
NCSU CSC Technical Report 2006-4 

Launching Automated Security Attacks through Unit-level 
Penetration Testing 

 
Michael Gegick and Laurie Williams  

Department of Computer Science, North Carolina State University 
Raleigh, NC 27695 

1-919-513-4151 
{mcgegick, lawilli3}@ncsu.edu 

 
Abstract 
Penetration testing is a software security practice typically 
conducted late in the software development lifecycle when a 
system has been completed.  A penetration test is an authorized 
attempt to violate specific constraints stated in the form of a 
security or integrity policy. However, penetration testing should 
start earlier in the development lifecycle when corrective action 
is more affordable and feasible.  To support earlier penetration 
testing, we are building SecureUnit, a framework of reusable, 
automated, and extendable Java-based unit test cases.  We 
present the initial installment of SecureUnit comprised of a test 
to detect cross-site scripting (XSS) vulnerabilities.  We illustrate 
the effective use of the XSS test case via its use to identify 
vulnerabilities in WebGoat, an open source test bed.  In the 
future, we will extend the test cases for the identification of a 
wide variety of security vulnerabilities.  Our long term vision is 
to use a static analyzer to identify vulnerabilities (such as an 
input field); automatically extract relevant parameters (such as 
URL, form name, and field name); and launch an attack by 
running a SecureUnit test case with these parameters.        

 
Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification 
Assertion checkers 
 
General Terms 
Security, Verification 

Keywords 
HttpUnit, security testing, penetration testing, black box testing, 
unit testing, security, cross-site scripting 

 

 
 

 
 

1. INTRODUCTION 
Penetration testing is the most commonly used software security 
best practice [3].  However, penetration testing is most often 
considered a black box, late lifecycle activity [3].  A penetration 
test is an authorized attempt to violate specific constraints stated 
in the form of a security or integrity policy [4].  A penetration 
test is designed to characterize the effectiveness of security 
mechanisms and controls to prevent attack by attempting 
unauthorized misuse of, and access to, target assets [3, 4].  
Penetration testing should start at the feature, component, or unit 
level, prior to system integration [3] for more affordable and 
robust fortification.        

In this paper, we present initial steps in the building of 
SecureUnit, a testing framework, similar to JUnit1 and the other 
xUnit2 testing frameworks, of reusable security unit test cases 
that can launch attacks of web applications at the unit level.  Our 
research objective is to build a framework of reusable, 
automated, and extendable Java-based test cases through which 
developers can launch security attacks to identify vulnerabilities 
early in the development lifecycle.  Developers building 
applications can iteratively use and extend the SecureUnit test 
cases during the code development phase.        

As shown in Figure 1, SecureUnit builds upon the HttpUnit3 
web application testing framework.  HttpUnit in turn, is coupled 
with the JUnit testing framework.  HttpUnit emulates the 
relevant portions of browser behavior.  Our SecureUnit utilizes 
the emulation provided by HttpUnit to launch attacks at the web 
application.  In Figure 1, dotted arrows represent calls to the API 
of the framework and solid arrows represent data flow.  White 
boxes represent that source code is analyzed for test case 
development whereas shaded boxes represent that the code not 
utilized for test case development.  Malicious input may be 
prevented from being sent to the application by the presence of 
an effective choke point.  A choke point is a small, easily-
controlled interface through which control must pass [13].   
Choke points are a means of channeling input into a common 
stream to be monitored.  SecureUnit test cases for selected 
security vulnerabilities will be aimed at testing the choke point 
and/or identifying the lack of a chokepoint.  A SecureUnit test 
case will fail if malformed input can reach the application. 

                                                                 
1 http://junit.org/index.htm 
2 http://xprogramming.com/software.htm 
3 http://httpunit.sourceforge.net/ 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 

ISSTA ’06, July 17–20, 2006, Portland, Maine, USA. 
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00. 



NCSU CSC Technical Report 2006-4 

 
Figure 1:  Security Testing with SecureUnit 

Our technique is a black box testing technique because the tests 
can be written without knowledge of the underlying choke point 
and web application code.  Our long term vision is to use a static 
analyzer to identify vulnerabilities (such as an input field); 
automatically extract relevant parameters (such as URL, form 
name, and field name); and launch an attack by running a 
SecureUnit test case with these parameters. 

In the first installation of SecureUnit, we focus on cross-site 
scripting (XSS) attacks of Java-based web applications.  XSS is 
an evil input problem that falls into the Input Validation and 
Representation category of the “Seven Pernicious Kingdoms 
taxonomy” [12].  XSS belongs to the Open Source Vulnerability 
Database (OSVDB)4 classification input manipulation (as does 
SQL injection and overflow) which constituted more than half 
of all of the vulnerabilities reported in 2003-4 [12].  In this 
paper, we provide an illustrative example of SecureUnit that 
involves launching XSS attacks against a web application and 
then determining whether the application is vulnerable to XSS 
exploits.  We used WebGoat5, an open source test bed, created 
for security engineers to test their dynamic and static analyzers 
as a realistic means of demonstrating the capability of 
SecureUnit.  The results of the illustrative example indicate that 
SecureUnit combined with security tests is a viable method of 
security testing.  

The paper is organized as follows.  Section 2 discusses the 
background and related work.     Section 3 provides information 
about the SecureUnit testing framework.  Section 4 provides an 
illustrative example of a cross-site scripting attack test case.  
Finally, Section 5 presents the conclusions and future work.  

2. BACKGROUND AND RELATED WORK 
In this section, we provide background information on cross-site 
scripting and security testing. 

2.1  Cross-site Scripting (XSS) 
A XSS vulnerability is a design flaw that occurs when untrusted 
user input is allowed to display on a victim’s machine.  The 
malicious input is usually in the form of a script (e.g. JavaScript, 
Jscript, VBscript, ActiveX) or embedded object (e.g. 
<APPLET>) [7, 8]  An example of an innocuous XSS script is 

                                                                 
4 http://www.osvdb.com/ 
5 http://www.owasp.org/software/webgoat.html 

one that pops up an alert box on the victim’s machine containing 
the attacker’s desired text, such as: 
<script>alert(“Boot sector corrupted”);</script> 

Rather than an alert, the script can be more insidious, such as 
obtaining the victim’s session information or cookies, such as: 
<script>baseForm.cookie.value=document.cookie; 

          baseForm.submit();</script> 

An even more insidious attack would tie up system resources 
[12]: 

<script>while(true){};</script> 
When a victim visits the web page, the script is executed on the 
victim’s machine (see Figure 2).  In this way, an attacker can 
gather confidential information or steal user’s credentials.  

Attacker Victim Vulnerable web site

email with link to web site

Victim navigates to web site

Malicious script runs

Attacker has access in the victim's context

Figure 2:  Sequence diagram of a XSS attack 

 
Malicious input can come from objects such as HTML forms, 
HTML headers, database queries, cookies, and certain HTML 
tags (e.g. anchor tag, image tag) [7, 8].  Input with a percent sign 
in it can be masking a script by utilizing hexadecimal encoding 
(or other encoding methods) for malicious characters to make it 
less suspicious.  Any web browser supporting scripting is 
potentially vulnerable [7].  All the attacker needs is the name of 
a web server (including those inside a firewall) that does not 
validate data input via a web page.  XSS attacks are resistant to 
security mechanisms such as SSL and TSL [7] thus defending 
against XSS must be accomplished with software security.    

There are three categories of XSS vulnerabilities: DOM-based6, 
reflected and stored. [12]  With DOM-based XSS 
vulnerabilities, the problem exists within a page’s client side 
script itself.  For example, some JavaScript accesses a URL 
request parameter and uses this information to write some 
HTML to its own page, and this information is not HTML 
quoted; a XSS vulnerability is present. For this paper we will 
concentrate on reflected and stored XSS vulnerabilities.  A 
reflected XSS vulnerability occurs when a script is used 
immediately by server-side scripts to generate a page of results 
for that user.  The script is not stored on the server. Stored XSS 
vulnerabilities, which enable the most powerful kinds of attacks, 
occur when a script is injected into a system and persists there 
because the server stores it (e.g. in a database, cookie, etc).   

                                                                 
6http://www.webappsec.org/projects/articles/071105.shtml 



NCSU CSC Technical Report 2006-4 

 A session is used to support the connection between two hosts.  
This session can be managed with a session ID, which uniquely 
identifies the session between the client and server.  The session 
ID’s can be stored in a session (or transient) cookie, which are 
usually only temporary, residing in memory during the duration 
of the session.  Some applications have different variables for 
session ID’s and user ID’s.  If the user ID is the only means of 
authentication and the session ID is always trusted, then an 
attacker can simply change their session ID and “become” 
another client currently on the system [6, 11].  An attacker 
simply needs the session ID to hijack a session and wreak havoc 
for the victim.  

2.1.1 Creating Choke Points to Prevent XSS 
Securing for XSS attacks is usually accomplished with choke 
points and filters.  Using a choke point simplifies a system that 
would otherwise have multiple inputs and require each input to 
have security code associated with it [13].  Simplification of a 
system with choke points is a practice suggested by a 
fundamental principle of software security, Principle of 
Economy of Mechanism7.  In the case of XSS, the monitor can 
be a filter that scans all input to ensure it is well formed and 
safe.  Filtering malicious input can be achieved using a white 
list.  A white list describes exactly what input is allowed [6].  An 
example filter based upon a white list may look like the 
following 
if(/^(?:[\s\w\?\!\,\.\’\”]*|[(?:\</?(?:i|b|p|br|
em|pre)\>))*$/i){ 
//Allow the user input to be processed 
} 
else{ 
//input is malformed, reject! 
} 

The filter is an if statement that matches input based on a white 
list in the form of a regular expression.  If the user input matches 
the regular expression, then the input is valid otherwise the input 
is rejected.  This white list allows for the HTML tags <EM>, 
<PRE>, <BR>, <P>,  <I>…<I> and <B>…<B> and the 
characters, space, A-Z,a-z0-9,’_’, to be processed by the web 
application [7].  A white list for filtering is preferable to a black 
list, which describes invalid input and may be infinitely large 
[6].   

We illustrate the use of choke points in Figure 3.  A web server 
reads input from an untrusted user, potentially an attacker, and a 
database that may contain XSS exploits, both of which are 
outside the trusted boundary.   

 
Figure 3:  Choke points for XSS 

                                                                 
7 https://buildsecurityin.us-
cert.gov/portal/article/knowledge/principles/economy-of-
mechanism.xml 

 
Since both of these input sources are read by the server and 
displayed to a client (or victim), the input can be channeled into 
the same choke point where it is tested with the same filter to 
insure it is well-formed and safe.  After the input flows through 
the choke point, the input can be assumed to be safe.  But, it is 
prudent to follow another fundamental principle of software 
security, the Principle of Defense in Depth8, and insert a second 
choke point (and filter) to assure that anything streamed outward 
from the server to a user is also filtered.  This type of layered 
defense has shown to be effective for XSS in industry [7].  

We demonstrate the usefulness of the second filter with an 
example of a SQL injection attack.  A SQL injection attack is a 
programming error that results from a lack of sanitizing input 
from untrusted users.  If an attacker is able to change the logic of 
a SQL statement by injecting malicious input in objects such as 
HTML forms or query strings, then they can exploit a database.  
A filter for a SQL injection attack that scans for single quotes,     
‘--‘, ‘select’, and ‘union’ is not sufficient.  For instance, an 
attacker can submit uni’on sel’ect @@version-‘- 
into a SQL database knowing that the filter will search for 
“union” “select” and single quotes.  When the filter reads the 
SQL exploit, the filter does not recognize “union” and “select” 
nor the comment delimiter (‘--‘) because there are single quotes 
in the keywords that thus do not fit the pattern match.  The filter 
does recognize that there are single quotes in the input and 
removes them because the developer blindly thought all single 
quotes were dangerous.  The result of the filtering is now a SQL 
injection exploit, union select @@version--, which is 
now permitted to flow to the SQL code.  If a second filter was 
installed, the attack may have been subverted because the filter 
would recognize the keywords, “union” and “select” [2]. 

2.1.2 Testing for XSS 
Testing for script injection attacks involves pasting script into an 
input field and observing the result [6].  A fortified system will 
prevent any input from being accepted until it is checked to 
ensure it is valid, safe data and reject all other data [7].  Testers 
can attempt to penetrate the system via the following three steps 
[7]: 
1. Identify all points of input into the Web application, such 

as fields, headers (including cookies), and query strings. 
2. Populate each identified input point with various forms of 

good and invalid strings (based upon the white list and the 
black list) and send the request to the server.  Testers must 
verify that the implementation of the white list is in 
accordance to that of the security requirements.   

3. Check the HTTP response to see whether the string is 
returned to the client.  If any invalid strings are echoed 
back unchanged, a XSS vulnerability has been identified.   

SecureUnit automates steps 2 and 3.  In our future work, we will 
use a static analyzer to automate step 1.    

2.2 Security Testing    
                                                                 
8 https://buildsecurityin.us-
cert.gov/portal/article/knowledge/principles/defense-in-
depth.xml 



NCSU CSC Technical Report 2006-4 

Security testing is fundamentally different than typical 
functional testing.  Testers are typically trained to look for the 
presence of some specific correct behavior.  Instead, security 
testing requires testing for the absence of additional behavior 
[14].   For example, while there is no stated requirement that an 
attacker must not be able to display an alert box on another’s 
display, it is possible this unwanted functionality has 
inadvertently been implemented.  A security test (for XSS) 
would reveal this unwanted additional behavior.      

Testing early in the software process is important because it has 
been shown that finding and assessing software bugs late in the 
software cycle is more expensive than if done early [5].  A study 
at IBM shows that the cost may be 100 times more expensive 
[10] .  Allowing security vulnerabilities to slip into the release 
can damage an organization’s brand, contribute to loss of sales, 
customer trust and have liability and legal issues. 

2.3 JUnit/HttpUnit 
HttpUnit v1.6 is an open source tool that emulates browser 
behavior including JavaScript, form submission, cookies, and 
gives Java testers an API to analyze returned pages from a 
server.  The web API and functionality of HttpUnit can be 
integrated with JUnit to provide for a web-based testing 
framework (see Figure 4) to test web applications. 

 

 
 

Figure 4: The web testing framework is provided by 
the browser functionality and web API of HttpUnit 
and the testing functionality of JUnit.  Testers can 
send data to the web application and analyze the 
response. 
The core functionality of HttpUnit does not extend JUnit, 
however HttpUnit does extend JUnit’s TestCase class for 
additional assert statements beyond those provided by JUnit.  
The fundamental difference between an HttpUnit test and a 
JUnit test is that an HttpUnit test utilizes the HttpUnit API to 
access web features, which is not normally accessible to a JUnit 
test. 

In Figure 5, we show a simplified class diagram of some of the 
essential classes in HttpUnit that are utilized by the SecureUnit 
methods. 

 

 
Figure 5: Sample class diagram of HttpUnit 

The WebConversation class is responsible for emulating the 
browser functionality.  It is this class that allows the developer 
to run the test without using a web browser such as Internet 
Explorer or Mozilla Firefox.  The WebResponse and 
WebRequest classes provide developers a way to request 
information from the servlet container and obtain a response that 
can be analyzed.  The WebResponse class has methods that 
allow the developer to access HTML elements in the response 
such as forms and hyperlinks.  A developer need not run a 
servlet container while they test their code.  The developer can 
opt to run the ServletUnit API, the foundation of HttpUnit, to 
bypass both the web browser and servlet engine. 

3. SECUREUNIT TESTING FRAMEWORK 
In this section, we explain the SecureUnit testing framework and 
its limitations. 

3.1 SecureUnit 
Our research proposes the automation of security testing of 
Java-based web applications via HttpUnit tests so that 
developers can build security into their system early in the 
software process.  During the implementation of a web 
application and before the entire application is complete, 
developers can test their source to determine if an XSS 
vulnerability is present and secure the code, if needed.  
Performing these tests during the construction of the software 
enables developers to fortify their code while the code is fresh in 
their mind.  By providing extendable and reusable security test 
cases via SecureUnit, we are also increasing the security 
awareness in the development community.  Lack of security 
awareness has been cited as responsible for the prevalence of 
security attacks today [7, 13].    

SecureUnit is a framework that enables developers to build 
security tests.  We test the ability of SecureUnit to handle a 
simple JavaScript by verifying that a script launching a 
Javascript alert window displaying the session ID could be sent 
and the response retrieved.  The execution of the script for an 
alert window implies that a malicious script, such as a 
JavaScript form that submits the user’s cookie to an attacker can 
execute as well [7]. 



NCSU CSC Technical Report 2006-4 

We base our initial framework on a stored and reflected XSS 
attack scenario where a user enters form data, possibly 
malicious, and then submits the form data, which is stored in a 
database.  In the case of the stored XSS attack, the server returns 
a new page to the client that has the malicious script embedded 
in a hyperlink.  If a user clicks on the link, then the malicious 
script (an alert window) is executed in the user’s browser 
demonstrating that the web application is vulnerable to XSS 
exploits.  The framework is easily modified to also test for a 
reflected XSS attack where a user enters an alert script into the 
form field, submits the form, and an alert window is 
immediately bounced back to the user. 

By accessing the HttpUnit framework SecureUnit can launch 
known XSS attacks derived from vulnerability databases into 
web applications to determine if the system is unsecured.  We 
require HttpUnit to obtain access of HTML elements and 
emulate browser behavior to launch an attack.  The SecureUnit 
framework encapsulates the security aspect of the developer’s 
test (see Appendix A).  Developers call  SecureUnit methods to 
launch a security attack on the web application.  SecureUnit 
returns the result of the attack (e.g. a boolean), which the tester 
inserts in the assert statement of their security test.  We have 
created a class called StoredXSSForm that handles the above-
mentioned stored XSS attack.  A developer can call two 
methods in the the API of the StoredXSSForm object: execute() 
and wasAttackSuccessful().  The following code demonstrates 
how a developer would write a test utilizing SecureUnit. 

public class TestForm extends TestCase{ 
   public static void main(String args[]){ 
     junit.textui.TestRunner.run(suite()); 
   }  
   public static Test suite() { 
     return new TestSuite( TestForm.class ); 
   } 
   public TestForm( String name ) { 
   super( name ); 
   }  
   public void testStoredXSSAttack() throws    
      Exception { 
     String url =                    
         "http://example.com/somepage.html"; 
     String formName = ”form”; 
     String param1 = ”title”; 
     String param1Value = ”a title”; 
     String param2 = ”message”; 
     StoredXSSForm attack = new      
     StoredXSSForm(url, 
       formName, param1, param1Value, param2); 
     attack.execute();          
    assertFalse(attack.wasAttackSuccessful()); 
   } 
} 

Figure 6: A sample security test case (written by a 
developer) to access SecureUnit. 
The developer writes a JUnit test case and then instantiates a 
new StoredXSSForm giving it the following parameters: the 
URL of the web site, the name of the HTML form that is to be 
tested, the name of the first input field, a value for the first input 
field, and the name of the second input field.  The value of the 
second input field is the value that is displayed to a user and is 
thus potentially vulnerable to attack.  SecureUnit uses these 
parameters to utilize the functionality of HttpUnit.  First a 
WebConversation is instantiated using values the passed in 

parameters.  Next, the tester calls the execute method to execute 
the attack on their web application.  The SecureUnit framework 
obtains the HTML form identified by the form name and 
submits the parameter value passed in for the first parameter.  
SecureUnit inserts, 

<script>alert(document.cookie);</script> 

the XSS exploit, into the second parameter of the form.  

In the next installation of SecureUnit, StoredXSSForm will 
repeat the test for different XSS exploits that will be stored in an 
available exploit library containing a black list [6] of known 
XSS attacks.  SecureUnit can run the same test multiple times 
using different XSS exploits.  SecureUnit will enumerate to the 
developer which of the exploits were successful so the 
developers can tighten their input filter.  Control proceeds to 
click on the submit button and the server sends the response to 
SecureUnit.  Next, the link with the embedded alert script is 
clicked using the link method in HttpUnit and the alert pop 
window is grabbed by SecureUnit.  SecureUnit compares the 
values of the session ID of the window to the session ID held in 
memory for the current session.  A match represents that the 
XSS exploit was successful.  The developer’s next call is to use 
the JUnit assertFalse() method with the method call 
wasAttackSuccessful() in the SecureUnit API as the parameter.  
SecureUnit returns the value of the matched session ID’s.  If the 
test fails, then the developer knows that their web application is 
vulnerable. 

SecureUnit can be used for testing both white lists (functional 
testing) and black lists (penetration testing) follows from the 
idea that there are “two sides of software security – attack and 
defense, exploiting and designing, breaking and building--into a 
coherent whole. Like the yin and the yang, software security 
requires a careful balance” [9]. 

3.2 Limitations 
Most often, filters for bad input are written as white lists since a 
there are infinitely many variations of XSS exploits but only a 
limited amount of forms of safe, well-formed input.  However, 
the test cases need be based upon a subset of the infinite black 
list of forms for bad input.  Therefore, it is impossible to have a 
fully-encompassing test suite to account for every bad input 
variation.  When a developer tests their web application with 
SecureUnit and all tests pass, one can only infer that the filter is 
effective at blocking the exploits launched by the test and not 
that the input field is fully secure.  If the application is exploited 
by an actual attacker, developers can insert the XSS exploit into 
a new test case and run the test to determine where the 
application fails.  Once the developer is aware of the 
vulnerability, they can write the code to fortify the code and test 
until the web application is secured. 

Additionally, SecureUnit only checks for old, re-emergent 
vulnerabilities.  However, such checking is still valuable 
because developers repeatedly make the same mistakes [14].  A 
goal of widespread use of SecureUnit is to eradicate all the 
vulnerabilities tested for in the framework and to continuously 
evolve the set of tests as new attacks emerge.  When this goal is 
achieved, applications will be much more secure.  

 



NCSU CSC Technical Report 2006-4 

4.  ILLUSTRATIVE EXAMPLE 
In Section 4.1 we describe WebGoat, a test bed we have used for 
the illustration of SecureUnit, in Section 4.2 we show give the 
methodology and results of our example, discuss the 
significance of our example in Section 4.3. 

4.1 Test Bed 
To execute an XSS attack, we required a test bed that could 
serve as a realistic web application.  We chose Stanford 
SecuriBench .91a9, an open source suite of software applications 
that are designed for running static and dynamic tests.  These 
test beds are vulnerable to XSS, SQL injection, HTTP splitting 
and path traversal attacks.   

Specifically, we demonstrate the use of SecureUnit on WebGoat 
3.7, a J2EE application implemented in part to demonstrate XSS 
attacks.  WebGoat is an educational-based program in that there 
are security lessons in the program that teach one how to attack 
the system.  There are two lessons for XSS; “Stored XSS” and 
“Reflected XSS.”  In the Reflected XSS lesson, an example of 
an online purchase form is displayed with two submit buttons, 
Update Cart and Purchase.  The lesson suggests that the user 
enter the XSS exploit <script>alert(document.cookie);</script> 
into the credit card number field.  When the script is entered and 
the Purchase submit button is clicked, an alert dialog box pops 
up, showing the session ID for the Internet connection.  
Displaying a session ID in the alert pop up box demonstrates 
that the WebGoat application is vulnerable to reflected XSS 
attacks because JavaScript was bounced back to the client and 
executed in their browser.   

The Stored XSS lesson is a small example of XSS attacks that 
could be applied to cases such as online bulletin boards.  This 
lesson involves an HTML form with two fields; title and 
message.  When a user enters the information, the result is 
entered in a message list at the bottom of the page.  The title is 
encapsulated in anchor tags and when clicked on, the message is 
displayed.  The lesson in WebGoat suggests that a user enter the 
XSS exploit, <script>alert(document.cookie);</script> into the 
title field.  If a user of the application clicks on the title link to 
read the message, then the script, embedded in the link, executes 
on the client machine showing the session ID in an alert pop up 
box. This is an example of a stored XSS attack because the title 
and message are stored in a database, thus persisting (stored) in 
the web application.  Note, that when WebGoat is shut down, 
the information is lost. 

4.2 WebGoat Example 
A fully-automated XSS test would log into WebGoat (using 
basic authentication), click the links that point to the Stored XSS 
and Reflected XSS lessons, traverse the web pages to the 
vulnerable HTML form, enter the form data including the XSS 
exploit, submit the form, and assert that the exploit was 
successful or not.  We wrote the SecureUnit framework (see 
Appendix A) that automated the XSS lessons described in 
Section 4.1 using HttpUnit. 

 

                                                                 
9 http://suif.stanford.edu/~livshits/securibench/ 

4.2.1 WebGoat SecureUnit Tests  
We begin by describing the code required to test the Reflected 
XSS lesson.  WebGoat requires that basic authentication to 
access the web application.  Basic authentication is a scheme 
where a username/password are sent in plaintext to the server.  
Authentication is achieved by verifying the password submitted 
in the login form is the same as the password encrypted on the 
server [1].   

To start the communication between HttpUnit and WebGoat, a 
WebConversation, WebRequest, and WebResponse 
object is needed to emulate the browser and access the requests 
and responses during the communication.  We also require a 
WebLink object to capture HTML hyperlinks and image inputs 
from the response and call the click() method to click those links 
to navigate to the vulnerable HTML form in the Reflected XSS 
lesson.  Once the form page is reached, we use the WebForm 
object to set the parameters of the form and submit the form to 
the server.  For the XSS attack we entered the exploit 
<script>alert(document.cookie);</script> into the credit card 
number field.  The WebConversation object allows us to 
read the session ID that is displayed on the alert pop up box.  
We compare that alert ID to the session ID of the system using 
the getCookieValue(“JSESSIONID”) call to the 
WebConversation object.  By comparing the session ID’s 
we can determine if we accurately obtained the session ID with 
the XSS exploit.  The assert statement used is 
assertFalse(Boolean match) and fails if the two IDs are the 
same.  The methodology for writing code for the Stored XSS 
lesson is the same except that we navigate to the Stored XSS 
lesson, enter the same XSS exploit in the title field, and then 
click on the new title link in the message list. 

Since the HTML is dynamically generated via Element 
Construction Set10 and no HTML  pages were available, we had 
to have some overhead in telling SecureUnit which page to go 
to.  Since a tester cannot access the page directly, the tester had 
to start the session and then navigate to the page where the form 
resided.  Once the response was available, the tester could 
automate the test with SecureUnit. 

4.2.2 Results of SecureUnit Tests 
To run the tests, we installed the WebGoat WAR file in the 
Apache Tomcat v.5.5.12 WebGoat context path.  We launched 
Tomcat and ran our HttpUnit test in the Eclipse IDE.  The tests 
resulted in the execution of the alert pop up boxes displaying the 
session ID as was expected from the lesson in WebGoat.  Our 
JUnit tests resulted in an AssertionFailedError because the 
HTML form in WebGoat is vulnerable to XSS attacks (see 
Figure 7).  The tests represent that an attacker can maliciously 
obtain the session ID of the client’s session with Tomcat.   

                                                                 
10 http://jakarta.apache.org/ecs/ 



NCSU CSC Technical Report 2006-4 

 

Figure 7: SecureUnit returns a failed test after testing for a stored XSS vulnerability. 

4.3 Discussion 

We have showed that SecureUnit, JUnit combined with 
HttpUnit can automate the testing for XSS vulnerabilities in 
HTML forms.  A test suite encompassing more types of XSS 
exploits including special character encoding, insertion of script 
in events such as OnLoad and in different HTML tags would 
more thoroughly test the application at hand.  This type of 
testing is unit testing because we are specifically testing the 
filter (a small unit of code relative to the overall software 
system).  The implementation and execution of SecureUnit did 
not require any modification of source code in HttpUnit or 
WebGoat.  The results suggest that XSS tests can be automated 
and easily run in a JUnit environment without any manual 
intervention from a tester or developer.   

Our current strategy for handling HTML forms requires an 
advanced knowledge of which form field should be targeted for 
inserting a XSS exploit.  We thus require that the developer 
insert the all the parameters and values for the form except for 
the value that is displayed to the user.  Future versions of 
SecureUnit will experiment with a blanket approach of inserting 
a XSS exploit into each parameter of the form and submitting 
the form.  Determining if an XSS exploit was accepted as valid 

user input to the system will result in a failed test.  The test will 
also fail if XSS exploits enter the system even though they 
cannot cause an XSS attack (i.e. they are never displayed to the 
user).  In rare cases will malicious scripts be accepted as user 
input and allowed to be processed and thus a thorough checking 
of input is needed to provide for good security and reliability. 

5.  SUMMARY AND FUTURE WORK 
In this paper, we have presented an initial installment of 
SecureUnit.  SecureUnit is a framework of reusable, automated, 
and extendable Java-based test cases through which developers 
can launch security attacks to identify vulnerabilities early in the 
development lifecycle.  The initial installment focuses on the 
prominent XSS vulnerability which can be used to steal the 
identity of users, hijack a session, tie up system resources, and 
other ill effects.  Developers would include the SecureUnit 
package in their test code, as many do today with the JUnit 
testing framework.  Then, the developer could call the 
testStoredXSSAttack method to launch XSS attack(s).  
SecureUnit records a failed test case if bad input can reach the 
application.      

Our future work involves two directions.  First, further creation 
of security test cases is needed to satisfy the many types of 



NCSU CSC Technical Report 2006-4 

vulnerabilities in software security.  We follow the taxonomy 
provided by Fortify Software [12] and will continue with the 
Input Validation and Representation kingdom and the remaining 
seven (API Abuse, Security Features, Time and State, Errors, 
Code Quality, Encapsulation, Environment).   Secondly, we will 
automate the detection of vulnerabilities (such as input fields) 
via a static analyzer.  We will then automatically extract relevant 
parameters (such as URL, form name, and field name); and 
launch an attack by automatically running a SecureUnit test case 
with these parameters.  Ultimately, an application can be passed 
to our testing application and automatically vulnerabilities can 
be identified and attacks can be launched at the vulnerabilities.    

Acknowledgements 
We would like to thank the North Carolina State University 
Software Engineering Realsearch reading group for their helpful 
suggestions on this paper.   This research was supported by the 
National Science Foundation.   
 
REFERENCES   
[1] Authentication, Authorization, and Access 

Control,http://httpd.apache.org/docs/1.3/howto/auth.html#b
asic 

[2] C. Anley, "Advanced SQL Injection In SQL Server 
Applications," Next Generation Security Software Ltd, 
2002. 

[3] B. Arkin, S. Stender, and G. McGraw, "Software 
Penetration Testing," IEEE Security and Privacy, vol. 3, 
pp. 84-87, January/February 2005. 

[4] M. Bishop, Computer Security: Art and Science. Boston: 
Addison-Wesley, 2003. 

[5] B. Boehm, Software Engineering Economics. New Jersey: 
Prentice-Hall, 1981. 

[6] G. Hoglund and G. McGraw, Exploiting Software. Boston: 
Addison-Wesley, 2004. 

[7] M. Howard and D. LeBlanc, Writing Secure Code, 2nd ed. 
Redmond: Microsoft Corporation, 2003. 

[8] M. Howard, D. LeBlanc, and J. Viega, 19 Deadly Sins of 
Software Security: Programming Flaws and How to Fix 
Them. Emeryville: McGraw-Hill/Osborne, 2005. 

[9] G. McGraw, Software Security:  Building Security In. 
Boston: Addison-Wesley, 2006. 

[10] C. C. Michael and W. Radosevich, Risk-Based and 
Functional Security Testing,https://buildsecurityin.us-
cert.gov/portal/article/bestpractices/security_testing/, 2005 

[11] J. Ramachandran, Designing Security Architecture 
Solution. New York: John Wiley & Sons, 2002. 

[12] K. Tsipenyui, B. Chess, and G. McGraw, "Seven 
Pernicious Kingdoms: A Taxonomy of Software Security 
Errors," presented at Automated Software Engineering, 
Long Beach, CA, 2005. 

[13] J. Viega and G. McGraw, Building Secure Software How to 
Avoid Security Problems the Right Way. Boston: Addison-
Wesley, 2002. 

[14] J. A. Whittaker, "Why Security Testing is Hard," IEEE 
Security and Privacy, vol. 1, pp. 83-86, July/August 2003. 

 

 



NCSU CSC Technical Report 2006-4 

Appendix A 
The SecureUnit Framework 

 
 

 
Figure 8: Sequence diagram of a security testing calling the API of SecureUnit

package SecureUnit; 
import java.io.IOException; 
import org.xml.sax.SAXException; 
import com.meterware.httpunit.Button; 
import com.meterware.httpunit.SubmitButton; 
import com.meterware.httpunit.WebConversation; 
import com.meterware.httpunit.WebForm; 
import com.meterware.httpunit.WebLink; 
import com.meterware.httpunit.WebRequest; 
import com.meterware.httpunit.WebResponse; 
 
public class StoredXSSForm { 
 
   private WebForm webForm; 
   private WebConversation conversation; 
   private WebResponse response; 
   private String webFormParamName1;  
   private String webFormParamName2; 
   private String param1Value; 
   private String formName; 
  
public StoredXSSForm(WebConversation conv, WebResponse 
resp, String fName, String formParam1, String formValue1,      
String formParam2){ 
   formName = fName; 
   webFormParamName1 = formParam1; 
   webFormParamName2 = formParam2; 
   param1Value = formValue1;   
   conversation = conv; 
   response = resp; 
} 
  

public void attack(){ 
   try { 
      webForm = response.getFormWithName(formName); 
    } catch (SAXException e) { 
      e.printStackTrace(); 
   } 
  String XSSexploit = 
"<script>alert(document.cookie);</script>";   
webForm.setParameter(webFormParamName1, param1Value); 
webForm.setParameter(webFormParamName2, XSSexploit); 
Button [] buttons = webForm.getButtons(); 
        try { 
 response =    
   webForm.submit((SubmitButton)buttons[buttons.length-1]); 
        } catch (IOException e) { 
 e.printStackTrace(); 
        } catch (SAXException e) { 
 e.printStackTrace(); 
        }  
  clickOnMaliciousLink(); 
} 
  
private void clickOnMaliciousLink(){ 
   WebLink xssLink = null; 
try { 
   xssLink = response.getLinkWith(webFormParamName1); 
       } catch (SAXException e) { 
           e.printStackTrace(); 
        } 
  try { 
      response = xssLink.click(); 
      } catch (IOException e) { 



NCSU CSC Technical Report 2006-4 

          e.printStackTrace(); 
       } catch (SAXException e) { 
            e.printStackTrace(); 
        } 
    } 
  
private String getAlertSessionID(){ 
   int indexOfSessionID = 11; 
   String alert = conversation.popNextAlert(); 
   String sessionID = alert.substring(indexOfSessionID); 
   return sessionID; 
 } 
     
 private String getCookieValueSessionID(){ 
    String cookieValue =      
        conversation.getCookieValue("JSESSIONID"); 
     return cookieValue; 
    } 
     
  public boolean wasAttackSuccessful(){ 
     String alertSessionID = getAlertSessionID(); 
     String cookieValueSessionID = getCookieValueSessionID(); 
        boolean match =  
              alertSessionID.equals(cookieValueSessionID); 
        return match; 
    }  
} 
 


