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Abstract 

Developing software systems in heavily regulated 
industries requires methods to ensure systems comply 
with regulations and law. An algorithm to generate 
finite state machines (FSM) from stakeholder rights 
and obligations for compliance monitoring is 
proposed. Rights and obligations define what people 
are permitted or required to do; these rights and 
obligations affect software requirements and design. 
The FSM allows stakeholders, software developers and 
compliance officers to trace events through the 
invocation of rights and obligations as pre- and post-
conditions. Compliance is monitored by instrumenting 
runtime systems to report these events and detect 
violations. Requirements and software engineers 
specify the rights and obligations, and our algorithm 
performs three supporting tasks: 1) identify 
ambiguities, 2) balance rights with obligations, and 3) 
generate finite state machines. Preliminary validation 
of the algorithm includes FSMs generated from U.S. 
healthcare regulations and tool support to parse these 
specifications and generate the FSMs. 

1. Introduction 
Automated Software Engineering is concerned with 

automating tasks within and across the software 
development lifecycle. Software requirements are one 
of the first artifacts to enter this lifecycle. Due to their 
informal conception through natural language, they are 
difficult to manipulate and integrate directly into the 
verification and testing of large software systems – the 
goal of requirements monitoring. In highly regulated 
industries within the United States, such as healthcare 
and finance, requirements monitoring is necessary to 
ensure systems comply with regulations and law. We 
propose an algorithm for automatically generating 
finite state machines (FSM) from semantic models of 
stakeholder rights and obligations. We illustrate our 
algorithm using model specifications extracted from 
the Privacy Rule in the U.S. Health Insurance 
Portability and Accountability Act (HIPAA) [13].  

The FSMs correlate real world events (inputs and 
outputs) to stakeholder rights and obligations (states). 
To evaluate risk and compliance, software developers 

can map these events to requirements and design 
specifications.  Systems developers can use these event 
mappings to focus their verification efforts on those 
components most at-risk for non-compliance. After 
deployment, the FSMs can operate as compliance 
monitors by instrumenting software components to 
provide records of these events. As systems evolve to 
adapt to new organizational needs, these monitors 
ensure that new changes to existing software systems 
continue to operate within the regulatory framework of 
stakeholder rights and obligations. 

It is estimated that healthcare organizations will 
spend $17.6 billion over the next few years to bring 
their systems and procedures into compliance with the 
HIPAA [19]. Existing guidelines and standards not 
only fail to provide specific solutions, but also make 
compliance a significant challenge. According to a 
Ernst & Young survey of executives in over 1,300 
international organizations, compliance with 
regulations and policy surpassed worms and viruses as 
the primary driver of information security policy 2005 
[10]. The consequence of not complying with 
regulations is now forefront for those responsible for 
assuring that software systems containing sensitive 
information remain secure and protected. 

The remainder of this paper is organized as follows: 
Section 2 reviews related work; Section 3 introduces 
the algorithm to generate compliance monitors; Section 
4 presents the results of applying the algorithm to 
rights and obligations extracted from the HIPAA 
Privacy Rule [15]; Section 5 discusses limitations and 
future work, with our conclusion in Section 6. 

2. Related Work 
This section discusses approaches that model 

regulations, requirements and scenarios, that perform 
consistency and model checking, and approaches to 
requirements monitoring. It is important to stress that 
requirements are limited to the scope of software 
systems, whereas stakeholder rights and obligations (as 
expressed in law) govern the broader scope of business 
processes. Although requirements-based methods 
generally assume a degree of system control that 
cannot be assumed in a complete compliance 



framework, these methods are highly relevant to the 
specification of stakeholder rights and obligations as 
requirements.  

Much work has focused on modeling regulations in 
artificial intelligence [16, 22, 23, 24]. Sherman 
developed Prolog models from the Income Tax Act of 
Canada [24]. Sergot et al. have conducted similar case 
studies, developing logic programs from the British 
Nationality Act [22] and the Indian Central Service 
Pension rules [23]. These logic programs abstract rule 
elements as predicates to evaluate regulations. Our 
general approach has been to further decompose these 
predicates into semantic models [4, 5, 7]. We leverage 
this decomposition to align rights and obligations 
along shared events (see Section 3.3.2). Alternatively, 
Kerrigan and Law propose a system that provides 
question-answering assistance with environmental 
regulations modeled in first-order logic [16]. In 
addition to requirements monitoring, we believe our 
monitors can be used to answer compliance-related 
design questions based on risk. 

In requirements engineering, relevant approaches 
include those to model policies [5], regulations [12] 
and stakeholder goals [17]. The notation developed 
from our previous work modeling privacy policies in 
healthcare and finance [5] is used to specify semantic 
models in the algorithm proposed in this paper. In 
addition, Giorgini et al. present Secure Tropos (ST), a 
formal framework for modeling security requirements 
applied to Italian privacy regulations [12]. ST 
distinguishes between rights or permissions (at-most) 
and obligations (at-least) in the context of delegation. 
ST employs Datalog to perform model checking and 
find inconsistencies. Our work complements their 
framework by providing new insight into how rights 
and obligations are conditioned on shared events. 
Landtsheer et al. show how to map KAOS goal models 
into Software Cost Reduction (SCR) specifications 
amenable to event-based model checking [17]. Goals 
are prescriptive actions of intent whose satisfaction 
may require agent cooperation. Like goals, our work 
with rights and obligations also express stakeholder 
intent yet within the expressed confines of regulations 
and normative theory.  

Sutcliffe et al. and Maiden describe a partially 
automated method to generate scenarios using use 
cases and object system models [18, 26]. Maiden 
defines object system models as patterns of 
requirements that include attributes for agents, actions, 
objects, and pre-conditions, among others. Our 
approach differs in that our compliance monitors 
derive event sequences from regulations whereas use 
cases are generally elicited from stakeholders. 
Furthermore, we intend our FSMs to be used in 
verifying requirements in post-deployed systems, 

whereas Maiden’s scenarios were intended to be used 
in requirements validation. 

We distinguish aspects of our approach from those in 
consistency and model checking [1, 3, 8, 13]. 
Heitmeyer et al. propose consistency checking as a 
formal method to statically identify ambiguities in 
requirements specifications [13]. We perform static 
checks on semantic models to identify ambiguities and 
further balance rights with obligations and call this 
process consistency checking. However, model 
checking seeks to assert formal properties across model 
states and has been applied to requirements 
specifications to: check safety properties using 
temporal logic [1]; reduce the number of model states 
using abstraction [3]; and derive FSM from design 
flow graphs (DFG) to check consistency between 
requirements and design [8]. A future goal of our work 
includes applying model checking techniques to the 
generated FSMs. 

In requirements monitoring, various approaches use 
different techniques to specify and deploy 
requirements monitors. Among these, we recognize the 
need to: provide a generalized interface to query 
assumptions at runtime [9]; model relationships 
between events to distinguish between expected and 
recorded system behavior [25]; and align requirements 
monitoring with design methodologies [21]. Our 
approach seeks to accommodate these needs by 
generating FSMs for event-based compliance 
monitoring and to evaluate design decisions based on 
risk and compliance costs. On the other hand, Peters 
and Parnas discuss design issues for requirements 
monitors in real-time systems such as real-time 
notification under discrete-time sampling, sample 
quantization to measure error, and non-determinism 
[20]. However, the U.S. federal regulations we 
analyzed in healthcare did not exhibit these issues. 

Fickas et al. describe a case study in which 
ephemeral requirements are modeled as finite state 
automata in the Promela language and monitored using 
a web service called Emu [11]. Ephemeral or personal 
requirements are difficult to monitor because the 
system environment is beyond the scope of reasonable 
control [11]. For example, advancing from one state to 
another may require an indefinite human response. The 
same limitation exists in compliance monitoring since 
not all regulations are implementable within the scope 
of software systems. However, due to diversity in 
regulated industries, it is infeasible for the law to 
prioritize implementing regulations based on factors 
such as available technology, business value or costs. 
Therefore, we believe all regulations should appear in 
the scope of compliance monitors, so as organizations 
evolve, they can evaluate their individual non-
compliance risks against these factors.  



3. Generating Compliance Monitors 
The algorithm to generate compliance monitors (see 

Figure 1) accepts semantic models of regulations [7] as 
input and produces finite state machines (FSMs) as 
output in two phases: (1) a consistency checking phase 
to identify ambiguities and balance rights with 
obligations; and (2) a generation phase to produce the 
states-event and transition tables comprising the FSMs.  

 
Figure 1: Algorithm Process Overview 

 

We now describe in detail the inputs and outputs to 
the algorithm in Section 3.1 before proceeding to 
discuss the first and second phases in Sections 3.2 and 
3.3, respectively. 

3.1. The Input and Output 
We now discuss the algorithm’s inputs and outputs. 

All examples employed below are derived from the 
HIPAA Privacy Rule [15]. 

 

3.1.1. Input. Requirements and software engineers 
provide semantic models of regulations as inputs to the 
algorithm. These semantic models describe rights, 
obligations or constraints: a right is an action a 
stakeholder is permitted to perform; an obligation is an 
action a stakeholder is required to perform; and a 
constraint describes either a state-of-being or past 
event that is a pre-condition to a right or obligation. 
Each right and obligation is defined by a pair (M, E) 
for a semantic model M of a right Rx or obligation Ox 
for an index x and a logical expression E comprised of 
individual semantic models of constraints C1…Cn 
using logical operators (and, or, not).  

We have developed a methodology that engineers 
can use to extract these models from policy and 
regulation text [7]. The methodology, which was 
developed from a pilot study [6] and a summative case 
study [7], employs a process called Semantic 
Parameterization to derive the models from restricted 
natural language statements [4, 5]. To illustrate, 
consider the restricted statements below, extracted 
from the HIPAA Privacy Rule, for the obligation pairs 
(O4.10, C1 ∧ C2) and (O4.11, C1 ∧ ¬ C2) in which a 
covered entity (CE) provides protected health 
information (PHI) to the individual: 

 

C1: The individual requests to access PHI in a 
format. 

C2: The requested format is readily available. 
 

O : The CE must provide the individual with access 
to PHI in the requested format.  

4.10

O : The CE must provide the individual with access 
to PHI in a readable hard copy format.

4.11

 

The obligation O4.10 requires the CE to provide access 
to PHI in the requested format if the individual 
requests the format (C1) and the format is available 
(C2). Otherwise, the obligation O4.11 requires the CE to 
provide access to PHI in a readable hard-copy format. 

Semantic models are expressed in the KTL notation 
[5], which uses two relations: (1) the alpha relation 
 α(x, y), where x{y} reads “x has y” and y:x reads “y of 
x” and (2) the delta relation δ(x, y), where x[y] and y=x 
reads “x is y.” Symbols in semantic models are 
restricted to one part-of-speech from nouns, adjectives, 
verbs and adverbs; articles and prepositions are not 
allowed. Symbols preceded by an exclamation point 
are negated, while symbols preceded by a question 
mark are query variables. Using unification [2], models 
can be used to query other models [5] –– a procedure 
that is invoked throughout the algorithm. We use the 
term pattern to refer to model components that are 
formally defined by a query. 

The model for obligation O4.10 appears in Figure 2, 
expressed in the KTL notation. In Figure 2, symbols 
taken from the obligation statement appear in bold; all 
other symbols comprise the meta-model that is 
provided by the user or acquired from a template. 

 

 1 activity [ obligation ] { 
 2  subject = CE 
 3  action = provide 
 4  object = access { 
 5   subject = individual 
 6   action = access 
 7   object = PHI { 
 8    format [ requested ] 
 9   } 
 10  }  
 11  target = individual 
 12 } 

 

Figure 2: Example Semantic Model 
 

The algorithm discussed herein uses the activity 
pattern that requires the attributes subject, action and 
object [4, 5]. An instance of the activity pattern appears 
in Figure 2 for the activity (Line 1) and the access 
(Line 4) with the subject (Lines 2 and 5), action (Lines 
3 and 6) and object (Lines 4 and 7). For a model M 
matching the activity pattern with values assigned to 
the subject s, action a, and object o in the activity, we 
define the function T : M → 〈s, a, o〉 that maps M to a 
SAO-triple comprised of those values. For example, 



T(O4.10) = 〈CE, provide, access〉. The function T is 
implemented using static queries [5]. 

 

3.1.2. Output. The algorithm produces finite state 
machines as output in which each state indexes the 
rights and obligations for which stakeholders are 
accountable. To “reach a state” means to assign a right 
or obligation to a stakeholder; otherwise, the rights or 
obligations are considered to be unassigned. From each 
state, a stakeholder who is assigned a right may invoke 
that right and a stakeholder who is assigned an 
obligation must achieve or maintain that obligation. It 
is considered a violation of a right or obligation if the 
stakeholder cannot invoke an assigned right or cannot 
achieve or maintain an assigned obligation. An event is 
the performance of the entitled or obliged activity.  
This definition further elucidates the need for rights to 
balanced with obligations. 

Each state is connected by one or more transitions 
and each transition coincides with an event or state-of-
being. The pre-conditions to rights and obligations are 
in-transitions to states, whereas the act of invoking a 
right or achieving and maintaining an obligation is an 
out-transition from states. For the obligation pair (O4.10, 
C1 ∧ C2) from the earlier example in Section 3.1.1, we 
derive the following events: 

 

E1: The individual requests to access PHI in a 
format. 

E2: The requested format is readily available. 
E : The CE provides the individual with access to 

the PHI in the requested format.  
3

 

The constraint C1 maps to the event E1, the constraint 
C2 maps to the event E2 and the act of achieving the 
obligation O4.10 maps to the event E3. Since E1 and E2 
were derived from the constraints, they become in-
transitions to the state that indexes O4.10. The 
achievement E3 becomes an out-transition to that state. 

The state and transitions are illustrated in Figure 3.  

 
Figure 3: Example State with Transitions 

 

The conjunction C1 ∧ C2 maps to E1 ∧ E2 and appears 
as a bridge between the corresponding in-transitions. In 
all such figures, the transitions for events produced by 
invoking rights are illustrated using dotted lines 
whereas the transitions for events produced by 
achieving or maintaining obligations are illustrated 
using solid lines. 

We now describe the individual steps in the first 
and second phases of the algorithm in Sections 3.2 and 
3.3, respectively. 

3.2. Phase 1: Checking Model Consistency 
In the first phase of the compliance algorithm, 

semantic models are checked for ambiguities and 
transformed to balance rights with obligations. The 
procedure to perform these steps and their contribution 
to the second phase of the algorithm is discussed in 
each sub-section that follows. 

 

3.2.1. Identify Ambiguities. Semantic models use the 
activity pattern [4, 5], which has three co-requisite 
attributes: subject, action and object. These attributes 
must be specified in each activity because they are 
required to generate events in the second phase. We 
automatically detect these ambiguities by applying a 
query algorithm based on unification [2] that proceeds 
as follows: for each symbol x in a model M, if x is a 
type of activity then α (x, y) and δ (y, z) are true for 
some symbol z and y ∈{subject, action, object}. The 
algorithm compares each symbol in the model for these 
ambiguities and the user must resolve any ambiguities 
before proceeding to the next step. 

In addition to the symbol activity, other nouns are 
types of activities such as a request, denial, review, 
agreement, etc. For these nouns, the action is implied 
by the noun (e.g., the action agree is implied by the 
noun agreement) and the user maintains a list of these 
nouns for use in the algorithm. Based on our prior 
work analyzing policies in healthcare and finance [4, 
5], it is reasonable to expect many of these nouns are 
generalizable across domains. For example, in Figure 2 
(above) if the object access (Line 4) were specified 
without the object PHI (Line 7), the algorithm would 
detect this ambiguity during this step and require the 
user to complete the specification. 

 

3.2.2. Balance Rights with Obligations. Rights and 
obligations are balanced by identifying their implied 
rights and obligations. Implied rights or obligations 
may not be directly expressed but they are necessary to 
satisfy expressed rights and obligations. For this 
reason, they are logically derived from the expressed 
rights and obligations and we provide patterns to do so.  

Balancing is automated for four cases including 
where rights or obligations are implied by (1) 
delegations, (2) direct provisions, (3) indirect 
provisions, and (4) an act where a stakeholder is 
expressly not obliged, called an anti-obligation [7]. 
Each case uses a transformation comprised of a unique 
query to match the input model and identify relevant 
values that are in turn mapped into an output model 
describing the implied right or obligation. For 



example, consider the delegation right R6.3 balanced by 
implied obligation OR-6.3: 

 

R6.3:  The CE may require an individual to request in 
writing that the CE amend their PHI. 

OR-6.3: The individual must request that the CE amend 
their PHI in writing. 

 

In Figure 4, the right R6.3 (Lines 1–15) and the 
implied obligation OR-6.3 (nested in Lines 4–14) is 
extracted as a separate obligation (Lines 16–25). In 
general, the transformation uses a unique query to 
recognize the actions permit and require as delegation 
verbs in which the object of the delegation is always 
the implied right or obligation, respectively. 
Consequently, for the action require (Line 3) the 
activity (Lines 4–14) is identified as an implied 
obligation (Line 16–25). 

 

 1 activity [ right ] { 
 2  subject = CE 
 3  action = require 
 4  object = activity { 
 5   subject = individual  
 6   action = request 
 7   object = activity { 
 8    subject = CE 
 9    action = amend 
 10    object = PHI : individual 
 11   } 
 12   instrument = writing 
 13   target = CE 
 14  } 
 15 } 

 

 16 activity [ obligation ] { 
 17  subject = individual 
 18  action = request 
 19  object = activity { 
 20   subject = CE 
 21   action = amend 
 22   object = PHI : individual 
 23  } 
  24  instrument = writing 
 25 } 

 

 Figure 4: Right Balanced with an Obligation 
 

Direct and indirect provisions are also balanced using 
transformations that rely on a unique query to identify 
and automatically resolve these cases [7]. 

In the fourth case, anti-obligations describe actions 
that stakeholders are not required to perform. In this 
case, the stakeholder’s implied right is to choose 
whether or not to perform that action. Anti-obligation 
models are expressed using a negated obligation 
symbol and balanced by replacing the negated 
obligation symbol with a right symbol. These symbols 
appear in square brackets after the activity symbol at 
the head of each semantic model for anti-obligations. 

We define the balancing function B : M→ M*
  that 

maps a model M to a set of models M* that is equal to: 

{M} if M is not unbalanced for cases 1–4; {M} ∪ 
{M1...Mn} if M is unbalanced for cases 1–3 and the 
models M1..Mn are accumulated from applying the 
transformations for each case; or {M′ } if M is 
unbalanced for case 4 in which the model M′ (a right) 
replaces the model M (an anti-obligation). In this step, 
we apply the function B to the set of input models to 
balance rights and obligations as necessary. 

Balancing rights and obligations requires special 
handling for constraints in the rule pair (M, E) for each 
case 1–4. For delegations and indirect provisions, the 
balanced right or obligation will produce a new rule 
pair (M′, (e)) where the new right or obligation M′ is 
conditioned on the invocation of the original delegation 
M that occurs in the event e. For direct provisions and 
anti-obligations, the new rule pair (M′, E) uses the 
same constraint expression E, because these cases 
model the same rule but from a different stakeholder 
perspective [7]. 

In the second phase, we see how events generated 
from implied rights and obligations correspond to the 
pre-conditions of other rights and obligations. 
Balancing rights and obligations ensures these 
dependent events in pre-conditions are accounted for.  

3.3. Phase 2: State Machine Generation 
In the algorithm’s second phase, two tables are 

generated: (1) the state-event table is generated by 
querying the semantic models from the first phase; and 
(2) the transition table is generated by iterating 
constraints and entries in the state-event table. Both 
steps are discussed in detail below. 

 

3.3.1. Generate States and Events. In the first step, 
we populate the state-event table by querying semantic 
models. Entries in the state-event table have four 
fields, including a unique index for the state or event 
and a SAO-triple with subject, action and object.  

To populate the table from rights, obligations and 
their constraints, recall from Section 3 we introduced 
the function T(M) to generate the SAO-triple from a 
semantic model M. In this step, we define the 
recurrence relation T(o) for the object o ∈ T(M), 
whenever the object o is a type of activity. We ensured 
T(o) is well-defined by disambiguating activities in 
Section 3.2.1. In addition, we introduce a similar 
function T′(M) to extract one of two possible SAO-
triples conveying the regulation’s authority over the 
stakeholder: T′(M) = 〈Rule, permit, T(M)〉 for a model 
M of a right; and T′(M) = 〈Rule, require, T(M)〉 for a 
model M of an obligation. In both cases, the subject of 
the triple is the regulation, identified by the Rule, 
whose authority is described by the action, either 
permit or require. Consider the example obligation 
model O6.3 in Figure 5, below. 



 

  1 activity [ obligation ] { 
 2  subject = CE 
 3  action = provide 
 4  object = denial [ written ] { 
 5   subject = CE  
 6   action = deny 
 7   object = request { 
 8    subject = Individual 
 9    action = request 
 10    object = amendment { 
 11     subject = CE 
 12     action = amend 
 13     object = PHI 
 14    } 
 15   } 
 16  } 
 17  target = Individual 
 18 } 

 

 Figure 5: Example Recurrence for SAO-triple 
 

The model is an obligation (Line 1) that requires 
“the CE provide the individual with a written denial to 
their request for amendment to PHI.” Consequently, 
the function T′(M) = 〈Rule, require, T(M)〉 and T(M) = 
〈CE, provide, T(denial)〉. Note how the object is an 
activity (denial on Line 4) thus leading to the 
subsequent recurrence T(denial) in T(M). For now we 
ignore attributes other than those involved in the SAO-
triple such as the target in Line 13. Applying functions 
T′(M) and T(M) yields the entries in Table 1. 

 

Table 1: Example State-Event Table 
 

Index Subject Action Object 
O6.3 Rule require  E1
E1 CE provide  E2
E2 CE deny  E3
E3 Individual request  E4
E4 CE amend  PHI 

 

In the state-event tables, states are entries where the 
subject is the Rule and all other entries are events. Note 
a state is either a right or an obligation depending on 
the value in the action field, either permit or require, 
respectively. Successive uses of the same subject, 
action and object fields will reuse the first index to that 
triple. Table entries for constraints are produced using 
only the function T(M) and recurrence when 
applicable. For example, the right O6.3 has the 
constraint “the CE denies an individual’s request to 
amend PHI” in which the function T applied to the 
model yields an event equivalent to event E2. 

 

3.3.2. Generate Transitions. In the second step, we 
populate the transition table by generating transitions 
using events from the first step in phase two. The 
transition table has four fields: the set number shared 
by constraints in a conjunction; the source state from 
which the transition leads out; the event used to 

generate the transition; and the target state to which the 
transition leads in.  

Each right and obligation state has the following 
transitions: in-transitions generated for events that 
were derived from pre-conditions; out-transitions 
generated from the event in the object field for states in 
the state table; and, if the state is an obligation, 
transitions for the negation of the event in the object 
field of the state table. For obligations, the negation of 
the event always leads to a non-compliant state (NC) 
for violating the obligation. For rights, the target state 
of this transition is unspecified. Continuing with the 
example from Section 3.3.1, we generate the 
transitions for obligation O6.3 in Table 2. 

 

Table 2: Example Transition Table 
 

Set Source Event Target 
1   E2 O6.3
2 O6.3  E1  
3 O6.3 ¬ E1 NC6.3

 

The in-transition (first row) to O6.3 corresponds with 
the constraint on O6.3 and the out-transition (second 
row) corresponds with the object from the state O6.3 = 
〈Rule, require, E1〉 in Table 1. The transition to the 
non-compliant state (third row) must eventually be 
conjoined with a time-out event or deadline to 
complete this monitor. The graphic illustration of this 
monitor appears in Figure 6. 

 
Figure 6: Example Compliance Monitor 

 

After the state-event and transition tables have been 
generated, one can derive a combined compliance 
monitor by pairing in- and out-transitions to connect 
states. The combined compliance monitor more 
effectively illustrates the interactions between rights 
and obligations.  We present such a graphic in Section 
4 as an application of the algorithm. 

4. Results from HIPAA Privacy Rule 
In a previous case study [7], we derived semantic 

models from rights, obligations and constraints that 
were extracted from the Privacy Rule [15] – a U.S. 
federal regulation for the HIPAA [14]. The Rule 
governs use and disclosure of patient healthcare 
information. Based on our discussions with CSOs, 
CISOs and CPOs, companies prioritize compliance 
with those regulations most likely to interface with the 



public and consumers. For this reason, we applied our 
algorithm to §164.520 – §164.526 in Subpart E of the 
Rule. We present results from §164.524 titled “Access 
of individuals to protected health information.” 

The analysis of §164.524 in the case study yielded a 
total of 20 rights, 26 obligations and 67 constraints. 
From these, the following rights and obligations are 
most relevant to generate the largest combined 
compliance monitor using the algorithm. The 
following acronyms are used: covered entity (CE), 
licensed healthcare professional (LHP), and protected 
health information (PHI). 

 

R4.1: The individual has a right to request access to 
their PHI. 

R4.3: The CE may deny an individual access to their 
PHI. (C1) 

R4.5: The individual may have a denial of requested 
access reviewed by an LHP. (C2) 

O4.1: The CE must permit an individual access to 
their PHI. (C3) 

O4.2: The CE must deny an individual access to their 
PHI. (C4) 

O4.3: The CE must permit an individual to request 
access to their PHI. 

O4.5: The CE must inform the individual that 
requested access is permitted. (C5) 

O4.7: The CE must inform the individual that the 
requested access was denied. (C2) 

O4.16: The CE must designate an LHP to review a 
denial of requested access. (C6) 

O4.18: The LHP must recommend that the CE permit or 
deny the individual access to PHI. (C7 ∧ C8) 

O4.19: The CE must inform the individual of the 
recommendation of the LHP. (C3 ∨ C4) 

 

Each right and obligation above is annotated with the 
logical expression of constraints (in parenthesis) from 
the following list: 

 

C1: The individual requests access to their PHI. 
C2: The CE denies requested access to PHI. 
C3: The LHP recommends the CE permit access. 
C4: The LHP recommends the CE deny access. 
C5: The CE permits the requested access to PHI. 
C6: The individual requires an LHP review a denial. 
C7: The CE designates the LHP to review a denial. 
C8: The LHP reviews the denial of access. 

 

For the purpose of this illustration, we highlight 
only those events that form transitions between states 
and we ignore constraints that only describe state-of-
being as they contribute no such events. As a result, the 
following state-event and transition tables are simply 
incomplete under the law but sufficient as an exemplar. 

In phase one (consistency checking), step one, the 
algorithm identified several ambiguities in the original 
semantic models for rights, obligations and constraints. 
To resolve these ambiguities, the user was required to 
specify 37 subjects, 35 actions and 32 objects to 
disambiguate activities in the semantic models. 

In step two, the algorithm balanced two rights and 
one obligation. The rights R4.1 and R4.5 and the 
obligation O4.3 were balanced with new models OR-4.1, 
OR-4.5 and RO-4.3, respectively. Since OR-4.1 ≈ O4.3 and 
R4.1 ≈ RO-4.3, the right R4.1 balanced directly with O4.3, 
which means OR-4.1 and RO-4.3 were not new 
contributions. However, the right R4.5 only balances 
with obligation OR-4.5 requiring the LHP to review 
denials of requested access, so OR-4.5 is a new 
contribution. 

In phase two (FSM generation), step one, the states 
and events were generated (see Table 3). There were 
17 instances where events previously entered into the 
table were reused. 

 

Table 3: State-Event Table for HIPAA §164.524 
 

Index Subject Action Object 
R4.1 Rule permit  E1
E1 Individual request  E2
E2 Individual access  PHI 
R4.3 Rule permit  E3
E3 CE deny  E2
R4.5 Rule permit  E4
E4 Individual require  E5
E5 LHP review  E3
OR-4.5 Rule require  E5
O4.1 Rule require  E6
E6 CE permit  E2
E7 LHP recommend  E6
O4.2 Rule require  E3
E8 LHP recommend  E3
O4.3 Rule require  E9
E9 CE permit  E1
O4.5 Rule require  E10
E10 CE inform  E6
O4.7 Rule require  E11
E11 CE inform  E3
O4.16 Rule require  E12
E12 CE designate  LHP 
O4.18 Rule require  E7
O4.18 Rule require  E8
O4.19 Rule require  E13
E13 CE inform  E7
O4.19 Rule require  E14
E14 CE inform  E8
 

The generated transitions from step two appear in 
Table 4. The in-transitions were generated from 
constraints (Sets 1–11). The out-transitions were 
generated from the object value of states (Sets 12–25), 
the alternate transitions from rights (Sets 26–30) and 
the transitions from states to non-compliant states (Sets 
31–40) all from Table 3.  

We illustrate the combined compliance monitor in 
Figure 7. The transitions from obligations to non-
compliant states and the alternate transitions for rights 
that do not align with existing states have been 



omitted. Unspecified states appear as clouds with 
events E10, E11, E13 and E14 leading to such states. 

 

Table 4: Transition Table for HIPAA §164.524 
 

Set Source Event Target 
1   E1 R4.3
2   E3 R4.5
3   E4 OR-4.5
4   E3 O4.7
5   E3 O4.16
6   E7 O4.1
7   E7 O4.19
8   E8 O4.2
9   E8 O4.19

10   E6 O4.5
11   E12 O4.18
11   E5 O4.18
12 R4.1  E1  
13 R4.3  E3  
14 R4.5  E4  
15 OR-4.5  E5  
16 O4.1  E6  
17 O4.2  E3  
18 O4.3  E9  
19 O4.5  E10  
20 O4.7  E11  
21 O4.16  E12  
22 O4.18  E7  
23 O4.18  E8  
24 O4.19  E13  
25 O4.19  E14  
26 R4.1 ¬ E1  
27 R4.3 ¬ E6  
28 R4.3 ¬ E3  
29 R4.5 ¬ E4  
30 OR-4.5 ¬ E5  
31 O4.1 ¬ E3 NC4.1

32 O4.2 ¬ E6 NC4.2

33 O4.3 ¬ E9 NC4.3

34 O4.5 ¬ E10 NC4.5

35 O4.7 ¬ E11 NC4.7

36 O4.16 ¬ E12 NC4.16

37 O4.18 ¬ E7 NC4.18

38 O4.18 ¬ E8 NC4.18

39 O4.19 ¬ E13 NC4.19

40 O4.19 ¬ E14 NC4.19
 

Figure 7 makes it easier to recognize important 
aspects of the combined compliance monitor. For 
example, the unconditional rights and obligations such 
as O4.3 have no in-transitions. Rights or obligations that 
immediately follow unconditional obligations, like 
right R4.1, are consequently unconditional, unless the 
stakeholder violates the preceding obligation. In 
addition, loops on states for obligations require 
stakeholders to maintain that state. For example, based 
on obligation O4.18, if the LHP determines the CE 

should not provide access (via E8, bottom center), then 
the CE must deny access (via E3 and the loop at O4.2).  

 

 
 

Figure 7: Combined Compliance Monitor  
 

Rights that provide stakeholders choices are also 
easier to visualize. For example, in state R4.3, the CE 
has a choice: (1) they can deny the requested access via 
E3, in which case they must (a) inform the individual 
via O4.7 and (b) provide the right to review via R4.5; or 
(2) they can permit the requested access, in which case 
they must inform the individual via O4.5. 

Rights and obligations assigned through delegation 
are clearly shown. For example, the obligation 
requiring the CE to permit the individual to request 
access (the path O4.3 → E9 → R4.1 → E1) is distinct 
from the right permitting the individual to require an 
LHP to review a denial (the path R4.5 → E4 → OR-4.5 → 
E5). However, the graphic does not clearly distinguish 
between rights to obligate other stakeholders and 
obligations that follow from invoking a stakeholder 
right, such as the path R4.3 → E6 → O4.5 → E10.  

5. Discussion and Future Work 
Before discussing why the compliance algorithm 

works and therefore which compliance scenarios are 
likely to benefit most from this algorithm, we quickly 
address the current limitations. 

In phase two, step one in Section 3.3.1, the 
algorithm must determine if two events are equivalent 
in order to reuse shared events. In this study, we only 
used the SAO-triple to compare events and identify 
duplicates; however, two different events can have the 



same SAO-triple. For example, two similar requests to 
two different recipients or a repeated event with 
disjoint temporal constraints could both have the same 
subject, action, and object. We propose addressing this 
problem by comparing the semantic model sub-
components used to generate the events instead of the 
SAO-triple, since they will have the necessary 
information to distinguish these events – including any 
temporal constraints. 

In phase two, step two in Section 3.3.2, the set 
number is sufficient to assign transitions to logical 
conjunctions or disjunctions. However, we encountered 
the need to support exclusive-or on the out-transitions 
for obligations (see O4.18 in Section 4) as a convenience 
to stakeholders. The consequences of exclusive-or on 
out-transitions impacts how transitions to non-
compliant states are generated. For example, for the 
events A and B, the out-transitions for an obligation in 
the expression (A ∧ ¬B) ∨ (¬A ∧ B) only require a 
transition to a non-compliant state for (¬A ∧ ¬B) and 
not for ¬A independent of ¬B. 

5.1. Why it works? 
Why the algorithm consistently generates FSMs 

from semantic models of rights and obligations is not 
at first obvious. We can answer this question in more 
detail by examining the underlying principal in the 
SAO-triple and appealing to the structure of the 
recurrence tree. Recall from Section 3.3.2 the function 
T(M) for a semantic model M and the recurrence T(o) 
for o ∈ T(M). Figure 8 illustrates the recurrence tree 
generated from events selected from the results in 
Section 4. The recurrence tree is rooted at the base 
triple 〈Individual, access, PHI〉. Arrows point from 
parent to child triples; children have the parent’s index 
in the recurrence of the object field. 

The recurrence only occurs in an SAO-triple when 
the action is a transitive-verb whose object is another 
activity; this is a unique case in semantic models [5]. In 
environments where stakeholders react to the actions of 
other stakeholders, these recurrences capture the object 
of that reaction: another activity. In the recurrence tree, 
stakeholder reactions map to triples where the 
stakeholder is the subject of that triple and the triple 
appears as a child node of the event to which they are 
reacting.  

Regulations in these environments define which of 
these (re)actions are required or permitted. In the 
recurrence tree, regulations map to triples that appear 
as children of the actions they govern – these children 
are also leaves in the tree. The algorithm literally 
unravels stakeholder reactions and governing 
regulations to generate the pool of events that concern 
stakeholders. The algorithm binds regulations to states, 
recognizing that the event of performing the governed 

action is an event that maps to an out-transition. In the 
recurrence tree, these events appear as the parents of 
regulation triples. Furthermore, regulated actions are 
pre-conditioned on other events that map to in-
transitions on a state. When the regulation governs a 
reaction to an event produced by another regulation, 
these regulations become aligned in a compound 
compliance monitor. Consequently, the algorithm is 
most effective in highly regulated environments with 
complex stakeholder interactions – environments 
where tools such as this are needed most because the 
complexity of stakeholder interactions is greater and 
the cost of non-compliance may be severe. 

 

 
 

Figure 8: Recurrence Tree for SAO-triple. 
 

5.2. Risk and Compliance 
Future work includes integrating the compliance 

monitors produced by the algorithm into runtime 
systems. In addition, there is the need to evaluate risk 
and compliance associated with the decision to 
implement a right or obligation in systems. Risk is the 
probability that a regulation will be violated by a 
business or system process. For each right or 
obligation, calculating risk requires knowing the 
frequencies of events that pre-condition, satisfy or 
violate the right or obligation. Furthermore, risk must 
also factor in the penalty or cost of violating a right or 
obligation. For rights or obligations with a high 
penalty, frequent violation or with frequent satisfaction 
of pre-conditions, there is a higher priority to 
implement system processes to prevent violation and 
monitor compliance at runtime.  

For example, in Figure 7 in Section 4, the individual 
is given the right to request access to PHI via right R4.1 
and, if denied that access, they receive the right to have 
an LHP review the denial via right R4.5. The review 
involves a complex set of stakeholder interactions 
between the obligations of the LHP and CE and the 
rights of the individual. If individuals rarely exercise 
right R4.5, the cost of implementing these obligations in 
systems may be incommensurate with the frequency of 
violations due to human error in the business process. 
Since the compliance monitors can be aligned with 



both business and system processes, stakeholders can 
use these monitors to design and develop software 
systems commensurate with risk and compliance costs. 

6. Conclusion 
We present an algorithm for generating finite state 

machines (FSMs) from stakeholder rights and 
obligations that are extracted from policies and 
regulations. The algorithm has been applied and 
validated to date within the context of U.S. health 
regulation (HIPAA).  The FSMs can be used to 
evaluate design decisions in terms of risk and monitor 
compliance in runtime systems. The user only provides 
semantic models to the algorithm, after which the 
algorithm proceeds in two phases to: (1) perform 
consistency checking to identify ambiguities and 
balance rights with obligations; and (2) generate the 
FSM in state-event and transition tables.  
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