
Engineering Foreign Exchange Processes via Commitment Protocols

Nirmit Desai§, Amit K. Chopra§, Matthew Arrott¶∗, Bill Specht‡†, and Munindar P. Singh§

§North Carolina State University, Raleigh, NC 27695-8206,{nvdesai, akchopra, singh}@ncsu.edu
¶University of California at San Diego, La Jolla, CA 92093,marrott@ucsd.edu

‡Currenex, Inc., 1700 Seaport Blvd., Redwood City, CA 94063,bill.specht@currenex.com

Abstract

Foreign exchange markets see a transaction volume of
over$2 trillion per day. A number of standard ways of con-
ducting business have been developed in the foreign ex-
change (FX) industry. However, current FX specifications
are informal and therefore inherently ambiguous. Their im-
plementations tend to be complex and their compliance un-
verifiable. This results in potential loss of value due to in-
compatible business processes and possible trades not con-
summated.

This paper validates a formal, protocol-based approach
via the specification of foreign exchange processes, as stan-
dardized by the TWIST consortium. It shows how the de-
sired processes can be based on a small, core set of for-
eign exchange interaction protocols. Each of these proto-
cols is rigorously defined in terms of the commitments un-
dertaken and manipulated by the parties involved. The core
protocols can be composed to yield a large variety of possi-
ble processes. Our approach found several shortcomings in
TWIST specifications, mainly that they were ambiguous, in-
complete, and highly redundant. Also, novel business sce-
narios were discovered that traditional approaches would
have missed.

1. Introduction

With daily total traded cash volume to the tune of $2.3
trillion, foreign exchange markets are huge [18] (over dou-
ble the US stock market). Owing to the growth in interna-
tional business and the globalization of enterprises, FX trad-
ing has increased by more than 30% in the last year and has
more than doubled since 2001 [2]. Electronic trades have
grown more than six fold in the last ten years and the trend
is expected to continue [6].

∗ Matthew Arrott is TWIST CTO.
† Bill Specht is TWIST Wholesale Trade Prime.

To enable such a growth in electronic trading, standard-
ization of the messages and workflows is crucial. TWIST
(Transaction Workflow Innovation Standards Team) Pro-
cess Innovations is a not-for-profit industry group of cor-
porate treasurers, fund managers, banks, system suppliers,
electronic trading platform and market infrastructure ven-
dors, and professional services firms. TWIST has collabo-
rated with other industry partners and standards organiza-
tions such as FPL (FIX Protocol Ltd.) [7] and ISDA (Inter-
national Swaps and Derivatives Association) [10] to define
standard good practice processes throughout the transaction
processing life cycle for wholesale FX trades [17].

Current FX standards specifications describe business
processes informally in the form of natural language de-
scriptions accompanied by sequence diagrams representing
typical scenarios. Moreover, FX processes (as in other busi-
nesses) typically have several dimensions of variation, e.g.,
trading with or without credit checks and trading with or
without a trading service. Existing FX specifications treat
each scenario as a separate case despite commonalities,
making it harder to determine the relationships among such
variations and whether they can be combined to serve a par-
ticular need. As a result, a large number of processes are
explicitly specified. Managing and—equally importantly—
understanding such large sets of standards is difficult.

Interaction-oriented approaches represent a grow-
ing trend in business process modeling [8, 20, 15, 19].
RosettaNet’s Partner Interface Processes (PIPs) sup-
port billions of dollars of business each year [13]. PIPs
are interaction-oriented, but informally specified and lim-
ited to two-party request-response interactions.

By contrast, this paper advocates a formal approach to
modeling interactions [5]. Interactions among parties are
treated as first-class modeling abstractions. The formal se-
mantics enables reuse, refinement, and composition. To em-
phasize the contractual semantics involved in such pro-
cesses, commitments among the parties are explicitly mod-
eled and the messages are formalized by defining how they
affect the extant commitments among the partners.

This paper validates the formal protocol specification
and composition techniques for the TWIST foreign ex-
change processes. The goal is to identify a set of core pro-
tocols and formalize them as protocols [3] in the action de-
scription languageC+ [9]. Such protocols can be composed
with each other in a variety of ways to derive the large set of
possible combinations. This exercise helps identify ambigu-
ities and gaps in the specification. Thus, a large set of pro-
cesses can be engineered using a small set of modular pro-
tocols. More importantly, new business scenarios are dis-
covered while composing protocols. Given the sheer scale,
variety, and critical nature of the FX transactions, the im-
pact of such an engineering approach can be enormous.

Although the main theoretical ideas applied here have
been reported in previous papers, this paper (1) validates the
protocols approach [15] via an extensive knowledge engi-
neering exercise and (2) develops a methodology for creat-
ing protocols. Specifically, in the case of TWIST specifica-
tions, we show that they are, at best, ambiguous and incom-
plete. Moreover, they reflect little consideration of modu-
larity and composition; we found that 28 TWIST processes
can be specified in terms of 12 core protocols.

Section 2 outlines TWIST processes for price discovery.
Section 3 models the commitments in price discovery and
points some of its shortcomings. Section 4 shows how the
TWIST processes may be obtained by composing elemen-
tary protocols.

2. Price Discovery Processes

This section describes the price discovery processes
from the TWIST specification [17]. Figure 1 describes bi-
lateral price discovery processes 7.2.1 and 7.2.2. ATaker
is trying to discover the price whereas aMaker pro-
vides it. TheMaker indicates in thepriceResponse if an
execution confirmation is required. If confirmation is re-
quired (7.2.2), the quoted price is not binding to theMaker
even if theTaker accepts it. Otherwise (7.2.1), theMaker
is bound to trade at the quoted price if theTaker accepts
it. Here, executionConfirmation means the quoted and ac-
cepted prices are agreed upon and the deal is reached.
In either case, theTaker may not reveal whether the re-
quested currency is to be bought or sold, forcing theTaker
to respond with both bid and offer quotes, thereby reveal-
ing the spread. TheTaker can choose the direction of the
trade when he accepts any of the quotes.

In addition to the messages shown in the figures,
the Taker may cancel a request by sendingcancel-
PriceRequest, or reject quotes by sendingnothingDone.
Also, theMakermay cancel a quoted price by sendingcan-
celPrice. A priceResponse may also indicate a refusal to
quote a price, and anexecutionConfirmation may also indi-
cate failure to execute the deal.

priceRequest

priceResponse

priceResponse

priceAcceptance

priceAcceptanceAck

Taker Maker

priceRequest

priceAcceptance

executionConfirmation (fail)

priceResponse

priceResponse

priceAcceptance

executionConfirmation

Taker Maker

priceResponse

executionConfirmationAck

executionConfirmationAck

� �� ��

� �� ��

Figure 1. Bilateral RFQ (7.2.1 and 7.2.2)

Figure 2 describes multilateral price discovery wherein
theTakeruses the trading service to discover the best price.
The trading service may interact with multipleMakers to
find a price for theTaker. To theMakers, this scenario is
identical to the bilateral case. To theTaker, the only differ-
ence is that it receives responses from multipleMakers.

3. Protocols for Price Discovery

This section discusses the limitations of semifor-
mal specifications (such as the current TWIST docu-
ments [17]) in terms of semantics, verifiability, and pre-
cision. It then formally specifies processes 7.2.1 and
7.2.2.

2

����� 	����
������������� 	����������������� ������������������������ ��� ����������� �����!
�� ����������� ������"�������������� �����!

Figure 2. Multilateral RFQ (7.2.3)

3.1. Commitments in Price Discovery

Singh [14] formalized the notion of commitments. A
commitmentcc(x, y, p, q) obligates adebtorx to acreditor
y for fulfilling the conditionq if p holds. Herep is thepre-
conditionandq is theconditionof the commitment. When
the precondition is true (T), the commitment is termed a
base commitment, else a conditional commitment.

Commitments can be manipulated:create, discharge, to-
Base (change to a base commitment),delegate (changing
the debtor),assign (changing the creditor),release (credi-
tor releasing the debtor from the commitment), andcancel
(debtor canceling the commitment). Consider, for example,
a scenario where a buyer and a seller are exchanging goods
for payment. A conditional commitmentcc(buyer, seller,
goods, payment) denotes an obligation from thebuyer to
theseller that if the goods are delivered, the buyer will pay.
In the event that the preconditiongoods holds, the condi-
tional commitment changes to a base commitmentcc(buyer,
seller, T, payment). In the event thatpayment holds, the
buyer’s commitment is discharged and does not hold any-
more. Note that the commitment does not imply a temporal
ordering, i.e.,payment may happen beforegoods, discharg-
ing the commitment.

Protocols declaratively specify the choreography of the
messages exchanged among roles. They give messages a
contractual semantics by defining how they affect the par-
ticipants’ commitments. For example, a message signifying
shipment may cause the preconditiongoods, thereby caus-
ing the commitment to change to a base commitment. As
a conversation progresses, commitments among the parties
change to represent its evolving contractual state. Unless
the precise meaning of the messages in terms of how they
affect the extant commitments is specified, ambiguities en-
sue about the participants’ obligations.

Assuming that theTaker is selling currencycur1 to the
Maker, Figure 3 depicts various interpretations of the mes-
sages in 7.2.1. States denote newly created commitments in
detail and commitments from previous states (if any) with

$ % & ' () (* + , & + - . / 0 (* + , & + - . 1 0 0# # $ (# # / % &) (' (* + , & + - . 1 0 (* + , & + - . / 0 0
2 3 45 6 7 6 8 2 9 : 8 62 3 45 6 ; 5 5 6 2 <2 3 45 6 ; 5 5 6 2 < ; 5 =# # $ (# # / # # $ % &) (' (* + , & + - . 1 0 (* + , & + - . / 0 02 3 45 6 7 6 8 2 9 : 8 62 3 45 6 ; 5 5 6 2 <2 3 45 6 ; 5 5 6 2 < ; 5 =# # $ (# # / % & ' () (* + , & + - . / 0 (* + , & + - . 1 0 0

$ % & ' () (# # &) (' (. > ? @ (* + , & + - . / 0 0 (# # & ' () (. > ? @ (* + , & + - . 1 0 0 0# # $ % & ' () (. > ? @ (# # & ' () (. > ? @ * + , & + - . 1 0 0 0# # / % &) (' (. > ? @ (* + , & + - . / 0 0
2 3 45 6 7 6 8 2 9 : 8 62 3 45 6 ; 5 5 6 2 <2 3 45 6 ; 5 5 6 2 < ; 5 =# # $ (# # /

$ % & ' () (# # &) (' (. > ? @ (* + , & + - . / 0 0 (# # & ' () (. > ? @ (* + , & + - . 1 0 0 02 3 45 6 7 6 8 2 9 : 8 62 3 45 6 ; 5 5 6 2 <2 3 45 6 ; 5 5 6 2 < ; 5 =# # / % &) (' (. > ? @ (# # &) (' (. > ? @ (* + , & + - . / 0 0 0# # 1 % & ' () (. > ? @ (* + , & + - . 1 0 0
$ (# # / % &) (' (# # & ' () (. > ? @ (* + , & + - . 1 0 0 (# # &) (' (. > ? @ (* + , & + - . / 0 0 0

$ % & ' () (# # &) (' (. > ? @ (* + , & + - . / 0 0 (# # & ' () (. > ? @ (* + , & + - . 1 0 0 0# # $ % & ' () (. > ? @ (# # & ' () (. > ? @ (* + , & + - . 1 0 0 0# # / % &) (' (. > ? @ (* + , & + - . / 0 0
2 3 45 6 7 6 8 2 9 : 8 62 3 45 6 ; 5 5 6 2 <2 3 45 6 ; 5 5 6 2 <; 5 =# # / % &) (' (. > ? @ (* + , & + - . / 0 0# # 1 % & ' () (. > ? @ (* + , & + - . 1 0 0

$ % & ' () (# # &) (' (. > ? @ (* + , & + - . / 0 0 (# # & ' () (. > ? @ (* + , & + - . 1 0 0 02 3 45 6 7 6 8 2 9 : 8 62 3 45 6 ; 5 5 6 2 <2 3 45 6 ; 5 5 6 2 < ; 5 =# # $ (# # /# # $ (# # / % &) (' (# # & ' () (. > ? @ (* + , & + - . 1 0 0 (# # &) (' (. > ? @ (* + , & + - . / 0 0 0

A B C A D C

A E C A F C

A G C A H C

Figure 3. Possible interpretations of some TWIST
messages in terms of commitments

their names. TheMaker is denoted byM and theTaker by
T. All the cases result in a state in which both parties have
committed to each other for payment. However, there are
subtle semantic differences in the way this state is reached.
Also, the nested commitments as in (c), (d), (e), and (f) al-
low more flexibility than the unnested commitments as in
(a) and (b) (as we shall see soon).

In (a), theMaker and theTakercommit to each other to
pay viapriceResponse andpriceAcceptance, respectively.
However,priceAcceptanceAck is superfluous in the sense
that it does not affect the commitments. The final state is
safe: regardless of the temporal ordering, payment is guar-

3

anteed if the commitments are not violated. In (b),priceRe-
sponse provides the price but is not binding. Whereas
priceAcceptance has the same meaning as in (a),priceAc-
ceptanceAck means that theMaker commits to the deal.

In (c), priceResponse creates a nested commitment: the
Maker commits to theTaker to commit to paying if the
Taker commits to paying. The condition and the precon-
ditions being commitments enable the inner commitments
to be delegated, assigned, and so on. For instance, the par-
ties need not make payments themselves but may delegate
the commitments to their banks. Without nesting, such flexi-
bility would be lost. PreconditionCC1 is caused bypriceAc-
cept, andpriceAcceptanceAck is superfluous as in (a). The
final state is safe as theTakerhas committed and theMaker
must commit to satisfying the nested commitment. In (d),
the only difference is thatpriceAcceptanceAck is not super-
fluous and createsCC2.

In (e), the difference is thatpriceAcceptance causes a
counter nested commitment instead of causing the precon-
dition of CC0. Like in (c) and (e),priceAcceptanceAck is
superfluous. In (f), the only difference is that the acknowl-
edgment causesCC2—the condition ofCC0.

The semantic differences among these variations high-
light the importance of specifying such processes formally
with commitment-based semantics. Similar interpretations
exist for the case of 7.2.2. A benefit of the present for-
malization exercise was that it helped identify the possible
points of confusion and disagreement, which would other-
wise have been glossed over in the documents.

3.2. Choreography of Price Discovery

Although the typical scenarios are well-understood, an
exhaustive set of possibilities can be covered rigorously
and precisely only with formal methods. Our formalization
exercise uncovered the following possibilities that are not
clearly answered in the specification. For example, it is not
clear whethernothingDone terminates the conversation or
just rejects a specificpriceResponse. Also, can two price
responses in a conversation have different confirmation re-
quirements? Can the time until which the quote is valid be
different for different quotes? Even more troublesome, what
if cancelPrice andpriceAcceptance cross? If the confirma-
tion was not required, should theMaker be allowed to can-
cel a quoted price? Maybe in such a case, theMaker would
usepriceAcceptanceAck to indicate failure, but that is not
obvious.

What if theMakerconfirms execution but theTakerdoes
not acknowledge it? Or what if the confirmation is not re-
quired and theTaker accepts a price but theMaker does
not acknowledge it? The commitments should be specified
in such a way that the unresponsive party ends up violat-
ing a commitment.

Answering such questions is critical; if they are not an-
swered, then it reflects gaps in the specification. Our ap-
proach may not supply the answers to these questions, but
helps identify them via formal specification and verification
techniques. This is the critical value of formal methods.

3.3. Specifying Protocols inC+

Following Chopra and Singh [3], this paper specifies pro-
tocols inC+, an action description language that gives pri-
macy to causation [9].C+ supportselaboration tolerance
enabling refinement of a specification merely by adding to
the existing specification; nothing need be removed from
a specification even if the desired effect is that some in-
ferences are disabled. For protocols, elaboration tolerance
means that certain interactions can be added, removed, or
modified simply by adding axioms to an existing specifica-
tion.

A C+ specification describes a transition system con-
sisting of states and transition between them. A specifica-
tion consists of a set of causallaws. A fluent is a propo-
sition (true or false) whose value may change from state
to state.Actionsare performed by agents tocausefluents
thus bringing about various conditions. Inertial fluents con-
tinue to hold unless an action occurs that causes their nega-
tion. TheC+ semantics ensures that all and only the caused
fluents hold at any state. The general concepts relating to
protocols are specified inC+ as an ontology (Listing 1), to
be included with specifications of individual protocols. The
operator++ denotes logical OR and<> denotes object in-
equality.

In C+, anexogenousaction is one that simply happens
or not—the specification does not explain its cause. Mes-
sages are modeled as exogenous actions (line 9). The elabo-
ration tolerance ofC+ allows placing constraints on the or-
der of action occurrences. Inertial fluents (line 8) record the
effects of all message occurrences (line 26). A static flu-
ent initial ensures that the start state of a protocol is void of
any fluents or commitments (lines 15, 21–24). Static fluents
are not inertial; in each state the value of static fluents is de-
termined by the value of other fluents in that state.

Commitments are modeled as inertial fluents (line 12)
and their preconditions and conditions are modeled as ac-
tions (line 10) that are disabled by default (line 29). Also,
occurrences of conditions are recorded in inertial fluents
(line 11 and line 28). For simplicity, Listing 1 only de-
scribescreate, discharge, cancel, andtoBase (lines 13–14).
Whereasdischarge andtoBase are caused when the appro-
priate conditions hold, other operations are caused directly
by the actions of the parties.

Causing the conditions and preconditions of a commit-
ment causes appropriate operations:discharge andtoBase,
respectively, provided the commitment is active or being

4

created simultaneously (lines 31–35). If a commitment is
discharged it is deemed fulfilled and ceases to hold (line 37).
If toBase is caused, the original commitment ceases to ex-
ist, and a base level commitment is created, only if the orig-
inal commitment is not being discharged or canceled simul-
taneously (lines 42–45). A commitment is asserted ifcre-
ate is caused and that commitment is not being simultane-
ously discharged, converted to base, being canceled, and the
commitment does not already exist (lines 47–48). All com-
mitment operations are disabled by default (lines 50–53).
These laws collectively ensure correct behavior of commit-
ment operations in the face of concurrent actions.

Listing 1: Protocol ontology
� �

1 :− s o r t s Role ; S l o t ; Message ; Commitment ; C ond i t i on .

3 :− v a r i a b l e s
4 msg1 : : Message ; p , q : : C ond i t i on ;
5 cc1 : : Commitment ; db1 , c r1 : : Role .

7 :− c o n s t a n t s
8 f l (Message) : : i n e r t i a l F l u e n t ;
9 a c t (Message) : : exogenousAct ion ;

10 cond (C ond i t i on) : : a c t i o n ;
11 f l c o n d (C ond i t i on) : : i n e r t i a l F l u e n t ;
12 comm(Commitment) : : i n e r t i a l F l u e n t ;
13 c r e a t e (Commitment) , d i s c h a r g e (Commitment) ,
14 toBase (Commitment) , c a n c e l (Commitment} : : a c t i o n ;
15 i n i t i a l : : s d F l u e n t .

17 :− o b j e c t s
18 T : : C ond i t i on ;
19 CC(Role , Role , Cond i t ion , C ond i t i on) : : Commitment .

21 caused i n i t i a l i f i n i t i a l .
22 caused− i n i t i a l i f comm(cc1) .
23 caused− i n i t i a l i f f l (msg1) .
24 caused− i n i t i a l i f f l c o n d (p) .

26 a c t (msg1) c a us e s f l (msg1) .

28 cond (p) c a us e s f lc o n d (p) .
29 −cond (p) c a us e s−cond (p) .

31 caused d i s c h a r g e (CC(db1 , cr1 , p , q)) i f cond (q) &
32 (comm(CC(db1 , cr1 , p , q)) ++ c r e a t e (CC(db1 , cr1 , p , q))) .

34 caused toBase (CC(db1 , cr1 , p , q)) i f cond (p) &
35 (comm(CC(db1 , cr1 , p , q)) ++ c r e a t e (CC(db1 , cr1 , p , q))) &p<>T .

37 d i s c h a r g e (cc1) c a us e s−comm(cc1) .

39 c a n c e l (cc1) &−d i s c h a r g e (cc1) c a us e s−comm(cc1) .

41 toBase (cc1) &−d i s c h a r g e (cc1)
42 & −c a n c e l (cc1) c a us e s−comm(cc1) .

44 toBase (CC(db1 , cr1 , p , q)) &−d i s c h a r g e (CC(db1 , cr1 , p , q))
45 & −c a n c e l (db1 , cr1 , p , q)) c a us e s comm(CC(db1 , cr1 , T , q)) .

47 caused comm(cc1) i f c r e a t e (cc1) &−(d i s c h a r g e (cc1)
48 ++ toBase (cc1) ++ c a n c e l (cc1)) &−comm(cc1) .

50 −c r e a t e (cc1) c a us e s−c r e a t e (cc1) .
51 −toBase (cc1) c a us e s−toBase (cc1) .
52 −c a n c e l (cc1) c a us e s−c a n c e l (cc1) .
53 −d i s c h a r g e (cc1) c a us e s−d i s c h a r g e (cc1) .

� �

Messages, as exogenous actions, can happen on any tran-
sition by default. Protocols typically specify a set of restric-
tions on such messages and rules for their effect on com-

mitments. As there are commonalities in 7.2.1 and 7.2.2,
a common bilateral price discovery protocolBPD can be
specified to cover all possibilities. Listing 2 specifies a rule
governing thepriceResponse message.

The parameters are declared variables of respective sorts.
For each sort, relevant objects are declared, e.g.,DONE and
FAILED to indicate the result (res, res1, res2) in priceRe-
sponse and also inexecutionConfirmation. VariablesresID
and reqID (and similar) denote unique IDs for price re-
sponse and request, respectively. Also,execConfReq can
be YES or NO indicating whether or not a confirmation
is required. The variablettl indicates the valid time for the
quoted rate as given inrate. As the request can be for two-
way trades, the rate would typically include both bid rate
and offer rate. We show one rate for simplicity. Thedir in
priceAcceptance indicates whether theTaker is buying or
selling the currencycur1. Amounts involved in the currency
pair cur1 andcur2 areamt1 andamt2, respectively. A dis-
junctive clause [\/a | f(a)] with variablea ground to dis-
tinct objectsai is equivalent to

∨
i
f(ai).

Listing 2: Specifying a rule for price response� �
1 none xe c u ta b le a c t (p r i c e R e s pons e (m, t , resID , reqID , res,
2 execConfReq , t t l , r a t e))
3 i f
4 −[\/ cur1 \ / cur2 \ / amt1 |
5 f l (p r i c e R e q u e s t (t ,m, reqID , cur1 , cur2 , amt1))]
6 ++
7 (
8 (f l (no th ingDone (t ,m, re s IDa)) ++
9 f l (p r i c e Ac c e p ta nc e (t ,m, resIDb , d i r))

10)
11 &
12 −(f l (e x e c u t i o n C o n f i r m a t i o n (m, t , resIDb , FAILED)) &
13 f l (e xe c u t i onC on f i rma t i onAc k (t ,m, res IDb))
14)
15)
16 ++
17 a c t (p r i c e R e s pons e (m, t , resID , reqID , res2 ,
18 execConfReq2 , t t l 2 , r a t e 2))
19 ++
20 f l (p r i c e R e s pons e (m, t , resID , reqID , res ,
21 execConfReq , t t l , r a t e))
22 where
23 res<>r e s 2 ++ execConfReq<>execConfReq2
24 ++ t t l<>t t l 2 ++ r a t e<>r a t e 2 .

� �

The rule restricts occurrences ofpriceResponse if (a)
no priceRequest with a matchingreqID has happened, or
(b) either anothingDone has happened or a response has
been already accepted, and confirmation on that acceptance
has not yet failed and acknowledged, or (c) apriceRe-
sponse with the same ID but different result, confirmation
requirement,ttl, or rate is happening simultaneously, or (d) a
priceResponse with identical parameters has happened be-
fore. Note that (b) refers to confirmation as apriceResponse
can not happen again after it has been accepted, but can hap-
pen again ifexecutionConfirmation for the accepted price
fails and an acknowledgment for this failure is sent (7.2.2,
fourth, fifth, and sixth messages).

Listing 3 shows a specification of the nested commit-
ment created as a result of apriceResponse. For brevity,

5

only the case of confirmation not required is covered. A
priceResponse creates the nested commitment (lines 1–3)
as in cases (c), (d), (e), and (f) described in Section 3.1.
However, to allow arbitrary levels of nesting, we substitute
the inner commitments with place holder conditions that are
caused when the inner commitments are created. For exam-
ple, lines 5–8 cause the precondition of the nested condi-
tion if the Taker has accepted to buyingcur1 within ttl and
commits to paying for it in the other currency. Similarly,
lines 10–12 cause the condition of the nested commitment
if the Takerhas accepted to buy and theMaker commits to
paying in the currency being bought. Additional such rules
would be needed for the case when theTakeris sellingcur1.

Listing 3: Specifying a nested commitment� �
1 caused c r e a t e (cc (m, t , p r i c e R e s pons e Pre c ond (re s ID) ,
2 pr iceResponseCond (re s ID))) i f
3 a c t (p r i c e R e s pons e (m, t , resID , reqID ,DONE,NO, t t l , r a t e)) .

5 caused cond (p r i c e R e s pons e Pre c ond (re s ID)) i f
6 f l (p r i c e Ac c e p ta nc e (t ,m, resID , TakerBuys)) &
7 − f l (t t l E x p i r e d (re s ID)) &
8 c r e a t e (cc (t ,m, T , pay (resID , amt2))) .

10 caused cond (pr iceResponseCond (re s ID)) i f
11 f l (p r i c e Ac c e p ta nc e (t ,m, resID , TakerBuys)) &
12 c r e a t e (cc (m, t , T , pay (resID , amt1))) .

� �

Messages such aspriceAcceptance and priceAccep-
tanceAck would cause the creation of the inner commit-
ments depending on the interpretation adopted from Fig-
ure 3. Here, we interpret the meanings as in the case (f).
Also, a higher level of nesting can be modeled by hav-
ing commitments as the conditions of the inner commit-
ments. Rules for other messages and commitments can be
specified similarly. Complete specifications are posted [1].

3.4. Querying the Specifications

The ability to query the formal specifications is crucial
for discovering gaps, errors, and ambiguities. Protocol spec-
ifications can be compiled and queried via the causal calcu-
lator tool CCALC [16]. Essentially, it tries to find a model
that satisfies the constraints of the specification, given a
query. The following describes several important queries
that can help uncover problems in the price discovery spec-
ifications.

Listing 4 specifies a query to see if it can ever happen that
one of the party has a base commitment to another party but
there is no counter commitment that either currently exists
or has been fulfilled. Note that unfulfilled conditional com-
mitments are safe, but same does not hold for base commit-
ments. Thus, such a query should have no model in any pro-
tocol related to exchanges of any kind.

Here,pi andqi are variables of sortCondition. The la-
bel identifies this query andmaxstep specifies the length
of the history to be considered for search. Line 4 premises
the query on the fact thatinitial holds in the starting state.

The solver is asked to find the models for the formula of
lines 5–10. Note that failure to find a model for this query
is necessary but not sufficient to ensure commitment safety:
a counter commitment may exist (resulting in no solutions),
but it may not be a commitment with the intended condi-
tion.

Listing 4: Querying for commitment safety
� �

1 :− query
2 l a b e l : : 1 ;
3 maxstep : : 0 . . i n f i n i t y ;
4 0 : i n i t i a l ;
5 maxstep : (comm(cc (t ,m, T , p1)) &
6 −[\/ q1 | comm(cc (m, t , T , q1)) ++ f l c o n d (q1)]
7) ++
8 (comm(cc (m, t , T , p2)) &
9 −[\/ q2 | comm(cc (t ,m, T , q2)) ++ f l c o n d (q2)]

10) .
� �

Listing 5 specifies a query to see if the protocol does
what is intended: get the deal done and end in a good state.
The query formula represents the state at the end of case (f)
with the case ofTaker buyingcur1. As fluents are inertial,
such state queries are easy to formulate—it does not mat-
ter whenthe priceAcceptance happened, as long as it has
happened in the history and theTakerhas indicated to buy.

Listing 5: Querying for successful execution� �
1 :− query
2 l a b e l : : 2 ; maxstep : : 0 . . i n f i n i t y ; 0 : i n i t i a l ;
3 maxstep : comm(cc (t ,m, T , pr iceAcceptanceC ond (re s ID)))&
4 comm(cc (m, t , T , pay (resID , amt1))) &
5 f l (p r i c e Ac c e p ta nc e (t ,m, resID , TakerBuys)) .

� �

4. Composition of Protocols

With the repository of modular protocols specifications
for the core FX interaction patterns, the natural next step
would be to compose these modules to derive varieties of
composite foreign exchange protocols as needed. The abil-
ity to reuse and compose existing protocols not only sim-
plifies and improves engineering, but also provides new in-
sights about the business processes. For example, the mes-
sages in 7.2.3 are not new; they have already been described
in 7.2.1 and 7.2.2. The technique of protocol composition
introduced by Desaiet al.[5] enables defining 7.2.3 in terms
of 7.2.1 and 7.2.2.

Say the formal bilateral price discovery protocol (BPD)
is available. Figure 4 shows how multilateral price discov-
ery (MPD) is specified by unioning two copies ofBPD and
stating additional constraints (known ascomposition ax-
ioms):

Ax1. MPD.Taker = BPD1.Taker
Ax2. MPD.Maker = BPD2.Maker
Ax3. MPD.TradeEx = BPD1.Maker, BPD2.Taker
Ax4. BPD1.priceRequest.cur1; BPD2.priceRequest.cur1
Ax5. BPD1.priceRequest.cur2; BPD2.priceRequest.cur2

6

Ax6. BPD1.priceRequest.amt1; BPD2.priceRequest.amt1
Ax7. BPD2.priceResponse.execConfReq;

BPD1.priceResponse.execConfReq
Ax8. BPD2.priceResponse.rate; BPD1.priceResponse.rate

I J K L I J K MN O P Q R N RO S TU VW X Y Z O U V Q [O P Q R[J K\] ^ _ ` a] ^ _ `b cd e f g f h b i j hf kf l f e m i j n g f o p q q r p e e s t u e es vwb c de fg f o x f h q k e e s vp e es t p e e s vy z { q wm m |
\] ^ _ ` a] ^ _ `b c d e f g f hb i j h f kf l f e m i j n g f o p q q r p e es t u e e s vwb cd e f g f o x f h q k e es vp e e s t p e es vy z{ q wm m |

Figure 4. MPD by composing BPD with itself

Role definitionaxioms (first three in the above) define a
new role on the left in the composite protocol in terms of
the roles of the component protocols on the right. As a re-
sult, the roles of the component protocols are renamed to be
the new role. In this example, the trading exchange role me-
diates between the traditional taker and multiple makers.

Data flowaxioms (next five in the above) specify that the
parameter on the right gets its value from the parameter on
the left. Thus, the message on the right cannot happen until
all the parameters it needs have been bound (i.e., the suit-
able messages have happened). In this example, data flow
axioms specify the constraint that the currency pair and the
amount for which the trading exchange requests the maker
must be identical to those received from the taker. Also,
the confirmation requirement and the rate indicated by the
maker to the trading exchange should be propagated to the
taker. Thus, the trading exchange reduces to a simple me-
diator. A new rule per axiom is added to the theory to ef-
fect the binding of the parameters and the temporal order-
ing of the messages. The result of the composition would be
the formal specificationMPD of 7.2.3, as posted [1]. Note
that the resultant protocolMPD can be added to the proto-
col repository, and thus reused just like the core protocols.
For example, Table 1 usesMPD (which is BPD ⊕ BPD)
with Credit to derive 7.2.7. Additional kinds of composi-
tion axioms [5] are not needed here.

Various interesting business scenarios are possible de-
pending on the composition axioms specified. Consider for
example that Ax8 were not specified. This would mean that
the trading exchange could act as a secondary price maker
and manipulate the bid-offer spread received from the pri-
mary maker. If Ax7 were not specified, it would mean that
the trading exchange could take risks of its own, and not re-
quire confirmation from the taker independent of the con-

No. Specification pattern Protocols for pattern

1 7.2.1 BPD
2 7.2.2 BPD
3 7.2.3 BPD ⊕ BPD
4 7.2.4 (order) Order
5 7.2.5 (order, cancel) Order
6 7.2.6 (credit check) BPD ⊕ Credit
7 7.2.7 (credit check–multi) BPD ⊕ BPD ⊕ Credit
8 7.2.8 (price stream) ESP
9 7.2.9 (price stream–multi) ESP⊕ ESP

Table 1. Modeling TWIST 7.2 interaction patterns
in terms of protocols

firmation requirement indicated by the primary maker. Fur-
ther, if Ax6 were not specified, the trading exchange could
either fill the requested amount from multiple makers or
fill multiple taker requests from a single maker deal. Thus,
composition axioms act as elegant, vivid specifications of
configuration parameters. Modifying the axioms enables
us to model vastly different business requirements. These
possibilities are lost when informal specifications are con-
structed. The TWIST specification is, at best, ambiguous
about these possibilities. Highlighting such possibilities is
an important contribution of this paper.

Chapter 7 of the TWIST specification describes 28 in-
teractions patterns in all. We have determined that, by us-
ing the methodology described above, such patterns can be
modeled in terms of 12 core formally specified protocols
and their compositions. More importantly, as demonstrated
above, combinationsbeyondthose described in the specifi-
cation can be derived via novel compositions of the core
protocols. Table 1 lists some of the patterns from Chap-
ter 7.2, and shows how they can be modeled in terms of
protocols. Here⊕ denotes the composition of the operand
protocols. Four protocolsBPD, Order, Credit, andESPare
enough to model nine patterns. Table 1 also points to in-
teraction possibilities not covered by the TWIST specifica-
tion. For example, each of the processes 7.2.4, 7.2.5, 7.2.8,
and 7.2.9 may be composed with credit checks, if needed.

5. Discussion

The idea of business processes based on conversation
protocols is not new. WSCDL, a language for specifying
such conversations among web services is being standard-
ized by W3C [11]. Fuet al. specify conversation protocols
as guarded automata [8]. Zahaet al. propose focusing on
the global view of interaction among services in a SOA to
see if all the constraints of the global interaction can be en-
forced locally [20]. However, as Section 3.1 demonstrates,

7

a contractual semantics is essential to characterize business
interactions unambiguously.

Singhet al. outlined a vision for commitment-oriented
modeling for engineering large-scale business processes
[15]. Winikoff provides a set of guidelines for designing
and implementing interactions based on commitments [19].
Desaiet al.offer intuitions behind composition of commit-
ment protocols [5]. The above works, however, are not for-
mal and thus do not support verification as an integral engi-
neering activity.

Chopra and Singh have formalized protocols inC+ [3].
Davulcuet al. proposed contractual semantics for interact-
ing services [4]. Also, various verification techniques have
been applied to services conversations [12, 8]. However,
these approaches only formalize toy examples and have not
been extensively evaluated.

For all of the above approaches, an evaluation and vali-
dation with a practical case study is lacking. This is a key
point in favor of the present effort.

Further, the impact of applying the modeling abstrac-
tions such as commitments to the FX business processes
has not been studied before. The impact is not limited to
the FX processes alone. Rather, any such business interac-
tions standards specifications can benefit from the method-
ology presented. The fact that the high-level specifications
can be queried to check for inconsistencies and subtle se-
mantic errors makes this methodology more valuable.

Conclusions
The contributions of this paper include:

• Evaluation and validation of protocol-based ap-
proaches.

• Formal methodology for specification and engineering
of FX business processes

• Identification of gaps and ambiguities in specifications
via the CCALC verification tool

• Discovery of new business scenarios by varying com-
position axioms

• Compactly representing a rich variety of business pro-
cesses through the technique of protocol composition

Although it might appear that formal specifications are
not as easy to develop as sequence diagrams, sequence di-
agrams must be accompanied by informal descriptions of
the messages. Formal specifications account for such addi-
tional documentation as well. Rigor and precision are indis-
pensable for critical business processes.

Future work includes the development of graphical tools
to simplify the specification and verification of protocols
and their compositions.

References

[1] Price discovery protocol specifications inC+, 2007.
http://research.csc.ncsu.edu/mas/ causal/.

[2] Bank for International Settlements. Triennial centralbank
survey of foreign exchange and derivatives market activity.
http://www.bis.org/triennial.htm.

[3] A. K. Chopra and M. P. Singh. Contextualizing commit-
ment protocols. InProceedings of AAMAS, pages 1345–
1352, 2006.

[4] H. Davulcu, M. Kifer, and I. V. Ramakrishnan. Ctr-s: a logic
for specifying contracts in semantic web services. InPro-
ceedings of WWW, pages 144–153, 2004.

[5] N. Desai, A. U. Mallya, A. K. Chopra, and M. P. Singh.
Interaction protocols as design abstractions for business
processes. IEEE Transactions on Software Engineering,
31(12):1015–1027, 2005.

[6] Electronic Broking Services (EBS). History of EBS.
http://www.ebs.com.

[7] FIX Protocol Ltd. (FPL). FIX 5.0 protocol specifications.
http://tinyurl.com/auzx9.

[8] X. Fu, T. Bultan, and J. Su. Conversation protocols: A for-
malism for specification and verification of reactive elec-
tronic services.Theoretical Computer Science, 328(1–2):19–
37, 2004.

[9] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and
H. Turner. Nonmonotonic causal theories.Artificial Intel-
ligence, 153(1-2):49–104, 2004.

[10] International Swaps and Derivatives Association (ISDA).
FpML 4.1 recommendation. http://tinyurl.com/3yle3u.

[11] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher,
and Y. Lafon. Web services choreography descrip-
tion language 1.0 (w3c recommendation), 2005.
http://www.w3.org/TR/ws-cdl-10.

[12] R. Kazhamiakin and M. Pistore. Static verification of con-
trol and data in web service compositions. InProceedings of
ICWS, pages 83–90, 2006.

[13] RosettaNet. Home page. www.rosettanet.org.
[14] M. P. Singh. An ontology for commitments in multiagent

systems: Toward a unification of normative concepts.Artifi-
cial Intelligence and Law, 7:97–113, 1999.

[15] M. P. Singh, A. K. Chopra, N. Desai, and A. U. Mallya. Pro-
tocols for processes: programming in the large for open sys-
tems.ACM SIGPLAN Notices, 39(12):73–83, 2004.

[16] Texas Action Group at Austin. The causal calculator
CCALC. http://www.cs.utexas.edu/users/tag/cc/.

[17] Transaction Workflow Innovation Standards Team
(TWIST). TWIST wholesale trade lifecycle.
http://tinyurl.com/yswnqq.

[18] Wikipedia. Foreign exchange markets.
http://en.wikipedia.org/wiki/ Foreignexchangemarket.

[19] M. Winikoff. Implementing commitment-based interaction.
In Proceedings of AAMAS, 2007. To appear.

[20] J. M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, and
G. Decker. Service interaction modeling: Bridging global
and local views. InProceedings of EDOC, pages 45–55,
2006.

8

