
An Algorithm to Generate Compliance Monitors from Regulations

Travis D. Breaux and Annie I. Antón
Department of Computer Science
North Carolina State University

{tdbreaux, aianton}@eos.ncsu.edu

Abstract

Developing software systems in heavily regulated
industries requires methods to ensure systems comply
with regulations and law. An algorithm to generate
finite state machines (FSM) from stakeholder rights
and obligations for compliance monitoring is
proposed. Rights and obligations define what people
are permitted or required to do; these rights and
obligations affect software requirements and design.
The FSM allows stakeholders, software developers and
compliance officers to trace events through the
invocation of rights and obligations as pre- and post-
conditions. Compliance is monitored by instrumenting
runtime systems to report these events and detect
violations. Requirements and software engineers
specify the rights and obligations, and our algorithm
performs three supporting tasks: 1) identify
ambiguities, 2) balance rights with obligations, and 3)
generate finite state machines. Preliminary validation
of the algorithm includes FSMs generated from U.S.
healthcare regulations and tool support to parse these
specifications and generate the FSMs.

1. Introduction
Automated Software Engineering is concerned with

automating tasks within and across the software
development lifecycle. Software requirements are one
of the first artifacts to enter this lifecycle. Due to their
informal conception through natural language, they are
difficult to manipulate and integrate directly into the
verification and testing of large software systems – the
goal of requirements monitoring. In highly regulated
industries within the United States, such as healthcare
and finance, requirements monitoring is necessary to
ensure systems comply with regulations and law. We
propose an algorithm for automatically generating
finite state machines (FSM) from semantic models of
stakeholder rights and obligations. We illustrate our
algorithm using model specifications extracted from
the Privacy Rule in the U.S. Health Insurance
Portability and Accountability Act (HIPAA) [13].

The FSMs correlate real world events (inputs and
outputs) to stakeholder rights and obligations (states).
To evaluate risk and compliance, software developers

can map these events to requirements and design
specifications. Systems developers can use these event
mappings to focus their verification efforts on those
components most at-risk for non-compliance. After
deployment, the FSMs can operate as compliance
monitors by instrumenting software components to
provide records of these events. As systems evolve to
adapt to new organizational needs, these monitors
ensure that new changes to existing software systems
continue to operate within the regulatory framework of
stakeholder rights and obligations.

It is estimated that healthcare organizations will
spend $17.6 billion over the next few years to bring
their systems and procedures into compliance with the
HIPAA [19]. Existing guidelines and standards not
only fail to provide specific solutions, but also make
compliance a significant challenge. According to a
Ernst & Young survey of executives in over 1,300
international organizations, compliance with
regulations and policy surpassed worms and viruses as
the primary driver of information security policy 2005
[10]. The consequence of not complying with
regulations is now forefront for those responsible for
assuring that software systems containing sensitive
information remain secure and protected.

The remainder of this paper is organized as follows:
Section 2 reviews related work; Section 3 introduces
the algorithm to generate compliance monitors; Section
4 presents the results of applying the algorithm to
rights and obligations extracted from the HIPAA
Privacy Rule [15]; Section 5 discusses limitations and
future work, with our conclusion in Section 6.

2. Related Work
This section discusses approaches that model

regulations, requirements and scenarios, that perform
consistency and model checking, and approaches to
requirements monitoring. It is important to stress that
requirements are limited to the scope of software
systems, whereas stakeholder rights and obligations (as
expressed in law) govern the broader scope of business
processes. Although requirements-based methods
generally assume a degree of system control that
cannot be assumed in a complete compliance

framework, these methods are highly relevant to the
specification of stakeholder rights and obligations as
requirements.

Much work has focused on modeling regulations in
artificial intelligence [16, 22, 23, 24]. Sherman
developed Prolog models from the Income Tax Act of
Canada [24]. Sergot et al. have conducted similar case
studies, developing logic programs from the British
Nationality Act [22] and the Indian Central Service
Pension rules [23]. These logic programs abstract rule
elements as predicates to evaluate regulations. Our
general approach has been to further decompose these
predicates into semantic models [4, 5, 7]. We leverage
this decomposition to align rights and obligations
along shared events (see Section 3.3.2). Alternatively,
Kerrigan and Law propose a system that provides
question-answering assistance with environmental
regulations modeled in first-order logic [16]. In
addition to requirements monitoring, we believe our
monitors can be used to answer compliance-related
design questions based on risk.

In requirements engineering, relevant approaches
include those to model policies [5], regulations [12]
and stakeholder goals [17]. The notation developed
from our previous work modeling privacy policies in
healthcare and finance [5] is used to specify semantic
models in the algorithm proposed in this paper. In
addition, Giorgini et al. present Secure Tropos (ST), a
formal framework for modeling security requirements
applied to Italian privacy regulations [12]. ST
distinguishes between rights or permissions (at-most)
and obligations (at-least) in the context of delegation.
ST employs Datalog to perform model checking and
find inconsistencies. Our work complements their
framework by providing new insight into how rights
and obligations are conditioned on shared events.
Landtsheer et al. show how to map KAOS goal models
into Software Cost Reduction (SCR) specifications
amenable to event-based model checking [17]. Goals
are prescriptive actions of intent whose satisfaction
may require agent cooperation. Like goals, our work
with rights and obligations also express stakeholder
intent yet within the expressed confines of regulations
and normative theory.

Sutcliffe et al. and Maiden describe a partially
automated method to generate scenarios using use
cases and object system models [18, 26]. Maiden
defines object system models as patterns of
requirements that include attributes for agents, actions,
objects, and pre-conditions, among others. Our
approach differs in that our compliance monitors
derive event sequences from regulations whereas use
cases are generally elicited from stakeholders.
Furthermore, we intend our FSMs to be used in
verifying requirements in post-deployed systems,

whereas Maiden’s scenarios were intended to be used
in requirements validation.

We distinguish aspects of our approach from those in
consistency and model checking [1, 3, 8, 13].
Heitmeyer et al. propose consistency checking as a
formal method to statically identify ambiguities in
requirements specifications [13]. We perform static
checks on semantic models to identify ambiguities and
further balance rights with obligations and call this
process consistency checking. However, model
checking seeks to assert formal properties across model
states and has been applied to requirements
specifications to: check safety properties using
temporal logic [1]; reduce the number of model states
using abstraction [3]; and derive FSM from design
flow graphs (DFG) to check consistency between
requirements and design [8]. A future goal of our work
includes applying model checking techniques to the
generated FSMs.

In requirements monitoring, various approaches use
different techniques to specify and deploy
requirements monitors. Among these, we recognize the
need to: provide a generalized interface to query
assumptions at runtime [9]; model relationships
between events to distinguish between expected and
recorded system behavior [25]; and align requirements
monitoring with design methodologies [21]. Our
approach seeks to accommodate these needs by
generating FSMs for event-based compliance
monitoring and to evaluate design decisions based on
risk and compliance costs. On the other hand, Peters
and Parnas discuss design issues for requirements
monitors in real-time systems such as real-time
notification under discrete-time sampling, sample
quantization to measure error, and non-determinism
[20]. However, the U.S. federal regulations we
analyzed in healthcare did not exhibit these issues.

Fickas et al. describe a case study in which
ephemeral requirements are modeled as finite state
automata in the Promela language and monitored using
a web service called Emu [11]. Ephemeral or personal
requirements are difficult to monitor because the
system environment is beyond the scope of reasonable
control [11]. For example, advancing from one state to
another may require an indefinite human response. The
same limitation exists in compliance monitoring since
not all regulations are implementable within the scope
of software systems. However, due to diversity in
regulated industries, it is infeasible for the law to
prioritize implementing regulations based on factors
such as available technology, business value or costs.
Therefore, we believe all regulations should appear in
the scope of compliance monitors, so as organizations
evolve, they can evaluate their individual non-
compliance risks against these factors.

3. Generating Compliance Monitors
The algorithm to generate compliance monitors (see

Figure 1) accepts semantic models of regulations [7] as
input and produces finite state machines (FSMs) as
output in two phases: (1) a consistency checking phase
to identify ambiguities and balance rights with
obligations; and (2) a generation phase to produce the
states-event and transition tables comprising the FSMs.

Figure 1: Algorithm Process Overview

We now describe in detail the inputs and outputs to
the algorithm in Section 3.1 before proceeding to
discuss the first and second phases in Sections 3.2 and
3.3, respectively.

3.1. The Input and Output
We now discuss the algorithm’s inputs and outputs.

All examples employed below are derived from the
HIPAA Privacy Rule [15].

3.1.1. Input. Requirements and software engineers
provide semantic models of regulations as inputs to the
algorithm. These semantic models describe rights,
obligations or constraints: a right is an action a
stakeholder is permitted to perform; an obligation is an
action a stakeholder is required to perform; and a
constraint describes either a state-of-being or past
event that is a pre-condition to a right or obligation.
Each right and obligation is defined by a pair (M, E)
for a semantic model M of a right Rx or obligation Ox
for an index x and a logical expression E comprised of
individual semantic models of constraints C1…Cn
using logical operators (and, or, not).

We have developed a methodology that engineers
can use to extract these models from policy and
regulation text [7]. The methodology, which was
developed from a pilot study [6] and a summative case
study [7], employs a process called Semantic
Parameterization to derive the models from restricted
natural language statements [4, 5]. To illustrate,
consider the restricted statements below, extracted
from the HIPAA Privacy Rule, for the obligation pairs
(O4.10, C1 ∧ C2) and (O4.11, C1 ∧ ¬ C2) in which a
covered entity (CE) provides protected health
information (PHI) to the individual:

C1: The individual requests to access PHI in a
format.

C2: The requested format is readily available.

O : The CE must provide the individual with access
to PHI in the requested format.

4.10

O : The CE must provide the individual with access
to PHI in a readable hard copy format.

4.11

The obligation O4.10 requires the CE to provide access
to PHI in the requested format if the individual
requests the format (C1) and the format is available
(C2). Otherwise, the obligation O4.11 requires the CE to
provide access to PHI in a readable hard-copy format.

Semantic models are expressed in the KTL notation
[5], which uses two relations: (1) the alpha relation
 α(x, y), where x{y} reads “x has y” and y:x reads “y of
x” and (2) the delta relation δ(x, y), where x[y] and y=x
reads “x is y.” Symbols in semantic models are
restricted to one part-of-speech from nouns, adjectives,
verbs and adverbs; articles and prepositions are not
allowed. Symbols preceded by an exclamation point
are negated, while symbols preceded by a question
mark are query variables. Using unification [2], models
can be used to query other models [5] –– a procedure
that is invoked throughout the algorithm. We use the
term pattern to refer to model components that are
formally defined by a query.

The model for obligation O4.10 appears in Figure 2,
expressed in the KTL notation. In Figure 2, symbols
taken from the obligation statement appear in bold; all
other symbols comprise the meta-model that is
provided by the user or acquired from a template.

 1 activity [obligation] {
 2 subject = CE
 3 action = provide
 4 object = access {
 5 subject = individual
 6 action = access
 7 object = PHI {
 8 format [requested]
 9 }
 10 }
 11 target = individual
 12 }

Figure 2: Example Semantic Model

The algorithm discussed herein uses the activity
pattern that requires the attributes subject, action and
object [4, 5]. An instance of the activity pattern appears
in Figure 2 for the activity (Line 1) and the access
(Line 4) with the subject (Lines 2 and 5), action (Lines
3 and 6) and object (Lines 4 and 7). For a model M
matching the activity pattern with values assigned to
the subject s, action a, and object o in the activity, we
define the function T : M → 〈s, a, o〉 that maps M to a
SAO-triple comprised of those values. For example,

T(O4.10) = 〈CE, provide, access〉. The function T is
implemented using static queries [5].

3.1.2. Output. The algorithm produces finite state
machines as output in which each state indexes the
rights and obligations for which stakeholders are
accountable. To “reach a state” means to assign a right
or obligation to a stakeholder; otherwise, the rights or
obligations are considered to be unassigned. From each
state, a stakeholder who is assigned a right may invoke
that right and a stakeholder who is assigned an
obligation must achieve or maintain that obligation. It
is considered a violation of a right or obligation if the
stakeholder cannot invoke an assigned right or cannot
achieve or maintain an assigned obligation. An event is
the performance of the entitled or obliged activity.
This definition further elucidates the need for rights to
balanced with obligations.

Each state is connected by one or more transitions
and each transition coincides with an event or state-of-
being. The pre-conditions to rights and obligations are
in-transitions to states, whereas the act of invoking a
right or achieving and maintaining an obligation is an
out-transition from states. For the obligation pair (O4.10,
C1 ∧ C2) from the earlier example in Section 3.1.1, we
derive the following events:

E1: The individual requests to access PHI in a
format.

E2: The requested format is readily available.
E : The CE provides the individual with access to

the PHI in the requested format.
3

The constraint C1 maps to the event E1, the constraint
C2 maps to the event E2 and the act of achieving the
obligation O4.10 maps to the event E3. Since E1 and E2
were derived from the constraints, they become in-
transitions to the state that indexes O4.10. The
achievement E3 becomes an out-transition to that state.

The state and transitions are illustrated in Figure 3.

Figure 3: Example State with Transitions

The conjunction C1 ∧ C2 maps to E1 ∧ E2 and appears
as a bridge between the corresponding in-transitions. In
all such figures, the transitions for events produced by
invoking rights are illustrated using dotted lines
whereas the transitions for events produced by
achieving or maintaining obligations are illustrated
using solid lines.

We now describe the individual steps in the first
and second phases of the algorithm in Sections 3.2 and
3.3, respectively.

3.2. Phase 1: Checking Model Consistency
In the first phase of the compliance algorithm,

semantic models are checked for ambiguities and
transformed to balance rights with obligations. The
procedure to perform these steps and their contribution
to the second phase of the algorithm is discussed in
each sub-section that follows.

3.2.1. Identify Ambiguities. Semantic models use the
activity pattern [4, 5], which has three co-requisite
attributes: subject, action and object. These attributes
must be specified in each activity because they are
required to generate events in the second phase. We
automatically detect these ambiguities by applying a
query algorithm based on unification [2] that proceeds
as follows: for each symbol x in a model M, if x is a
type of activity then α (x, y) and δ (y, z) are true for
some symbol z and y ∈{subject, action, object}. The
algorithm compares each symbol in the model for these
ambiguities and the user must resolve any ambiguities
before proceeding to the next step.

In addition to the symbol activity, other nouns are
types of activities such as a request, denial, review,
agreement, etc. For these nouns, the action is implied
by the noun (e.g., the action agree is implied by the
noun agreement) and the user maintains a list of these
nouns for use in the algorithm. Based on our prior
work analyzing policies in healthcare and finance [4,
5], it is reasonable to expect many of these nouns are
generalizable across domains. For example, in Figure 2
(above) if the object access (Line 4) were specified
without the object PHI (Line 7), the algorithm would
detect this ambiguity during this step and require the
user to complete the specification.

3.2.2. Balance Rights with Obligations. Rights and
obligations are balanced by identifying their implied
rights and obligations. Implied rights or obligations
may not be directly expressed but they are necessary to
satisfy expressed rights and obligations. For this
reason, they are logically derived from the expressed
rights and obligations and we provide patterns to do so.

Balancing is automated for four cases including
where rights or obligations are implied by (1)
delegations, (2) direct provisions, (3) indirect
provisions, and (4) an act where a stakeholder is
expressly not obliged, called an anti-obligation [7].
Each case uses a transformation comprised of a unique
query to match the input model and identify relevant
values that are in turn mapped into an output model
describing the implied right or obligation. For

example, consider the delegation right R6.3 balanced by
implied obligation OR-6.3:

R6.3: The CE may require an individual to request in
writing that the CE amend their PHI.

OR-6.3: The individual must request that the CE amend
their PHI in writing.

In Figure 4, the right R6.3 (Lines 1–15) and the
implied obligation OR-6.3 (nested in Lines 4–14) is
extracted as a separate obligation (Lines 16–25). In
general, the transformation uses a unique query to
recognize the actions permit and require as delegation
verbs in which the object of the delegation is always
the implied right or obligation, respectively.
Consequently, for the action require (Line 3) the
activity (Lines 4–14) is identified as an implied
obligation (Line 16–25).

 1 activity [right] {
 2 subject = CE
 3 action = require
 4 object = activity {
 5 subject = individual
 6 action = request
 7 object = activity {
 8 subject = CE
 9 action = amend
 10 object = PHI : individual
 11 }
 12 instrument = writing
 13 target = CE
 14 }
 15 }

 16 activity [obligation] {
 17 subject = individual
 18 action = request
 19 object = activity {
 20 subject = CE
 21 action = amend
 22 object = PHI : individual
 23 }
 24 instrument = writing
 25 }

 Figure 4: Right Balanced with an Obligation

Direct and indirect provisions are also balanced using
transformations that rely on a unique query to identify
and automatically resolve these cases [7].

In the fourth case, anti-obligations describe actions
that stakeholders are not required to perform. In this
case, the stakeholder’s implied right is to choose
whether or not to perform that action. Anti-obligation
models are expressed using a negated obligation
symbol and balanced by replacing the negated
obligation symbol with a right symbol. These symbols
appear in square brackets after the activity symbol at
the head of each semantic model for anti-obligations.

We define the balancing function B : M→ M*
 that

maps a model M to a set of models M* that is equal to:

{M} if M is not unbalanced for cases 1–4; {M} ∪
{M1...Mn} if M is unbalanced for cases 1–3 and the
models M1..Mn are accumulated from applying the
transformations for each case; or {M′ } if M is
unbalanced for case 4 in which the model M′ (a right)
replaces the model M (an anti-obligation). In this step,
we apply the function B to the set of input models to
balance rights and obligations as necessary.

Balancing rights and obligations requires special
handling for constraints in the rule pair (M, E) for each
case 1–4. For delegations and indirect provisions, the
balanced right or obligation will produce a new rule
pair (M′, (e)) where the new right or obligation M′ is
conditioned on the invocation of the original delegation
M that occurs in the event e. For direct provisions and
anti-obligations, the new rule pair (M′, E) uses the
same constraint expression E, because these cases
model the same rule but from a different stakeholder
perspective [7].

In the second phase, we see how events generated
from implied rights and obligations correspond to the
pre-conditions of other rights and obligations.
Balancing rights and obligations ensures these
dependent events in pre-conditions are accounted for.

3.3. Phase 2: State Machine Generation
In the algorithm’s second phase, two tables are

generated: (1) the state-event table is generated by
querying the semantic models from the first phase; and
(2) the transition table is generated by iterating
constraints and entries in the state-event table. Both
steps are discussed in detail below.

3.3.1. Generate States and Events. In the first step,
we populate the state-event table by querying semantic
models. Entries in the state-event table have four
fields, including a unique index for the state or event
and a SAO-triple with subject, action and object.

To populate the table from rights, obligations and
their constraints, recall from Section 3 we introduced
the function T(M) to generate the SAO-triple from a
semantic model M. In this step, we define the
recurrence relation T(o) for the object o ∈ T(M),
whenever the object o is a type of activity. We ensured
T(o) is well-defined by disambiguating activities in
Section 3.2.1. In addition, we introduce a similar
function T′(M) to extract one of two possible SAO-
triples conveying the regulation’s authority over the
stakeholder: T′(M) = 〈Rule, permit, T(M)〉 for a model
M of a right; and T′(M) = 〈Rule, require, T(M)〉 for a
model M of an obligation. In both cases, the subject of
the triple is the regulation, identified by the Rule,
whose authority is described by the action, either
permit or require. Consider the example obligation
model O6.3 in Figure 5, below.

 1 activity [obligation] {
 2 subject = CE
 3 action = provide
 4 object = denial [written] {
 5 subject = CE
 6 action = deny
 7 object = request {
 8 subject = Individual
 9 action = request
 10 object = amendment {
 11 subject = CE
 12 action = amend
 13 object = PHI
 14 }
 15 }
 16 }
 17 target = Individual
 18 }

 Figure 5: Example Recurrence for SAO-triple

The model is an obligation (Line 1) that requires
“the CE provide the individual with a written denial to
their request for amendment to PHI.” Consequently,
the function T′(M) = 〈Rule, require, T(M)〉 and T(M) =
〈CE, provide, T(denial)〉. Note how the object is an
activity (denial on Line 4) thus leading to the
subsequent recurrence T(denial) in T(M). For now we
ignore attributes other than those involved in the SAO-
triple such as the target in Line 13. Applying functions
T′(M) and T(M) yields the entries in Table 1.

Table 1: Example State-Event Table

Index Subject Action Object
O6.3 Rule require E1
E1 CE provide E2
E2 CE deny E3
E3 Individual request E4
E4 CE amend PHI

In the state-event tables, states are entries where the
subject is the Rule and all other entries are events. Note
a state is either a right or an obligation depending on
the value in the action field, either permit or require,
respectively. Successive uses of the same subject,
action and object fields will reuse the first index to that
triple. Table entries for constraints are produced using
only the function T(M) and recurrence when
applicable. For example, the right O6.3 has the
constraint “the CE denies an individual’s request to
amend PHI” in which the function T applied to the
model yields an event equivalent to event E2.

3.3.2. Generate Transitions. In the second step, we
populate the transition table by generating transitions
using events from the first step in phase two. The
transition table has four fields: the set number shared
by constraints in a conjunction; the source state from
which the transition leads out; the event used to

generate the transition; and the target state to which the
transition leads in.

Each right and obligation state has the following
transitions: in-transitions generated for events that
were derived from pre-conditions; out-transitions
generated from the event in the object field for states in
the state table; and, if the state is an obligation,
transitions for the negation of the event in the object
field of the state table. For obligations, the negation of
the event always leads to a non-compliant state (NC)
for violating the obligation. For rights, the target state
of this transition is unspecified. Continuing with the
example from Section 3.3.1, we generate the
transitions for obligation O6.3 in Table 2.

Table 2: Example Transition Table

Set Source Event Target
1 E2 O6.3
2 O6.3 E1
3 O6.3 ¬ E1 NC6.3

The in-transition (first row) to O6.3 corresponds with
the constraint on O6.3 and the out-transition (second
row) corresponds with the object from the state O6.3 =
〈Rule, require, E1〉 in Table 1. The transition to the
non-compliant state (third row) must eventually be
conjoined with a time-out event or deadline to
complete this monitor. The graphic illustration of this
monitor appears in Figure 6.

Figure 6: Example Compliance Monitor

After the state-event and transition tables have been
generated, one can derive a combined compliance
monitor by pairing in- and out-transitions to connect
states. The combined compliance monitor more
effectively illustrates the interactions between rights
and obligations. We present such a graphic in Section
4 as an application of the algorithm.

4. Results from HIPAA Privacy Rule
In a previous case study [7], we derived semantic

models from rights, obligations and constraints that
were extracted from the Privacy Rule [15] – a U.S.
federal regulation for the HIPAA [14]. The Rule
governs use and disclosure of patient healthcare
information. Based on our discussions with CSOs,
CISOs and CPOs, companies prioritize compliance
with those regulations most likely to interface with the

public and consumers. For this reason, we applied our
algorithm to §164.520 – §164.526 in Subpart E of the
Rule. We present results from §164.524 titled “Access
of individuals to protected health information.”

The analysis of §164.524 in the case study yielded a
total of 20 rights, 26 obligations and 67 constraints.
From these, the following rights and obligations are
most relevant to generate the largest combined
compliance monitor using the algorithm. The
following acronyms are used: covered entity (CE),
licensed healthcare professional (LHP), and protected
health information (PHI).

R4.1: The individual has a right to request access to
their PHI.

R4.3: The CE may deny an individual access to their
PHI. (C1)

R4.5: The individual may have a denial of requested
access reviewed by an LHP. (C2)

O4.1: The CE must permit an individual access to
their PHI. (C3)

O4.2: The CE must deny an individual access to their
PHI. (C4)

O4.3: The CE must permit an individual to request
access to their PHI.

O4.5: The CE must inform the individual that
requested access is permitted. (C5)

O4.7: The CE must inform the individual that the
requested access was denied. (C2)

O4.16: The CE must designate an LHP to review a
denial of requested access. (C6)

O4.18: The LHP must recommend that the CE permit or
deny the individual access to PHI. (C7 ∧ C8)

O4.19: The CE must inform the individual of the
recommendation of the LHP. (C3 ∨ C4)

Each right and obligation above is annotated with the
logical expression of constraints (in parenthesis) from
the following list:

C1: The individual requests access to their PHI.
C2: The CE denies requested access to PHI.
C3: The LHP recommends the CE permit access.
C4: The LHP recommends the CE deny access.
C5: The CE permits the requested access to PHI.
C6: The individual requires an LHP review a denial.
C7: The CE designates the LHP to review a denial.
C8: The LHP reviews the denial of access.

For the purpose of this illustration, we highlight
only those events that form transitions between states
and we ignore constraints that only describe state-of-
being as they contribute no such events. As a result, the
following state-event and transition tables are simply
incomplete under the law but sufficient as an exemplar.

In phase one (consistency checking), step one, the
algorithm identified several ambiguities in the original
semantic models for rights, obligations and constraints.
To resolve these ambiguities, the user was required to
specify 37 subjects, 35 actions and 32 objects to
disambiguate activities in the semantic models.

In step two, the algorithm balanced two rights and
one obligation. The rights R4.1 and R4.5 and the
obligation O4.3 were balanced with new models OR-4.1,
OR-4.5 and RO-4.3, respectively. Since OR-4.1 ≈ O4.3 and
R4.1 ≈ RO-4.3, the right R4.1 balanced directly with O4.3,
which means OR-4.1 and RO-4.3 were not new
contributions. However, the right R4.5 only balances
with obligation OR-4.5 requiring the LHP to review
denials of requested access, so OR-4.5 is a new
contribution.

In phase two (FSM generation), step one, the states
and events were generated (see Table 3). There were
17 instances where events previously entered into the
table were reused.

Table 3: State-Event Table for HIPAA §164.524

Index Subject Action Object
R4.1 Rule permit E1
E1 Individual request E2
E2 Individual access PHI
R4.3 Rule permit E3
E3 CE deny E2
R4.5 Rule permit E4
E4 Individual require E5
E5 LHP review E3
OR-4.5 Rule require E5
O4.1 Rule require E6
E6 CE permit E2
E7 LHP recommend E6
O4.2 Rule require E3
E8 LHP recommend E3
O4.3 Rule require E9
E9 CE permit E1
O4.5 Rule require E10
E10 CE inform E6
O4.7 Rule require E11
E11 CE inform E3
O4.16 Rule require E12
E12 CE designate LHP
O4.18 Rule require E7
O4.18 Rule require E8
O4.19 Rule require E13
E13 CE inform E7
O4.19 Rule require E14
E14 CE inform E8

The generated transitions from step two appear in
Table 4. The in-transitions were generated from
constraints (Sets 1–11). The out-transitions were
generated from the object value of states (Sets 12–25),
the alternate transitions from rights (Sets 26–30) and
the transitions from states to non-compliant states (Sets
31–40) all from Table 3.

We illustrate the combined compliance monitor in
Figure 7. The transitions from obligations to non-
compliant states and the alternate transitions for rights
that do not align with existing states have been

omitted. Unspecified states appear as clouds with
events E10, E11, E13 and E14 leading to such states.

Table 4: Transition Table for HIPAA §164.524

Set Source Event Target
1 E1 R4.3
2 E3 R4.5
3 E4 OR-4.5
4 E3 O4.7
5 E3 O4.16
6 E7 O4.1
7 E7 O4.19
8 E8 O4.2
9 E8 O4.19

10 E6 O4.5
11 E12 O4.18
11 E5 O4.18
12 R4.1 E1
13 R4.3 E3
14 R4.5 E4
15 OR-4.5 E5
16 O4.1 E6
17 O4.2 E3
18 O4.3 E9
19 O4.5 E10
20 O4.7 E11
21 O4.16 E12
22 O4.18 E7
23 O4.18 E8
24 O4.19 E13
25 O4.19 E14
26 R4.1 ¬ E1
27 R4.3 ¬ E6
28 R4.3 ¬ E3
29 R4.5 ¬ E4
30 OR-4.5 ¬ E5
31 O4.1 ¬ E3 NC4.1

32 O4.2 ¬ E6 NC4.2

33 O4.3 ¬ E9 NC4.3

34 O4.5 ¬ E10 NC4.5

35 O4.7 ¬ E11 NC4.7

36 O4.16 ¬ E12 NC4.16

37 O4.18 ¬ E7 NC4.18

38 O4.18 ¬ E8 NC4.18

39 O4.19 ¬ E13 NC4.19

40 O4.19 ¬ E14 NC4.19

Figure 7 makes it easier to recognize important
aspects of the combined compliance monitor. For
example, the unconditional rights and obligations such
as O4.3 have no in-transitions. Rights or obligations that
immediately follow unconditional obligations, like
right R4.1, are consequently unconditional, unless the
stakeholder violates the preceding obligation. In
addition, loops on states for obligations require
stakeholders to maintain that state. For example, based
on obligation O4.18, if the LHP determines the CE

should not provide access (via E8, bottom center), then
the CE must deny access (via E3 and the loop at O4.2).

Figure 7: Combined Compliance Monitor

Rights that provide stakeholders choices are also
easier to visualize. For example, in state R4.3, the CE
has a choice: (1) they can deny the requested access via
E3, in which case they must (a) inform the individual
via O4.7 and (b) provide the right to review via R4.5; or
(2) they can permit the requested access, in which case
they must inform the individual via O4.5.

Rights and obligations assigned through delegation
are clearly shown. For example, the obligation
requiring the CE to permit the individual to request
access (the path O4.3 → E9 → R4.1 → E1) is distinct
from the right permitting the individual to require an
LHP to review a denial (the path R4.5 → E4 → OR-4.5 →
E5). However, the graphic does not clearly distinguish
between rights to obligate other stakeholders and
obligations that follow from invoking a stakeholder
right, such as the path R4.3 → E6 → O4.5 → E10.

5. Discussion and Future Work
Before discussing why the compliance algorithm

works and therefore which compliance scenarios are
likely to benefit most from this algorithm, we quickly
address the current limitations.

In phase two, step one in Section 3.3.1, the
algorithm must determine if two events are equivalent
in order to reuse shared events. In this study, we only
used the SAO-triple to compare events and identify
duplicates; however, two different events can have the

same SAO-triple. For example, two similar requests to
two different recipients or a repeated event with
disjoint temporal constraints could both have the same
subject, action, and object. We propose addressing this
problem by comparing the semantic model sub-
components used to generate the events instead of the
SAO-triple, since they will have the necessary
information to distinguish these events – including any
temporal constraints.

In phase two, step two in Section 3.3.2, the set
number is sufficient to assign transitions to logical
conjunctions or disjunctions. However, we encountered
the need to support exclusive-or on the out-transitions
for obligations (see O4.18 in Section 4) as a convenience
to stakeholders. The consequences of exclusive-or on
out-transitions impacts how transitions to non-
compliant states are generated. For example, for the
events A and B, the out-transitions for an obligation in
the expression (A ∧ ¬B) ∨ (¬A ∧ B) only require a
transition to a non-compliant state for (¬A ∧ ¬B) and
not for ¬A independent of ¬B.

5.1. Why it works?
Why the algorithm consistently generates FSMs

from semantic models of rights and obligations is not
at first obvious. We can answer this question in more
detail by examining the underlying principal in the
SAO-triple and appealing to the structure of the
recurrence tree. Recall from Section 3.3.2 the function
T(M) for a semantic model M and the recurrence T(o)
for o ∈ T(M). Figure 8 illustrates the recurrence tree
generated from events selected from the results in
Section 4. The recurrence tree is rooted at the base
triple 〈Individual, access, PHI〉. Arrows point from
parent to child triples; children have the parent’s index
in the recurrence of the object field.

The recurrence only occurs in an SAO-triple when
the action is a transitive-verb whose object is another
activity; this is a unique case in semantic models [5]. In
environments where stakeholders react to the actions of
other stakeholders, these recurrences capture the object
of that reaction: another activity. In the recurrence tree,
stakeholder reactions map to triples where the
stakeholder is the subject of that triple and the triple
appears as a child node of the event to which they are
reacting.

Regulations in these environments define which of
these (re)actions are required or permitted. In the
recurrence tree, regulations map to triples that appear
as children of the actions they govern – these children
are also leaves in the tree. The algorithm literally
unravels stakeholder reactions and governing
regulations to generate the pool of events that concern
stakeholders. The algorithm binds regulations to states,
recognizing that the event of performing the governed

action is an event that maps to an out-transition. In the
recurrence tree, these events appear as the parents of
regulation triples. Furthermore, regulated actions are
pre-conditioned on other events that map to in-
transitions on a state. When the regulation governs a
reaction to an event produced by another regulation,
these regulations become aligned in a compound
compliance monitor. Consequently, the algorithm is
most effective in highly regulated environments with
complex stakeholder interactions – environments
where tools such as this are needed most because the
complexity of stakeholder interactions is greater and
the cost of non-compliance may be severe.

Figure 8: Recurrence Tree for SAO-triple.

5.2. Risk and Compliance
Future work includes integrating the compliance

monitors produced by the algorithm into runtime
systems. In addition, there is the need to evaluate risk
and compliance associated with the decision to
implement a right or obligation in systems. Risk is the
probability that a regulation will be violated by a
business or system process. For each right or
obligation, calculating risk requires knowing the
frequencies of events that pre-condition, satisfy or
violate the right or obligation. Furthermore, risk must
also factor in the penalty or cost of violating a right or
obligation. For rights or obligations with a high
penalty, frequent violation or with frequent satisfaction
of pre-conditions, there is a higher priority to
implement system processes to prevent violation and
monitor compliance at runtime.

For example, in Figure 7 in Section 4, the individual
is given the right to request access to PHI via right R4.1
and, if denied that access, they receive the right to have
an LHP review the denial via right R4.5. The review
involves a complex set of stakeholder interactions
between the obligations of the LHP and CE and the
rights of the individual. If individuals rarely exercise
right R4.5, the cost of implementing these obligations in
systems may be incommensurate with the frequency of
violations due to human error in the business process.
Since the compliance monitors can be aligned with

both business and system processes, stakeholders can
use these monitors to design and develop software
systems commensurate with risk and compliance costs.

6. Conclusion
We present an algorithm for generating finite state

machines (FSMs) from stakeholder rights and
obligations that are extracted from policies and
regulations. The algorithm has been applied and
validated to date within the context of U.S. health
regulation (HIPAA). The FSMs can be used to
evaluate design decisions in terms of risk and monitor
compliance in runtime systems. The user only provides
semantic models to the algorithm, after which the
algorithm proceeds in two phases to: (1) perform
consistency checking to identify ambiguities and
balance rights with obligations; and (2) generate the
FSM in state-event and transition tables.

Acknowledgements
We thank the members of ThePrivacyPlace.org for
their helpful comments. This work was funded by NSF
ITR Grant #032-5269.

References
[1] J. Atlee, J. Gannon, “State-based Model Checking of

Event-driven System Requirements.” Conf. Soft. for
Critical Systems, New Orleans, LA, pp. 16-28, 1991.

[2] F. Baader, J.H. Siekmann, Unification Theory. Handbook
of Logic in AI and Logic Programming, Oxford
University Press, New York, NY, pp. 41-125, 1994.

[3] R. Bharadwaj, C.L. Heitmeyer, “Model Checking
Complete Requirements Specifications Using
Abstraction.” Auto. Soft. Engr., 6(1), pp. 37-68, 1999.

[4] T.D. Breaux, A.I. Antón, “Deriving Semantic Models
from Privacy Policies.” IEEE Workshop on Policies for
Distributed Sys. & Networks, Sweden, pp. 67-76, 2005.

[5] T.D. Breaux, A.I. Antón, “Analyzing Goal Semantics for
Rights, Permissions, and Obligations.” IEEE Req’ts.
Engr. Conf., Paris, France, pp. 177-186, 2005.

[6] T.D. Breaux, A.I. Antón, “Mining Rule Semantics to
Understand Legislative Compliance.” ACM Workshop on
Privacy in Electronic Society, USA, pp. 51-54, 2005.

[7] T.D. Breaux, M.W. Vail, A.I. Antón, “Towards
Regulatory Compliance: Extracting Rights and
Obligations to Align Requirements with Regulations” In
submission IEEE Int’l Conf. Reqts. Engr, NCSU CSC
Tech. Report TR-2006-06, 2006.

[8] M. Chechik, J. Gannon, “Automatic Analysis of
Consistency Between Requirements and Design.” IEEE
Trans. Soft. Eng., 27(7), pp. 651-672, 2001.

[9] D. Cohen, M.S. Feather, K. Narayanaswamy, S.F.
Fickas, “Automatic Monitoring of Software
Requirements.” IEEE Int’l Conf. Soft. Eng, pp. 602-603,
1997.

[10] Ernst & Young, Global Information Security Survey
2005: Report on the Widening Gap, 2005.

[11] S.F. Fickas, T. Beauchamp, N.A.R. Mamy, “Monitoring
Requirements: A Case Study.” IEEE Int’l Conf. Auto.
Soft. Eng. Edinburgh, UK, pp. 299-304, 2002.

[12] P. Giorgini, F. Massacci, J. Mylopoulos, N. Zannone.
“Modeling Security Requirements Through Ownership,
Permission and Delegation.” IEEE 13th Req’ts. Eng..
Conf., France, pp. 167-176, 2005.

[13] C.L. Heitmeyer, R.D. Jeffords, B.G. Labaw.
“Automated Consistency Checking of Requirements
Specifications,” ACM Trans. Soft. Eng. Methods, 5(3),
pp. 231-261, 1996.

[14] Health Insurance Portability and Accountability Act,
USC H.R. 3103-168, April 2000.

[15] “Standards for Privacy of Individually Identifiable
Health Information.” 45 CFR Part 160, Part 164 Subpart
E. In Federal Register, vol. 68, no. 34, February 20,
2003, pp. 8334 – 8381

[16] S. Kerrigan, K.H. Law, “Logic-based Regulation
Compliance-Assistance.” Int’l Conf. AI and Law, pp.
126-135, 2003.

[17] R. de Landtsheer, E. Letier, A. van Lamsweerde,
“Deriving Tabular Event-based Specifications from
Goal-Oriented Requirements Models.” IEEE Req’ts. Eng.
Conf., Monterrey, CA, pp. 200-210, 2003.

[18] N.A.M. Maiden, “CREWS-SAVRE: Scenarios for
Acquiring and Validating Requirements,” Auto. Soft.
Eng. 5(4), pp. 419-446, 1998.

[19] Medical Privacy - National Standards to Protect the
Privacy of Personal Health Information. Office for Civil
Rights, US Department of Health and Human Services.
2000. http://www.hhs.gov/ocr/hipaa/finalreg.html.

[20] D.K. Peters, D.L. Parnas, “Requirements-based
Monitors for Real-time Systems.” IEEE Trans. Soft.
Eng., 28(2), pp. 146-158, 2002.

[21] W.N. Robinson, “A Requirements Monitoring
Framework for Enterprise Systems.” Req’ts. Eng.
Journal, 11(1), pp. 17-41, 2005.

[22] M.J. Sergot, F. Sadri, R.A. Kowalski, F. Kriwaczek, P.
Hammond, H.T. Cory, “The British Nationalisty Act as a
Logic Program,” Comm. of the ACM, 29(5), pp. 370-386,
1986.

[23] M.J. Sergot, A.S. Kamble, K.K. Bajaj, “Indian Central
Civil Service Pension Rules: A Case Study in Logic
Programming.” Int’l Conf. AI & Law, pp. 118-127, 1991.

[24] D. Sherman, “A Prolog Model of the Income Tax Act of
Canada.” Int’l Conf. AI & Law, pp. 127-136, 1987.

[25] G. Spanoudakis, K. Mahbub, “Requirements Monitoring
for Service-based Systems: Towards a Framework Based
on Event Calculus.” IEEE Int’l Conf. Auto. Soft. Eng.,
Linz, Austria, pp. 379-384, 2004.

[26] A.G. Sutcliffe, N.A.M. Maiden, S. Minocha, D. Manuel,
“Supporting Scenario-based Requirements Engineering,”
IEEE Trans. Soft. Eng., 24(12), pp. 1072-1088, 1998.

	1. Introduction
	2. Related Work
	3. Generating Compliance Monitors
	3.1. The Input and Output
	3.2. Phase 1: Checking Model Consistency
	3.3. Phase 2: State Machine Generation
	4. Results from HIPAA Privacy Rule
	5. Discussion and Future Work
	5.1. Why it works?
	5.2. Risk and Compliance

	6. Conclusion
	Acknowledgements
	References

