matrix with a new track.  

If all the files in a new track are present in a previously- 

determined association cluster, we know that there is a 

strong relationship between the changed files and the 

other files in the cluster and that these files would be the 

most likely files to be affected by this change.  Further, 

the magnitude of the corresponding singular value in S 

indicates which cluster has churned more within the data 

set under examination.  If the files in a new track do not 

all appear in the same cluster, then they represent a new 

execution path through the system.  In this instance, files 

that are associated with each changed file separately can 

possibly be affected by this change.  Finally, the files may 

have never changed before within the data set that was 

used to build the U matrix.  In this instance, no historical 

evidence exists as to how these files may affect the 

system, and a new association cluster is will form to 

represent this new set of changes in a future analysis. 

This technique is similar to the cluster rank algorithm 

used by Osinski et al. in their SVD-based search term 

clustering algorithm [16].  Osinski multiplied their 

document matrix by a modified U matrix from the SVD 

to derive the impact that each search term had on a given 

document.  In this fashion, the values from the result 

vector were used to assign a document to its closest-

matching search term cluster [16]. 

3.5 Limitations 

 

The association clusters are based upon the change 

records that may or may not be accurate.   For example, 

the case study reported in this paper uses data from  an 

IBM system.  IBM’s documented development process 

and interviews from developers and managers indicated  

that files that were changed together are related and are 

addressing a specific fault.  The process in place in IBM 

helps to minimize opportunistic changes whereby a 

developer makes changes unrelated to an open fault while 

fixing that fault. If opportunistic changes occur during 

fault removal efforts, we cannot be certain that the set of 

files that change together are related to a particular fault.  

Conversely, opportunistic changes and aggregating 

multiple changes in one change record may be prevalent 

in open source projects 

Another limitation is that our technique is not 

guaranteed to be safe.  If there is no historical data 

regarding a set of files, our technique cannot provide 

guidance as to where the effects may be. However, our 

technique may be more practical for a system with a large 

percentage of non-executable files. Dynamic techniques 

might not be able to find the same dependencies that our 

technique finds among these files since dynamic 

techniques operate primarily on source files. 

Current impact analysis techniques typically calculate 

the impact of a proposed change at the function or line of 

code level, while our technique is currently being used at 

the file level.  Using a technique that has a granularity 

level down to a line of code can be beneficial if a source 

file is large in size, since a line of code granularity would 

limit the area that a developer would have to analyze to 

find the affected code.  However, since our technique is 

also focusing on non-executable parts of the system, the 

file level is the most effective granularity level for our 

purposes.  In most cases, change information does not 

exist to the line level of some non-executable files, such 

as help files.  Further, the file level is effectively the only 

appropriate granularity for media files that are included in 

a system. 

4.  IBM Case Study 

 

From September 2006 to March 2007, research was 

performed at IBM in Durham, NC.  In this section, we 

will discuss an industrial case study using our technique. 

Our hypothesis is that a methodology based upon 

singular value decomposition using historical change 

records can accurately surface additional files, including 

non-source files that may be impacted by a set of 

changes.    In this section, we will investigate the two 

research questions posed in Section 1. 



4.1 Case study setup 

 

We began by examining available data sources.  IBM’s 

source control and fault management system generates 

detailed logs on tracks.  The project that was selected had 

three consecutive minor releases.  Each release of the 

project contained approximately 21,000 files with over 

one million lines of code.  To protect proprietary 

information, we cannot provide the quantity of change 

records analyzed in this paper.   

4.2 Cluster identification 

 

Our first research question was to determine if the 

association clusters produced by SVD are intuitively 

identifiable by system experts and thus represent actual 

system components.  Beyer and Noack [3] evaluated their 

clustering algorithms based upon how accurately the 

clusters represented sub-systems compared to an actual 

decomposition of the system. Osinski et al. [16] 

performed a comparable exercise using multiple sets of 

documents and interviewing users on whether the search 

results from the algorithm were useful.  We followed a 

parallel approach to previous research to qualitatively 

assess the accuracy of the clustering algorithm. 

Once we generated the association clusters for the three 

releases, two authorities on the system, a testing manager 

and a senior technical staff member, were independently 

shown the sets of files that comprise the clusters with the 

highest singular values.  The authorities were asked to 

give each cluster a name based upon the types of files in 

the cluster (e.g. system configuration files).  This naming 

step is not a required step in our technique, however, it 

aids us in answering the research question For the 

purposes of this cluster identification exercise only, we 

limited the number of clusters for analysis to the first six 

for each release (18 total), which accounted for 

approximately 25% of the overall variability in the 

original matrix.  The first six in each release were chosen 

for this case study because, after the sixth singular value, 

the singular values drop off significantly and slowly 

reduce to zero as shown in Figure 2.  Thus, we selected 

the most prominent clusters for our identification analysis 

in this case study.  Graphs of the top 250 singular values 

for each release are shown Figure 2.  The top 250 are 

shown because the full graph of all 21,000 singular values 

is difficult to interpret visually.  

The two authorities on the system independently 

provided similar names for each cluster.   The 

identifications and singular values for the six association 

clusters for each minor release are shown in Table 2 and 

are in order by singular value.  Further, the main release 

requirements for all three releases were evidenced in the 

top six association clusters, indicating that the association 

clusters can identify system components and order them 

by velocity of change as indicated by the magnitude of 

the singular values.  Another thing to note about these 

clusters is approximately 83% of these clusters include 

files that are not source code, including license files, help 

files, configuration files, and images from the graphical 

user interface.  This result indicates the importance of 

non-executable files in this particular project. 

 

 

 
Release 1 

 
Release 2 

 
Release 3 

Figure 2.  Graphs of top 250 singular values for the three minor releases. 

Table 2.  Results from association cluster creation. 

Assoc. 

Cluster 

Release 1 Release 2 Release 3 

1 Patch config 

files  

Release req. 2.1  Release req. 

3.1  

2 System config 

files  

Database  Release req. 

3.2  

3 Database  System config 

files  

Graphical user 

interface  

4 Patch 

information  

Release req. 2.2  Source control 

files  

5 Release req. 

1.1  

License files  Release req. 

3.3  

6 License files  Graphical user 

interface  

Installation 

files  



4.3 Impact analysis investigation 

 

We addressed our second research question “Do the 

association clusters produced by SVD accurately surface 

sets of files that are indirectly impacted by a system 

modification?” in two stages.  We first wanted to 

determine the size of the impact sets returned by our 

technique, and then we investigated the accuracy of those 

impact sets.  First, we measured the size of the impact 

sets generated by our technique to determine how much 

our technique minimized the impact set.  We used a 

random data splitting technique with the three minor 

releases of an industrial software system in this 

investigation to create our data sets.  We began by 

randomly selecting two-thirds of the tracks for each 

release as the “historical data” from which we generated a 

set of association clusters.  The remaining one-third of the 

tracks were then used as our “future set,” which would 

simulate incoming tracks made to perform a system 

modification.  We performed this data splitting exercise 

ten separate times for each release. 

The impact analysis techniques used by Orso et al. [14] 

and Law and Rothermel [11] are considered safe.  As a 

result, these researchers showed the efficacy of their 

impact analysis technique by comparing the size of the 

impact set against that of other impact analysis 

techniques.  We utilized a similar methodology to first 

investigate the relative reduction of the impact set.  

We gathered impact sets from the system modification 

in the future set using three different impact methods: two 

using our algorithm found in Figure 1 (Impact Methods 1 

and 2) and another as a baseline (Impact Method 3): 

• Impact Method 1:  gather all the files that appear in 

clusters in which all of the newly-changed files 

appear (for example, if a new track contains files 

A, C, and Q, a file is considered in the impact set if 

it appears in a cluster in which A, C, and Q all 

appear together) 

• Impact Method 2:  gather all the files that appear in 

clusters in which any of the newly-changed files 

appear (for example, if a new track contains files 

A, C, and Q, a file is considered in the impact set if 

it appears in any cluster that contains at least one 

of files A, C, or Q) 

• Impact Method 3: gather all the files that have 

changed in the “historical data” with any of the 

newly-changed files (for example, if a new track 

contains files A, C, and Q, a file is considered part 

of the impact set if that file has been modified in 

conjunction with either A, C, or Q in a system 

modification in the historical data) 

We compared the size of Impact Methods 1 and 2 

impact sets to that derived by Impact Method 3.  The goal 

of this comparison is to show that using SVD can narrow 

the scope of files that should be examined in the event of 

a system modification to those files that are most strongly 

connected to the changing files.  An example result from 

Release 3 can be found in Figure 3. 

All three releases followed a similar pattern to the 

result shown from Release 3 in Figure 3.  The lines in the 

chart represent the quantity of impacted files for each 

track found in the future set.  The chart shows that the 

size of the impact set is generally significantly reduced 

using either Impact Methods 1 or 2 that utilize the 

association clusters.  Further, the size of the impact set 

remained relatively constant, despite spikes in the size of 

Impact Method 3.  This relative constant size is an 

indication that the general size of clusters is relatively the 

same, allowing for a more targeted impact analysis.  

After we evaluated the reduction of the size of the 

impact set using our technique, we investigated the 

accuracy of those impact sets.  Because our technique 

 

Figure 3.  Charts of Comparisons of Impact Sets. 



generates an impact set based upon historical evidence, 

the files in the impact set could be considered as a 

recommendation for further inspection of additional files.  

Thus, we evaluated the accuracy of the Impact Method 1 

by determining whether the files in the impact set 

appeared in the future set along with one of the files from 

the new system modification.  

For our the discussion of our accuracy analysis 

technique, consider a track in the future set that contains 

files A, B, and C.  Impact Method 1 generates a cluster 

that contains A, B, C, and D, thereby providing a 

recommendation that D also be examined.  We refer to 

files A, B, and C as files in the “test track” and to file D 

as a file in the “impact set.”    

For our analysis, we considered a file in the impact set 

a confirmed true positive if that file appeared in any track 

in the future set with one or of the files from the test 

track.  For example, if D appears in a track in the future 

set with either A, B, or C, we consider this matching 

result as a confirmed true positive.  However, if D does 

not appear with A, B, or C in the future set, the conditions 

of system activity may simply not have involved these 

files.  Thus, any recommendation that is not a confirmed 

true positive may either be an unconfirmed true positive 

or a false positive.   

We performed this investigation of Impact Method 1 

within each of the three minor releases.  We also used the 

results of Release 1 with the changes from Release 2, and 

the results of Release 1 and 2 with the changes from 

Release 3.  In an industrial setting, the association clusters 

adjust as new change records are gathered when new 

features or faults are discovered.  The technique evolves 

along with the system itself.  The results of this 

investigation can be found in Table 3.   

Note that between 21.1% and 55.3% of the files that 

were indicated as impacted in any given system 

modification were non-source files and would not have 

been considered in current semantic impact analysis 

techniques.  This is partly the result of the type of system 

under investigation in this case study, but the results do 

indicate that often non-source files, such as images or 

help files, can be impacted by a system modification. 

Also note that the average number of impacted files is in 

addition to the actual changed files in the system 

modification. 

 We discovered that the accuracy of our technique is 

correlated with the quantity of the number of changes for 

a set of files under change.  For example, in Release 1 

and Release 3, there were a small number of areas of the 

system that were under change.  The files in these areas 

had a relatively large number of changes associated with 

each of them.  However, in Release 2, even though there 

were a larger number of changes overall, the changes 

were spread out evenly across the system.  The SVD 

creates associations based upon the velocity of change, so 

areas with a higher change density cluster together better 

than larger areas with a lower density.  What this lower 

change density yields is a larger impact set because the 

SVD associates more files together, as is the case in 

Release 2.  However, with enough information about how 

files change together with when the changes from Release 

2 were combined with those from Release 1, the 

confirmed true positive rate improved because the overall 

change density increased. 

In our background research for this work, we did not 

discover any other empirical analysis of an impact 

analysis technique that examined the accuracy of the 

technique based upon future system modifications.  Other 

techniques were validated by examining the size of the 

impact set, given that the technique was considered safe.   

5.  Summary and Future Work 

 

In this paper, we propose an empirically-based impact 

analysis methodology based upon structures discovered 

through change records and singular value 

decomposition.  Our technique makes use of the 

information in change records to discover and define 

relationships between files within the system.  The novel 

aspect of our technique as compared to other impact 

analysis techniques is the use of change records to drive 

an impact analysis that requires no access to the source 

code itself and also can incorporate all files in a system, 

even non-source files.  In some systems, faults in non-

source files can be just as severe as those in the code base 

[10].  Further, our technique utilizes historical evidence 

as to areas of the system currently under change to 

highlight files that are most likely to change together.   

To examine the efficacy of our technique, a post hoc 

case study was performed with three releases of a product 

from IBM.  The generated association clusters from the 

analysis were identifiable and directly relatable to specific 

Table 3.  Investigation results. 

Release Confirmed True Positive Rate % Non-Source Files Avg./Med. Track 

Size 

Avg./Med. Size of 

Impact Set 

1 45.4% 35.2% 19.3 / 3 21.1 / 3 

2 10.0% 55.3% 40.5 / 4 43.9 / 5 

3 39.5% 34.4% 22.4 / 3 21.2 / 3 

1 w/ 2 31.5% 21.1% 28.3 / 4 24.4 / 3 

1+2 w/ 3 38.4% 35.6% 23.4 / 3 18.1 / 4 



requirements for each release or for an identified internal 

system component.  The association clusters specifically 

illuminated areas of the code base where cross-

component dependencies existed and components that 

included files that would not normally be examined in an 

analysis that used execution-based files, such as help files 

and configuration files. With enough information about 

how files change together, our technique has a confirmed 

true positive rate of around 40%.  The other files in the 

impact set that are not confirmed true positives are either 

unconfirmed true positives or false positives. 

Our primary goal in future work is to do a comparison 

with our technique and a dynamic impact analysis 

technique, such as CoverageImpact.  We are 

interested to see if the results of an execution-based 

impact analysis match how files tend to change together.  

An investigation into this comparison could indicate that 

files that change together are often related in execution.  

We would also like to investigate further the importance 

of non-executable files in an impact analysis.  There also 

may be a way to combine our technique with a dynamic 

impact analysis technique.  If we substituted files that call 

each other (as shown in a call graph) for files that change 

together, we would have a hybrid technique that utilized 

dynamic information with the SVD technique.   
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