
Defining and Measuring Policy Coverage in Testing
Access Control Policies

Evan Martin, Tao Xie, Ting Yu
Department of Computer Science
North Carolina State University

Raleigh NC USA 27695
{eemartin,xie,yu}@csc.ncsu.edu

Abstract

To facilitate managing access control in a system, se-
curity officers increasingly write access control policiesin
specification languages such as XACML, and use a ded-
icated software component called Policy Decision Point
(PDP). To increase confidence on written policies, certain
types of policy testing (often in an ad hoc way) are usually
conducted, which probe PDP with some typical requests
and check PDP’s responses against expected ones.

This paper develops a first step toward systematic pol-
icy testing by defining and measuring policy coverage
when testing policies. We have developed a coverage-
measurement tool to measure policy coverage given a set of
XACML policies and a set of requests. We have developed a
tool for request generation, which randomly generates re-
quests for a given set of policies, and a tool for request
reduction, which greedily selects a nearly minimal set of
requests for achieving the same coverage as the originally
generated requests. To evaluate coverage-based request re-
duction and its effect on fault detection, we have conducted
an experiment with mutation testing on a set of real policies.
Our experimental results show that the coverage-based test
reduction can substantially reduce the size of generated re-
quests and incur only relatively low loss on fault detection.
We also conduct a study on the policy coverage achieved by
manually generated requests.

1 Introduction

Access control is one of the most fundamental and
widely used security mechanisms. It controls which princi-
pals (users, processes, etc.) have access to which resources
in a system. To better manage access control, systems of-
ten explicitly specify access control policies using policy
languages such as XACML [1] and Ponder [8]. When-
ever a principal requests access to a resource, that request

is passed to a software component called Policy Decision
Point (PDP). PDP evaluates the request against access con-
trol policies, and grants or denies the request accordingly.

The specification of access control policies is often a
challenging problem. It is common that a system’s secu-
rity is compromised due to the misconfiguration of access
control policies instead of the failure of cryptographic prim-
itives or protocols. This problem becomes increasingly se-
vere as software systems become more and more complex,
and are deployed to manage a large amount of sensitive
information and resources that are organized into sophis-
ticated structures.

Formal verification is an important means to ensuring the
correct specification of access control policies. Recently,
several tools have been developed to verify XACML ac-
cess control policies against user-specified properties [10,
13,24]. However, it is often beyond the capabilities of these
tools to verify complex access control policies in large-scale
information systems. Further, user-specified properties are
often not available [10].

Like in software development, errors in access control
policies may also be discovered through testing. In fact,
once access control policies are specified, they are often
tested with some access requests so that security officers
may check the PDP’s responses against expected ones [5].
However, current policy testing practice tends to be ad
hoc. Although there exist various coverage criteria [25] for
software programs, there are no criteria or good heuristics
to guide systematic generation of high-quality policy test
suites. With an ad hoc policy testing, it is questionable that
high confidence could be gained on the correctness of ac-
cess control policies.

This paper presents a first step toward systematic pol-
icy testing. We propose the concept ofpolicy coverageto
measure the quality of policy test suites, which are a set
of request-response pairs. Intuitively, the more policy rules
(as well as their components such as subjects, resources,
and conditions) are involved when evaluating a test suite,
the more likely it is to discover errors in access control poli-

cies. We have developed a coverage-measurement tool to
measure the coverage of XACML policies achieved by a
set of access requests. We have also developed a request-
generation tool that randomly generates a policy test suites
for a given set of policies.

Though the randomly generated test suites can achieve
high policy coverage, and are effective in detecting a vari-
ety of policy specification errors, it may potentially include
a huge number of requests, which makes it difficult to effi-
ciently inspect and verify the correctness of responses from
the PDP. To mitigate this problem, we further propose a re-
quest reduction technique to significantly reduce the size of
a test suite while maintaining its policy coverage.

Previous experiments [20] showed that test reduction
based on program code coverage can severely compromise
the fault-detection capabilities of the original test suite. To
evaluate the impact of the proposed request reduction tech-
nique on the quality of policy testing, we conduct an ex-
periment on a set of real policies with mutation testing [9],
which is a specific form of fault injection that consists of
creating faulty versions of a policy by making small syn-
tactic changes. In the experiment, we compare the fault-
detection capabilities of the reduced set and original set of
requests. Our experimental results show that our coverage-
based request reduction technique can substantially reduce
the size of generated requests but incur only relatively low
loss in fault detection capabilities. We also conduct a study
by measuring the policy coverage of an XACML confor-
mance test suite and requests for a conference reviewing
system’s policy. Our results show that the measurement of
policy coverage can effectively identify uncovered parts of
policies. Such results can be used to guide the development
of further test cases, significantly improving the quality of
policy testing.

The rest of the paper is organized as follows. Section
2 discusses related work and background information. Sec-
tion 3 proposes the concept of policy testing and policy cov-
erage based on a general access control model. In Section 4,
we instantiate the concept of policy coverage in the con-
text of XACML, a widely used and standardized meta pol-
icy language for expressing domain-specific access control
requirements. We also presents the design of a coverage
measurement tool. Sections 5 and 6 describe the request-
generation tool and our request reduction technique, respec-
tively. Section 7 presents a set of initial mutation operators
developed for policies. Section 8 presents the experiment
conducted to assess request reduction and its effect on fault
detection capabilities. Section 9 illustrates the study ofmea-
suring the policy coverage achieved by manually generated
requests. Section 10 concludes the paper with future direc-
tions.

2 Related Work and Background

Several tools have been developed to verify properties
for XACML policies [1]. Hughes and Bultan translated
XACML policies to the Alloy language [14] and check their
properties using the Alloy Analyzer. Fisler et al. [10] de-
veloped a tool called Margrave that uses multi-terminal bi-
nary decision diagrams [7] to verify user-specified proper-
ties and perform change-impact analysis. Zhang et al [24]
developed a model-checking algorithm and tool support to
evaluate access control policies written inRW languages,
which can be converted to XACML [23]. These exist-
ing approaches assume that policies are specified using a
simplified version of XACML. It is challenging to gener-
alize these verification approaches to support full-feature
XACML policies with complex conditions. In addition,
most of these approaches require users to specify a set of
properties to be verified; however, policy properties of-
ten do not exist in practice. The systematic policy test-
ing approach proposed in this paper works on full-feature
XACML policies without requiring properties, comple-
menting the existing policy verification approaches.

A test adequacy or coverage criterion provides a stopping
rule for testing and a measurement of a test suite’s qual-
ity [25]. A test coverage criterion can be used to guide test
selection. A coverage criterion typically specifies testing re-
quirements based on whether all the identified features in a
program or specification have been fully exercised. Iden-
tified features in a program can be statements, branches,
paths, or definition-use paths. Identified features in a speci-
fication can be choices for categories [3,4] or conditions [6]
in specifications.

The importance of test coverage criterion in fault detec-
tion can be shown through a fault propagation model such as
the PIE (Propagation, Infection, and Execution) model [22].
For example, in order to expose a bug in a statement in a
program, a test needs to at least cover the buggy statement.
Note that the coverage of a buggy statement is not a suf-
ficient condition to expose the buggy behavior in program
outputs; additionally the execution of the buggy statement
needs to produce a wrong data state and the wrong data state
needs to have an effect on program outputs.

With our knowledge, our approach is the first that pro-
poses policy coverage and develops an automatic measure-
ment tool and a request reduction tool for it. But there
exist several approaches for defining and measuring cover-
age of rules for grammar-based software or SQL statements
for database applications. For example, Hennessy and
Power [12] defined rule coverage for context-free grammar
and used rule coverage to reduce a test suite for grammar-
based software such as C++ compilers. Suarez-Cabal and
Tuya [21] defined coverage of SQL queries and developed
a tool to automate the measurement. Kapfhammer and
Soffa [16] defined a family of test adequacy criteria for

database-driven applications based on dataflow information
that is associated with entities in a database. Different from
these existing coverage measurement approaches for gram-
mars, SQL queries, or database entities, our new approach
defines and measures coverage information for policies.

3 Access Control Policies and Policy Cover-
age

Many access control policy languages have been pro-
posed for different application domains. Policies in these
languages are usually composed of a set of rules which
specify under what conditions a subject is allowed or de-
nied access to certain objects in a system. To discuss policy
coverage criteria in general, we model access requests and
policies in this paper as follows.

LetS, O andA denote respectively the set of all the sub-
jects, objects and actions in an access control system. Each
subject, object, or action is associated with a set of attributes
that may be used for access control decisions. For example,
a subject’s attributes may include a user’s role, rank and se-
curity clearance. An object’s attributes may include a file’s
type, a document’s security class, and a printer’s location.

An access requestq is a tuple(s, o, a), wheres ∈ S,
o ∈ O anda ∈ A. A request(s, o, a) means that subjects
requests to take actiona on objecto.

An access control policy P is a se-
quence of rules, each of which is of the form
(Conds, Condo, Conda, decision,Condg). Conds,
Condo andConda are constraints over the attributes of a
subject, object and action respectively.Condg is a general
constraint which may potentially be over all the attributes
of subjects, objects, actions and other properties of a
system (e.g., the current time and the load of a system).
A decision is either deny or permit. Given a request
(s, o, a), if Conds(s), Condo(o), Conda(a) and Condg

are all evaluated to betrue, then the request is either
permitted or denied, according todecision in the rule.

One may wonder that sinceCondg can be a general
constraint over the attributes of subjects, objects, actions
as well as other properties of a system, why we still need
Conds, Condo andConda in a rule? The reason is that,
though conceptually those conditions can be merged with
the general conditionCondg, by separating them, it makes
it easy to quickly locate relevant rules to a request. For ex-
ample, given a request(s, o, a), if one of Conds, Condo

andConda is evaluated to be false, then we do not need to
further evaluateCondg that sometimes may be much more
complex than the former three. Such a form of access con-
trol rules is commonly supported in access control policy
languages. If a request satisfiesConds, Condo andConda

of a rule, then we say the rule isapplicableto the request.
A policy may have multiple rules that are applicable to a

request. These rules may in fact offer conflicting decisions.

The final decision regarding the request depends on applica-
tion specific conflict resolution functions. Commonly used
conflict resolution functions include denial overriding per-
mission (where a request is denied if it is denied by at least
one rule), permission overriding denial (where a request is
permitted if it is permitted by at least one rule) and first ap-
plicable (where the final decision is the same as that of the
first applicable rule in a sequence of rules whose condition
Condg is evaluated true). We usePDP (Policy Decision
Point) to denote the component of a system where final de-
cisions are made according to the decision of each rule and a
specific confliction resolution function. Conceptually, given
a policyP and a requestq, a PDP returns the access control
decision ofq.

Since we are interested in capturing potential errors in
policy specifications, we assume that PDP is correctly im-
plemented in the rest of the paper. In practice, generic PDP
implementations are often available which has been scruti-
nized by the public.

We next start our discussion on policy testing based on
the above model. The basic idea of policy testing is very
simple. Like software testing, given a policy, we would like
to generate a set of requests, and check whether the access
control decisions on these requests are as expected. Any
unexpected decision indicates potential errors in the speci-
fication of the policy.

Clearly, if no requests are evaluated against a rule during
testing, then potential errors in that rule will not be discov-
ered. Thus, it is important to generate requests so that a
large portion of rules are involved in the evaluation of at
least one of the requests. In other words, we are interested
in requests that cause a rule’s conditions to be evaluated to
be true.

Definition 1 Given a requestq and a rulem in a policyP ,
we sayq coversm if m is applicable toq. Given a set of
requestsQ, the rule coverage ofP byQ is the ratio between
the number of rules covered by at least one request inQ and
the total number of rules inP .

Intuitively, the higher the rule coverage of a set of re-
quest, the better chance specification errors may be discov-
ered. Like software testing, it is often infeasible to have ex-
hausted policy testing when the space of possible requests is
large. Therefore, policy specification errors may still exist
even after testing with requests that cover all the rules.

To improve the quality of policy testing, it helps to fur-
ther examine potential errors in the specification of condi-
tions in each rule, which can also be tested by requests.

Definition 2 Given a request q and a rule
m(Conds, Condo, Conda, decision,Condg), we say
Condg is positively (negatively) coveredby q if m is
covered byq and Condg is evaluated to be true (false).
Given a set of requestsQ, the condition coverage ofP by

Q is the ratio between the numbers of general conditions
positively or negatively covered by at least one request in
Q and two times of the total number of rules inP .

The intuition behinds the above definition is as follows.
An error in the condition of a rule may have two types of im-
pacts on a request. SupposeCond′g is the condition when an
error is introduced to the original conditionCondg. Given
a requestq, Cond′g(q) may be evaluated to be true while
Condg(q) is false, or vice versa. That is why we concern
with both positive and negative coverage of a condition in
the above definition.

4 Policy Testing in XACML

In this section, we focus our discussion of policy test-
ing on XACML (eXtensible Access Control Markup Lan-
guage). XACML is a language specification standard de-
signed by OASIS. It can be used to express domain-specific
access control policy languages as well as access request
languages. Besides offering a large set of built-in func-
tions, data types and combining logic, XACML also pro-
vides standard extension interfaces for defining application
specific features. Since it was proposed, XACML has re-
ceived much attention from both the academia and the in-
dustry. Many domain specific access control languages
have been developed using XACML [17, 19]. Open source
XACML implementations are also be provided for dif-
ferent platforms (e.g., Sun’s XACML implementation and
XACML.NET). Therefore, XACML provides an ideal plat-
form for the development of policy testing techniques so
that they can be easily applied to multiple domains and ap-
plications. In this section, we first give a brief introduction
of XACML, and then discuss the policy coverage criteria
for XACML.

4.1 XACML

The basic concepts of access control in XACML include
policies, rules, targetsandconditions. A single access con-
trol policy is represented by a policy element, which in-
cludes a target element and one or more rule elements. A
target element contains a set of constraints on the subject
(e.g., the subject’s role is equal to faculty), resources (e.g.,
the resource name is grades), and actions (e.g., the action
name is assign)1.

A target specifies to what kinds of requests a policy can
be applied. If a request cannot satisfy the constraints in the
target, then the whole policy element can be skipped with-
out further examining its rules.

We next describe how a policy is applied to a request in
details. A policy element contains a sequence of rule ele-
ments. Each rule also has its own target, which is used to

1Conditions of “AnySubject”, “AnyResource”, and “AnyAction” can
be satisfied by any subject, resource, or action, respectively.

1<Policy PolicyId="demo" RuleCombinationAlgId="first-applicable">
2 <Target>
3 <Subjects> <AnySubjects/> </Subjects>
4 <Resources>
5 <Resource>
6 <ResourceMatch MatchId="equal">
7 <AttributeValue>demo:5</AttributeValue>
8 <ResourceAttributeDesignator AttributeId="objectid"/>
9 </ResourceMatch>

10 </Resource>
11 </Resources>
12 <Actions> <AnyAction/></Actions>
13 </Target>
14 <Rule RuleId="1" Effect="Deny">
15 <Target> <Subjects><AnySubject/></Subjects>
16 <Resources> <AnyResource/> </Resources>
17 <Actions>
18 <Action>
19 <ActionMatch MatchId="equal">
20 <AttributeValue>Dissemination</AttributeValue>
21 <ActionAttributeDesignator AttributeId="actionid"/>
22 </ActionMatch>
23 </Action>
24 </Actions>
25 </Target>
26 <Condition FunctionId="not">
27 <Apply FunctionId="at-least-one-member-of">
28 <SubjectAttributeDesignator AttributeId="loginid"/>
29 <Apply FunctionId="string-bag">
30 <AttributeValue>testuser1</AttributeValue>
31 <AttributeValue>testuser2</AttributeValue>
32 <AttributeValue>fedoraAdmin</AttributeValue>
33 </Apply>
34 </Apply>
35 </Condition>
36 </Rule>
37 <Rule RuleId="2" Effect="Permit"/>
38</policy>

Figure 1. An example XACML policy

determine whether the rule is applicable to a request. If a
rule is applicable, acondition(a boolean function) associ-
ated with the rule is evaluated. If the condition is evaluated
to be true, the rule’seffect(Permit or Deny) is returned as
adecision; otherwise,NotApplicable is returned as a de-
cision. If an error occurs when a request is applied against
policies or their rules,Indeterminate is returned as a de-
cision.

More than one rule in a policy may be applicable to a
given request. To resolve conflicting decisions from differ-
ent rules, arule combining algorithmcan be specified to
combine multiple rule decisions into a single decision. For
example, a deny overrides algorithm determines to return
Deny if any rule evaluation returnsDeny or no rule is ap-
plicable. A first applicable algorithm determines to return
what the evaluation of the first applicable rule returns.

In general, an XACML policy specification may also in-
clude multiple policies, which are included with a container
element calledPolicySet. When a request can also be ap-
plied to multiple policies, apolicy combining algorithmcan
also be specified in a similar way.

Figure 1 shows an example XACML policy, which is re-
vised and simplified from a sample Fedora2 policy (to be

2http://www.fedora.info

used in our experiment described in Section 8). This pol-
icy has one policy element which in turn contains two rules.
The rule composition function is “first-applicable”, whose
meaning has been explained before. Line 2-13 defines the
target of the policy, which indicates that this policy only ap-
plies to those access requests of an object “demo:5”. The
target of rule 1 (line 15-25) further narrows the scope of
applicable requests to those asking to perform “Dissemina-
tion” action on object “demo:5”. Its condition (line 26-35)
indicates that if the subject’s “loginId” is “testuser1”, “tes-
tuser2”, or “fedoraAdmin”, then the request should be de-
nied. Otherwise, according to rule 2 (line 37) and the rule
composition function of the policy (line 1), a request ap-
plicable to the policy should be permitted.

4.2 Policy Coverage in XACML

In XACML languages, we can see there are three major
entities: policies, rules for each policy, and a condition for
each rule. We define policy coverage as follows:

• Policy hit percentage. A policy is hit by a request if
the policy is applicable to the request; in other words,
all the conditions in the policy’s target are satisfied by
the request. Policy hit percentage is the number of hit
policies divided by the number of total policies.

• Rule hit percentage.A rule for a policy is hit by a
request if the rule is also applicable to the request; in
other words, the policy is applicable to the request and
all the conditions in the the rule’s target are satisfied
by the request. Rule hit percentage is the number of
hit rules divided by the number of total rules.

• Condition hit percentage.The evaluation of the condi-
tion for a rule has two outcomes: true and false, which
are called as the true condition and false condition, re-
spectively. A true condition for a rule is hit by a request
if the rule is applicable to the request and the condition
is evaluated to be true. A false condition for a rule is
hit by a request if the rule is applicable to the request
and the condition is evaluated to be false. Condition
hit percentage is the number of hit true conditions and
hit false conditions divided by twice of the number of
total conditions.

Note that a policy has at least one rule but a rule can have
no condition, indicating an implicit conditiontrue, which
is always satisfied when the rule is applicable. Therefore,
when there are no conditions defined within the policies un-
der consideration, the condition hit percentage is always the
same as the rule hit percentage. Normally a policy tester
shall be able to generate requests to achieve 100% for all
three types of policy coverage. In other words, all the to-
be-covered entities defined in the policy coverage are fea-
sible to cover in principle; otherwise, those infeasible parts

of policy specifications could be removed like dead code in
programs.

To automate the measurement of policy coverage, we
have developed a measurement tool based on Sun’s open
source XACML implementation [2], written in Java. Based
on Sun’s XACML implementation, we first built a Policy
Decision Point (PDP), which receives an access request and
returns an access decision. We then developed several pub-
lic methods in a Java class for collecting runtime coverage
and insert some call sites to these methods in several places
in the code of Sun’s XACML implementation. When PDP
loads given policies, we insert a method call to collect all the
policies, rules, and conditions in the given policies. Every
time PDP determines that all the conditions in a policy’s tar-
get are satisfied, we insert a method call to collect policy hit
information. Every time PDP determines that all the condi-
tions in a rule’s target are satisfied, we insert a method call
to collect rule hit information. Every time PDP determines
that a condition for a rule is evaluated to be true or false, we
insert a method call to collect condition hit information.

After PDP returns the decision, we output the coverage
information into a text file, whose name is determined by
the names of given policies; if a text file with the same name
exists, the coverage information in it is updated by incorpo-
rating the new coverage information. Therefore, when PDP
receives several requests separately against the same set of
policies, the aggregated coverage information achieved by
them is collected. Besides the basic coverage information,
we also output the details of covered entities and their cov-
ering requests as well as the details of uncovered entities.
The extra information can help developers or external tools
in generating or selecting requests for achieving higher pol-
icy coverage.

5 Request Generation

To generate requests automatically for achieving policy
coverage, we have developed a request-generation tool for
inspecting the policy under test and constructing a request
factory that provides requests on demand. There are vari-
ous algorithms that can be devised to generate requests. At
present we have implemented two simple factories called
theAllComboReqFactory and theRandomReqFactory.
The former attempts to generate requests for all possible
combinations of attribute id-value pairs found in the policy
while the latter randomly selects requests from the set of all
combinations. This is achieved by representing a particu-
lar request as a vector of bits. The length of this vector is
equal to the number of different attribute values found in the
policy targets, rule targets, and rule conditions of the policy
under test. Each attribute value appears in the request if its
corresponding bit in the vector is1, otherwise the value is
not present.

To generate all possible combinations we increment an

integeri from 0 to 2n wheren is the number of attribute
values found in the policy. To construct a request from the
integeri we first converti to binary and use then least sig-
nificant bits as the vector of bits that indicate the presence
or absence of the possible attribute values. This approach
guarantees that all possible combinations of the available
attribute values are generated. However this is a simplis-
tic approach and not realistic for larger policies since the
number of possible requests increases exponentially with
the number of possible attribute values. In addition to this
shortcoming, there are instances in which the set of attribute
values is not finite, such as cases with integer data types and
greater than or less than condition functions. Such instances
make the use of theAllComboReqFactory impractical or
even impossible.

The generation of random requests is done in a similar
fashion. First, the policy is inspected and then possible
attribute values are determined. Each request is generated
by setting each bit in the vector to0 or 1 with probabil-
ity 0.5. The number of randomly generated requests can
be configured by the user and the configured number can
be considerably smaller than the total number of combina-
tions. To help achieve adequate coverage with a small set
of random requests, we further modified this algorithm to
ensure that each bit was set to1 and0 at least once. We
accomplish this by explicitly setting theith bit to 1 for the
first n generated requests wherei = 1, 2, ...n. Similarly, for
the nextn requests, we explicitly set the(i − n)th bit to 0.
This approach guarantees that each attribute value is present
and absent at least once as long as the number of randomly
generated requests is greater than2n.

6 Request Reduction

The request reduction problem can be stated similar to
the test minimization problem for program testing [11]:

Given: request set QS, a set of requirementsr1, r2, ..., rn

that must be satisfied to provide the desired test coverage of
the policies, and subsets of QS,Q1, Q2,...,Qn, one associ-
ated with each of theris such that any one of the requestqj

belonging toQi can be used to testri.
Problem: Find a representative set of requests from QS that
satisfies all ofris.

In the problem statement, theris can represent policy
coverage requirements, such as covering a certain policy, a
certain rule, and a certain condition. In a representative set
of requests that satisfies all of theris, at least one request
satisfies eachri. We call a representative set isminimal if
removing any request from the set causes the set not to be
a representative set. Given a request setQS, there can be
several minimal representative setsQS′ ⊆ QS. Among
the minimal representative request sets, we could find a re-

quest set that has the smallest possible number of requests.
Finding such request tests reduces to optimization problems
called “minimum set cover” and “minimum exact cover”,
respectively; these problems are known to be NP complete,
and in practice approximation algorithms are used [15].

In our implementation of coverage-based request reduc-
tion, we use a greedy algorithm for selecting requests as
they are generated by the random request factory if and only
if the generated request increases any of the coverage met-
rics described in Section 4. More specifically, we iteratively
generate a random request, add it to the large set. We then
evaluate that request against the policy in order to both com-
pute the response and measure the coverage. If the coverage
increases due to the evaluation of the request, then that re-
quest is added to the reduced request set.

We note that this greedy algorithm may not produce a
minimal representative set. In practice, it does, however,
often produce a representative set whose size is near the
size of a minimal representative set. We call our reduced
set as anearly minimalrepresentative set.

7 Mutation Testing

In order to investigate the effect of request reduction
on fault detection capabilities, we can inject faults into
the original policy thereby creating faulty policies. Since
fault detection is the central focus of any testing process,
it provides an external measure of the effectiveness of that
process. We aim to demonstrate that reduced request sets
based on coverage can detect a large percentage of the faults
detected by the original request set. We use mutation test-
ing [9] as a mechanism to compare request sets in terms of
fault detection. In mutation testing, the policy under test
is mutated to introduce an error and a request set is evalu-
ated against the mutant policy. If the request set produces
any response that differs from the corresponding response
produced by the original policy, then the mutant is killed.

There are many studies concerned with the types and ef-
fectiveness of mutating general purpose programming lan-
guages [12, 18], however many of these do not directly ap-
ply to mutating policies. We describe the types of mutation
operators employed in our experiments in Table 1.

8 Experiment on Request Reduction and Its
Effect on Fault Detection

The objective of the experiment is to examine whether
the reduced request set will be as effective at fault detection
as the original request set. Similar to the goals of Hennessy
et al. [12] for grammar-based software, we wish to investi-
gate the following hypotheses:

Hypothesis 1 We can achieve a significant reduction in
request-set size for large randomly generated request sets

Table 1. The types of mutation operator applied to the policies.
ID Description
REff Invert the RuleEffect by changingPermit to Deny or Deny to Permit.
PTargT Ensure the policy is always applied to all requests by replacing tags within the<Target> tag with<Any*/>.
PTargF Ensure the policy is never applied to any requests by removing tags within the<Target>.
RTargT Ensure the rule is always applied to all requests by replacing tags within the<Target> tag with<Any*/>.
RTargF Ensure the rule is never applied to any requests by removing tags within the<Target>.
CondT Ensure the condition always evaluates to True by removing the condition entirely.
CondF Ensure the condition always evaluates toFalse by manipulating the condition value or the condition function.
POrder Try all combinations of policy orderings. This mutant is only meaningful ifthere is more than one policy and

the policy combining algorithm is order sensitive.
ROrder Try all combinations of rule orderings. This mutant is only meaningful if there is more than one rule and

the rule combining algorithm is order sensitive.

while maintaining equivalent policy, rule, and condition
coverage.

Hypothesis 2 Reducing a request set based on coverage
will not proportionately decrease its fault detection capa-
bility.

In order to investigate our hypotheses, we need to mea-
sure the reduction in request-set size, the coverage metrics,
and the reduction in fault detection capability. We measure
each of these against three XACML policies used by Fe-
dora3, an open source software that gives organizations a
flexible service-oriented architecture for managing and de-
livering digital content. Fedora leverages Sun’s XACML
implementation [2] to provide fine-grained access control
to the digital content it manages. The Fedora repository of
default and example XACML policies proved a useful re-
source for realistic test subjects. The subjects selected for
this experiment are apia-tighten, demo-5, and the default set
of policies shipped with Fedora. The basic metrics of each
policy include the number of policies, policy targets, rules,
rule targets, and conditions found in each of the three sub-
jects. These metrics are summarized in Table 2. The first
policy, apia-tighten, is just one of a set of policies used to
tighten the access control of the Fedora system. The overall
intent of the policy is datastream hiding, meaning that raw
datastreams must not be accessible to anyone except very
privileged users. The demo-5 policy is an example policy
used to show how access control can be enforced on particu-
lar objects. The default policy is actually a set of 13 policies
that approximate the access control of an earlier version of
Fedora.

We first randomly generate requests for each policy as
outlined in Section 5 and greedily select a smaller set of
requests with equivalent coverage as outlined in Section 6.
If we define the size of the entire request set asr and the
size of the reduced request set asr′ then we can define the

3http://www.fedora.info

Table 2. Basic policy metrics of the experi-
mental subjects.

Policy apia-tighten demo-5 default

Policies 1 1 13
Policy Targets 1 1 13
Rules 2 3 13
Rule Targets 2 2 0
Conditions 2 2 6

reduction in request-set size,SizeReduction, as follows:

SizeReduction = 1 −
r′

r

Table 3 shows the size of the generated request set,
the size of the reduced request set, the coverage obtained
by each request set, and the reduction in request-set size
achieved by the greedy selection algorithm. The results in
Table 3 show that we can achieve more than 98% size reduc-
tion for the three Fedora policies. The results suggests that
we can indeed greatly reduce the request set size of large
randomly generated request sets while maintaining equiva-
lent policy, rule, and condition coverage.

The second objective of the experiment is to investigate
if the reduced request set can still effectively detect faults
in policies compared to the full set. We perform the exper-
iment illustrated in Figure 2. The basic approach is to ex-
ploit mutation testing as a mechanism to compare the fault
detection capability of various request sets. As discussedin
Section 7, we create several mutant policies using the muta-
tion operators listed in Table 1 for each of the experimental
subjects. The quantity and type of mutation operator used
for each policy is summarized in Table 4.

Each request set is executed against each mutant policy
and their corresponding responses are recorded. If the re-
sponse for any request evaluated against the original policy

Table 3. Coverage metrics and reduction in
request-set size achieved for each policy.

Policy apia-tighten demo-5 default

Coverage Metrics
Policy Hit % 100% 100% 100%
Rule Hit % 100% 100% 100%
Condition Hit % 100% 100% 91.67%

Request Reduction
Requests 200 200 1000
Reduced Requests 4 3 10
Size Reduction 98% 98.5% 99%

R e q u e s tS e tR e d u c e dR e q u e s tS e t
P o l i c y R e s pM u t a n tP o l i c y 1M u t a n tP o l i c y N.. ..R e s p 1R e s p N

C o r r e c tR e s p o n s e s D i f f e r ?M u t a n t 1R e s p o n s e sM u t a n t NR e s p o n s e s
Figure 2. Overview of fault detection experi-
ment.

Table 4. Type of mutation operator and quan-
tity of mutant policies created for each policy.

Policy apia-tighten demo-5 default

Mutation Operator Id
REff 2 3 13
PTargT 1 1 13
PTargF 1 1 13
RTargT 2 2 0
RTargF 2 2 0
CondT 2 2 6
CondF 2 2 6
POrder 0 0 0
ROrder 1 5

Total Mutants 13 18 51

differs from the response for the request evaluated against
the mutant policy, then the mutant is said to be killed. We
define theCapabilityReduction as a metric that quanti-
fies the relative fault detection capability of the reduced set
compared to its original set. If we define the total number
of mutants detected by the original set asm and the total
number of mutants detected by the reduced set asm′, then
we compute the reduction in fault detection as:

CapabilityReduction = 1 −
m′

m

Table 5 summarizes the results of our experiments on the
reduction of fault detection. The results suggest that, on av-
erage, a 98.5% reduction in request-set size only results in
a 18.97% reduction in fault detection capability. In many
cases we suspect the reduction in fault detection capability
is acceptable considering the large reduction in request-set
size. These results suggest that request sets requiring man-
ual inspection can be greatly reduced with relatively low
loss to fault detection capability.

Table 5. Reduction in fault detection.

Policy apia-tighten demo-5 default
Mutants 13 18 51
Kill %
Original Set 76.92% 94.44% 80.39%
Reduced Set 69.23% 77.78% 56.86%
Capability Reduction 10% 17.65% 29.27%

One possible explanation as to why the reduced set suf-
fers from a reduction in fault detection capability is greedy
selection of requests for addition to the reduced set. Since
requests can carry multiple attribute values for the same at-
tribute ids, it is possible that two requests with the identical
coverage can produce different responses by operating on
the same conditions in different ways. There may be more
optimal, albeit likely more complex, algorithms for choos-
ing requests.

We consider these results promising yet further experi-
mentation with larger, more complex policies and a more
comprehensive suite of mutation operators is necessary to
further validate the findings. We will investigate if there are
any specific types of mutation operators that result in mu-
tants that are least likely to be killed by the reduced set.

9 Empirical Study of Manually Generated
Requests’ Policy Coverage

We have applied the coverage-measurement tool on the
whole set of the XACML committee specification confor-
mance test suite [5] and a conference paper review system’s
policy and its requests developed by Zhang et al. [23].

Table 6. Policy coverage of the XACML con-
formance test suite

type 100% 50% non-0% 0% total
all cond rule/cond rule/cond

policies 24 172 24 14 234

Permit 31 144 6 181
Deny 6 6
NotApp 13 28 6 10 57
Indet 1 2 6 4 13

The XACML conformance test suite includes 337 dis-
tinct policies4, 374 requests, their expected responses from
the application of the policies. Among these 337 distinct
policies, we show the results of 234 policies in this sec-
tion because for the requests of the remaining 103 policies,
Sun’s XACML implementation [2] responded different de-
cisions than the ones specified in their expected responses.
Applying the requests on these 103 policies failed to con-
form with expected responses because Sun’s XACML im-
plementation does not support some optional features of
XACML specifications.

The conference paper review system’s policy specified
by Zhang et al. [23] has 11 requests and 15 rules, which
have 10 conditions. These 10 conditions involve the exe-
cution of SQL statements that access an external database.
Because it is not trivial to adapt Sun’s XACML implemen-
tation to support this, we simply remove these 10 condi-
tions as well as some attributes that are not parsed by Sun’s
XACML implementation, in order to allow us to focus on
the the measurement of rule hit percentage.

After we fed 374 requests in the XACML conformance
test suite to the coverage-measurement tool, we summarize
the reported statistics of policy coverage in Table 6. Note
that all policies in the conformance test suite are hit by the
requests, achieving 100% policy hit percentage. Column 1
shows the type of data and Columns 2-5 show the data for
different types of coverage. Row 2 shows the number of
policies. Rows 3-6 show the number of requests whose re-
turned decisions arePermit, Deny, NotApplicable, and
Indeterminate, respectively. When a data entry has a
zero value, we do not show the zero value but leave the en-
try empty.

Column 2 shows the data for policies whose policy, rule,
and condition hit percentages reach 100%. These poli-
cies have achieved the optimal policy coverage. Column
3 shows the data for policies whose policy and rule hit per-
centages reach 100% but condition hit percentage reaches
50%. These policies achieve almost-optimal policy cover-
age because sometimes it is not very essential to cause a

4In the XACML conformance test suite, there are 374 policies, each of
which receives a single request. We have reduced those policies with the
same policy content into a single policy, which can then receive multiple
requests.

condition of a rule to be evaluated to be false. Column 4
shows the data for policies whose rule or condition hit per-
centage is less than 100% but not equal to 0% (but we do not
include the cases shown in Column 3 here). The coverage
of these policies needs to be improved. Column 5 shows
the data for policies whose rule or condition hit percentage
is equal to 0%. These policies are especially in need for im-
provement. The last column shows the sum of all the data
in Columns 2-5.

From the results shown in Table 6, we observed that
a majority of policies fell into the category of Column 3,
where policy and rule hit percentages reach 100% but con-
dition hit percentage reaches 50%. Many polices in the
XACML conformance test suite contain single rules each
of which has a condition. Often each of these policies re-
ceives only one request, which basically cover the policy’s
rule and the rule’s true condition.

We took a close look at the details of 14 policies in
Column 5. Two of them had 100% for rule hit coverage
but 0% for condition hit percentage. Their coverage re-
sults were against our expectation because if their condi-
tions were applicable, we expected at either true or false
condition would be hit. We inspected their requests and
found that a subjects’s age was specified twice and their
conditions access the the subject’s age. When evaluating
the conditions, PDP encountered an error and returned a de-
cision ofIndeterminate; therefore, neither true or false
condition is hit.

Note that the XACML conformance test suite was not
specifically constructed to achieve high coverage of poli-
cies but the measurement results still give us some insights
of the common coverage distribution, reflecting policy por-
tions that are commonly hit by manually created requests.

After we fed to coverage-measurement tool 11 requests
for the conference paper review system’s policy [23], 73%
rule hit percentage was achieved: 4 out of 15 rules were not
hit. These four uncovered rules included the case of per-
mitting a PC chair to read papers and no request matched
this case. Interestingly one of these uncovered four rules
was the last rule, which has the effect ofDeny and this
rule’s target can be matched by any request. This rule is
often used for thepermit-overrides rule combination
algorithm [1]. Given the measurement results of coverage-
measurement tool, we could construct new requests without
much difficulty to cover these uncovered rules in the policy
of the conference paper review system as well as those un-
covered rules or conditions in many policies of the XACML
conformance test suite.

10 Conclusion

In this paper, we have developed a first step toward sys-
tematic policy testing by defining and measuring policy
coverage. We have proposed the concept of policy test-

ing and policy coverage based on a general access control
model. We further defined three levels of specific policy
coverage for XACML policies: policy hit percentage, rule
hit percentage, and condition hit percentage. To support
systematic policy testing based on policy coverage automat-
ically, we have developed a coverage-measurement tool, a
request-generation tool, and a request-reduction tool. By
using mutation testing, we have conducted an experiment
that assesses the coverage-based request reduction and its
effect on fault-detection capabilities. The experimentalre-
sults showed that the coverage-based request reduction sub-
stantially reduce the size of the request set but incur only
relatively low loss of fault-detection capabilities. We also
conducted a study on the policy coverage achieved by man-
ually generated requests for policies in a conformance test
suite for XACML specifications [5] and a conference re-
viewing system [23]. Our results showed that our measure-
ment results can pinpoint uncovered areas of policies and
guide the development of new requests to achieve higher
policy coverage.

In future work, we plan to develop a comprehensive suite
of techniques and tools for systematic policy testing. In par-
ticular, we plan to extend our policy coverage to consider
cases that reflect the interactions of different rules or differ-
ent policies, which are not focused by our existing policy
coverage. We also plan to conduct experiments on a larger
scope of policies.

References

[1] OASIS eXtensible Access Control Markup Language
(XACML). http://www.oasis-open.org/committees/xacml/,
2005.

[2] Sun’s XACML implementation.
http://sunxacml.sourceforge.net/, 2005.

[3] N. Amla and P. Ammann. Using Z specifications in cate-
gory partition testing. InProc. 7th Annual Conference on
Computer Assurance, pages 3–10, June 1992.

[4] P. Ammann and J. Offutt. Using formal methods to de-
rive test frames in category-partition testing. InProc. 9th
Annual Conference on Computer Assurance, pages 69–80,
June 1994.

[5] A. Anderson. XACML 1.1 committee speci-
fication conformance tests. http://www.oasis-
open.org/committees/xacml/ConformanceTests/, 2002.

[6] J. Chang and D. J. Richardson. Structural specification-
based testing: automated support and experimental evalu-
ation. InProc. 7th ESEC/FSE, pages 285–302, 1999.

[7] E. Clarke, M. Fujita, P. McGeer, J. Yang, and X. Zhao.
Multi-terminal binary decision diagrams: An efficient data
structure for matrix representation. InProc. International
Workshop on Logic Synthesis, 1993.

[8] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The
ponder policy specification language. InProc. International
Workshop on Policies for Distributed Systems and Networks,
pages 18–38, 2001.

[9] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: Help for the practicing programmer.IEEE
Computer, 11(4):34–41, April 1978.

[10] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz. Verification and change-impact analysis of
access-control policies. InProc. 27th International Confer-
ence on Software Engineering, pages 196–205, 2005.

[11] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology
for controlling the size of a test suite.ACM Trans. Softw.
Eng. Methodol., 2(3):270–285, 1993.

[12] M. Hennessy and J. F. Power. An analysis of rule cov-
erage as a criterion in generating minimal test suites for
grammar-based software. InProc. 20th IEEE/ACM Inter-
national Conference on Automated Software Engineering,
November 2005.

[13] G. Hughes and T. Bultan. Automated verification of access
control policies. Technical Report 2004-22, Department of
Computer Science, University of California, Santa Barbara,
2004.

[14] D. Jackson, I. Shlyakhter, and M. Sridharan. A micromod-
ularity mechanism. InProc. 8th ESEC/FSE, pages 62–73,
2001.

[15] D. S. Johnson. Approximation algorithms for combinatorial
problems.J. Comput. System Sci., 9:256–278, 1974.

[16] G. M. Kapfhammer and M. L. Soffa. A family of test ad-
equacy criteria for database-driven applications. InProc.
9th European Software Engineering Conference held jointly
with 11th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 98–107, 2003.

[17] M. Lorch, D. Kafura, and S. Shah. An xacml-based pol-
icy management and authorization service for globus re-
sources. InInternational Workshop on Grid Computing
(GRID), pages 208–212, Phoenix, AZ, Nov. 2003.

[18] Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation
operators for Java. InProc. International Symposium on
Software Reliability Engineering, pages 352–363, 2002.

[19] T. Moses, A. Anderson, S. Proctor, and S. Godik. XACML
Profile for Web-Services (WSPL). OASIS Working Draft,
Sept. 2003.

[20] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. An
empirical study of the effects of minimization on the fault
detection capabilities of test suites. InProc. International
Conference on Software Maintenance, pages 34–43, 1998.

[21] M. J. Suarez-Cabal and J. Tuya. Using an sql coverage mea-
surement for testing database applications. InProc. ACM
SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pages 253–262, 2004.

[22] J. M. Voas. PIE: A dynamic failure-based technique.
IEEE Transactions on Software Engineering, 18(8):717–
727, 1992.

[23] N. Zhang, M. Ryan, and D. P. Guelev. Synthesising ver-
ified access control systems in XACML. InProc. 2004
ACM workshop on Formal Methods in Security Engineer-
ing, pages 56–65, 2004.

[24] N. Zhang, M. Ryan, and D. P. Guelev. Evaluating access
control policies through model checking. InProc. 8th In-
ternational Conference on Information Security, pages 446–
460, September 2005.

[25] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test
coverage and adequacy.ACM Comput. Surv., 29(4):366–
427, 1997.

