Query Evaluation using Overlapping Views:
Completeness and Efficiency

Gang Gou, Maxim Kormilitsin, Rada Chirkova

Computer Science Department, North Carolina State University
Campus Box 8206, Raleigh, NC 27695-8206
email: {ggou,mvkormil rychirko}@ncsu.edu

ABSTRACT

We study the problem of finding efficient equivalent view-
based rewritings of relational queries, focusing on query
optimization using materialized views under the assump-
tion that base relations cannot contain duplicate tuples.
To enable consideration of such rewritings in a cost-based
query optimizer, we develop local conditions under which
two views can be combined in an efficient query rewrit-
ing, under bag-set and set semantics for query evaluation.
For each semantics and for SQL select-project-join queries
and views, possibly involving grouping and aggregation, we
propose efficient sound and complete algorithms for testing
equivalence of a query to a rewriting (the algorithms are
complete with respect to the language of rewritings). Our
results apply not only to query optimization, but to all areas
where the goal is to obtain efficient equivalent view-based
query rewritings. Based on these results, for the problem of
finding an efficient execution plan for a user query in terms
of materialized views we propose sound algorithms that ex-
tend the cost-based query-optimization approach of System
R [19]. We present a study of the completeness-efficiency
tradeoff in the algorithms, and provide experimental results
that show the viability of our approach and test the limits
of query optimization using overlapping views.

1. INTRODUCTION

We study the problem of finding efficient equivalent rewrit-
ings of relational queries using views. The problem has re-
ceived significant attention because of its applications in a
number of data-management problems [15], such as query
optimization [6, 17, 24], maintenance of physical data inde-
pendence [22, 23], and data warehousing [14, 21]. Our paper
focuses in particular on one application, query optimization
in presence of materialized views. Given a user query, the
task of a query optimizer is to search the space of all physi-
cal query plans for an optimal plan. Besides being correct,
the process should be efficient, cost based, and as complete

as possible. Traditional optimizers such as the System-R
optimizer [19] search in the space of left-deep join trees of a
logical plan for an optimal physical plan, which specifies ex-
ecution details such as join ordering and implementation of
a join (e.g., hash join or sort-merge join). As shown in [6], a
System-R-style query optimizer can be extended to consider
logical plans that stem from various rewritings of the query
using materialized views; the optimizer of [6] can choose in
a cost-based and syntax-independent way between a mate-
rialized view and a view expansion. The optimization algo-
rithm of [6] produces only valid view-based query rewritings
(i.e., is sound) for SQL select-project-join (SPJ) queries and
views with inequality comparisons and without grouping or
aggregation, and produces all such valid rewritings (i.e., is
complete) for SPJ queries and views without inequality com-
parisons, under the assumption that both base relations and
query answers can have multiple identical tuples — that is,
under bag semantics for query evaluation [7].

We continue the line of work of [6] by studying query opti-
mization using views in a System-R-style optimizer [19], for
SPJ queries and views that may involve grouping and aggre-
gation. We make an important assumption that base rela-
tions cannot contain duplicate tuples. In this setting there
may exist efficient equivalent rewritings of a given query
using given views such that these rewritings cannot be ob-
tained using the approach of [6]. We distinguish between
two possible scenarios:

e bag-set semantics for query evaluation [7], where du-
plicate tuples are retained in query answers, and

e set semantics, where duplicate tuples are eliminated
from query answers.

Note that evaluation under bag-set semantics is essential
for aggregate SQL queries involving aggregation functions
SUM or COUNT [1, 8], whereas, for instance, queries with the
DISTINCT keyword must be evaluated under set semantics.

To enable consideration of such additional rewritings in a
cost-based query optimizer, we focus on local conditions un-
der which two materialized views can be combined in an
efficient query rewriting; our work builds on the contribu-
tions of [2, 18]. The challenge of the problem is that, even
with the approach proposed in [2], there are cases where
a straightforward algorithm to combine views may perform
poorly. The theoretical results we present in this paper ap-
ply not only to query optimization, but to all areas where

the goal is to obtain equivalent view-based query rewritings.
Consider an example that highlights the novelty and focus
of our approach.

ExXAMPLE 1. Consider a star-schema [5] data warehouse
with five base relations (key attributes are underlined):

Sales (saleID, custID, prodID, saleMonth, price)
Customers (custID, custType, nationID)

Products (prodID, supID)

Suppliers (supID, supRegion)

Nations (nationID, nationName)

Here, Sales is the fact table, and the remaining tables are
dimension tables. We make the following realistic assump-
tions about the contents of these relations. First, each of the
first three relations stores a large number of tuples (e.g., hun-
dreds of millions for Sales, tens of thousands for Customers,
etc). Second, customers make frequent repeat purchases of
the same multiple types of products; as a result, many spe-
cific combinations of the wvalues of cust ID, prodID, and
saleMonth occur each in a large number of tuples in the
Sales table. Third, on average Customers stores a large
number of customer IDs per customer type, and Products
— a large number of product IDs per supplier. Finally, cus-
tomer types are nation specific.' While our approach is ap-
plicable in presence of indexes (cf. [6]), in this example we
assume that there are no indexes on the base relations.

Suppose a user is interested in the maximal product price per
customer type per product-supplier region per month, start-
ing in January 2005; the answer should include information
about the customers’ nations. This query Q can be expressed
in SQL as follows:

Q: SELECT custType, supRegion, saleMonth, nationName,
MAX (price)

FROM Sales S, Customers C, Products P, Suppliers SP,
Nations N

WHERE S.custID = C.custID AND S.prodID = P.prodID
AND C.nationID = N.nationID AND P.supID = SP.supID
AND saleMonth >= €2005-01°

GROUP BY custType, supRegion, saleMonth, nationName;

Suppose the data warehouse maintains materialized aggre-
gate views V and W. The view V is defined on Sales, Custom-
ers, and Nations and returns maximal product price per
customer type per product ID per month, including informa-
tion about the customers’ nations. The view W, defined on
Sales, Products, and Suppliers, returns mazximal prod-
uct price per customer ID per product ID per supplier region
per month. Under our assumptions on the base data, the size
of the relation for each of V and W would be much smaller
than the size of the Sales relation. (Note that the values of
nationName and supRegion are functionally determined by
the values of custType and prodID, respectively.)

It is straightforward to find a plan for answering the user
query Q ezactly (i.e., using an equivalent rewriting) by using
either materialized view in combination with the “missing”
dimension tables. That is, the view V can be combined with
tables Products and Suppliers into a rewriting Q(V), and
the view W — with tables Customers and Nations into a
rewriting QW) . In fact, some commercial query optimizers,
as well as extenstons to query optimizers proposed in the

!None of these functional dependencies is needed for the
correctness of the rewritings in the example.

literature (see, e.g., [3, 12, 20, 24]) would find both rewrit-
ings. Fach of Q(V) and Q(W) would be worth considering in a
cost-based query optimizer, as either rewriting would reduce
significantly the evaluation costs of Q on data warehouses
that satisfy our assumptions.

We now show that we can use the two views V and W together
to answer the user query Q, and argue that the reduction in
the evaluation costs for Q in this case is significant under
our assumptions — in particular, it is at least on par with
the reduction in costs obtained in each of Q(V) and Q(W).
Consider this rewriting R of the query Q using the two views:

R: SELECT custType, supRegion, V.saleMonth, nationName,
MAX (vMaxPrice) FROM V, W

WHERE V.prodID = W.prodID AND V.saleMonth = W.saleMonth
AND V.saleMonth >= ¢2005-01°

GROUP BY custType, supRegion, V.saleMonth, nationName;

Here, vMaxPrice is the aggregated attribute of the view V. It
can be shown [1, 8] that R is an equivalent rewriting of the
query Q. At the same time, under our assumptions on the
base data, R would result in a more efficient evaluation of Q
than either Q(V) or Q(W), provided that the size of Products
(Customers, respectively) is comparable to the size of the
view V (W, respectively). Thus, it would be desirable to con-
sider the rewriting R in a cost-based optimizer.

We use this example to make two observations. First, R
would not be an equivalent rewriting of the query Q if the
view W did not have prodID among its grouping attributes,
even though each of Q(V) and Q(W) would still be an equiv-
alent rewriting of Q. This observation leads us to consider
local conditions for combining a pair of views in an equiva-
lent rewriting of a given query. Second, if we modify each of
Q, V, W, and R to be a SUM- rather than MAX-query (we give an
extended example in the full version of the paper), the mod-
ified rewriting R’ will not be an equivalent rewriting of the
modified query Q’, as the unaggregated SPJ core of R is not
equivalent to the core of Q under bag-set semantics for query
evaluation [1, 8]. (The cores of Q and Q’ are the same, as
are those of R and R’.) This observation leads us to consider
construction of efficient view-based query rewritings sepa-
rately under set semantics (for, e.g., MAX- or MIN-queries or
for queries with the DISTINCT keyword) and under bag-set
semantics [7] (for, e.g., SUM- or COUNT-queries).

Our contributions: To enable consideration of all efficient
view-based rewritings of a relational query when base rela-
tions contain no duplicate tuples, for each of bag-set and set
semantics for query evaluation we develop efficient local con-
ditions under which two views can be combined in a query
rewriting, for SPJ queries and views with or without aggre-
gation. For each of bag-set and set semantics we propose
an efficient sound and complete algorithm for testing equiv-
alence of queries and rewritings; the algorithm for the set-
semantics case builds on results of [2, 18]. (Our algorithms
are complete with respect to the language of rewritings —
SPJ rewritings for SPJ queries, and central rewritings [1]
for queries with aggregation.) Areas where our algorithms
are applicable include query optimization, maintenance of
physical data independence, and data warehousing.

We propose sound dynamic-programming algorithms based
on our local conditions, for finding efficient execution plans

for user queries using indexes and materialized views; queries
and views may have grouping and aggregation. Our ap-
proach is a relatively simple generalization of the cost-based
query-optimization algorithm of [6], which works in an ex-
panded search space of rewritings. While exploring strictly
more rewritings than the approach of [6], in general our al-
gorithms for bag-set and set semantics are incomplete; we
present a theoretical study of the completeness-efficiency
tradeoff and describe enhancements that would make the
algorithms complete. Finally, we provide experimental re-
sults that show good efficiency and scalability of one of our
algorithms for bag-set and set semantics and test the limits
of query optimization using overlapping views.

We start by giving the background and our problem state-
ment in Section 2. We use Datalog for concise notation, but
all our results hold for SPJ queries, views, and rewritings
with equality comparisons and possibly with the DISTINCT
keyword or with aggregation SUM, COUNT, MAX, or MIN. Sec-
tions 3 and 4 introduce (1) our efficient local conditions un-
der which two views can be combined in a rewriting, and
(2) our equivalence-testing algorithms. We describe our op-
timization algorithms in Section 5, and present experimen-
tal results in Section 6. Section 7 discusses related work;
we conclude in Section 8. Due to space constraints, we are
unable to provide full proofs of our theoretical results in this
paper; we provide intuition for the results wherever possible.

2. PRELIMINARIES

In this section we review bag, bag-set, and set semantics for
query evaluation, discuss some concepts in answering queries
using views, give a formal statement of the problem consid-
ered in this paper, and discuss some relevant past work.

2.1 Equivalent rewritings and views

We consider SQL SPJ queries with equality comparisons,
ak.a. safe conjunctive queries (CQs), possibly with group-
ing and aggregation, posed on stored (base) relations in a
relational database. A relation can be either a set or a bag;
a bag can be thought of as a set of elements with multiplici-
ties attached to each element. A database is set-valued if all
its base relations are sets, and is bag-valued otherwise.

Two CQ queries Q1 and Q2 are set-equivalent (bag-set-equiv-
alent, bag-equivalent, respectively), denoted by Q1 =s Q2
(Q1 =bs Q2, Q1 =» Q2, respectively), if they produce the
same set (or bag, respectively) of answers on every database
(every set-valued database for the first two cases, every bag-
valued database for the third case). Chandra and Merlin [4]
show that under set semantics, a CQ @1 is contained in a
CQ Q2, Q1 Cs Q2, if and only if there exists a containment
mapping, which maps the head and all the subgoals of Q2
to @1; the mapping maps each variable to a single variable
or constant, and each constant to the same constant. Q1
and Q2 are equivalent under set semantics if and only if
Q1 Cs Q2 and Q2 Cs Q1. For bag and bag-set semantics,
the following conditions hold for CQ query equivalence [7]:

THEOREM 1. Let Q1 and Q2 be conjunctive queries. (1)
Q1 and Q2 are equivalent under bag semantics if and only
if Q1 and Q2 are isomorphic. (2) Q1 and Q2 are equivalent
under bag-set semantics if and only if Q7 and Q% are equiv-
alent under bag semantics, where Q) and Q% are canonical

representations of Q1 and Q2 respectively.?

A wview refers to a named query. A view V is said to be ma-
terialized in a database D if its answer V(D) is stored in the
database; Dy, ... v, is a database D with added relations
for the views Vi,...,V,. A rewriting R of a query Q on a
set of views V is an equivalent rewriting under set semantics
if for every set-valued database D, R(Dy) = Q(D), that is,
R(Dvy) and Q(D) are the same as sets. The definitions for
the bag-set and bag semantics are analogous. In the rest
of the paper, unless otherwise noted, the term “rewriting”
means an “equivalent rewriting” of a query using views, un-
der the semantics specified either explicitly or by the con-
text. We also assume that the definitions of queries and
views under consideration are minimized [4].

For a rewriting R of a query @ using views, we obtain the
expansion R°*P of R by replacing all view atoms in the body
of R by their definitions in terms of base relations. We
now give necessary and sufficient conditions for CQ query-
rewriting equivalence under each of the three semantics:

THEOREM 2. For a CQ query @ and a set of CQ views
V, let R be a CQ rewriting of Q using V. Then (1) Q =s R
iff R°*P =, Q on all set-valued databases D; (2) Q =p R iff
R®P =, Q on all bag-valued databases D; and (3) Q =ps R
iff R®*P =, Q on all set-valued databases D.

We consider CQ queries and views with or without aggre-
gation, and assume that all aggregate queries and views are
unnested and use aggregation functions COUNT, SUM, MAX, or
MIN. We denote such queries and views CQA; CQ(A) stands
for CQ queries that may or may not involve aggregation.
We consider only central rewritings [1] of CQA queries. In-
tuitively, these are rewritings where the unaggregated core
is a CQ query, and only one view contributes to computing
the aggregated query output. For instance, rewriting R in
Example 1 is a central rewriting of the query Q. Equivalence
tests for a CQA query @ and a central rewriting R are [1,
8] by reduction to (1) bag-set equivalence of the unaggre-
gated cores of) and R**? for SUM and COUNT queries, and to
(2) set equivalence of the cores for MAX and MIN queries. In
our analysis, we chose central rewritings for their simplicity
— compare these with rewritings in [8] where, in general,
the aggregate term in the rewriting is a product of aggre-
gate terms from all constituent views. However, as there
is a natural relationship between some classes of rewritings
in [8] and in [1], our results also apply to rewritings of [8].

We now show that given a CQ query and a set of CQ views,
in general the search space of all equivalent rewritings of the
query using the views depends on whether the base relations
or query answer may contain duplicate tuples.

EXAMPLE 2. Consider a database D with three base re-
lations, P(A,B), S(B,C,F), and T(F,G). Let a CQ query
Q be a natural join of P, S, T that returns the values of all
attributes of P and T. Let the database include three mate-
rialized views, U, V, and W; each view is a natural join of
two of the base relations. For instance, U is a join of P and
S that returns the values of attributes A, B, and F. Here are
the definitions of the query and views in Datalog:

2Q)’ is a canonical representation of a query Q if Q' is ob-
tained by removing all duplicate literals from Q.

a(X1, X2, X3, X4) «— p(X1,X2), 5(X2,X5,X3), t(Xs,X4).
u(Y1,Ya2,Ys) — p(Y1,Y2), s(Ya, Z,Y3).
v(Y17Y27Y37Y4) Hp(Y17Y2)7 S(Y27Y47Y3)'
’LU(YQ,Yg,Y4,Y5) HS(YQ,Y4,Y3), t(Yg,Y5).

We can rewrite the query Q as a query R1 that joins the view
U with the base relation T'; Ry is an equivalent rewriting of
Q under bag semantics. In addition, R1 = Q) under bag-set
and set semantics, because each semantics is a restriction
on the bag-semantics setting. Under bag-set semantics, in
addition to Ri1, Q has another rewriting R2 — a natural join
of views V' and W; Ry = Q under bag-set but not under bag
semantics. (Ra is also equivalent to QQ under set semantics,
because it is a restriction on the bag-set-semantics setting.)
Finally, under set semantics Q has an additional rewriting
R3, which is a natural join of views U and W. Rs is not
equivalent to QQ under bag or bag-set semantics.

In the full version of the paper we spell out assumptions
on the base relations and indezxes in the database D, under
which (1) evaluating R1 is cheaper than evaluating Q without
views, (2) under bag-set semantics, evaluating Ra is cheaper
than evaluating R1, and (3) under set semantics, evaluating
Rs is cheaper than evaluating either Ri or Ra.

Given that bag-set semantics is a restriction on bag seman-
tics, to find an optimal view-based rewriting of a given query
under bag-set semantics we need to consider at least all the
equivalent rewritings for the bag-semantics case. A similar
relationship holds between bag-set and set semantics. At
the same time, as shown in Example 2, given a CQ query
and a set of CQ views, the search space of equivalent rewrit-
ings of the query that use the views can be strictly larger
(1) under bag-set semantics than under bag semantics, and
(2) under set semantics than under bag-set semantics.

2.2 QOur problem statement

We now introduce feasible, efficient, and optimal rewritings,
give a formal statement of our problem, and discuss our
assumptions. For a fixed database schema S and given a
CQ(A) query Q on S and a set of CQ(A) views V defined
on S, a CQ(A) query R is a feasible rewriting of Q for set,
bag-set, or bag semantics X if (1) R is defined in terms of
V, and (2) R is equivalent to @ under the semantics X,
R =x Q. Efficient rewritings are defined as follows: Given
a database D with schema S, a CQ(A) query Q on D, and
a set of CQ(A) views V defined on S, a CQ(A) query R is
an efficient rewriting of Q for set, bag-set, or bag semantics
X and given a cost model M, if (1) R is a feasible rewriting
of @, and (2) the cost of evaluating R on D using the cost
model M, Cum(R, D), is lower than the cost Ca(Q, D) of
evaluating the query @ in its original formulation. A feasible
rewriting R is optimal if Ca(R, D) is minimal among all
Cum(R', D) where R’ is a feasible rewriting of @ for V, X.
The cost Cr(F, D) of evaluating a query @ on database D
using some formulation F of @ (e.g., a rewriting using views)
is the cost of computing the answer to @) using a lowest-cost
query plan for F' on D, for a fixed cost model M.

Our problem statement is as follows: Produce an optimal
CQ(A) rewriting of a minimized [4] CQ(A) query Q on a
database D using minimized CQ(A) views V, for set, bag-
set, or bag semantics X and given a cost model M.

All theoretical results in this paper hold under monotonic
cost models [2]. Intuitively, a cost model is monotonic if
replacing a relation by a smaller relation in — or removing
a redundant subgoal from — a query plan never results in
higher execution costs; many cost models proposed for and
used in query optimization are monotonic.

Our results in this paper hold under the following additional
assumptions. We consider CQ(A) queries, views, and rewrit-
ings of the form described in Section 2.1. Further, we allow
rewritings that use base relations alongside views (see, e.g.,
rewritings Q(V) and Q(W) in Example 1 and rewriting R; in
Example 2). As the database schema is not part of our prob-
lem input, in proving our complexity results we assume that
the number of attributes in each base relation is a constant.
For the cases of bag-set and set semantics, we assume that
each rewriting R that is equivalent to a given query @ con-
tains no filtering views [2, 17, 18], that is, does not contain
views whose removal does not result in loss of equivalence of
R to Q. Finally, we assume that a query optimizer considers
only left-deep join trees for query plans [6, 11, 19].

2.3 View tuples and efficient rewritings

In this paper we use the results of [2] on restricting the
search space of efficient rewritings under set semantics. We
first give the definition of a view tuple [2, 17]. Given a query
Q, a canonical database Dg of) is obtained by turning
each subgoal into a tuple by replacing each variable in the
body of @ by a distinct constant, and treating the resulting
subgoals as the only tuples in Dg. Let V(Dgq) be the result
of applying the view definitions ¥V on Dg. For each tuple in
V(Dgq), we restore each new constant back to the original
variable of), and obtain a view tuple of each view with
respect to the query. By definition, each variable in each
view tuple of @ occurs in the definition of Q. Let T (Dg)
denote the set of all view tuples after the replacement.

LEMMA 3.2 of [2]. Under set semantics for any equivalent
CQ rewriting R : r(X) «— p1(Y1),...,px(Yx) of a CQ query
Q using CQ views V, there is a CQ rewriting R’ =5 Q,

such that R is in the form v (X) «— p1(Y{),...,pe(Y}). In

addition, each p;(Y;) is a view tuple in T (Dgq), and R' C R.

[2] gives examples, for the set-semantics case, of equivalent
rewritings whose subgoals are not view tuples.

THEOREM 3. Given a database D, a CQ(A) query Q, and
a set of CQ(A) views V, under set, bag-set, or bag semantics
X and using a monotonic cost model M, consider the set R
of all feasible CQ(A) rewritings R of Q in terms of V. Let
Ropt € R be the set of optimal CQ(A) rewritings of @ on
D wusing the cost model M. Then for at least one rewriting
Ropt € Ropt, each subgoal of Ropt 1s a view tuple in T(Dg).

Theorem 3 holds for CQ queries, views, and rewritings both
with and without aggregation. The proof of Theorem 3
is immediate from the definition of monotonic cost models
(and, for set semantics, from Theorem 5.1 in [2]), after we
make the following observation for the case of bag or bag-set
semantics [1, 7, 8]. Suppose that R is a CQ(A) rewriting of a
query @ using views V under bag or bag-set semantics, such
that at least one subgoal of R is not a view tuple in 7 (Dg).
Then R is not equivalent to @ under the given semantics. In

the remainder of the paper we consider only rewritings that
consist entirely of view tuples (in a broader sense than that
of [2], i.e., we also consider view tuples for base relations),
for a given query, views, and base relations.

2.4 Some additional terminology

We now describe some terminology that we will need to
present our approach. First, we extend the notion of tuple
core of [2] by defining “tuple coverage.” Intuitively, given a
query and a view tuple, a tuple coverage of the view tuple
is some set of query subgoals that can be “covered” by the
view tuple in some rewriting of the query. Formally, given
a CQ query @, a CQ rewriting R =; @, and a CQ view V
in R, let ty € T(Dg) be V’s view tuple for Q. Then a tuple
coverage s(tv,Q) of tv is a nonempty set G of subgoals of
Q, such that (1) G is isomorphic to some set of subgoals in
the expansion ¢{/” of ty, and (2) each variable Y of G is a
head variable of ¢y whenever either Y is a head variable of
the query @ or Y is used in a subgoal p;(Y;) of @ such that
pi(Yi) is not in G. [2] introduced the notion of tuple core
Smaz(tv, Q) of a view tuple ty for query Q: Smaz(tv, Q) is
a tuple coverage that uses a maximal set G of subgoals of
Q. A tuple core is unique for a given pair (Q,tv) [2].

The notions of tuple core and tuple coverage extend nat-
urally to CQA queries and views, provided that central
rewritings [1] are used. We will see in Section 4 how our
approach decides on whether it is possible to combine two
view tuples ty and tw in a rewriting that is equivalent to the
given query) under set semantics; the idea of the approach
is to examine tuple coverages s(tv,Q) of tyv and s(tw,Q)
of tw, where s(tv,Q) and s(tw, Q) are not necessarily full
tuple cores of the respective view tuples. At the same time,
under bag-set and bag semantics the only tuple coverages
that matter in equivalent rewritings are full tuple cores.

We now restate the bag-semantics part of Theorem 2 using
the notion of tuple core, and extend the theorem to aggre-
gate queries, views, and rewritings under bag semantics:

PROPOSITION 1. Given a CQ(A) query Q on database
with schema S, and given a CQ(A) rewriting R in terms
of CQ(A) views Vi,...,Vy defined on S. Let s1,...,5m be
the tuple cores of all the view tuples in the rewriting R. Then
Q and R are equivalent under bag semantics if and only if
(1) all the s;’s are pairwise disjoint, and (2) the union of all
the s;’s is the set of all subgoals of the query Q.

2.5 Query optimization under bag semantics

The cost-based query-optimization algorithm of [19] uses dy-
namic programming to find optimal query plans. The ap-
proach of [6] (we call it “the CKPS approach”) extends the
algorithm of [19] by including view-based query plans into
the search space of the optimizer. The CKPS approach uses
a preprocessing stage, which determines for each view or
base relation V' whether V' is usable in answering the query
and, if so, which subgoals of the query V' “covers.” That is,
for each view (or base relation) V' which is usable for the
query, the preprocessing stage returns all view tuples h; of
V and the respective nonempty tuple cores D;. The output
of this stage is a mapping table called MapTable. The main
stage of the CKPS approach is given as Algorithm 1. Intu-
itively, the algorithm considers each set of query subgoals as

a subproblem (we call it “cell”) in dynamic programming;
while the algorithm of [19] finds for each cell an optimal
plan in terms of base relations only, the CKPS algorithm
also checks whether each cell is “exactly covered” by (i.e.,
whether each cell is the tuple core of) any view tuple re-
turned by the preprocessing stage and, if so, estimates the
cost of evaluating the cell using each relevant view tuple.
Then the algorithm chooses for the cell one optimal plan
from all available (including view-based) plans.

Algorithm 1: Query-optimization algorithm CKPS of [6]

Input : query Q, table MapTable, cost model M
Output: optimal execution plan for @ w.r.t. M
begin
for each cell D; of PlanT able in increasing size do
for each (Dj, hj) in MapTable do
if cells D; and D; are disjoint then
AddPlan(D; U D;, P = PlanTable|D;] 1 h;)
//set P as plan for cell D; U D;
//if cost(P) is the best so far for that cell

return the plan for the cell for all subgoals of @
end

Note that the CKPS algorithm considers only those query
rewritings whose all possible pairs of view tuples have non-
overlapping tuple cores. (In Example 2 the algorithm would
produce the rewriting R; but not Rz or Rs.) It is shown
in [6] that the CKPS algorithm is sound and complete for
CQ queries and views under bag semantics. We use the
CKPS approach as the basis of our query-optimization al-
gorithms, see Section 5.

3. REWRITINGS: BAG-SET SEMANTICS

In this section and in Section 4 we characterize equivalence
of queries and rewritings using tuple coverages. Under bag-
set semantics we need only tuple cores for the characteriza-
tion, whereas under set semantics (Section 4) tuple cover-
ages that are not tuple cores play a very important role.

Recall rewritings Ri, Rz in Example 2; unlike R;, the tuple
cores of two view tuples in R2 overlap on subgoal s of the
query @, and each of Ry and R» is bag-set equivalent to Q.
The following theorem gives conditions for possible overlaps
of CQ views in such equivalent rewritings:

THEOREM 4. Given a CQ(A) query Q and two CQ(A)
views V' and W, with view tuples tv and tw, respectively,
such that the tuple cores of tv and of tw in @ have in com-
mon a nonempty set G of subgoals of Q. Then ty and tw
can be combined in an equivalent rewriting of Q under bag-
set semantics if and only if all the variables in G are head
variables of both view tuples ty and tw.

(Recall that under bag semantics, tuple cores of two view
tuples in an equivalent rewriting cannot have a nonempty
overlap.) This result follows from Theorem 1; an extension
to the CQA case is not hard due to use of central rewritings.

Theorem 4 gives rise to a straightforward cubic-time algo-
rithm® for checking equivalence of a rewriting to a query

3We measure the complexity of all our algorithms in the
number of subgoals in the input query and views.

under bag-set semantics; we give a complexity proof in the
full version of the paper. For instance, in Example 2 rewrit-
ing Rz is equivalent to query @ because all the attributes
of the subgoal s of @) are head attributes of both views, V'
and W, in Rs. This condition is not satisfied in rewriting
R3, which is not equivalent to ¢ under bag-set semantics.

4. REWRITINGS: SET SEMANTICS

We now characterize set-equivalence of CQ(A) queries and
rewritings. We start with a motivating example.

ExampLE 3. Consider a CQ query Q and three C'Q views:

(X1, X5) —p1(X1, X2), p2(X2, X3), p3(X3, X4, X5).
v1(Y1,Y3) —p1(Y1, Z1), p2(Z1,Y3).

v2(Y2,Ys) — p2(Ya, Z2), p3(Z2,Z3,Ys).

v3(Y2,Y3,Ys) «— pa(Ya,Y3), p3(Y3, Zs,Y5).

The definition of each view has the subgoal p2 of the query
Q; the only difference between Vo and V3 is an extra head
variable in V3. We look for efficient rewritings of Q using
only these views (i.e., no base relations) under set seman-
tics. As Vl(Xl, Xg), VQ(X27X5), and ‘/3()(2,)(37 Xs) are all
the view tuples of the three views for the query Q, any such
rewriting would use these view tuples and nothing else. Us-
ing containment mappings [4] we can show that a product Ry
of Vi(X1, X3) with Va(X2, X5) is not an equivalent rewrit-
ing of the query Q, even though the union of the tuple cores
of the view tuples for Vi and Vi is the set of all subgoals of
Q. At the same time, a natural join Ra of Vi (X1, X3) with
V3(X2, X3, X5) is equivalent to the query Q.

We proceed to define a local condition for checking whether
two view tuples can be combined in a rewriting that is equiv-
alent to the given query under set semantics. This local con-
dition will help us disqualify combinations such as Vi with
V2 in Example 3, and will help us pursue combinations such
as V1 with V3 in the same example.

4.1 Containment: partition condition

In this subsection we formulate a necessary and sufficient
partition condition for combining two view tuples in a rewrit-
ing of a CQ(A) query using CQ(A) views under set seman-
tics; this condition gives us a procedure for constructing
efficient equivalent rewritings of queries using views.

Intuitively, a query @ is equivalent to a rewriting R if and
only if there is a partition of the set of subgoals of @ into
subsets, such that each subset G; is “covered” by a view
tuple for view V; in R. We now state this result formally, as
Theorems 5 (extended from [2] to the CQA case) and 6.

THEOREM 5. Given a CQ(A) query Q on a database with
schema S and a set of CQ(A) views Vi,...,V, defined on S,
with view tuples tv,, ..., tv, , respectively. Then a rewriting
R using tv,,...,tv, contains Q under set semantics, Q Cs
R, if and only if the union of the tuple cores of tv,,...,tv,
is the set of all subgoals of the query Q.

THEOREM 6. Given a CQ(A) query Q on a database with
schema S and a CQ(A) rewriting R in terms of CQ(A) views
Vi,...,Vn defined on S, with view tuples tv,,...,tv,, re-
spectively. Let R set-contain Q, Q@ Es R. Then R T, Q
(and therefore R =s Q) if and only if the set {tv,} of view

tuples in R has a subset {t7.}, i € {1,...,m}, with tuple
coverages s(ty,,Q), such that the following partition condi-
tion holds: (1) s(t7,, Q) s(ty,, Q) is an empty set for each
ki€ {L...,m} (b # 1), and (2) U, s(ti,,@) = Ga,
where Gq is the set of subgoals of the query Q.

We illustrate this result using Example 3. It is easy to see
that each of Ry and R> contains the query Q). The rewriting
Ry = tv, Xty is contained in the query @ because the tuple
coverages s(tv;, Q) = {p1,p2} and s(tvy, Q) = {ps} of the
two view tuples partition the set {p1,p2,p3} of all subgoals
of Q. At the same time, for the rewriting R1 = tv, X ty,
in Example 3, the partition condition does not hold for any
combination of tuple coverages of the view tuples V7 and V5.
As a result, Ry is not contained in the query Q. Intuitively,
we cannot find a containment mapping from @ to R;*?, such
that the mapping could map the attributes of Q’s subgoal
p2(X2, X3) consistently into R{"?.

4.2 Efficient algorithm for partition checking
In this subsection we study the complexity of checking the
partition condition of Theorem 6. Consider a CQ query Q
and a CQ rewriting R that contains @), such that R com-
prises two view tuples ty and ty . Let the union of the tuple
cores of ty and tw be the set of subgoals of @; thus, Q Cs R.
Does Q also contain R? Suppose the intersection S? of the
tuple cores of ty and tw has “nearly all” subgoals of Q.
Not surprisingly, if we try to check the partition condition
of Theorem 6 by exploring subsets of subgoals of @ in this
“overlap area” S', we can use an adversarial argument to
show that the complexity of the checking can be exponential
in the number of subgoals of Q and of the two views.

We now present a polynomial-time algorithm E-MCD-Rewr-
iting for checking the partition condition of Theorem 6 un-
der set semantics, for CQ(A) queries, views, and rewritings.
The algorithm has been inspired by MiniCon Descriptions
(MCDs), developed in [18] in the context of computing max-
imally contained rewritings. We adapt MCDs to our context
of equivalent rewritings, by defining an E-MCD for a given
view tuple ty of a CQ(A) view V on CQ(A) query Q as a
minimal tuple coverage of ty. That is, an E-MCD is any
tuple coverage s(tv,Q) of ty on @, such that no proper
subset of subgoals of s(tv, Q) is also a tuple coverage of tv
on Q. (In Example 3, {p2,ps} is the only E-MCD of tv,,
whereas ty, has two E-MCDs, {p2} and {ps}.) It is easy to
see that, given a CQ(A) query @ and a view tuple ty for a
CQ(A) view V, the set of all E-MCDs of ¢ty on @ provides
a partition of the tuple core of tyv on Q). There exists a
quadratic-time procedure for finding all E-MCDs of a view
tuple for a query. (Quadratic is also an upper bound on the
cost of finding the tuple core of a view tuple for a query.)

Our algorithm E-MCD-Rewriting is based on an equivalent
rephrasing of Theorem 6, which replaces “tuple coverages”
by “sets of E-MCDs.” For ease of exposition, we present here
a version of E-MCD-Rewriting called E-MCD-Partition; E-
MCD-Partition operates on exactly two view tuples, instead
of an arbitrary number in E-MCD-Rewriting. Consider an
input Z to E-MCD-Partition; Z comprises: (1) a set SU of
all subgoals of a query @, (2) two views V and W and the
view tuples for the views on @), tv and tw respectively, such
that (a) the union of the tuple cores of ¢ty and tw is exactly

SY, and (b) the intersection ST of the tuple cores of ty and
tw is not an empty set. We require additionally that neither
view tuple be redundant in the rewriting. That is, the tuple
core of each of ty and tw includes at least one subgoal in
SV — 81, Given such an input Z, E-MCD-Partition returns
true if there is a partition P of some E-MCDs of ty and tw,
such that P “covers” exactly the set SY.

Algorithm 2: Procedure E-MCD-Partition

begin

SY «— tv’s E-MCDs “crossing border” (S, S¥ — 87)
SV — Smaz (tw, Q); © «— 2; if SY = ¢ then

| return true; //one partition uses tw’s tuple core

while true do
SV — all subgoals in S}Y; covered by those
E-MCDs in tw that do not overlap with Siv_l;
if SV misses some subgoal of smaz(tw,@) — S’
then
| return false; //no partition exists
SY «— all ty’s E-MCDs that cover ST — S}V
if S} =87, then
return true; //one partition uses all E-MCDs
//of tw that cover S}V
L i—i+1;

end

We give a pseudocode for E-MCD-Partition as Algorithm 2.
In each iteration 4 the algorithm maintains a partial set S}
of E-MCDs in ty that must be in each partition P; SY is
initialized to the set {s} of E-MCDs in ¢ty where each s cov-
ers subgoals in both S7 and SY — S, that is, “crosses the
border” between the two sets. (If S is empty, E-MCD-
Partition returns true, because a partition P exists that
has all E-MCDs of tw.) SYV is initialized to the tuple core
Smaz(tw, Q) of tw. Bach set S} contains all subgoals of SY
that are covered by those E-MCDs in ¢ty that do not overlap
with S} . If no partition P exists, then S}V for some i must
miss at least one subgoal s in the tuple core of ¢y, such that
s is not in the “overlap area” ST; the algorithm returns false
when it first discovers any such subgoal s. Whenever at least
one partition P exists, Sy for some i is the same as S} ;
the algorithm returns true once Sy = SY_ ;. Otherwise SY
grows in each iteration, by all E-MCDs of ¢ty that cover the
subgoals of ST that are neither in S}" nor in SY ;.

Our algorithm E-MCD-Rewriting is an easy generalization
of E-MCD-Partition to an arbitrary number of views in the
problem input. We have the following correctness result:

THEOREM 7. Algorithm E-MCD-Rewriting is sound and
complete for CQ(A) queries, views, and rewritings.

In the full version of the paper we prove that the complexity
of E-MCD-Partition is quadratic in the number n of sub-
goals of the query and views in the input Z, and thus the
complexity of E-MCD-Rewriting is O(n®) for locally mini-
mal [17] rewritings, that is, for rewritings that never contain
more than n view tuples.

S. COST-BASED QUERY OPTIMIZERS
FOR BAG-SET AND SET SEMANTICS

When looking for an efficient view-based execution plan for
a given CQ query, the dynamic-programming optimization

algorithm CKPS of [6] (Section 2.5) considers all combina-
tions of view tuples with each other and with base rela-
tions, such that the respective tuple cores “do not overlap”
— that is, all pairwise intersections of the tuple cores are
empty; see, for instance, rewriting R; in Example 2. To
be able to produce additional view-based query plans un-
der bag-set and set semantics, such as rewritings Rz and R3
in Example 2, we look for simple efficient local conditions
on combining, in a partial rewriting, view tuples whose tu-
ple cores do overlap. For the set-semantics case we present
efficient local conditions for special cases, as the “overlap
test” for the general case could lead the algorithm to revisit
some dynamic-programming (DP) subproblems once it has
visited unrelated DP subproblems, which would defeat the
purpose of dynamic programming. Section 6 reports our
experimental validation of the results of this section.

5.1 Basic DP algorithm BDPV

Our basic DP algorithm with views (BDPV) is the CKPS
algorithm of [6] enhanced by processing view tuples with
overlapping tuple cores. The preprocessing step of BDPV
is exactly the same as that of CKPS; the pseudocode for
the main stage of BDPV is shown as Algorithm 3. Just
like the main stage of the CKPS algorithm, BDPV consid-
ers each set of query subgoals as a subproblem, or “cell,” in
dynamic programming, and checks whether each cell is “ex-
actly covered” by (i.e., whether each cell is the tuple core of)
any view tuple returned by the preprocessing stage. Then
BDPYV chooses for each cell one optimal plan from all the
available — including view-based — plans.

Algorithm 3: Query-optimization algorithm BDPV

Input : query Q, table MapTable, cost model M

Output: optimal execution plan for Q w.r.t. M

begin

for each cell D; of PlanT able in increasing size do

for each (Dj, h;) in MapTable do

if cells D; and D; are disjoint then
AddPlan(D; U D;, P = PlanTable[D;] 1< h;)
//set P as plan for cell D; U D;

| //if cost(P) is the best so far for that cell

else

if GoodNontrivialOverlap(PlanTable[D;], D;)

== true then
| AddPlan(D; U D;, PlanTable[D;] < hy)

return the plan for the cell for all subgoals of @
end

The only difference between CKPS and BDPV is the Good
NontrivialOverlap segment in Algorithm 3. Intuitively, at
each DP cell we try to ensure that the partial rewriting we
are building is contained in some part of the query Q. In
the GoodNontrivialOverlap segment, after deciding on an
optimal plan P; = PlanTable(D;) for a cell D; of a query
@, BDPV additionally checks whether the set Sp, of base
relations and views in the plan P,* can be combined with
each view tuple ty whose tuple core Smaz(tv, Q) “nontriv-
ially overlaps” with the set of query subgoals D;. Then, for
each view tuple ¢y that can be successfully combined with a

4Sp, can have either no base relations or no views.

cell plan P; (with tuple core D;), BDPV adds the resulting
combination to the set of candidate plans for the DP cell
whose set of query subgoals is exactly the union of the tu-
ple cores of ty and P;. For instance, in Example 2 BDPV
would send to the cell for all subgoals of the query @ (1)
a combination of view tuples for V and W (i.e., rewriting
R>) under bag-set semantics, and (2) two combinations of
view tuples under set semantics, (U, W) and (V, W), where
(U, W) — that is, the rewriting Rs — could be chosen as
the more efficient plan for Q.

We now give an outline of this additional processing in
BDPYV, by first defining the nontrivial-overlap condition and
then describing the combination test, that is, necessary and
sufficient conditions for combining view tuples with partial
query plans. We say that two sets si1 and sa of subgoals
of query @ nontrivially overlap if (1) the intersection of s1
and sz is nonempty, as is (2) each of the sets s1 — s2 and
s2 — s1. Intuitively, condition (1) provides the “overlap,”
whereas condition (2) ensures that each of s1 and s2 con-
tributes to the combination some query subgoals that the
other set does not. (Recall that our cost model discourages
rewritings with redundant base-relation or view subgoals.)

We now describe the combination test that BDPV does.
Consider a DP cell D; and the combination Sp, of base re-
lations and views in an optimal plan P; for D;; suppose ty is
a view tuple whose tuple core $maz(tv, @) nontrivially over-
laps with the set of query subgoals in D;. The view tuple
tv can be combined with the plan P; if an equivalent-overlap
condition holds. The equivalent-overlap condition is not the
same for bag-set and set semantics, as the equivalence con-
ditions between a query and rewriting are different in these
two cases. Either equivalent-overlap condition we give here
ensures generation of equivalent view-based rewritings of a
given query under the respective semantics, as the condi-
tions are based on Theorem 4 in Section 3 (for bag-set se-
mantics) and on Theorem 6 in Section 4 (for set semantics).
We will see shortly that using the DP-algorithm template re-
sults in loss of completeness, and will discuss in Section 5.2
what should be done to restore completeness in the context
of a cost-based query-optimization approach of [19].

Under bag-set semantics, view tuple ¢y and optimal plan
P, for DP cell D; can be combined if for each subgoal s in
the intersection of the tuple core smas(tv, Q) of ty with the
expansion of the set Sp, of subgoals of P;, it holds that s
does not have nonhead variables in either ¢ty or Sp,. Under
set semantics, ty and P; can in general be combined if the
partition condition of Theorem 6 (Section 4) holds for the
union of some tuple coverage s(ty, Q) of ty with some tuple
coverage of P;. In our BDPV algorithm under set semantics
we use efficient equivalent-overlap conditions for the special
cases of chain and star queries. The following example illus-
trates the reasons for this restriction.

ExaMpLE 4. We look for equivalent CQ rewritings of a
CQ query Q in terms of CQ views V, W, and U :
(X, Y,U) «p1(X,Y), p2(Y, Z), p3(Z,S), pa(S,T), ps(T,U).
’l)(A, Bv D) — pl(A7 B)v p2(B7 H)7 pg(H, D)
w(CvFvG) <_p3(Cv J)7 p4(J7F)7 p5(F7G)
(B, F) — p2(B,C), p3(C, D), pa(D, F).
Let the view tuple tv for view V be an optimal plan Pi2s for
the DP cell Di2s = {p1,p2,p3}; we now combine Pia3 with

the view tuple tw for view W. Mapping the query Q into the
cross product tv X tw [4] shows us that tv X tw has two
tuple cores, S1 = {p1,p2,ps3,ps} and Sz = {p1,ps,ps,ps}.
Moreover, Sa is not a superset of the DP cell D123. At the
same time, the combination of tv with tw should be consid-
ered when looking for equivalent rewritings of the query @,
as (tv X tw) Mty is a set-equivalent rewriting of Q.

As shown in Example 4, the first complication of dynamic-
programming query optimization under set semantics is that,
unlike the bag-set-semantics case, an optimization algorithm
may produce in a DP cell D; two or more partial query plans
P}, ..., PF for other DP cells, where each Pij is a combina-
tion of an optimal plan P; for D; with some view tuple tv;,

and not all the combinations Pij use the same tuple coverage
of P;. (In Example 4, we use tuple coverage {p1,p2,p3} of
plan Pi23 to obtain a combination (Pi2s, tw) whose tuple
core is S1, and use tuple coverage {p1} of Pi23 to obtain a
combination (Pi23, tw) whose tuple core is S2.) While this
problem could be solved by considering all tuple coverages of
P; when producing partial plans P/, the second point illus-
trated by Example 4 is that a combination of two view tuples
might have to be sent from a DP cell D; (cell D123 in Ex-
ample 4) to another DP cell D; (cell Sz in Example 4) that
may miss some subgoals of D; — which would defeat the
purpose of dynamic programming. While this behavior can
also be demonstrated for queries whose shape is not chain or
star, in developing our equivalent-overlap conditions we suc-
ceeded in ruling out this undesirable flow behavior for BDPV
for chain and star queries. For the set-semantics case we re-
quire that BDPV do not consider cross products of partial
plans P; (for DP cells D;) with view tuples that satisfy the
nontrivial-overlap condition. This choice has been made in
other query-optimization approaches as well (e.g., [19]); note
that this no-cross-products requirement is satisfied naturally
in BDPV in the bag-set semantics case.

For the special cases of CQ chain and star queries under set
semantics, BDPV uses the following necessary and sufficient
equivalent-overlap conditions:

e for chain queries, a view tuple and a partial query
plan must have a query (i.e., head) variable in com-
mon; note that this requirement is exactly the no-
cross-products assumption;

e for star queries, we distinguish the hub variable of the
query, which is the “center of the star”; if a view tu-
ple tyv and a partial query plan P overlap on a query
subgoal that has the hub variable, we require that the
hub variable be the head variable of both ¢ty and P.

The following result holds by construction of BDPV:

THEOREM 8. The cost-based DP algorithm BDPV s
sound (1) for all CQ queries, views, and rewritings under
bag-set semantics, and (2) for chain or star CQ queries,
views, and rewritings under set semantics.

The complexity of the algorithm is O(l x 2"), where n is
the number of query subgoals and [is the number of en-
tries in the mapping table MapTable. By construction of
MapTable, [is an upper bound on the number of view tu-
ples applicable to the query. We obtain this bound from the
bound O(l x 2™) [6] of the CKPS algorithm, after observing

that for each dynamic-programming cell BDPV additionally
considers overlaps of its optimal plan with at most [views.

5.2 Complete algorithm CDPV

In this subsection we justify the need for and give a descrip-
tion of our complete cost-based algorithm with views. It has
been shown [6] that the CKPS algorithm is complete for CQ
queries and views under bag semantics; in Proposition 1 we
extended this result to aggregate queries and views under
bag semantics. In contrast, while our algorithm BDPYV is
sound under bag-set or set semantics (Theorem 8), it is in
general incomplete for CQ(A) queries and views. This result
is not suprising, because it is possible for a query to have
an optimal equivalent rewriting that uses views, such that
for some cells in DP search, partial plans for this particular
rewriting are not the most efficient plans for the cells. In
the full version of this paper we (1) give examples that prove
incompleteness of BDPV for CQ queries and views for each
of bag-set and set semantics, and (2) show completeness of
BDPYV for the following special cases:

e all variables in all applicable views are head variables,
under bag-set or set semantics;

e for each pair of view tuples applicable to a query, ei-
ther the two view tuples have no query subgoals in
common, or in all the common subgoals all the vari-
ables in both view tuples are head variables, under
bag-set semantics;

e each pair of views has the same head variables on each
base relation they have in common, under set seman-
tics (e.g., in Example 2 views V and W satisfy this
condition, while view U violates it on base relation S).

For combinations of CQ queries and views that do not satisfy
the above requirements, we can augment BDPV to make it
complete, by trying at each DP cell to combine with overlap-
ping views all possible partial plans for the cell, rather than
just one optimal partial plan; in this sense, these partial
plans can be compared to “interesting orders” in [19]. All
successful combinations are then “sent up” to the relevant
cells for consideration. We call this complete cost-based al-
gorithm with views CDPV. Note that while it uses BDPV’s
DP search structure, CDPV is not a DP algorithm.

THEOREM 9. The cost-based algorithm CDPV is sound
and complete (1) for all CQ queries, views, and rewrit-
ings under bag-set semantics, and (2) for chain or star CQ
queries, views, and rewritings under set semantics.

While having a complete algorithm for these cases may sound
like good news, there are two problems: First, CDPV breaks
the flow of dynamic programming by potentially using two
or more partial query plans for some DP cells. Second, the
complexity of CDPV is O(r x I x 2™), where r is the number
of equivalent rewritings of the query (r may be exponential
in the number of applicable views), and O(l x 2") is the
complexity of BDPV. This complexity makes CDPV im-
practical in general. At the same time, using the complete
algorithm CDPYV might be time efficient either for queries
with just a small number of subgoals, or for precompilation
of time-critical queries, when it is important to find an opti-
mal query plan under the assumption that the base relations
do not change significantly over long periods of time.

5.3 Optimizing aggregate queries

In this subsection we discuss how to use views to find effi-
cient central rewritings [1] of queries with aggregation, such
as rewriting R in Example 1. It is rather straightforward
to extend our algorithm BDPV for CQ queries, views, and
rewritings to queries and views with aggregation using cen-
tral rewritings. (Similarly, it is not hard to extend the op-
timization algorithm of [6] to queries, views, and rewrit-
ings with aggregation under bag semantics using Proposi-
tion 1.) The extension is straightforward because using cen-
tral rewritings allows us to first find an equivalent rewriting
of the unaggregated core of the query, by applying BDPV
to unaggregated cores [8] of the views, and to then take care
of the needed grouping and aggregation on top of that core
rewriting. It is shown in [1] that (1) some or even all views
in a central rewriting of an aggregate query may have no
aggregation, and that (2) depending on the available aggre-
gate views, an equivalent rewriting of an aggregate query
does not even have to have aggregation in the head.

We still need to address two issues in our extension of BDPV
to aggregate queries and views. First, BDPV needs to decide
which grouping and aggregation operators, if any, to select
as operators on top of the winning (possibly view-based)
query plan for the unaggregated core of the query. This issue
is addressed by using the algorithm of [1] for choosing the
central view in a central rewriting: Intuitively, the central
view determines the grouping/aggregation operators in the
rewriting. (A view is central in a central rewriting if the
view’s head argument is used to obtain the aggregated head
argument of the rewriting; for instance, view V is the central
view in rewriting R in Example 1.)

Second, we need to modify the view-overlap conditions that
BDPV uses for CQ queries, views, and rewritings without
aggregation. We have to consider separately the cases of
bag-set and set semantics: We use bag-set equivalence to find
efficient equivalent rewritings of SUM or COUNT queries, and
set equivalence for MAX or MIN queries. Under set semantics,
our approach applies to queries on star-schema data ware-
houses [5]; it generates rewritings that join aggregate views
on one base relation with (possibly views on) other rela-
tions, and additionally covers the case of combining several
aggregate views, such as in rewriting R in Example 1.

For MAX or MIN queries on a star-schema database, a neces-
sary and sufficient view-overlap condition is as follows. We
use the same no-cross-products condition as in the CQ case,
and require additionally that the head of the rewriting ag-
gregate further (if needed) only the aggregated output argu-
ment of the view whose tuple coverage in the rewriting in-
cludes the table whose attribute is aggregated in the query.
(This covers aggregation on either fact or dimension tables.)
This condition is satisfied in rewriting R in Example 1.

In case of bag-set semantics, we do not restrict ourselves to
star-schema queries. Notably, in rewritings of SUM or COUNT
queries two view tuples cannot overlap on a subgoal where
at least one of the view tuples has aggregation [1, 8]. On the
other hand, BDPV can produce rewritings where two view
tuples overlap on query subgoals on which neither view has
aggregation. To the best of our knowledge, such rewritings
cannot be produced by algorithms in the literature.

Star query Q3 (8 subgoals) under set semantics

——BDPV .- System—R-style DP (no views) ‘

Relative optimization time

.
0 1000 2000 3000 4000 5000 6000 7000 8000
Number of equivalent rewritings of query Q3

Figure 1: BDPV: Relative optimization time

It is straightforward to extend CDPV to queries and views
with aggregation. In the full version of the paper we prove
for the extensions of BDPV and CDPV to aggregate queries
that (1) our extension of BDPV is sound, and (2) our exten-
sion of CDPV is complete with respect to central rewritings.

6. EXPERIMENTAL RESULTS

In our experiments we measured the relative increase in opti-
mization time (cf. [6]) for our view-based algorithms BDPV
and CDPV; in addition, we studied the scalability of both al-
gorithms in the number of views and of potential rewritings.
The results of our tests seem to point to the computational
efficiency of our algorithm BDPYV for reasonable numbers of
applicable views and rewritings per query.

In this section we give the details of our experimental setup
and results. We implemented all the algorithms in C++.
All the experiments were run on a machine with a 1 GHz
Pentium3 processor, 1GB RAM, and a 18 GB hard drive,
running RedHat Linux 3.2.3 and its built-in GCC compiler.

For the experiments we implemented a generator for CQ
queries and views with only binary subgoals and without
self-joins; the generator takes as inputs (1) the number of
base relations, (2) the number of views, (3) the number of
subgoals in a query/view, and (4) the shape of the query and
views. The views were generated based on the respective
queries; for instance, each chain view was generated by ran-
domly selecting the “start point” and “end point” relations
in the chain for the respective query, and by then randomly
selecting the head variables of the view. In our experiments
we used twelve chain and star queries consisting of between
five and eight relations. For each query, between around
100 and 300 views were generated; the head variables of the
views were chosen in such a way that between 35 and 100
views could be used in rewritings of the respective queries.
(That is, for each query, only between 35 and 100 of the
views ended up in the table MapTable, see Section 2.5.) For
each query, the number of applicable views determined the
number of rewritings per query. We have explored queries
with up to 8000 possible equivalent rewritings, which cor-
responded to only 100 applicable views. (Recall that our
rewritings can use both base relations and views.)

In all the experiments, we tested each query and its respec-

Optimization running time: BDPV for star queries and set
semantics

——Ql —=—Q2 —+—Q3

180

160
140
120
100

(ms)

80

60

40

Optimization running time

20

....,,;:::3:3’f

0 20 40 60 80 100 120
Number of applicable views

Figure 2: BDPV: Absolute optimization time

tive views using the bag-set- and set-semantics versions of
our DP algorithm BDPV and of its complete version CDPV.
We used an experimental framework similar to that of [6].
Our optimizer cost model estimated query-plan costs us-
ing the sizes of base and intermediate relations, in bytes,
and the costs of joins as described in [11]; we did not take
indexes into account. In the optimizer cost estimates, we
used several sets of database statistics for each version of the
query-shape/semantics setting (e.g., for chain queries under
set semantics); in the statistics, the ratio of the size S of the
base relations to the value of the parameter M for mem-
ory size was in the interval 0 < S < M*. When measuring
running times for query optimization, we did not take into
account the preprocessing time (i.e., building the mapping
table MapTable), as it is linear in the number of applica-
ble views [6] and, in our experiments, in nearly all cases it
used less than 10% of the total optimization time. (This dis-
tinghuishes our setting from that of, e.g., [12], where view
matching takes up a significant portion of the total optimiza-
tion time.) For each query-shape/semantics setting, each
result we recorded was the average of the elapsed time for
ten runs for each query. Due to lack of space, in this section
we present mainly our BDPV results for star queries under
set semantics. The full version of the paper has all the de-
tails for BDPV and CDPV for all four settings: bag-set or
set semantics, for chain or star queries and views.

In our first set of experiments we measured relative opti-
mization time for BDPV and CDPV, calculated (similarly
to [6]) as the ratio of the running time of each of BDPV
and CDPV to the running time of the System-R-style query
optimizer without views, run on the same query and base
relations. Not surprisingly, our results for relative optimiza-
tion time for CDPV were not reassuring: Even for the “eas-
iest” case of chain queries under bag-set semantics, the ratio
was over ten for as few as 100 rewritings. The experimen-
tal results for BDPV for one of the star queries under set
semantics are shown in Figure 1; we can see that the rela-
tive optimization time for the query @3 is under three even
for over 7000 rewritings. In our results for all four query-
shape/semantics settings, in each setting the relative opti-
mization time of BDPV was under 6 in the low range of the
number of equivalent rewritings (e.g., for up to 1000 rewrit-

Overhead per view: BDPV for star queries under set semantics
——Ql —=—Q2 —+—Q3

1.6

1.4
z 1.2
£
501
=
=
50.8
a
F 0.6
<
=
5
S0.4
< NI S

0.2 ’W

0 . . .
0 20 40 60 80 100 120
Number of applicable views

Figure 3: BDPV: Overhead per view

ings for chain queries under set semantics), and decreased®
with the increase in the number of query subgoals. As the
rewritings that are equivalent to a given query under set
semantics include all rewritings that are equivalent to the
same query under bag-set semantics (when using the same
applicable views), the low range of the number of equivalent
rewritings in our experiments was much higher under set
than under bag-set semantics — for instance, 2000 vs 200
for star query Q3.

We saw that our algorithm BDPV can handle over 7000
equivalent rewritings with somewhat reasonable scalability.
For the case of up to 20 equivalent rewritings — that is,
for the experimental setting of [6] — for both semantics
(bag-set or set) and both query shapes (chain or star), the
relative optimization time of BDPV was comparable to that
of the CKPS approach of [6]. This effect is easy to explain
using the theoretical complexity of BDPV, because for each
combination of a partial plan P; for a DP cell D; with an
overlapping view tuple h;, the additional work in BDPV (as
compared to CKPS on which BDPYV is based) is done using
(1) efficient view-overlap tests, and (2) cost estimates for
just one plan P; X h;.

We now discuss our results on scalability of BDPV and
CDPYV in the number of applicable views. Figure 2 shows
absolute running times for BDPV for three star queries un-
der set semantics; queries @1, 2, and @3 have five, six, and
eight subgoals respectively, and had up to 35, 40, and 100
applicable views respectively. (The expectably disappoint-
ing execution time of CDPV is not shown.) In Figure 2, we
show on the X-axis only applicable views, as the preprocess-
ing step takes care of filtering out all other views. Figure 2
shows that, for instance, when we provided 20 applicable
views to each query, the running time of BDPV was under
10 ms for queries Q1 and @2 and under 40 ms for Q3. Over-
all, the running time of BDPV grows linearly in the number
of views; it was under 160 ms for star queries under set se-
mantics (Figure 2) and under 35 ms for chain queries under
set semantics, and was correspondingly lower for star and
chain queries under bag-set semantics. These results show
good scalability of BDPV in the number of applicable views,
in all four query-shape/semantics settings.

Recall that we report running times that are relative to the
running times of the optimizer that does not use views.

Finally, we considered overhead per applicable view for both
BDPYV and CDPV. We measured overhead as the difference
between the running time with views and the running time
without views (i.e., using a System-R-style optimizer), di-
vided by the number of views. As expected, the overhead
numbers for CDPV were not acceptable. Figure 3 shows the
overhead values for BDPV for the same queries and experi-
mental setting as those for Figure 2. We can see in Figure 3
that overhead per view is modest for each query for under
40 applicable views; even at 100 applicable views, the over-
head per view for query 3 does not exceed 1.5 ms. The
overhead values for up to 100 applicable views were under
.3 ms for chain queries under set semantics; under bag-set
semantics, the respective values were lower as expected.

The reason BDPV has good efficiency and scalability for
a realistic number of views per query is that we use effi-
cient local view-overlap tests. Note that under set seman-
tics, equivalent rewritings of a query include at least all those
rewritings that are equivalent to the query under bag-set se-
mantics, which explains the relatively higher efficiency of the
bag-set-semantics version of both algorithms. In summary,
our experiments show two points. (1) While the running
times of CDPV were acceptable in our experiments in the
“easiest case” of chain queries under bag-set semantics, in
general CDPV did not show promising performance or scal-
ability. It seems that to obtain efficient rewritings of a query
using overlapping views under bag-set or set semantics, we
may need to settle for incomplete query optimizers, such as
BDPV. (2) The BDPV optimization algorithm has good effi-
ciency and scalability for CQ queries and views whose shape
is chain or star, under both bag-set and set semantics.

7. RELATED WORK

Algorithms for rewriting queries using views are surveyed
in [15]. Algorithms have been developed for CQ queries with
comparison predicates [23], aggregate queries and views [9,
13, 20], and for queries and views in presence of integrity
constraints [12, 22]. Cohen et al. [9] present algorithms for
rewriting aggregate queries using views, under bag-set and
set semantics. The novelty of the approach is in extending to
aggregate queries previously known algorithms for obtaining
view-based rewritings of CQ queries. In contrast, we propose
a systematic unified approach to finding efficient view-based
rewritings for queries with or without aggregation.

Query optimization using materialized views has been ex-
plored extensively [3, 10, 12, 16, 22, 24]. Zaharioudakis and
colleagues [24] describe an efficient bottom-up algorithm for
semantic matching of complex aggregate queries with views.
The work does not address integration with a cost-based op-
timizer. The syntactic-matching approach of [22] enhances
a System-R-style query optimizer to integrate views and in-
dexes into plans for queries without aggregation. Our work
goes beyond query optimization and covers evaluation of
queries with or without aggregation. In addition, in our op-
timization algorithms we guarantee completeness for some
practical cases.

Goldstein et al. [12] present an approach to expanding a set
of query plans in a transformation-based query optimizer,
by matching queries and views with aggregation SUM and
COUNT in presence of integrity constraints; using a novel in-

dex structure, the algorithm generates all rewritings where a
query is computable from a single materialized view. In our
work we propose algorithms for constructing rewritings us-
ing multiple views, for queries with or without aggregation,
while extending a System-R-style query optimizer. DeHaan
and colleagues [10] present rules for a transformation-based
query optimizer; the rules match queries with indexed ag-
gregate views that may be defined on other views. The
efficiency of the approach comes from using signatures in
matching views with queries. We are currently exploring
the use of such signatures in our work.

Our approach builds on the work of [1, 2, 6, 18]. The contri-
butions of [2] were made to the problem of finding efficient
rewritings for CQ queries without aggregation under set se-
mantics. In our work we focus on finding efficient rewrit-
ings of CQ(A) queries using views under bag-set and set
semantics, and develop criteria for combining view tuples ef-
ficiently into a partial rewriting of a query. [18] proposed an
efficient scalable algorithm for finding maximally contained
rewritings of queries in the context of data integration. We
adapt some contributions of [18] to applications where equiv-
alent query rewritings are required. The query-optimization
approach of [6] for queries and views without aggregation is
the basis of our optimization algorithms BDPV and CDPV,
which also apply to queries and views with aggregation and
give completeness guarantees (CDPV) under bag-set and
set semantics. Afrati and colleagues [1] introduced central
rewritings for aggregate queries using views; the idea is to
build a rewriting that aggregates over an aggregated argu-
ment of just one view, while possibly grouping over a dif-
ferent set of grouping attributes. Using central rewritings
allows us to extend our rewriting techniques for CQ queries
and views to CQA queries and views.

8. CONCLUSION

We considered the problem of finding efficient equivalent
view-based rewritings of relational queries, focusing on query
optimization using materialized views, under the assump-
tion that base relations cannot contain duplicate tuples. To
enable consideration of all efficient rewritings of a query we
developed efficient local conditions under which two views
can be combined in a rewriting, for SPJ queries and views
with or without aggregation, under bag-set and set seman-
tics for query evaluation. For each semantics we described
an efficient sound and complete algorithm for testing query-
rewriting equivalence. Our algorithms are complete with
respect to SPJ rewritings for SPJ queries and with respect
to central rewritings [1] for aggregate queries.

We proposed sound dynamic-programming algorithms based
on our local conditions, for finding efficient execution plans
for user queries using indexes and materialized views; queries
and views may have grouping and aggregation. Our ap-
proach is a relatively simple generalization of the query-
optimization algorithm of [6]; similarly to [6], our approach
can be used to exploit cached results. While exploring strict-
ly more rewritings than the approach of [6], in general our
algorithms for bag-set and set semantics are incomplete; we
presented a theoretical study of the completeness-efficiency
tradeoff and described enhancements that would make the
algorithms complete. Finally, we provided experimental re-
sults that show good efficiency and scalability of one of our

algorithms, BDPV, for bag-set and set semantics.

In our current work we study how to extend BDPV and its
complete version CDPV to more general classes of CQ(A)
queries and views under set semantics, by using the E-MCD-
based overlap test of Section 4.2. We also plan to extend
our approach to more general query, view, and rewriting
languages, in particular to those involving inequality com-
parisons and integrity constraints.

9. REFERENCES

[1] F. Afrati and R. Chirkova. Selecting and using views to
compute aggregate queries. In Proc. ICDT, 2005.

[2] F. Afrati, C. Li, and J.D. Ullman. Generating efficient
plans for queries using views. In Proc. SIGMOD, 2001.

[3] R.G. Bello, K. Dias, A. Downing, J.J. Feenan Jr., J.L.
Finnerty, W.D. Norcott, H. Sun, A. Witkowski, and
M. Ziauddin. Materialized views in Oracle. In VLDB, 1998.

[4] A. K. Chandra and P. M. Merlin. Optimal implementation
of conjunctive queries in relational databases. In Proc. 9th
ACM STOC, pages 77-90, 1977.

S. Chaudhuri and U. Dayal. An overview of data
warehousing and OLAP technology. SIGMOD Record,
26(1):65-74, 1997.

S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and

K. Shim. Optimizing queries with materialized views. In
Proc. ICDE, pages 190-200, 1995.

[7] S. Chaudhuri and M. Y. Vardi. Optimization of real
conjunctive queries. In Proc. PODS, pages 59-70, 1993.

[8] S. Cohen, W. Nutt, and A. Serebrenik. Rewriting aggregate
queries using views. In Proc. PODS, pages 155-166, 1999.

[9] S. Cohen, W. Nutt, and A. Serebrenik. Algorithms for
rewriting aggregate queries using views. In Proc.
ADBIS-DASFAA, pages 65—78, 2000.

[10] D. DeHaan, P.-A. Larson, and J. Zhou. Stacked indexed

views in Microsoft SQL server. In Proc. SIGMOD, 2005.

[11] H. Garcia-Molina, J.D. Ullman, and J. Widom. Database
Systems: The Complete Book. Prentice Hall, 2002.

[12] J. Goldstein and P.-A. Larson. Optimizing queries using
materialized views: A practical, scalable solution. In Proc.
SIGMOD, 2001.

[13] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query
processing in data warehousing environments. In Proc.
VLDB, pages 358-369, 1995.

[14] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D.
Ullman. Index selection for OLAP. In Proc. ICDE, 1997.

[15] Alon Y. Halevy. Answering queries using views: A survey.
VLDB Journal, 10(4):270-294, 2001.

[16] P.-A. Larson and H.Z. Yang. Computing queries from
derived relations. In Proc. VLDB, pages 259-269, 1985.

[17] A.Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava.
Answering queries using views. In Proc. PODS, 1995.

[18] R. Pottinger and A.Y. Halevy. MiniCon: A scalable
algorithm for answering queries using views. VLDB
Journal, 10(2-3):182-198, 2001.

[19] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database management system. In Proc. SIGMOD, 1979.

[20] D. Srivastava, S. Dar, H.V. Jagadish, and A.Y. Levy.
Answering queries with aggregation using views. In Proc.
VLDB, pages 318-329, 1996.

[21] D. Theodoratos and T. Sellis. Data warehouse
configuration. In Proc. VLDB, pages 126-135, 1997.

5

6

[22] O.G. Tsatalos, M.H. Solomon, and Y.E. Ioannidis. The
GMAP: A versatile tool for physical data independence.
VLDB Journal, 5(2):101-118, 1996.

[23] H.Z. Yang and P.-A. Larson. Query transformation for
PSJ-queries. In Proc. VLDB, pages 245-254, 1987.

[24] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and
M. Urata. Answering complex SQL queries using automatic
summary tables. In Proc. SIGMOD, pages 105-116, 2000.

