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The use of tools has long been pointed to as an indicator of intelligent behavior.  One of 

the primary factors that lead homo sapiens from just another species to the position of 

dominance seen today is their ability to use tools to improve their capabilities(Sterelny 

2003).  Intelligent adaptation to novel situations is often indicative of intelligence guiding 

changes in behavior.  The use of tools multiplies an organism's ability to adapt.  By using 

tools an organism is no longer limited to just using corporeal resources in adaptation, but 

can bring in a huge range of external resources as well.   

 

Human beings employ a wide range of tools.  Just to clean a bathroom, you would likely 

use a rag, bucket, sponge, mop, toilet brush, and vacuum cleaner.  Could you imagine 

cleaning the bathroom well without using any tools?  The use of tools allows us to 

accomplish a wide range of tasks and indicates that we are intelligent agents with the 

wherewithal to understand the appropriate use of a tool.  As we stand on the brink of 

what many have predicted to be nothing less than a fundamental revolution in 

robotics(Kurzweil 1999, Moravec 2000), it becomes interesting to consider tool use as it 

relates to robots.   

 

From a strictly utilitarian point of view, it would be nice to have tool using robots.  Most 

people would prefer to have a robot using all those bathroom cleaning tools in place of 

themselves.  It is also interesting to consider tool use as an indicator of intelligence.  If 

we create a robot which can use a range of tools well, the question arises, is that robot 

intelligent?   So we will pursue two primary goals in this paper: to determine if it is 

possible to create a robot capable of using tools and to consider the question of whether 

or not such a robot would necessarily be intelligent.   

 

To better understand this problem of creating a robotic tool user, this paper will consider 

a wide range of animals that make use of tools.  The examples of animal tool use will 



then be used to create an overall taxonomy of tool use.  The question of intelligence will 

then be considered based on the taxonomy.  A general introduction to robotic 

technologies will then be provided followed by a specific analysis of technologies that 

could be employed to enable robots to use tools. 

 

Ethological instances of tool use 

 

Review of literature has shown that tool use is actually quite widespread within the 

animal kingdom.    Perhaps the best know example is Jane Goodall's famous work with 

chimpanzee’s use of reeds to remove termites(Goodall 1963), yet far from the only 

example of tool use, this is one of dozens.  What actually constitutes tool use is also not 

entirely straightforward.  The most widely accepted definition of tool use comes from 

Beck: 

Thus tool use is the external employment of an unattached environmental object to alter more 

efficiently the form, position or condition of another object, another organism, or the user itself 

when the user holds or carries the tool during or just prior to use and is responsible for the proper 

and effective orientation of the tool(Beck 1980). 

 

 

Beyond the question of whether or not a behavior is tool use, lies the question of whether 

or not an instance of tool use is indicative of intelligence.   To better understand tool use 

and to create a foundation for considering the intelligence inherent in instances of tool 

use, a survey of tool use throughout the natural world will be helpful.   Beck(Beck 1980) 

in his book Animal Tool Behavior, along with his definition of tool use,  provided a 

survey of animal tool use which is summarized and significantly extended here. 

 

Invertebrates 

Ant Lion:  Neuropteran flies undergo a larval stage that may last for as long as two 

years.  During this larval stage, they are known as ant lions.  The ant lion has been 

observed constructing a funnel shaped depression in sand.  The ant lion then waits in the 

bottom of the depression to catch and consume prey that fall in.  The ant lion has also 



been observed to throw sand at prey which escapes its initial grasp.  It is believed this 

serves the purpose of causing the escaping prey to fall back into the depression. 

 

Myrmicine Ants: These ants have been observed using small bits of leaf, wood, mud and 

sand to transport soft foods, such as jelly, honey, fruit pulp, and body fluids of prey.  The 

food is adhered to the tool and then the tool is used to transport the food back to the 

colony.  The use of this type of tool allows the ants to carry ten times the amount of food 

they could carry in their crop alone. 

 

Sphecine Wasps: The female sphecine wasp will lay her eggs within a hole.  The top of 

this hole is then covered with small pebbles to help protect it.  The pebbles are then 

pounded down to make the hole less conspicuous.   The wasps have been observed to 

hold pebbles within their mandibles and then to use the pebble as a tool to hammer down 

dirt and other pebbles. 

 

Marine Crab Melia Tessellata:  This crab has been observed to remove small anemones 

from the substrate and then brandish them one in each cheliped(Duerden 1905) .  The 

stinging properties of the anemones allows them to be used as both weapons and tools for 

the collection of food. 

 

Fish 

Toxotid and Anbantid Fish:  These South American fish have been observed in the wild 

and captivity projecting spouts of water into to the air to disable prey and make it fall into 

the water for capture. 

 

 

Birds 

Bower birds:  In Australia and New Guinea, the males of this species will collect all 

manner of flotsam and assorted colorful debris to decorate their elaborate nests, called 

bowers.  One remarkable instance of this elaborate decoration is some birds which have 



been observed to use a piece of bark as a paintbrush in nest decoration.  They will wet the 

“brush” with saliva and charcoal and proceed to use it to paint the nest. 

 

American Robin:  This bird has been observed using a twig to rummage through leaf 

little looking for ants(Potter 1970). 

 

Black-breasted Buzzards: Circumstantial evidence has been provided that these birds 

will use stones to break open emu eggs for consumption. 

 

Egyptian Vultures: Demonstrate similar use of rocks to break open ostrich eggs. 

 

Raven:  These birds have been observed in the wild using rocks to defend their 

nests(Janes 1976).  The birds would fly into the air and drop rocks onto a human who was 

approaching their nest.  One scientist reported being targeted by eight golf ball sized 

rocks in one encounter. 

 

Crow New Caledonian crows have been observed in the wild creating two different types 

of hooked tools which aid them in capturing prey.  This tool manufacture by birds has 

been observed by Hunt to have a high degree of standardization, distinctly discrete tool 

types with a deliberate and distinct imposition of form, and the use of hooks (Hunt 1996).  

 

Geospizine Finches: These finches from the Galapagos Islands have been observed 

using a small twig to aid in the collection of insect prey(Gifford 1919).   The finches will 

obtain a small and narrow tool such as a twig or cactus spine.  They then take this tool in 

their beaks and use it to probe for insects in narrow crevices.  They have also been 

observed to use the tool to impale and remove insects from deep holes. 

 

Nonprimate Mammals 

Rodents 



Pocket gopher: The female of the species uses stones and hard chucks of food to dig in 

the soil during burrow excavation. The tool is held in the forelimbs and aids in the 

loosening of the soil. 

 

California Ground squirrels:  Will throw sand into the face of predators such as gopher 

snakes and rattlesnakes.  The throwing is accomplished by a shoving motion of the 

forearms. 

 

Elephant Elephants are know for their intelligence and have been observed using a 

variety of tools.  Elephants have been observed using a stick to scratch 

themselves(Douglas-Hamilton, Douglas-Hamilton 1975).  They have also been observed 

constructing a tool from leafy branches to shoo flies(Hart, Hart 2001).   

 

Dolphin Dolphins have been observed in the wild breaking sea sponges off the ocean 

floor and then using then to forage for food (Krutzen et al. 2005).  This is not believed to 

instinctual behavior but behavior which is taught from mother to offspring as evidenced 

by mitochondrial DNA analyses. 

 

Primates 

Capuchin Monkeys Capuchin monkeys have been observed in the wild dropping sticks 

on intruders and using sticks as a weapon in aggressive encounters with 

conspecifics(Chevalier-Skolnikoff 1990), using environmental objects to open oysters 

(Fernandes 1991),and using a club to attack a snake(Boinski 1988). 

 

Gibbons Gibbons have been observed dropping sticks on intruders(Tomasello 1997). 

 

Chimpanzee In many ways the chimp is the holy grail of animal tool use.  It was Jane 

Goodall’s observation of chimps using narrow stalks to extract termites that exploded the 

myth that only humans use tools(Goodall 1963).  This is surprising because as early as 

the 1600s there are written accounts by Portuguese explorers of chimps using stones to 

crack open nuts(Inoue-Nakamura 1997).  Regardless of when knowledge of chimpanzee 



tool use became mainstream, it is not surprising that they come the closest to human-level 

tool use.  Studies have shown chimpanzee and human DNA are 95-98% the same(Britten 

2002).  The chimpanzee is capable of remarkable feats of tool use.  In captivity chimps 

have been taught to use tools ranging from hammers to complicated machinery(Hayes, 

Hayes 1951, Savage-Rumbaugh, S McDonald, K Sevcik, R A Hopkins, W D Rubert,E. 

1986).  Chimpanzees have even been taught in captivity to manufacture stone tools by 

knapping(Toth 1993).  

 

Taxonomy of tool use 

Looking at all these instances of tool use it is possible to draw some interesting 

conclusions about the nature of tool use.  For a long time it was thought that tool use was 

only possible in highly intelligent beings.  Tool use did not appear in hominids until their 

brains were very highly evolved relative to other animals(Mithen 1996).  This lead many 

to conclude that a very complex cognitive architecture was a prerequisite to tool use.  

When Goodall first released her paper on chimpanzee use of tools(Goodall 1963) it was 

thought to have revolutionary implications as to the intelligence levels of chimps.  This 

special status of tool use was quickly squashed as people provided counter-examples to 

the chimpanzee use of tools which were obviously directed by operant conditioning 

rather than intelligence(Hall 1963).  The resistance to putting an ape on an equal footing 

with humans was one of the factors that lead to an extensive examination of tool use.  

This examination proved quite fruitful and, as the previous section shows, there are 

indeed a wide range of instances of animal tool use.   

 

It is unlikely that all of the instances of tool use presented are representations of highly 

intelligent behavior.  Examination shows the activities of the sphecine wasp and the 

chimpanzee differ greatly in the intelligence needed to be carried out effectively.  To 

better understand how some instances of tool use may readily be classified as more 

intelligent than others it is helpful to create an overall taxonomy of tool use. 



 

Five animals that use rocks in food processing.  a)crocodile b) sphecine wasp 

c)chimpanzee d)human 

 

Consider the five animals in the above figure, all of whom use stones to augment their 

capabilities.  We see a crocodile which swallows rocks into its stomach (Taylor 1993).  

These rocks are utilized in the stomach to assist in crushing food.  This is not an instance 

of tool use by Beck’s definition, because the stones are not external to, nor oriented by 

the crocodile.  The stones are aiding in the processing of food though and we will include 

the instance here, not as a good example of tool use, but to demonstrate that something 

which is considered a tool in other contexts may be effectively employed without 

knowledge, or comprehension of its use, being a requirement. 

 

The sphecine wasp discussed earlier also uses rocks yet the behavior is far more directed.  

The wasp obtains a pebble and uses it to tap down dirt covering the nest containing eggs.  

The sea otter places rocks on its stomach and uses them as a surface against which shells 

may be broken open.  The chimp uses a stone to break open nuts placed on a hard 

surface.   In the final image we see a human knapping a stone tool. 

 

In examining these five instances of the use of a stone, it is possible to place them within 

the following hierarchy. 



 

 

At the far left of this continuum we see mindless use of a tool as evidenced by the 

crocodile.  There is no conscious control of the stone.  Stones may come and go from the 

animal’s gut, without any awareness or control of their use.  We will call this type of tool 

use, Mindless Tool Use.   

 

The next level of tool use is what we will call Sensory Directed Tool Use.  This type of 

tool use is exhibited by the wasp.  It uses a stone to tamp its burrow.  It uses its vision and 

antennae to direct the application of the pebble onto the burrow, but it is following an 

instinctual sequence of instructions.  The wasp lacks the comprehension that it using the 

tool towards the goal of protecting it’s young.  Insect behavior often appears intelligent 

while not bearing out that appearance on further examination.  The lack of 

comprehension of a task being performed by insects is often demonstrated by the way the 

their ability to perform a task breaks down with slight intervention.  This “apparent 

stupidity” of insects (Lubbock 1889) results from following a rule set in the absence of 

higher level comprehension.  What is interesting is not that this type of control system 

eventually breaks down, but rather that it demonstrates such robustness as is seen.   

 

The next level of tool use is Tool Use Directed by Low-level Cognition.  At this level 

tool use may still be directed by the same real world feedback seen in the sensory 

directed level, but there is also a cognitive level that transcends it and allows low-level 

cognition to occur.  This low level cognition allows for basic thoughts, such as the 

presence of goals.  The sea otter demonstrates this level of tool use.  It is likely that it 

understands that it is obtaining food through its use of the rock.  A low level concept such 

as a goal which needs to be reached will allow for greater robustness in tool use.  Since 



there is a goal the tool is being applied towards, there is a greater ability to adapt to 

change than in situations where a simple instruction set is blindly followed.   

 

The forth and final level of tool-use which is seen is Tool Use Directed by high-level 

Cognition.  The best example of this type of tool use is humans’ use of tools.  At this 

level of tool use not only are there basic concepts, but there is an understanding of the 

tools itself as well as well as its substrates, that is deep enough to allow the tool to be 

used in novel ways.  The tool is understood to such an extent that it may be employed 

differently or even modified to improve its effectiveness. 

 

So we are left with the following taxonomy of tool use: 

 

The level of intelligence is increasing from at each level of the taxonomy as we go from 

one to four.  It is important to go into greater detail about what we mean when we say 

intelligence.  Defining exactly what is meant by intelligent behavior can be difficult.  

Neisser has stated that "there are no definitive criteria of intelligence, just as there are 

none for chairness; it is a fuzzy-edged concept to which many features are 

relevant”(Neisser 1979).  Pinker has described intelligence as “the ability to attain goals 

in the face of obstacles by means of decisions based on rational (truth-obeying) 

rules”(Pinker 1999).   

 

On a certain level, each of the examples of stone tool use is demonstrative of a certain 

degree of intelligence.  Even though the alligator is mindless in its employ of the stones, 

using a stone to break apart food is intelligent.  The intelligence though is provided by 

evolution rather than the organism.  Animals that had this quirk digested food more 

completely and therefore were more effective at breeding.  Even in the case of the 



sensory directed tool use it is still very simple stimulus-response cycles directed by 

instinctual rules.  These rules are often intelligent but the intelligence comes again from 

evolution rather that the organism itself.   

 

When low level cognition comes into play the situation becomes more complicated.  I 

would say that at this point there is the possibility to say that the intelligence is 

originating from the organism itself.  The organism may have a simple goal in mind, such 

as obtaining food.  Something as simple as a basic goal has remarkable power to make 

behavior more intelligent and adaptive.  There is less of a tendency to blindly follow an 

instruction set that is not achieving results.  Knowledge of a goal and then blindly 

attempting to achieve it can often result in learning effective strategies through trial and 

error.  Success is reinforced and failure is not repeated and gradually through operant 

conditioning effective behaviors emerge (Skinner 1953).The organism is learning at a 

certain level yet the intelligence of this is severely limited.   

 

These intelligent behaviors rapidly break down in the face of manipulation.  Thorndike 

proposes that this breakdown is crucial to the apparent intelligence in many animal 

behaviors.  He says of the works touting animal intelligence, “In the first place, most of 

the books do not give us a psychology, but rather a eulogy of animals.  They have all 

been about animal intelligence never about animal stupidity”(Thorndike 2000).  

Thorndike’s nod to animal stupidity is an important one.  The apparent intelligence 

behaviors of many animals rapidly break down in the face of manipulation of a task.  

This is due to the fact that the behavior was learned through trial and error learning and 

not through a deeper understanding of the underlying task.   

 

This deeper understanding is only seen when the tool use is directed by higher-level 

cognition.  Cooper has called high-level cognitive process, “those central cognitive 

processes involved in thinking, reasoning, planning” which share representational and 

processing requirements(Cooper 2002).  In this type of behavior there is a far deeper 

understanding of the task being performed.   There is an ability to reason and plan as well 

as understand the nature and properties of the objects being manipulated, allowing for 



much more robust behavior.  In the presence of a deep understanding of a task, it is far 

less likely that an animal’s ability to perform that task will catastrophically fail in the face 

of manipulation. 

 

To better illustrate this distinction between high and low levels of cognition, it is useful to 

examine some very interesting experiments done with capuchin monkeys(Visalberghi 

1989).  In these experiments there is a clear plastic tube securely attached to the floor.  

Peanuts are placed within this tube so that they are visible to the monkeys but cannot be 

reached by hand, because the tube is too small for the monkey’s hands to fit inside it.  To 

remove the peanut from the tube for consumption, the monkeys must employ a tool.  In 

the most simple case, a long thin stick was provided as the tool.  In this situation, the 

monkeys spontaneously picked up the tool and used it to remove the peanut.   

 

In other situations, a sufficient tool is not provided to the monkeys.  Tools which are 

inappropriate are provided, such as a collection of reeds which have been joined together 

with a rubber tape.  When bundled together, this collection of reed is too thick to be 

inserted into the tube.  It is a simple matter though to remove the tape and then use one of 

the reeds to obtain the peanut.  It was interesting to see that although the monkeys would 

succeed in this situation, the way in which they did so, demonstrated that they lacked any 

high level understanding of the task and the tools.  The monkeys would first try to use the 

bundled stack and would eventually break it apart.  At this point, one would expect the 

monkeys to simple use the small reed to remove the peanut.  The monkeys were being 

asked to perform this task after they had successfully used a single reed to remove the 

peanut earlier.  The monkeys did not go straight to a solution though.  Some monkeys 

would have an appropriate single reed in their hands and put it down and pick up the 

flaccid rubber tape and unsuccessfully try to use that to reach the peanut.   

 

So looking at the last example, the limits of the monkey’s cognition are clear. Individuals 

who had previously solved the problem, lacked the wherewithal to understand the 

problem.  They could not grasp the nature of their previous solution, nor could they 

understand the nature of the materials well enough to reason that a flaccid piece of tape 



was a poor choice.  What they had was a clear understanding of their goal. They would 

strive to reach this goal though a fairly undirected search.  They would keep trying new 

strategies without relying on reason to direct the behavior, until one of the strategies 

worked.  Then they would stop.  It is clear that it is the goal that is directing this behavior, 

not higher level cognition.  So even though we see the monkeys using these tools, it is 

clear that they lack a deeper understanding of the nature of the tool and how it works 

such as that seen in the chimpanzee(Hayes, Hayes 1951, McGrew 1974).  In the 

chimpanzee this kind of  blind  search where several options to reach a goal are tried,  is 

not seen.  The Chimpanzee will carefully select a reed that has the best properties for 

removing ants from a mound.  It will also modify the tool before first use to further 

increase its effectiveness. 

 

 

Survey of Robotics 

 

Just as a hierarchy in the levels of tool use is seen, it is also possible to examine the 

design of intelligent robotics and see a similar hierarchy in robotic design with interesting 

parallels.  There are three main design paradigms for the design of AI robotics, 

hierarchical, reactive and hybrid reactive/deliberative. Examining each of these 

paradigms in turn it is possible to see that interesting parallels exist between tool use and 

the design of intelligent robotics. 

 

The hierarchical design paradigm dominated robotics from the late 60’s through the early 

80’s when robots based on the reactive paradigm came to prominence.  The Hierarchical 

paradigm is perhaps the most straightforward and intuitive of the three which have 

dominated robotics in the field’s short lifespan.   

 



At its most basic level, the paradigm may be broken down into a cycle of sense, plan, act.  

The robot senses the world around it and gathers all the information relevant to planning 

the actions it will take.  It then processes all relevant data in the planning stage of action.  

Often the external world will be simulated in some internal model which is examined and 

used to plan the action to be taken.  Once planning is complete the time has come for the 

robot to act.  The robot will then go through all of the actions which have been proscribed 

in the planning phase.   

 

These phases of activity are discrete and sequential.  Each stage follows the others in the 

order that was described and the stages are completely separate without any overlap.  The 

sensing stage is carried out to completion then the planning stage begins.  It is not 

possible to return to a previous stage once it has been completed.  This leads to obvious 

problems.  The world in which we wish to have our robots functioning is a dynamic one; 

it is not possible to sense the world and create a model of it and then expect that model to 

remain accurate.  The world will undergo its own changes and the actions which the robot 

takes will also alter the environment as well.  In dynamic worlds, completely separating 

sensing and action can lead to enormous problems with actions designed around a world 

model that is no longer accurate.  Often times sensing is an integral parts of micro 

adjustments that need to be made to properly execute complicated acts.  Imagine trying to 

thread a needle in a normal manner.  Then imagine trying to thread a needle by looking at 

the needle and thread then closing your eyes and trying to complete the task based on 

memory alone. 

 

The Hierarchical model, with all of its many limitations, has been implemented in 

successful robots.  The first fully mobile robot, firmly grounded in AI, was Shakey, based 

on the hierarchical model and created at Stanford in 1967(Nilsson 1984, Wilber 1972).  

The National Institute of Standards and Technology (NIST) adopted a standard for 

hierarchically based Real-time Control (RCS) systems(Albus 1995).  This standard 

known by its acronym NIST RCS has served as the basis for many industrial robots(Gazi, 

Moore & Passino 1998, Moore et al. 1999).  The ability of a hierarchical model to 

accomplish relatively straightforward tasks in a fairly static environment has been 



demonstrated by these robots ability to accomplish the jobs for which they were 

designed. 

 

Although robots based on the hierarchical model did succeed at a few simple tasks, they 

were more notable for they could not accomplish than for what they could.  The failure of 

these machines to accomplish of many seemingly simply tasks stood out in stark contrast 

when observers looked at the natural world.  When in a natural setting, one need only 

look around to see a wide range of creatures effectively accomplishing all manner of 

complicated tasks.  The earlier section on animal tool use gave many examples of very 

simple creatures successfully accomplishing complicated tasks.  It became more and 

more clear that effectively modeling the types of behavior seen in nature was going to 

require an enhancement of the model to be successful.   

 

A great leap forward in robot performance began to be seen in the late 80’s as roboticists 

began to adopt a new paradigm.  In a 1986 paper(Brooks 1986), Rodney Brooks first 

described the philosophies behind his concept of  subsumption, a new approach to robot 

design which would come to be known as one of the most common examples of a 

reactive paradigm approach to robotics.  In the paper Brooks attacked simplistic linear 

nature of the hierarchical model.   

 

Brooks’ image of traditional hierarchical model 

 

If we look at the figure above we see Brooks’ take on a traditional hierarchical model.  

This simple linear progression is not an accurate description of what we see in the real 

world.  Far more accurate is a design that incorporates multiple tracks in parallel as we 

see in the following figure. 



 

Brooks’ new multiply parallel model 

 

The above model, taken from Brooks’ paper, is far more similar to what is seen in the 

real world.  There is not one single path to action, but many parallel flows of control that 

allow for different sets of sensing and planning to occur simultaneously.  This is far 

similar to what is seen in nature where many tasks could be active simultaneously.  

Imagine an individual walking to an apple tree.  On a subconscious level they are doing 

things such as breathing.  At a higher level they are walking towards the tree, navigating 

and avoiding obstacles, Then at the same time, they are also planning out how they will 

pick an apple once they reach the tree.  This kind of description is far more comfortable 

than one where the individual stops, looks at the entire environment, then closes their 

eyes and plans every minute detail of getting the apple, then keeps their eyes closed and 

tries to pick the apple by following the plan they made, acting entirely from memory.   

The Reactive Paradigm differs in more ways than simple parallelism.  Rather than 

elaborate internal planning, action in the paradigm is precipitated by behaviors.  

 

A behavior is a direct mapping of a sensory input to a particular action to achieve some 

task.  The plan aspect of the sense, plan, act cycle seen it the hierarchical model is thrown 



away entirely.   The next section will give a detailed account of a formal language which 

may be used to implement behaviors. 

 

The use of behaviors allows robots to behave intelligently without having to engage in 

any planning whatsoever.  To better understand how this might be possible, consider 

work done by Micheal Arbib attempting to model frogs and toads(Arbib 1995).  On the 

surface a frog seems to interact quite intelligently with the world around it.  Obtaining 

food and avoiding predators.  Arbib found that by creating a simple robot with two 

simple behaviors, much of frog behavior could be modeled.  The first behavior is when a 

small object is seen, go towards it and grab it.  This behavior would direct the frog in the 

use of its tongue to catch insects to eat.  The second behavior is that if a large object is 

seen in motion, run away from it.  This allows the frog to avoid predation.  These are two 

extremely simple behaviors, but it is possible to imagine that just through these two 

behaviors a simple world could be effectively navigated, avoiding predation and 

obtaining food.    

 

The adoption of reactive architecture lead to a mini revolution in the robotics field in the 

1980’s.  Even with the limited processing power available at the time, robotics took a 

great leap forward in terms of their capabilities.  The slow and awkward movements of 

Shakey, characterized more by long periods sitting still and planning than by 

motion(Wilber 1972), were replaced by exciting reactive robots that explored and 

interacted with the environment in real-time(Brooks, Flynn 1989, Morris 1997).   

 

There are two main methods of design seen in reactive robots, subsumption and Potential 

Field Methodology.  In subsumption a complex behavior is decomposed into many far 

simpler layers of more basic behaviors.  To revisit the previous example of obtaining an 

apple from the tree, a higher level behavior of get apple would be built from lower level 

behaviors such as go to apple and pick apple.  Go to apple could be further broken 

down into travel towards apple and avoid collisions.  This process can continue to the 

most basic level with each behavior being said to subsume all of its constituent behaviors.  

In addition subsumtion, another method which has shown success is Potential Field 



Methodology, where vectors are used to represent behaviors and vector summations are 

then employed to combine different behaviors and produce emergent behaviors.   A much 

more detailed example of the implementation of the potential field methodology will be 

seen in the next section. 

 

What makes the so called leap forward in robotics which was seen in the eighties so very 

intriguing is that in many ways it was in fact a leap backwards.  To illustrate why, 

consider again the four types of tool use. 

 

In terms of evolutionary development earth has seen these types of tool use emerge in the 

order they were presented.  In fact the high level cognition is a very “recent” 

development as Brooks has pointed out:  

It is instructive to reflect on the way in which earth-based biological evolution spent its time. 
Single-cell entities arose out of the primordial soup roughly 3.5 billion years ago. A billion years 
passed before photosynthetic plants appeared. After almost another billion and a half years, around 
550 million years ago, the first fish and vertebrates arrived, and then insects 450 million years ago. 
Then things started moving fast. Reptiles arrived 370 million years ago, followed by dinosaurs at 
330 and mammals at 250 million years ago. The first primates appeared 120 million years ago and 
the immediate predecessors to the great apes a mere 18 million years ago. Man arrived in roughly 
his present form 2.5 million years ago. He invented agriculture a mere 19,000 years ago, writing 
less than 5000 years ago and "expert" knowledge only over the last few hundred years(Brooks 
1991). 

 

The decision to try to start with the highest level seen is any many ways a natural one.  It 

made sense for robotics to try to mimic human level intelligence because that is the 

highest form of intelligent behavior which is seen in our world.  This top-down approach 

was unrealistic in many ways and the immediate success seen from pursuing robotics 

based on the reactive paradigm bears this out.   

 

Starting with a system that is in many ways an evolutionary precursor to what one hopes 

to eventually achieve makes sense logically. To return to our hierarchy of tool use, the 



parallels between reactive robotics and sensory directed tool use are strong.  They both 

use sense input to direct behaviors which are based on a simple set of guidelines.  They 

both generate remarkably adaptive and complex behaviors for the simplicity of their 

design.  And finely, they both have profound limitations.  To extend beyond simple 

behaviors, it is necessary to incorporate cognition into the system.  This does not mean 

dropping the lower level paradigms, but rather incorporating them into a higher level 

overarching structure of cognition.  The adaptively and quick reaction times of reactive 

systems are kept, while goals and situational awareness that can come from deliberation 

are also incorporated into the system.  These new systems are not strictly reactive or 

hierarchical, but rather hybrids which attempt to incorporate the strengths of both 

approaches.  There are many hybrid robots which have been created.  Examples are 

TCA(Simmons 1994), Autonomous Robot Architecture (AuRA).(Arkin 1997), Sensor 

Fusion Effects (SFX)(Murphy 1996, Murphy, Arkin 1992), and Saphira(Guzzoni et al. 

"1997", Konolige 1997). 

  

 

Implications for a robotic tool using agent 

 

So at this point we have considered a range of instances of tool use and classified those 

examples within a hierarchical classification based on their inherent intelligence.  We 

went on to consider the main methodologies of robotics.  We have identified four levels 

of tool use: 

 

 

 



We have described numerous examples in each category from the literature of animal and 

human cognition.  We will now revisit each category in turn and consider what 

techniques are needed for a successful implementation in a robot.   

 

Mindless tool use 

 

Description: There is in interesting paradox in this 

level of robotic tool use.  While prima facie it would 

seem to be the simplest and most severely limited of all 

the approaches to robotic use of tools, current industrial 

robotics perform a huge range of amazingly 

complicated manufacturing tasks with nothing more than mindless instruction sets(Nof 

1999).  Modern automobiles are made almost entirely by robots and many of our most 

complicated manufactured products such as microchips would not even be possible 

without the precision afforded by modern robotics(Van Zant 2004).   

 

It is interesting to note that the behavior of a hypothetical smart robot performing a 

complicated task could then be replicated by a mindless robot programmed to imitate the 

behavior of the smart robot so long as the environment is held constant for both robot’s 

task execution.  On the surface the robots could appear identical.  One would be figuring 

out its actions while the other is simply following a basic instruction set.  The important 

distinction between these two robots would be the way in which they would respond to 

change.  In our simple imagined scenario the intelligent robot would automatically adapt 

because it is intelligently directing its behavior in some way.  The mindless robot would 

continue the same, no longer appropriate, instruction set in the face of change.  Although 

the behavior will be unable to adapt to changes, a mindless robot can effectively use any 

tool, so long as it has been programmed correctly and task substrate remains constant.  

 

Implementation: The mindless robots implementation details are fairly straightforward.  

There will simply be a set of motor and actuator control instructions which are recorded 

in some way.  This instruction set may then be played back to perform the desired task. 



 

Example of use: We could program a robotic arm to use a metal rod as a lever, say, to 

lift an object.  To do this we would program an arm to grasp a rod, to insert the end of the 

rod under one of the bottom edges of the object, and to apply force upward so that one 

side of the object is raised.  So long as the force is sufficient and the motion is 

programmed for a known object, surface position, and related geometrical constraints, 

which do not change, this should succeed in lifting the object. 

 

 

Sensory directed Tool Use 

Description:  The addition of sensor information to a robot will change the dynamics of 

its operation.  The sensors provide access to information about the environment and the 

actions being performed.  This allows for far more adaptable behavior.  Rather that 

needing an object to be in the same place every time an action is performed, a visual 

sensor can locate the object and direct the action towards that location.  The tying of 

sensor data to a tool use task allows for a far greater degree of flexibility than that seen in  

mindless tool use.  The location of the tool as well as the subject of the tools action do not 

have to remain in a fixed position.  Sensor input can be used to direct performance so the 

proper location and orientation for task performance are maintained.  There is also an 

enormous advantage in that sensors provide constant feedback.  This means that if the 

robot is directed to do something and it is not accomplished as planned, the sensors can 

detect this.  For example if the robot is directed to travel towards a wall, but does not 

reach the wall due to wheel slippage, sensors can detect this and direct the robot to 

continue to travel until the wall is reached. 

 

Implementation: 

Once an agent moves beyond pre-programmed mindless behavior, the question of 

behavior representation arises.  Some work in AI can be applied to tool use scenarios, but 

only at a very abstract level. Some simple behaviors may simply be encoded as If Then 

rules, in the form: 

IF precondition THEN effect 



 

This approach is taken in a planning domain, init-flat-tire, due to Stewart Russell.  The 

domain contains the following operators: cuss, open, close, fetch, put-away, loosen, 

tighten, jack-up, jack-down, undo, do-up, remove-wheel, put-on-wheel, and inflate.  

Objects in the domain include wheels, hubs, nuts, and a jack (the tool).  The tool-using 

operators in this domain take the following typical form: 

 

(:operator fetch 

      :parameters (?x (container ?y)) 

      :precondition (:and (:neq ?x ?y) (in ?x ?y) (open ?y)) 

      :effect (:and (have ?x)  

      (:not (in ?x ?y)))) 

   

(:operator jack-up 

      :parameters ((hub ?y)) 

      :precondition (:and (on-ground ?y) (have jack)) 

      :effect (:and (:not (on-ground ?y)) 

      (:not (have jack)))) 

 

That is, a jack can be retrieved using the fetch operator and applied to the flat tire 

problem by using the jack-up operator.  Any off-the-shelf planning algorithm can be used 

to sequence these operators appropriately for control. The limitations of such a 

representation should be obvious. It specifies what to do, but not how to do it; its level of 

abstraction is far above the sensory and motor level; it casts tool use simply as retrieving 

and using a labeled object appropriately. 

Behavior mapping offers a more detailed approach better suited to sensory directed tool 

use.  This method involves the creation of a functional mapping between sensor input and 

motor output.  It is most commonly applied in robotics to navigation, such as the 

behavior implicit in the fetch operator above. Arkin has formalized these mappings in a 

language where all behaviors may be represented with a triple of the form ( S, R, β) 

where S denotes the range of all possible stimuli, R denotes the range of responses 

possible and β denotes a mapping: 

β:S→R 



This overall mapping is further broken down into instantaneous responses r, where r ∈∈∈∈ 

R.  Instantaneous responses are represented by vectors of up to six dimensions composed 

of sub vectors.  The following vector would represent a response in a situation where an 

agent has two degrees of freedom. 

r = [ x , y ] 

where 

x represents the x plane 

y represents the y plane 

 

A flat-tire-fixing agent, for example, would represent relevant locations on and around 

the car in these terms. 

 

Stimuli S is composed of a set of individual stimuli s ∈∈∈∈ S.  s are represented by a binary 

tuple: 

s = ( p , λ ) 

where 

p represents perceptual class  

λ represents strength or intensity 

 

With the addition of a threshold value τ, it becomes possible to then encode behaviors: 

β(s)   → r 

β( p , λ ) → for all λ < τ r = [0,0] 

otherwise r = [ x , y ] 

So for each stimulus s we encode thresholds and appropriate behaviors.  While the 

mapping is far from a perfect match to the planning representation, we can imagine an 

agent stimulus corresponding, for example, to whether the agent is holding a jack.  In the 

case that the jack is not being held, the behavior map could direct the agent’s navigation 

to the location of the jack; if the jack is being held, the map could direct the agent to the 

location of the flat tire.  This is clearly an artificial and incomplete solution, but it 

suggests a possible mechanism for dealing with spatial issues relevant to tool use (Kirsh 

1995). 



 

Descending to a lower level of detail, potential fields offer a useful approach to 

addressing other issues in sensory directed tool use.  Potential fields use vectors to 

represent the motion of a robot; as with behavior maps, the most common application is 

in navigation for mobile robots.  The sensor input is processed by the robot and then 

output as a vector for motion in the robot.  The vector indicates both direction and 

intensity for the motion of the robot.   For example in the following image we see a 

perpendicular field: 

 

This field represents the motion the robot would take at each point.  This type of field 

could be implemented in a robot by equipping it with a sonar sensor to detect walls.  To 

return to our figure imagine that the black line represents a wall and the green arrows 

represent the motion away from the wall we wish our robot to exhibit.  To implement this 

in a robot, whenever the sensor detects a wall, the software would trigger a vector for 

motion in the opposite direction.  In the potential field methodology, the input from a 

sensor is correlated into a resultant vector for motion in the robot.   

 

It is important to note that this method exhibits a major advantage over behavior mapping 

in that it is easy to combine the results of multiple sensors.  The vectors resulting from 

each sensor are simply added together and the final vector summation is what the robot 

uses to direct motion.  In the following image, we see five possible potential fields which 

could be tied to sensor input to direct behavior in various ways relative to a target. 



 

A robot might maintain a library of potential fields from which specific fields could be 

retrieved, based on sensory input, to guide its behavior in different situations. 

 

Example of use:  Consider our previous example of a robot using a very simple tool, a 

rod to apply leverage in lifting an object.  Let us add a level of complication.  Suppose we 

wish to create a robot to lift objects (imagine that someone has placed a $100 bill under 

one of several objects in a room), but we do not know in advance where the objects are 

located.  The use of behavior mapping and potential field methodology could make such 

a robot possible.  In this example we’ll discuss one aspect of tool-using behavior to solve 

this problem. 

 

One of the behavioral components of tool use is the ability to identify opportunities for 

tool use, which have been characterized as “affordances” (Gibson 1987).  In this 

example, an opportunity to use a lever is provided by a detectable edge, ideally a gap, 

between the bottom of an object and the surface on which it sits.  (For example, we 

would not want a robot to attempt to lift interior building walls with a lever.)  The 

geometrical match between appropriate edges and the end of the lever provides an 

opportunity for use of the lever.  For the remainder of this example, we’ll assume that the 



robot has a sensory system able to identify three-dimensional objects with edges nearly 

flush with the floor; this would require only the most straightforward application of 

machine vision techniques. 

 

The robot could begin by surveying the room, its sensory system marking the locations of 

relevant objects, a lever in its gripper.  Alternatively, it might wander through the room, 

encountering objects opportunistically.  For each object so identified, the sensed data 

about the target object would trigger the application of a potential field that combines an 

attractive field and a tangential field, both centered on the object.  The robot thus 

navigates closer to the object and circles around it. When the robot’s sensors detects a 

bottom edge on the object (i.e., evaluation of edge detection information rises above a 

threshold value), the robot has identified an opportunity for use of its lever.  

 

A different potential field is activated that represents a linear attraction perpendicular to 

the edge, with a motor response specific to the application of the end of the lever.  That 

is, suppose the robot can see the effecter end of the lever as well as the affordance in the 

target object upon which the lever should act.  Let us say the robot has a bottom edge of 

the target object centered in view, as diagrammed below: 

 

 



It would be a simple matter for the robot to take this image and process it to control 

motion with behavior mapping.  To do so, image processing would be employed to 

identify the effecter of the tool and the affordance upon which the tool will act.  In the 

image below the lower edge of the cube is the affordance and has been marked with 

yellow.  The end of the lever is the effecter and has been marked with blue. 

 

 

Once the affordance and the tool have been identified, it would be possible to use 

behavior mapping to bring the tool into position, so long as the robots position relative to 

the affordance being acted on is know.  It would be possible for the robot to determine 

position relative to the cube by sonar, or the size of the cube in the view if the cube is a 

known size.   

 

With the position of the affordance relative the robot know, it would be possible to use 

behavior mapping based on where the effecter is in the field of view to bring it into 

correct position.  To illustrate how this might be accomplished consider the following 

figure: 



 

This is the same view as the previous picture, but the image has been divided into four 

quadrants by the addition of black lines.  So long as the affordance is in the center of the 

quadrants, knowing which quadrant contains our effecter gives information about how to 

bring effecter and affordance together.  In the image above, we see the effecter in 

quadrant four.  Being in quadrant four signifies that our tool needs to move up and to the 

left.  Looking at the figure it can be seen that if our effecter was in quadrant three, an up 

and right motion would be required, while if it was in quadrant two, a down and left 

movement would be needed.   

 

In addition to four quadrants, there are three color bands.  If the effecter is in the green 

region, it is close to the affordance, if it is in the orange region, it is at a mid-length 

distance, and if it is in the red, it is at the maximum distance that the field of view allows.  

So the intensity of motion would need to be small if the effecter is in the green segment, 

greater if it is in the orange and greater still if it is in the red.  While this is a simple 

example it is possible to see how the use of this type of segmentation could be used to 

control direction and intensity of motion to bring an affordance and an effecter into 

alignment.  It a real world implementation, it would be possible to divide the image into 

much more than four quadrants for more precise direction indications.  A greater number 

of segments could also be used to give much more finely grained movement intensity 

recommendations. 



 

Further discussion of the mechanics of lever manipulation is beyond the scope of this 

work, but we have described a plausible approach to solving one important aspect of 

sensory directed tool use.  What is interesting about this example is the match to sensory 

directed tool use in animals such as the wasp, based on very simple computational 

mechanisms.  Problem-solving capacity is limited—arguably nonexistent—and yet novel 

scenarios can be handled to a limited extent.  As with examples in the animal kingdom, 

robustness is lacking.  Imagine the robot we have described attempting to lift an object 

that is fastened to the floor; while with additional “rules” it could easily recognize failure, 

the robot has no ability to reason about why its actions are not successful. 

 

Sensory directed tool use to tool use directed by low-level cognition 

Description: The addition of low level cognition will further augment robotic tool using 

abilities.  Low level cognition allows sensor data to be 

transformed to knowledge.  For example again consider 

a robot designed to lift objects.  A strictly sensory 

directed robot would simply gravitate towards an object 

driven by a basic conditional rule or potential field.  

The addition of some cognition allows this same data to 

be abstracted to the level of “This is where the object is, 

I want to go there.”   The addition of cognition will also 

allow for overall goals to be known and pursued.  Knowledge of a goal allows for far 

more intelligent actions. The ability to have a goal greatly increases a tool using robot’s 

ability to flexibly respond to change.  The robot can make basic plans and then apply 

them until the goal is reached.   

 

Implementation:   

 

1) Knowledge representation   Goals, tool affordances etc. must all be stored in some 

manner which is meaningful to the robot. 



2) AI planning algorithms  The robot will need the ability to formulate plans to try and 

reach its goal state. 

3) Behavior memory If the robot is unsuccessful with a strategy, behavior memory will 

keep it from being repeated.  This will also be helpful in avoiding endlessly looping 

behaviors. 

 

Sensory directed tool use directed by high-level cognition 

Description:  With high level cognition, a robot would not just be able to use existing 

tools, but to actually create and modify new ones.  By adding additional levels of 

understanding, the robot gains the wherewithal to better use tools.  With sufficient 

understanding of a task and  the nature of objects and their behaviors, it becomes possible 

to  create novel tools from objects at hand and use existing tools in novel ways 

 

Implementation: 

Obviously the goal of achieving human level intelligence in a robot is beyond the scope 

of this research, but it is possible to incorporate some aspects of higher level cognition 

into robots.  A more reachable goal might be to create a robot that could create a novel 

tool within a toy world.  A few potential methods to help in realizing this goal will be 

listed with further examination left as a topic for future research. 

 

Things needed for the creation of a novel tool in a toy world: 

1) Extensible body schema 

2) Understanding of object properties such as hardness, size, modifiability 

3) Understanding of physics 

 

 

Semantic grounding 

To better understand the how apparently quite intelligent behavior is not necessarily 

intelligent, let us examine a thought experiment presented by John Searle.  Searle feels 

that although we are capable of producing machines capable of very complicated 



calculations, it would be improper to say that they think. For example, in his book Minds, 

Brains, and Science(Searle 1984), he presents an example which he calls the Chinese 

room. The Chinese room is a closed room which contains a woman who has no 

knowledge whatsoever of Chinese. She can only understand English. The woman is fed 

Chinese symbols written on sheets of paper. She has a book which contains instructions 

on what symbols are the correct outputs for various symbol inputs. Although the symbols 

would appear to the woman as nothing more than squiggles, if the instruction book was 

well written, the woman could appear to respond quite intelligently to written questions 

presented to her in Chinese.  

Searle sees his Chinese room example as analogous to a computer. He says that 

computers are like the woman in the Chinese room. They are capable of giving the 

appearance of responding intelligently to inputs but in reality they are simply following 

an elaborate instruction book, in the form of the program they are running. 

Prima facie, there seems to be a lot of validity in what Searle is saying. I think that he is 

proper in dismissing a wide variety of so called artificial intelligence as not intelligent. 

The similarity between a computer program and the book in the Chinese room is often a 

valid one, but not always. There are some computers with outputs which represent more 

than a pre-programmed response to the input. This can be illustrated with an example. 

Imagine two separate computers, both performing the process of adding together the real 

numbers from one to ten, but doing it in very different manners. One of the computers 

has a program which is ontologically very similar to the Chinese room instruction book. 

Every possible combination of two numbers for addition has been written into the 

program, as well as the product of their addition. So, if the numbers four and five are 

given to this computer for addition, it will run through its program until it comes to the 

entry for four plus five. It will them follow the instruction for that entry and output nine, 

much like the Chinese room. I think that we would all probably agree that we would not 

want to describe this computer as thinking, even though it will give us correct results, but 

let us imagine another computer. 



This computer also performs the same task of single digit number addition, but it does it 

in a very different way. When it receives two numbers for addition it does not "look up" 

the answer like the other computer. It first converts the numbers in binary code. It then 

starts with the right most digits and moves from right to left combining same place digits 

with an AND gate, as well as carrying a digit when appropriate. This mechanism will 

output a third binary number which is the correct product of the addition. After the 

process is complete this third number is converted into decimal form and provided as the 

output of the program. This computer provides the same output as the other, but whether 

or not it thinks is much more problematic. 

Searle would dismiss the first computer we mentioned as being incapable of any thought 

because it lacks any semantic understanding of the numbers it is evaluating. It merely 

recognizes them and then "looks up" the correct answer. The second computer though 

does not simply look up the answers, but in fact figures them out, in a very real way. It 

could also be said that the numbers in the second computer do have a semantic value. 

They are not just symbols, but eight bit electronic entities that are stable, entities that can 

be manipulated and combined to yield predictable new eight bit electronic entities. By 

converting the numbers into something that could be said to have real semantic meaning 

for the computer (binary code), does the computer gain a semantic understanding of the 

numbers themselves? Daniel Dennett would say yes.  

For Dennett computers are capable of holding semantic meaning for symbolic entities. 

With the second computer we considered we tried to give the numbers semantic meaning 

by giving them symbolic grounding in binary code. Dennett has been involved in a 

project by Rodney Brooks that takes this endeavor to the next level. This project is called 

COG, and it is an attempt to give a computer the ability to attach semantic meaning to 

entities more complicated than simple numbers(Dennett 1997, Dennett et al. 1994). COG 

is not a simple computer program but an entire robot. He has foveal vision, hearing and 

even touch. COG is being designed not just to run prewritten software, but to in fact to 

write his own software. COG is being programmed so that he will be able to learn things 

by receiving input and altering his own programming. 



It is hoped that COG is going to be a huge leap in artificial intelligence. In many ways, 

COG is an attempt to avoid (and answer) the problems brought up by Searle. By giving 

COG sensations, his creators hope that they are giving semantic meaning to his programs. 

They will no longer be meaningless symbols, but things grounded in sensations he has 

experienced, much as our own thoughts are grounded in sensations we have experienced. 

Just as our own thoughts represent things which we have experienced through sensation, 

COG's "thoughts" will also represent things he has experienced through his own 

sensations. 

Searle would be wary of this line of reasoning which we have been following. He does 

not believe that a computer brain running a program such as COG's is capable of any 

beliefs whatsoever, but I feel he is wrong. To see this let us examine more fully exactly 

what it is to have a belief that means something. F. Dretske examines this very question 

in his book, Explaining Behavior(Dretske 1988). Let us now consider some of the 

arguments presented on beliefs in chapter four of the book. 

Dretske presents the following example. Consider sitting in your home and becoming 

thirsty. Eventually your thirst builds to the point where we say it causes you to get up and 

go to the refrigerator to get a beer. If you were asked, "Why did you go get the beer?", 

you would answer, "Because I was thirsty." Dretske feels this relationship can be 

diagrammed in the following manner: 

  

I am thirsty. This indicates that I need a drink and causes me to go and get a beer. The 

fact that thirst indicates a need for a drink explains why it causes me to go and get a beer. 

Earlier I talked about how Searle recognizes the importance of semantic meaning for 

something to be a true thought. This diagram clearly shows and example of a belief with 



semantic meaning. Being thirsty, has the meaning behind it of needing a drink. Searle 

feels machines, such as COG, are incapable of this type of semantic meaning. This is 

questionable. Let us again consider COG. Let us imagine that COG sometimes runs on a 

battery. This battery eventually runs out of power. If COG does not save his data before 

his battery runs out he will lose all of it. Imagine that COG has a low battery alarm, and 

let us again construct a diagram of the same form as Figure 1: 

 

We agreed that the thirst had semantic value. Does not this low battery alarm also have 

semantic value. The alarm is not merely a computer state. It has semantic grounding in 

the fact that it represents the charge status of the battery. Some people might say that this 

alarm is just too simple a mechanism for us to describe COG as thinking. It would be like 

saying that a thermostat thinks, so let us examine a third example where COG actually 

learns. 

COG will have arms which are moved around by electric motors. These motors are 

delicate so it is important that COG does not hit them against things. Rather than simply 

putting a protective case around the motors, COG's designers plan to make him capable 

of learning how to protect them. This will be accomplished by placing pressure sensitive 

film on COG's motors. This will send pressure data to COG when his motors are being 

hit. COG can then take evasive action and record what motion ends the pressure data the 

most effectively. The next time COG experiences a similar system state and pressure data 

he can repeat the evasive action that he previously learned was the most effective. Again 

this can be diagrammed in the same manner:  



 

With this learning mechanism, COG could be expected to begin to demonstrate behavior 

that went beyond anything he was programmed to do. Let us consider an example. COG 

will be able to recognize faces. Suppose that there is one particular person who for 

whatever reason particularly enjoys being cruel to COG, and hitting his sensitive motors. 

COG takes various evasive actions until he finds an arm position were his motors are not 

exposed to being hit. If this person is consistent in her abuse of COG, eventually he 

would learn that when he recognizes this person's face, he should place his arms in the 

safe position. 

Can we really dismiss this behavior as unintelligent? Is it really that different from the 

child who learns to cover his head whenever he meets the uncle who loves to give 

noogies? Searle is correct when he recognizes that we are unable to distinguish intelligent 

action by behavior alone. We would be able to simply program COG to protect his arms 

when he saw the certain face, and behaviorally COG's actions would be identical to if he 

had learned the action himself. Searle's point is valid, but to make the leap of logic that 

computers can not think, because "intelligent" action would be indistinguishable 

externally from programmed action, is wrong. Even though COG is only following a 

program he has taught himself, when he protects his motors, there is a certain degree of 

intelligence and semantic meaning behind the action. 

At this point it is simply too soon to say what level of consciousness artificial intelligence 

may one day reach. Although to this point it appears that scientist have been unable to 

create a computer which is rationally self aware, I think the question of whether they 

have created computers that can think, or believe, is not so clear. After we have 

considered our second adding machine and some of COG's operations I think that we can 

make a defensible claim that, computers can think, albeit at the most abecedarian level. 



We may never succeed in making a computer which is capable of a human's level of 

consciousness, but the move towards making a computer's "thoughts" about something is 

one of the paths we need to take in that direction. 

So after all of our analysis, let us return to questions we asked initially, can we make a 

robot that uses tools and is such a robot intelligent?  We have firmly established that we 

could create a robotic tool user.  Current technology allows robotic arms to employ 

screwdrivers and welders.  The question of creating a tool using robot becomes more 

interesting the higher up we ascend the taxonomy we created.  As we are able to succeed 

at each higher level we will be able to make a more plausible argument that we have 

created an intelligent robot.   Our survey of animal tool use and current robotics control 

methodologies has identified several appropriate Computer Science technologies to guide 

our creation of tool using robots.  Using these methods our task now is to write the 

software to control our robot in the use of tools and then again revisit these questions.  

We will create a robot that can dynamically use tools and is firmly semantically grounded 

in its world and then again ask the question “Is this robot intelligent?” 
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