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Abstract

Embedded systems are increasingly deployed in harsh
environments that their components were not necessarily
designed for. As a result, systems may have to sustain tran-
sient faults, i.e., both single-bit soft errors caused by radi-
ation from space and transient errors caused by lower sig-
nal/noise ratio in smaller fabrication sizes. Hardware can
protect and even correct transient faults at the cost of redun-
dant circuits. Software approaches can also protect/correct
these faults, e.g., by instruction duplication or algorith-
mic design. Recent work focuses on hybrid solutions of
both hardware and software support to counter transient
faults while minimizing the cost of protection. While hybrid
approaches have been proposed for selectively protecting
hardware regions and for control-flow checking, data rep-
resentations have been widely ignored.

The contribution of this work is to assess the benefits of
inherently error-detecting and optionally error-correcting
data representations on the software side. We present some
programming patterns which exhibit properties for inher-
ent detection of transient faults. These patterns are com-
pared with techniques which rely on instruction duplication
for error detection. Additionally, we introduce a framework
to verify the resilience of these patterns with respect to tran-
sient faults and compare their performance with other error
detection methods.

Preliminary results indicate that a software approach for
fault-resilient data representations compares favorably to
past work and can reduce the duplication cost in software
without compromising error-detection capabilities.

1. Introduction
Transient faults are becoming an increasing concern of

system design for two reasons. First, smaller fabrication
sizes have resulted in lower signal/noise ratio that more fre-
quently leads to bit-flips in CMOS circuits [5]. Second, em-
bedded systems are increasingly deployed in harsh envi-
ronments causing soft errors due to lack of protection on
the hardware side [25]. The former reason affects comput-
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ing at large while the latter is predominantly of concern for
critical infrastructure. For example, the automotive industry
has used temperature-hardened processors for control tasks
around the engine block while space missions use radiation-
hardened processors to avoid damage from solar radiation.

Current trends indicate an increasing rate of transient
faults (i.e., soft errors), not only due to smaller fabs but
also because embedded systems are deployed in harsh en-
vironments they were not designed for. In commercial avi-
ation, the next-generation planes (Airbus 380 and Boeing
787) will deploy off-the-shelf embedded processors with-
out hardware protection against soft errors. Even though
these planes are specifically designed to fly over the North
Pole where radiation from space is more intensive due to
a thinner atmosphere, target processors lack error detect-
ing/correcting capabilities. Hence, system developers have
been asked to consider the effect of single-event upsets
(SEUs), i.e., infrequent single bit-flips, in their software de-
sign.

In practice, future systems may have to sustain transient
faults due to any of the above causes. There exists a signifi-
cant amount of work on detection of and protection against
transient faults. Hardware can protect and even correct tran-
sient faults at the cost of redundant circuits [2, 27, 28, 21, 3,
6, 8, 13, 15, 18, 19, 24]. Software approaches can also pro-
tect/correct these faults, e.g., by instruction duplication or
algorithmic design [20, 14, 11, 10, 23, 12, 4, 9, 7]. Recent
work focuses at a hybrid solution of both hardware and soft-
ware support to counter transient faults [16, 17, 26]. Such
hybrid solutions aim at a reduced cost of protection, i.e.,
cost in terms of extra die size, performance penalty and in-
creased code size. These hybrid solutions are our focus in
this research.

Hybrid approaches have been proposed for selectively
protecting hardware regions, for control-flow checking and
for reduced instruction and data duplication in software
[16]. Data representations, however, have been widely ig-
nored.

This work specifically focuses on inherently fault-
resilient data representations. Such representations al-
low the detection of transient faults. We specifically explore
the trade-off between performance and code size while pre-
serving the level of reliability.

We identify programming patterns that intrinsically pro-



vide fault-detecting capabilities within their data represen-
tation. We further determine constraints on the context of
these patterns and assess the expressiveness of the approach.

The paper is structured as follows. Section 2 gives an
overview of previous work on transient fault detection. Sec-
tion 3 identifies and describes the programming constructs
that can be modified for inherent fault detection. Section 4
describes the framework used to test as well as analyze the
performance and resilience of the techniques discussed in
Section 2. Section 5 shows the performance of the new pro-
gramming models. Section 6 outlines the future work envi-
sioned. Section 7 summarizes the work.

2. Related Work
Transient faults have been addressed at the level of hard-

ware and software. In the past, IBM has used logic cir-
cuits to counter soft errors in its mainframes or by replicat-
ing execution units [22], Fujitsu employed error-protection
for most latches in the SPARC64 [2] while triple modu-
lar redundancy (TMR) was used in the Boeing 777 and a
4-way voting scheme was employed in the Space Shuttle
[27, 28, 21]. Other research focused on a variety of hard-
ware schemes [3, 6, 8, 13, 15, 18, 19, 24]. These schemes
are generally too expensive for many applications. An al-
ternative is software protection schemes at various lev-
els using checksums, error-correcting code, fault-detection
techniques or duplication as well as control-flow checking
schemes [20, 14, 10, 23, 12, 4, 9, 7, 26]. Some of these tech-
niques, though mostly implemented in software, rely on ad-
ditional hardware support.

The most closely related work on software support for
reliability is that of error detection by duplicating instruc-
tions (EDDI) [11] and the more recent work on software im-
plemented fault tolerance (SWIFT) [16]. Both of these de-
tect soft errors due to a single bit flip (SEU) during the en-
tire program execution.

EDDI provides a pure software solution to the problem
assuming no protection on the hardware side. Instructions
and program data are duplicated to create a redundant, sec-
ondary data flow equivalent to the primary one. Upon a
soft error, this equivalence relation is violated. EDDI de-
tects such an error by comparing original and “shadow” val-
ues for consistency at “synchronization points”, i.e., prior to
write instructions and prior to jumps/branches. The under-
lying philosophy is to not let incorrect results leak into the
memory system so that after detection of a soft error, a pro-
gram may be re-executed in part or in full. (The concrete
recovery process is beyond the scope of EDDI.) Hence,
checks have to precede stores. They are also required prior
to jumps/branches since control-flow violations can lead to
skipped stores, wrong values for stores or incorrect stores to
be executed.

Consistency checking at synchronization points signif-

icantly reduces the overhead that would otherwise be in-
curred after each calculation. The cost of duplication was
originally justified by exploiting unused registers and func-
tional units in VLIW machines, such as the Itanium. In
embedded systems, the higher memory requirements due
to data duplication, the increased register pressure and the
lower number of functional units may limit the benefits of
EDDI over creating redundant threads of execution.

In addition to instruction duplication, EDDI em-
ploys control-flow checking using a basic-block signature
scheme. This is necessitated since branches cannot be du-
plicated, i.e., a single-threaded program can only have a sin-
gle flow of control. Signature checking on blocks may in-
cur considerable overhead (multiple instructions per block),
but this cost can be reduced by hardware support (signa-
ture register, checking instructions and a signature transfor-
mation generator).

SWIFT reduces the cost of duplication by assuming er-
ror protection in the lower memory hierarchy, such as ECC
protection in physical memory and some (if not all) levels
of the cache hierarchy. The processor core is still unpro-
tected. Hence, SWIFT eliminates the need for data dupli-
cation in memory. Instead, data is duplicated at the register
level, and equivalence checks as in EDDI are issued prior to
writes. Additional hardware support is needed to protect the
memory path during read and write operations to avoid soft
errors on the bus or within the write buffer [17]. Still, the
overhead of instruction duplication and the increased regis-
ter pressure remain an issue with SWIFT, especially for em-
bedded systems.

3. Design of Fault-Resilient Data Representa-
tions

The objective of our work to identify programming pat-
terns that intrinsically provide fault-detecting capabilities
within their data representation. The benefit of such tech-
niques lies in the potential to significantly reduce instruc-
tion duplication as a means for fault detection. The main
challenges of this task are:

1. Program patterns need to be identified that naturally
lend themselves to fault resilience.

2. Constraints on the context of such patterns within the
application program have to be identified.

3. Compiler transformations have to be developed to au-
tomate the transformation step.

We will discuss the first item here while items two and
three are discussed in Section 6. In the following, we pro-
vide a subset of program patterns to illustrate our approach
and present preliminary results to assess code size and per-
formance impacts. The common theme of fault-resilient
data-representation is bit-patterns that have self-checking



capabilities in the presence of an SEU, i.e., a single bit-flip.
For now, our focus is that of fault detection, much in con-
trast to fault recovery, which will be discussed later.

Fault-resilient conditional encoding is one technique to
avoid duplication overhead. As an example, consider the C-
like code in Figure 1a. A selection of cases based on an enu-
meration type for consecutive values is employed, as often
found in state-encoding embedded systems.

The code has already been enhanced by EDDI-
equivalent fault detection capabilities, as discussed in
related work [11]. Each variable is cloned, specifi-
cally, x′ denotes a copy of the value of x. When selecting
a case, a sanity check determines if x or x′ has been al-
tered as a side-effect of an SEU, in which case an error is
detected. Here, the overhead of EDDI amounts to a dupli-
cation of data values and conditionals to check the consis-
tency of original and shadow variables, both of which are
operations on the critical path (of regular program execu-
tion).

An equivalent, fault-resilient data-representation of x,
depicted in Figure 1b, removes the need to duplicate vari-
ables and naturally encodes fault detection without any
overhead over the original program. Legal values (states)
of variable x are encoded as powers of two. Since the ham-
ming distance of any pair of legal values is two, alterations
of x by an SEU result in values that are not powers of two.
After all, an SEU can only affect one bit, not two.

Fault-resilient loop skewing is a technique that removes
duplication overhead for loop iterators. Figure 2a illustrates
the overhead of instruction duplication in a loop for EDDI.
Figure 2b depicts an equivalent loop for a fault-resilient rep-
resentation of the iterator. The invariant here is that the iter-
ator be a power of two. Any two iterator values have a ham-
ming distance of two. Furthermore, any iterator value has
a checksum of one, which can be checked during loop it-
eration. To make such checks more efficient, special hard-
ware support for a checksum instruction is required. Notice
that the maximum number of iterations is constrained by
the word size of the architecture. To generalize this fault-
resilient loop pattern to arbitrary number of iterations, nests
of multiple loops with fault resilience can be employed. Ad-
ditional hardware support may include support for mem-
ory indexing using such counters. Specifically, an instruc-
tion can transform a set of counters whose values are pow-
ers of two into the equivalent iteration number of the orig-
inal instruction and, optionally, dereference memory loca-
tions with an offset of this index.

Value cloning is another fault-resilient technique. Val-
ues are duplicated within a variable whose value range is
constraints by at most half the number of bits. Conversely,
any short data representation can be replaced with one of
twice its size. Consider a 16-bit integer value v. Let v2
be a 32-bit value denoting the value of v in both the 16

least-significant bits (LSBs) and the 16 most-significant bits
(MSBs). Some operations on v can be applied to v2 with-
out violation of program semantics, such as the exclusive
or operation. Others, such as simple arithmetic (addition,
multiplication) require that the operation be executed sepa-
rately on LSBs/MSBs. Hardware support can provide such
instructions that operate on each part in parallel (given two
ALUs) or as SIMD instructions (e.g., x86 MMX instruc-
tions), particularly when operating on entire arrays.

Fault-resilient pointer traversals are yet another exam-
ple of reduced duplication overhead. Consider the example
in Figure 3a depicting the duplication overhead of the tra-
versed pointer with a consistency check for each loop iter-
ation. A semantically equivalent but fault resilient version
is shown in Figure 3b. The size of the data structure has
been changed from two to three bytes. This is significant as
a multiple of a non-power-of-two number has a hamming
distance exceeding one relative to any other multiple of that
value. Hence, an SEU can be detected by checking if the
offset of the pointer relative to the base of the array is divis-
ible by this number (here: three). However, data structures
of odd sizes may adversely affect cache performance due
to mis-alignment relative to cache line boundaries. Hence,
we use padding so that the resulting structure has an even
size. This is particularly easy for larger data structures, e.g.,
padding a 16-byte structure by 8 bytes. Depending on the
cache line size, caches may still be affected, but to a lesser
extent, letting this method outperform full duplication as re-
quired otherwise.

One other technique that reduces the overhead of dupli-
cation is the fault tolerant parameter passing technique. In
EDDI, all function arguments are duplicated as shown in
Figure 4a. This can introduce a significant overhead if there
are frequent calls of foo. The fault-tolerant parameter pass-
ing technique in Figure 4b tries to reduce this overhead by
calculating the hash of all the arguments and then passes
the hash as an extra argument into the function. The hash
is simply the value of the arguments XOR’ed together. A
SEU on any one of the arguments can be detected by the
function as the passed XOR value will differ from the run-
time XOR of the arguments. In the presence of multiple up-
sets, the same bit position in different arguments may be
flipped, which would remain undetected. Recall that we as-
sume single-event upsets, only, where this method is safe
since multi-bit errors have a very low probability.

4. Experimental Framework
We have already designed a fault injection environment

catering to data representations for fault resilience. This en-
vironment supports native execution with concurrent fault
injection via a multi-threaded environment, but it is re-
stricted to injection of SEUs in global data, the heap or the
stack. Injection into the code segment is currently not sup-



enum {A=0,B,C,D};
//A=0,B=1,C=2,D=3

switch(x) {
case A: if (x!=x’)
error();

case B: if (x!=x’)
error();

...
}

(a) Instruction Duplication

enum {A=1,B=2,C=4,D=8};

switch(x) {
case A:
case B:
case C:
case D:
default: error();

}

(b) Fault Resilience

Figure 1. Encoding for Conditionals

for (i=0, i’=0; i<10;
i++, i’++) {

if (i != i’)
error();

}

(a) Instruction Duplication

for (i = 1; i<2ˆ10;
i = i<<1) {

if (checksum(i) != 1)
error();

}

(b) Fault Resilience

Figure 2. Encoding for Loops

ported. This environment was utilized to obtain the results
in Section 5.
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Figure 5. SEU Injection Framework

The framework consists of two different applications:
the SEU Injector and the Program Wrapper. The Program
Wrapper and the SEU Injector communicate using a socket-
based interface. This interface is used to inject an SEU on
the data segment in the Program Wrapper. The Program
Wrapper uses a set of macros to initiate data structures that
store SEU susceptible variables in the form of a variable list.
During its initial phase of execution, the Program Wrapper
spawns a thread that performs two major operations. It first
streams the variable list contents to the program output and
then starts the communication protocols to listen for SEU
injection request from the SEU Injector application. On re-

ceiving an SEU injection request, the thread flips a random
bit on requested data variable and loops back to listen for
further requests. The main thread, in turn, executes the pro-
gram logic in an infinite loop. The SEU Injector program
is used by passing to it the variable id on which to perform
an SEU. A variable id can be selected from the list obtained
from the Program Wrapper, as explained earlier. The injec-
tor prepares the request and passes it to the Wrapper pro-
gram via the socket interface.

5. Experimental Results
We have conducted experiments in the fault-injection en-

vironment for the examples discussed above: conditional
execution, skewed loops, pointer traversal and value cloning
as well as parameter checking. Table 1 depicts the additional
performance penalty (determined by the timestamp counter
hardware register) for (a) full duplication with EDDI and
(b) our fault-resilient reduced duplication, both relative to
the original program. Notice that the benchmarks only re-

Construct Conditional Loop Pointer Clone Parameters
EDDI 7.27% 82.6% 8.14% 56.6% 100.6%

Resilient 4.46% 52.9% 1.19% 26.7% 64.3%

Table 1. Performance Penalty over Original

flect duplication of the respective construct while the dupli-
cation of other variables and instructions or even control-
flow checking is omitted. This allows us to focus on the ef-
fect our our technique relative to the equivalent full dupli-
cation. As can be seen in the table, EDDI adds performance
overhead of 7-100%, depending on the scheme. Our fault-
resilient technique inflicts much less overhead. And there
is room for improvement. Depending on the probability of



struct {char a,b} st;
st list[100], *pt, *pt’;
for (pt=list, pt’=list;

pt<&list[99];pt++,pt’++){
if (pt != pt’)
error();

}

(a) Instruction Duplication

struct {char a, b, buf} st;
st list[100], *pt;
for(pt=list;

pt<&list[99]; pt++) {
if(!(pt-list)%sizeof(st))

error();
}

(b) Fault Resilience

Figure 3. Pointer Traversals with Padding

call foo(p1,p2,p3,p1’,p2’,p3’)

int foo(int a, int b, int c,
int a’,int b’, int c’)

{
int x, x’;
x = a + b + c;
x’ = a’+ b’+ c’;
if (x != x’)
error();

}

(a) Instruction Duplication

call foo(p1,p2,p3,p1ˆp2ˆp3)

int foo(int a, int b, int c, int XORabc)
{

int x, x’;
x = a + b + c;

if ((xˆXORabc) != xˆaˆbˆc)
error();

}

(b) Fault Resilience

Figure 4. Constant Parameters with Checking

an SEU, checks may be moved outside of loop bodies as
long as no store is encountered. This technique of code mo-
tion will be discussed later.

Table 2 depicts the additional program size for the dupli-
cation techniques over the size of the original program. The

Construct Cond. For Pointer Clone Parameters
EDDI 15.8% 18.2% 18.9% 19.1% 51.48%

Resilient 5.3% 11.7% 18.9% 15.6% 21.16%

Table 2. Space [Bytes]

impact of EDDI on program size can be significant. Embed-
ded systems are often very constrained in memory capac-
ity. Our fault-resilient method consumes significantly less
memory than EDDI, combining both better performance
with smaller code size.

We finally conducted a test of our methods for a sam-
ple program implementing a sorting algorithm of integers.
The algorithm was adapted to resemble (a) EDDI duplica-
tion without control-flow checking and (b) our data-resilient
techniques (no padding). We used level one (O1) and two
(O2) optimizations of GCC to ensure that duplication is not
removed. Higher optimization levels will remove duplica-
tion by invoking common subexpression elimination. The
performance results in cycles are depicted in Table 3. The
results indicate a relative performance gain of fault-resilient
data representations over EDDI that increases (from 13%
for O0 to 25% for O1) with higher optimization levels. We
expect this trend to continue but could not easily test it in

EDDI Fault Resilient
Optimization O0 O1 O0 O1

Time 12689 9432 10945 7044

Table 3. Bubblesort [cycles]

our current prototyping environment due to compiler lim-
itations. (Duplication will be removed by common subex-
pression elimination and can be affected by other optimiza-
tions that cannot easily be controlled.)

6. Future Work
We are currently developing a systematic approach to

transform arbitrary C/C++ programs into fault-resilient
ones. This includes efforts to develop static analysis meth-
ods that identify patterns suitable for fault-resilient trans-
formation; their implementation in the OpenImpact back-
end [1]; and development of a hybrid method that meshes
our fault-resilient techniques with conventional duplica-
tion. We have obtained a copy of the SWIFT enhancements
[16] to OpenImpact, which will allow us to directly com-
pare with the EDDI and SWIFT approaches.

7. Conclusion
In this paper, we assessed the benefits of inherently error-

detecting and optionally error-correcting data representa-
tions on the software side. Programming patterns that ex-
hibit properties for inherent detection of transient faults
have been identified and compared with techniques relying
on instruction duplication for error detection. We have de-



veloped a framework to verify that the patterns presented
and are able to successfully detect an SEU on the programs
data segments. The framework has also been used to study
the time and space impact of EDDI-like transformations on
the patterns discussed in the paper.

Initial results show that inherently error detecting pat-
terns perform better, not just in terms of execution time but
also in terms of code size, compared to techniques that use
instruction duplication. Our continuing work is currently fo-
cusing on the implementation of these patterns in the Open-
Impact compiler backend.
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