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Abstract. The development of artificial cognitive mechanisms that support the intel-
ligent use of tools is an necessary step in the design of autonomous habile (i.e. tool
using) robots, as well as a potential opportunity to further our understanding of sim-
ilar biological mechanisms in humans and other tool-using animals. For habile agents
operating in environments designed for humans, visual mechanisms will be particularly
important. We begin with a survey of the existing research in the areas of agent design
and computer vision, focusing on theories of behavior-based control and animate vision
that could provide a basis for the design of habile agents. We suggest ways in which
such theories could contribute to the development of autonomous habile robots and
conclude with suggestions as to how such a system could be implemented based on the
Sony Aibo robot platform.

1 Introduction

The evolution of increasingly complex tool-using behaviors conferred a significant ad-
vantage upon the hominid lineage. Today, humans fill their environments with tools; from

L If we wish to create autonomous robots that

wrenches, to tennis rackets, to computers
can function in real human environments at anything near our level of skill, support for
tool-use must be an integral part of their design. Thus, the development of such “habile”
(i.e. tool-using) agents would represent a significant advance in robotics. At the same time,
the development of artificial habile agents has the potential to provide insight into the bio-
logical mechanisms that support tool-use in humans and other animals, as well as providing
a test bed for exploring theories of biological cognition from psychology, neurobiology, and
related fields.

More than simply creating specialized, task-specific machines that can employ tools,
our ultimate goal is the development of highly robust and generalized tool-using agents.
Though in some sense, machines such as those that might be found on an assembly line
may be able to “use” tools by following an explicit sequence of motions, they rely upon
completely known and predictable environments. “Fully” habile agents should be able to
handle novel situations, such as when a new type of task is presented, or when the most
appropriate tool is not available and a substitute must be found or manufactured.

How then, should we initially approach this task? We begin with the following observa-

tion: in terms of an agent and its environment, tool-use (at least among humans and other

LComputers can be considered a type of cognitive (rather than physical) tool; enhancing an agent’s innate
mental abilities by increasing memory, computation speed, etc. While an interesting area of study, we will
limit ourselves to consideration of physical tools within this paper.



high-order tool users) tends to be both a highly interactive and a highly visual endeavor.

In a typical tool-using task, a habile agent (whether artificial or biological), must:

- recognize an external target in the environment on which it needs to act to achieve

its current goal;

- realize that on its own, the agent is incapable of, or poorly suited to the required

action;
- determine what kind of tool will enhance its effectivity;

- locate (or manufacture) an appropriate tool from the environment (possibly choosing

from among several candidate artifacts);

- acquire the tool (possibly requiring navigation through the environment to the tool

and back);
- position and orient the tool and target; and finally,

- apply the tool to the target in an effective manner, readjusting the tool as needed
during the course of the action, and possibly repeating the action until the desired

effect is observed.

Thus, a habile agent is constantly relying on input from its visual sensors to guide the
manipulation of artifacts in the environment with its effectors, ideally in real-time. This
suggests that a situated, behavior-based, and visually-oriented approach to design will be
well suited to habile agents.

Behavior-based approaches attempt to exploit the interaction of agent and environment
to simplify the task of cognition, and are founded on an ecological view of the agent as an
embodied entity in a world rich with observable cues (affordances) that can help to guide the
agent’s behavior. Such approaches rely heavily on simple, efficient perceptual mechanisms
(as opposed to focusing primarily on complex internal mental constructs), particularly visual
mechanisms. A strong dependence on vision is a trait in common with human tool-using
behavior, making this a reasonable approach to the construction of agents that operate in
human environments and that use tools designed for humans.

Section 2 explores behavior-based approaches in more detail: beginning with a general

overview of behavior-based design, and then looking more specifically at behavior-based



approaches to computer vision. Section 3 looks at related research in the areas of computer
vision and habile robotics. Section 4 summarizes the beginnings of a design for a general
habile agent implemented on the Sony Aibo robot platform, and section 5 concludes with

some open questions and the current direction of our research.

2 Behavior-based design

In this section, we begin with an overview of common approaches to robotic design, with
emphasis on behavior-based approaches. We then focus more specifically on the application

of behavior-based approaches in the context of computer vision.

2.1 Approaches to agent design

The complexity, predictability, and stability of an environment strongly influence the
design of an agent; the more complex and uncertain the environment, and the less time the
agent has in which to act, the greater the demands placed on the design[14]. Because they
must operate in real world environments (which tend to be both noisy and fast paced), the
design of agents that control robots is often particularly difficult.

Matari¢[14] groups robot control methodologies into four general classes. Which ap-
proach is most appropriate for a given design depends on the complexity of the environment,
the nature of the task, and the physical and computational capabilities of the robot’s hard-

ware:

- Reactive control emphasizes speed of response over deliberative planning, allowing a
robot to respond quickly to dynamic and unpredictable environments. This approach
borrows heavily from stimulus-response theories of simple animal behavior (e.g. run-
ning from a light source). Such systems can be powerful, but are limited by a lack of

internal models, memory, and learning capacity.

- Deliberative control utilizes internally stored knowledge in addition to sensory input
to reason about a course of action before making a move. This allows the agent to
optimize its behavior to a given situation, however the necessary planning can be
computationally expensive and is often dependent on an accurate, detailed, and up-

to-date internal model of the world. Such agents may not function well in noisy or



rapidly changing environments, where by the time a decision is made, circumstances

have already changed.

- Hybrid control attempts to combine the strengths of the reactive and deliberative
approaches. Typically, a reactive component and a deliberative component interact
via an intermediate layer that oversees the two. The reactive component makes time
critical actions, while the deliberative component computes a long-term strategy. Co-

ordinating the (possibly conflicting) outputs of these two components can be difficult.

- Behavior-based control, like reactive control, is inspired by biological theories of an-
imal behavior, but goes beyond simple stimulus-response pairs. The basic units of
such control systems are “behaviors” - patterns of activity in the interaction between
a robot and its environment. Beginning with a basic set of simple behaviors (e.g. col-
lision avoidance), new, increasingly complex, behaviors are added until their overall
interaction results in the desired performance (e.g. a high-level goal of navigating to
a food source might depend on the behavior for collision avoidance). Although the
selection and design of such a set of behaviors may be a complex task, behavior-based

control produces agents that are robust, flexible, and responsive.

The behavior-based approach is modular, like reactive systems, but allows for the
use of representations when appropriate, as in deliberative systems. Unlike deliberative
systems however, individual behaviors may maintain their own state, and representations
and planning are distributed across a network of parallel behavioral modules rather than
centralized, allowing for greater flexibility and responsiveness. Components may be layered
as in a hybrid architecture, but all layers operate on similar time-scales and use similar
representations, simplifying coordination. Reasoning, sensing, and acting all share the
same mechanisms, creating a tight coupling between thinking and execution. (For a far
more thorough introduction to behavior-based robotics, see Arkin[1].)

In deliberative systems, planning is a discrete phase, performed prior to execution. In
a behavior-based design, reasoning can be a continuous effort, with the agent constantly
recomputing the best course of action at each moment, simultaneous with the execution of
the current task[7]. This avoids the need to maintain a control state that keeps track of
the agent’s progress in a (fixed) sequence of actions and relies on potentially out-of-date

information. Such an agent can demonstrate flexibility in the face of changing conditions,



while still performing complex behaviors: the agent can abort a routine that is no longer
appropriate; reattempt a failed action; temporarily suspend one task in favor of another; in-
terleave tasks; and combine tasks to simultaneously achieve multiple goals (see for example,
Chapman’s video game playing agent, “Sonja”[7]).

The terminology in the literature on behavior-based methodology is often a bit fuzzy.
Some authors prefer to refer to such methods as “situated” approaches. Others may use both
terms, but with slightly different interpretations. For example, Matari¢ points out that since
robotic agents are embodied (interacting with the environment through a physical body),
they are inherently “situated,” regardless of the specific design emphasis. Whatever the

terminology, these approaches generally have the following in common:
- a view of the agent as an embodied entity, closely integrated with its environment;
- mechanisms inspired by biology;
- use of the same cognitive structures for perception, action, and reasoning; and

- support for real-time responses in dynamic and noisy environments.

2.2 Computer vision

There are a variety of means by which an robot can perceive its environment. For
example, range maps can be constructed with sonar or laser scans, the weight of a tool
can be judged by lifting it, or the elasticity of an object might be determined by applying
force to its surface and measuring the deformation. In humans, tool-use is a highly visual

2 and vision provides a rich and continuous stream of information about an

enterprise
agent’s environment. Thus we expect that to be successful, a habile agent operating in a
human environment should rely heavily on vision. Here we briefly contrast traditional and
behavior-based® approaches to vision.

Traditionally, vision has been viewed as the task of reconstructing a three-dimensional

scene from a two-dimensional projection of the environment onto the retina (or electronic

2Haptic and proprioceptive feedback is of course also vital, but their implementation is relatively straight-
forward.

3Here again, terminology in the literature varies. Different authors refer to ecological and interactive
approaches, active and animate vision, etc., which, while differing in their details, all generally refer to
biologically-inspired approaches that focus on the agent as an embodied and active participant in its envi-
ronment. For consistency, we continue to use the term “behavior-based” to describe such approaches here,
though this term is not widespread in the vision literature.



equivalent)[17]. However, automatically constructing a complete and detailed 3-d represen-
tation is often extremely difficult and computationally expensive. Many algorithms have
been developed to break an image down into primitive elements such as edges and regions,
but reconstituting the scene from these elements is almost always an under-constrained
task, complicated by noise such as shadows and occlusion?. Behavior-based mechanisms
provide a partial alternative to this computational approach to vision.

Though he focused on animals rather than computers, Gibson’s work on ecological
perception|[9] is often cited as providing the theoretical basis for the current biologically-
inspired approaches to machine vision[8, 15]. In Gibson’s view, animal and environment
form a mutually dependent “inseparable pair.” Through this relationship, an animal can
directly perceive all the information needed to act without the need for high-level mediating
processes or representations; this information being inherent and readily accessible in the
environment®. Perceptual cues in the environment (affordances) suggest courses of action
to the agent.

Behavior-based approaches to computer vision aim to avoid the need to construct
detailed 3-d representations of a scene. Creating and maintaining such representations is
too expensive. Further, only a small subset of the information in a scene is usually relevant
to the agent’s current task, and resources spent analyzing the rest of the scene are simply
wasted[3, 7]. Chapman also suggests that the information in a scene can only be usefully
interpreted in terms of the goals the agent is trying to accomplish[7]. For example, objects in
the real world are not discrete entities, but are composed of multiple smaller components,
and are often themselves parts of larger wholes, making completely domain-independent
object recognition difficult, if not impossible; one needs to know what level of abstraction
is required for the task at hand in order to know how to interpret the scene.

Chapman cites several advantages of avoiding the use of internal representations by

substituting continuous, direct perception of the environment via sensory input:

- If information about the world is needed to make a decision, it is usually cheaper
(though not free) to “look and see” than to deduce, and the information can be relied

upon as up-to-date (though potentially incomplete, if, for example, an object blocks

4A great deal of work has been accomplished in this area, far more than can be easily summarized here
- see, for example, Marr[13] for a detailed treatment.

5Various perceptual mechanisms suggested by Gibson, for example the concept of optic flow, have sub-
sequently been supported by animal studies [8].



the agent’s view).

- In many cases, the next step the agent should follow is obvious from the configuration
of the materials in front of it. And once that step is complete, the next is likely to
follow from the resulting configuration. Thus, complex behaviors can arise without
the need for complex control structures to keep track of the agent’s progress through

a sequential task (similar to concepts in Kirsh’s“intelligent use of space”[12]).

- A situated agent does not necessarily have to perform simulations to know the out-
come of an action. Rather, the action can be tested in the real world, simplifying

computation and removing the uncertainty of an abstract simulation.

- Instead of solving a general case prior to action, skills can be learned and improved

through exploration and observation.

- Real world environments are often simply too complex to be represented in detail by

an internal model or accurately predicted in simulation.

2.2.1 Animate vision

An example of a behavior-based approach to machine vision is Ballard’s “animate
vision” [3]. Closely related to work in “active perception”[2], animate vision systems inte-
grate vision with behavior, with particular emphasis on mobility. This distinguishes animate
vision systems from passive vision systems, such as Marr’s[13], which focus on the analysis
of static images independent of their environmental context. In this way, animate vision
avoids the standard vision problem of reconstructing a 3-d scene, by substituting behaviors
that do not depend on an elaborate three dimensional representation of the environment,
to begin with.

Ballard’s main argument in favor of an animate approach is a significant reduction in
computational complexity, supporting robots functioning in real-time®. In the philosophy
of animate vision, behaviors may not always be successful, but they should always be fast.

Under the direction of a high-level controller specifying goals and instructions, animate

vision systems utilize strategies borrowed from animal (particularly primate) visual systems

SWhile the steady increase in computing power has perhaps weakened this argument, the computational
efficiency of animate systems can still be an important advantage, especially when using consumer-level
hardware.



such as stereo-vision, foveae, and attention. Fundamental to animate vision are high-speed
gaze control mechanisms that can rapidly reposition the camera coordinate system in re-
sponse to stimuli. Combined with a fovea that provides high resolution vision over a very
small viewing angle, gaze control allows for computationally cheap, low resolution imaging
over a large field of view, while still providing imaging with high acuity at the area of
interest.

Animate vision systems may utilize additional strategies to further reduce computa-
tion costs, such as exploiting environmental cues (e.g. colors) that are readily apparent in
the local context. For example, Rabie and Terzopoulos developed a virtual fish employing
an animate vision approach with directable, foveated eyes, and utilizing stereo and color
cues, capable of target following, obstacle avoidance, and predator avoidance in a simulated
aquatic environment[25]. Animate systems can also employ physical search strategies by
moving the cameras or the entire robot to get a better look instead of running a compu-
tationally complex search over a single (and possibly incomplete) image. Further, the act
of fixating the robot’s gaze on a target facilitates the use of object-centered (rather than
egocentric) coordinates, which can simplify calculations and support object representations

that are independent of the robot’s (possibly changing) perspective.

2.2.2 Vision and tool use

There are many ways in which behavior-based vision techniques could be applied to
support tool-use. For example, by determining the basic size or shape of the tool the agent
needs, a visual search for likely objects can be simplified - if the agent needs to extend its
reach by a meter, objects significantly less than a meter in length can be excluded from
consideration as soon as their size is estimated, at which point, no further analysis is needed.
Similarly, an agent’s reasoning about what kind of tool to use might be influenced by first
performing a survey of the environment to determine what sorts of tools are available, thus
letting the environment constrain the internal search space.

By altering the agent’s effectivity, possession of a tool may also influence a visual search.
For example, if an agent’s goal is to acquire objects of distinct kinds, each of which requires
a different tool (e.g. hooks of different size), then as long as the agent is holding the tool
for one type of target, it can ignore the other objects until it has finished gathering all of

the current targets and swapped tools.
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3 Previous work

In this section, we summarize a number of cases in which researchers have implemented
systems that demonstrate examples of visually-aided tool-use. This survey is not exhaustive,
but is hopefully representative enough to provide an overview of the state-of-the-art in the

area.

3.1 Bogoni and Bajcsy

Bogoni and Bajcsy examined ways of representing tools in terms of function[5, 6, 4].
Believing that object representations should go beyond the description of intrinsic properties
such as shape and material, their goal was to include empirically determined descriptions
of an object’s functional features. To this end, they developed a system for automatically
discovering the functional properties of objects through task-oriented interactions using
active perception.

Initial experiments studied tools for piercing, while later experiments also explored the
use of chopping tools. The setup used two robotic manipulators, one of which gripped the
tool and was equipped with a force sensor, while the other was equipped with a camera for
visual feedback.

The system maintained an event-based state description of the task under analysis. A
supervisory controller stepped the manipulators through the task and selected the appro-
priate observation strategy at each stage. The experiments varied the material properties
of the tool and target objects (e.g. shape and hardness), as well as the mechanics of the
interaction, such as the speed and the angle of the tool’s approach.

Vision was used both prior to and during the interaction phase of the experiments. To
begin with, the visual system was used to segment the outlines of the tools. This allowed
for shape-based comparisons of the different tools tested by the system. It also allowed the
system to monitor the tools for deformation during their application to the target. During
this tool-application phase, vision was used in combination with the force and position
sensors to observe the progress of the robot by measuring the distance between the tool and
the target. Visual feedback was also used to interpret the results from the other sensors.
For example, during a trial, the force and position sensors might indicate a successful

piercing operation with the tool, while a visual comparison between the tool and its stored
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representation showed that the force and position readings were actually due to the tool

bending, rather than penetrating the target material.

3.2 GRUFF (Sutton, Stark, Bowyer, et. al.)

GRUFF (Generic Recognition Using Form and Function) is a system developed and
expanded over several years by Sutton et. al. for the visual recognition of novel objects[23,
24]. Rather than using explicit geometrical models of specific objects, GRUFF tries to assign
objects to generalized categories based on their functional characteristics (it is assumed
that these functional characteristics can be extracted from an object’s geometry). This
functional analysis involves determining whether a given object satisfies the constraints of
the object category (for example, a container must be graspable to be a cup). The functional
characteristics GRUFF looks for are similar in concept to Gibson’s affordances.

Though early work focused exclusively on the object category of chairs and used pre-
built 3D models of objects, later research added automatic generation of the object models
and expanded the knowledge base to include various types of objects including hand tools.
Recent work has also looked at object recognition using environmental context to offset the
uncertainty found in real world scenes (for example, the problem of object occlusion).

In operation, an object is placed in an observation area, where a camera system is used
to acquire a range map, which is then used to construct a 3D model of the object. Next,
concepts of physics and causation are applied to the model to label the object’s potential
functionalities (for example, in order to allow sitting, the object must rest stably on the
ground). The system checks the object geometry for the existence of required surfaces,
the proper relationships of the surfaces, and the appropriate accessibility or clearance of
the functional elements. Finally, a plan for confirming the object’s functionality through
interaction is created and enacted using a robotic arm and feedback from visual and haptic

SEeNnsors.

3.3 Kemp and Edsinger

Kemp and Edsinger observe that for many tools and tasks, a basic, yet essential, com-
ponent of tool-use is the identification and control of the tool’s endpoint (this ignores tools

such as saws, where effectivity is not localized to a single point)[11]. To take advantage
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of this observation, they designed a robotic system for automatically detecting a tool’s
endpoint and estimating its position in space relative to the robot’s hand. With this infor-
mation, the robot has control over the position of the endpoint, which might enable the use
of very simple tools (a hook, for example) as well as support further automated exploration
and testing of more complex tools (even in the case of basic tools such as hammers and
screwdrivers, knowledge of the point of effectivity alone is insufficient for effective use).
While many other robotic systems either require a pre-existing model of a tool or
must construct a model using complex perceptual processing, Kemp and Edsinger use a
relatively simple optical flow technique to rapidly model the tool’s endpoint, even under
noisy conditions simulating a real world work environment. While rotating the tool, the
robot monitors the optical flow to detect the points in the image that move the fastest.
After studying the tool from several different angles, the system estimates the 3-d position
of the endpoint. This use of optical flow simplifies the problem of perception and allows
for real-time detection of the end point without the need for detailed modeling of the tool.
The technique has been tested with a variety of tools, including a pen, hammer, and pliers,

as well as with other objects such as a bottle and the robot’s own finger.

3.4 Wood

Recent work in our lab by Wood[19, 26], led to the development a simple habile agent
based on a Sony Aibo robot dog. The task set for the Aibo was the acquisition of its toy
ball. However, as part of the task, the ball was initially placed on a stand, putting it out
of the robot’s reach. Thus the agent had to first determine that the ball was out of reach,
then locate and acquire a suitable tool (in this case, a “stick” of sufficient length and with
suitable dimensions to allow the Aibo to grasp it in its mouth was placed nearby), and
finally use the tool to push the ball off of the stand and onto the floor where it was within
the Aibo’s unaided reach.

The agent’s tool-using strategy was implemented using a simple finite state machine,
with the Aibo first performing a visual search for the ball”. Once the ball was located, a test
was performed against an internal body schema to determine whether the ball was within

reach. If not, a second visual search was performed to locate the stick tool’s “handle”. This

"The ball was a distinct color from the rest of the environment, so the visual search was based on color
segmentation algorithms provided by the Tekkotsu Aibo development framework from Carnegie Melon.
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handle had a uniquely colored visual affordance and was shaped to fit in the Aibo’s mouth.
The Aibo then moved to the stick tool, oriented itself using its body schema and picked up
the tool. A third visual search reacquired the ball and the Aibo moved within range. Using
the body schema, the Aibo then aimed the tool and leaned forward, poking the ball with
the stick and causing it to roll off of the platform.

While much of the agent’s behavior was hard coded into the state machine, strictly

limiting the tasks that it could handle, the agent did demonstrate several important features:

- recognition of a problem that can benefit from application of a tool, using vision and

an internal body schema representation,
- acquisition of a tool in an effective orientation based on a visual affordance,

- extension of the body schema to accommodate the altered effectivity resulting from

tool acquisition, and

- use of an acquired tool to accomplish an otherwise unachievable goal.

3.5 Stoytchev

One of the most impressive habile agents yet developed is Stoytchev’s[22]. His work
concentrated on the autonomous learning of tool affordances by a robot, in this case a 5
d.o.f. manipulator arm and gripper mounted on a mobile base that allowed the robot to
move from side-to-side. The robot’s tasks consisted of basic extension-of-reach activities.

In the experiments (based on similar studies done with chimps[16]), a hockey puck was
placed on a table in front of the robot. The robot’s ultimate objective was to move the puck
using a provided tool. Five different tools were used in the experiments: a straight stick,
an L-shaped stick, a T-shaped stick, and versions of the L and T-sticks with extra (serif-
like) extensions to form hooks. The robot’s wrist, the tools and the puck were color coded
to simplify visual tracking using a camera, which was mounted above the workspace. The
robot had five basic behaviors: extend arm, contract arm, slide left, slide right, and position
wrist. Only the effective affordances of the tools were learned (i.e. the robot already knew
where the tool’s handle was).

The design was based on research that shows many animal species use stereotyped ex-

ploratory behaviors to experiment with an unfamiliar object. Accordingly, when presented
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with a new tool, the robot engaged in a “behavioral babbling” stage, in which behaviors
were randomly selected and the effects on the environment were observed. Once a tool’s
affordances were learned, the behavioral primitives could be strung together based on their
expected outcomes to solve a given task. Similarly, the accuracy of the learned representa-
tion could be tested by the agent and the representation updated if needed - for example,
the agent could recognize that a broken tool no longer performed as expected.

In the basic extension-of-reach tasks, the robot was given one of the tools and had to
push/pull the puck over a colored goal region on the table. The robot was usually successful,
and the most common cause of failure was pushing the puck out of reach. In a second set of
experiments, the robot was given a “broken” tool - an L-hook, colored such that the robot
recognized it as a T-hook. In all trials, the robot was able to recognize that affordances
associated with the “missing” part were no longer valid and adjust its behavior accordingly.

As Stoytchev notes, there are some short-comings to relying on a preexisting set of ex-
ploratory behaviors - in particular, there may be tool affordances that will not be discovered
because the required exploratory behavior is not within the agent’s behavioral repertoire
(an issue also observed in animal studies). He suggests that this can be resolved by the

addition of new mechanisms that support the learning of novel exploratory behaviors.

4 Designing a habile agent

Tool-use can be described as the effective application of an external object to enhance
the innate abilities of the user. We have previously divided physical tools and tool-using

behaviors into four categories[18]:

Effective - The use of tools such as hammers, screwdrivers, and paint brushes produce a

persistent effect on the environment.

Instrumental - Tools like tape measures and magnifying glasses provide the user with en-

hanced information about the environment.

Constraining - Stabilizing or constraining the movement of environmental objects or other

tools. An example is the use of a straight edge to draw a line.

Demarcating - Imposing structure on the environment. This category includes using a
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carpenter’s pencil for marking where to cut a board, or using push pins of different

colors to denote different types of landmarks on a map.

These behavioral categories encompass a wide variety of tasks, but all require an agent
to follow the same basic pattern. In a typical tool-using scenario, a habile agent performs

the following sequence of tasks:

- recognize an external target in the environment on which it must act to achieve its
current goal (for example, a hungry agent might perform a visual search for food,

eventually locating a bunch of bananas hanging from a hook in the ceiling)

- realize that on its own, the agent is poorly suited to, or incapable of the required

action (maybe the bananas are too high to reach);

- determine what kind of tool will enhance its performance (by extending its reach, a

long object might let the agent knock the bananas down to the floor®);

- locate (or manufacture) an appropriate tool from the environment (hey, there’s a stick

lying in the corner);
- acquire the tool (fetch!) ;

- position and orient the tool (holding the stick by the middle or distal end won’t be
effective, so the stick should be held by the proximal end); and finally,

- apply the tool to the target in an effective manner, readjusting the tool as needed

(push the bananas up and off the hook).

Tool-using tasks can easily become very complex, so for now, we aim to limit our
considerations to a small representative set of basic tasks. Such tasks might include reaching
or pushing, pulling, lifting (e.g. with a lever), picking up (e.g. with a scoop), probing,
marking, and blocking (e.g. propping open a door). Our goal is the development of a
flexible and robust habile robot, capable of autonomously performing these kinds of tasks

(in real-time if possible), incorporating behavior-based elements in its design.

8Bruised bananas - ick!
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4.1 Design constraints

There are numerous constraints that guide our thinking when trying to design a habile
robot. Some of these arise from assumptions we’ve made about how a habile agent should

function. Other constraints are imposed by the choice of hardware platform for our agent.

4.1.1 Assumptions

We make the following general assumptions about the design of visually-oriented habile

robots.
Independence of high-level cognition from low-level processing

It should be possible to fix the low-level algorithms for handling the basic visual and
motor processing of a habile agent, while allowing for flexibility in the higher level cognitive
representations. Thus, we should be able to retain the basic support framework, while
swapping various cognitive modules. This would allow for the development of increasingly
sophisticated representations supporting more sophisticated tool-use, without the need to
completely redesign the agent. Additionally, while one of our goals is the development of
generalized agents able to handle a wide variety of tasks and environments, there could be
times where the ability to swap in a specialized cognitive module for a particular situation
might be advantageous (one can also conceive of an architecture that includes many such
modules, with a mechanism for automatically selecting the one best suited for the task at

hand).
Kinematic body schema

Recent research in neurobiology has found significant evidence that an extensible kine-
matic body schema is employed by some primates when interacting with objects in the
environment[10]. This suggests that as part of its basic low-level architecture, a habile
agent will benefit from the incorporation of a similar type of representation. Earlier work
by Stoytchev[21] and by Wood[26] already incorporates extensible body schemas into habile
agents.

A body schema gives an agent, whether artificial or biological, an internal representa-
tion of the agent’s body in physical relation to its immediate environment. Such a represen-

tation can be useful for avoiding, acquiring, and manipulating objects in the environment.
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An extensible body schema is a representation that can be temporarily adjusted to accom-
modate an external object that is treated as part of the agent’s own body. Thus, when
an agent acquires a tool for the purposes of tool-use (i.e. not simply holding an object, as
during transport), the tool can be considered an extension of the agent’s body without the
need for tool-specific mechanisms. When the tool is released, or is handled not as a tool but
as simply an object, the body schema returns to its normal bounds. It will be necessary to

develop visual mechanisms to support and utilize such a representation.
Symmetry

We also believe that geometrical notions of symmetry and proportionality will play an
important role in the recognition and utilization of visual affordances, though we still lack
a formalized description of these concepts. For example, when presented with a hammer,
a human might note the symmetry between the curvature of the handle and the shape
of the palm, thus perceiving that the handle affords grasping in a particular orientation.
In addition to shape, size is also key to the proper recognition of affordances; consider a
handle-shaped object that is too large or too small for a manipulator to grasp securely, or
a screwdriver a size too big to fit a screw’s head. Further, symmetry and proportionality
might provide useful constraints on visual search; for example, when searching for candidate
tools, ignoring all objects above a certain size, such that they would be difficult for the robot

to move.

4.1.2 Platform constraints

The hardware platform we have chosen as the basis for our habile robot is the Sony
Aibo ERS-7 robotic dog (continuing the earlier research by Wood[26]). The Aibo provides
a tight integration of processor, sensors, actuators, and wireless communication in a single
compact and affordable package®. Significant development support is available through
existing frameworks and documentation created by both Sony and the Tekkotsu project
at Carnegie Mellon. Additionally, as its form is that of a stylized canine, the Aibo also
offers an opportunity to study tool-use as separate from the anthropomorphic features (e.g.
opposable thumb) with which it is usually associated. This choice of platform does however

impose significant limitations.

9Now, unfortunately discontinued.
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Real-time execution

While the Aibo has significant processing power on-board, computer vision algorithms
tend to be computationally expensive. It may be necessary to offload some or all of the
visual processing to a networked computer (in which case data transfer rates may become
an issue). Such problems could prevent the robot from functioning in real time, or force
us to use lower-resolution images. Low-level preprocessing performed on-board might help
reduce such constraints. For example, using a foveated visual system would mean that only
a relatively small portion of the Aibo’s view need be transmitted at a high resolution, while

peripheral vision could be transmitted at a much lower resolution.
Trajectory deviation

Depending on the walking surface and the walking gait, the Aibo’s locomotion be-
comes error-prone, leading to significant deviations from the desired path, even over short
distances. This means that navigation will depend heavily on continuous closed-loop control
to perform corrections to the Aibo’s trajectory and maintain course. Consequently, we will
need to process visual input quickly or else limit the walking speed or pause frequently for

adjustment.
Object manipulation

The Aibo lacks a traditional gripper-style manipulator, and we are presently considering
various different designs for Aibo-compatible tools. For example, in place of a handle, a
tool might be equipped with a sleeve, into which the Aibo can fit a paw. Another approach
might be to design tools that can be held between the Aibo’s forelimbs. Most likely, we will
continue to use the Aibo’s mouth to grasp tools as in Wood’s work (though this has the
disadvantage that the tool can interfere with the robot’s nose-mounted vision). There is an
upside to the limited range of shapes that the Aibo can pick up - it significantly constrains
the search space when identifying potential tools in the environment. Any object that fails
to meet the narrowly defined graspable affordance can be ignored!?.

While the location of the camera in the nose may sometimes mean that range of vision

is reduced when a tool is held in the Aibo’s mouth, it also simplifies the problem of guiding

0The search space can also be artificially constrained when appropriate (for example by using color to
denote a graspable component).
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the tool’s endpoint. Assuming that the tool’s point of effectivity is not offset to the the side
(i.e. the endpoint is in-line with the Aibo’s camera), the Aibo can guide the tool simply by
maintaining the alignment between camera, tool, and target; essentially sighting along the

tool’s length.
Depth estimation

The Aibo is equipped with three forward-facing infra-red depth sensors (each optimized
for a different range of distances). In our experience however, while these are generally
sufficient for obstacle avoidance, they are ill-suited to precision tasks, such as picking up
objects'! and shape-based object recognition. Especially given our conceptual emphasis
on vision, we would like to be able to precisely and accurately gauge distances using the
Aibo’s visual hardware. Unfortunately, the Aibo has only a single camera, ruling out real-
time stereo-vision (a difficult computational problem in itself). One possible solution when
dealing with objects of known dimensions is to estimate depth based on the area the object
covers in the Aibo’s view.

4

Another possibility is related to the “peering” behaviors exhibited by some insects and
birds, in which the head is moved from side-to-side in order to gain better estimates of depth
from parallax or from optical flow techniques'?. We are experimenting with a behavior in
which the Aibo leans its whole body from side-to-side (the neck not allowing this type of
movement), while recording images at two or more points along the camera’s path. This
allows a kind of pseudo-stereoscopic vision, but requires the relaxation of our real-time goal
and depends on a reasonably stable environment. It may also be possible to take advantage
of camera displacement during walking to obtain depth information - thus, instability in

the image during walking, usually just a source of noise, could potentially become a useful

tool.

5 Conclusions

There remain a number of open issues in the design of habile agents which we have

not yet mentioned. In focusing on late and intermediate vision, we have thus far ignored

"This sort of precision control seems to be a rather difficult problem - even Sony’s own commercial Aibo
“mind” often fails at this sort of task.
12Nearer objects appear to move more rapidly than those further way, proportional to distance.
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the implementation of the early visual mechanisms on which higher level visual processes
depend (e.g. edge detection, color segmentation). In biological organisms, early vision is
performed by dedicated hardware which we would rather emulate in software. As a great
deal of work has already been done on such mechanisms, we are currently looking into the
use of existing software to perform these functions.

We have also said little about low-level motor control. Possibilities here include hard-
wired controllers such as the MMC Net[20] used by Wood[26], as well as learning approaches
such as those used by Stoytchev[21] that learn motor control during an exploratory babbling
phase. Similarly, we will need a high-level controller to coordinate and guide the perceptual
and motor systems. Finally, we will need to implement some form of learning so that the
agent can build upon past experiences and expand its abilities. Stoytchev’s work in the
learning of affordances in extension-of-reach tasks[22] might serve as a good starting point.

Along with developing the basic architecture for our Aibo-based system, our current
goal is the creation of a formal description for the kinds of visual affordances the agent
should be able to recognize (e.g. for grapsing, reaching, etc.). This should help guide the
development of the visual and reasoning systems, as well as the design of the tasks we will
eventually use to test the robot.

In summary, to effectively perform human-like tasks in environments designed for hu-
mans, artificial agents will need the ability to use tools. The development of habile agents
also affords an opportunity for exploring and testing cognitive theories of tool-use in humans
and other animals. Finally, the highly interactive and visual nature of tool-use suggests that
developing behavior-based vision systems is a promising direction for research into the de-

sign of autonomous habile robots.
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