
Deriving Performance Requirements and Test Cases with
the Performance Refinement and Evolution Model (PREM)

Chih-Wei Ho
Dept. of Computer Science, North Carolina State Univ.

890 Oval Drive, Campus Box 8206
Raleigh, NC 27695-8206, USA

+1-919-513-5082

dright@acm.org

Laurie Williams
Dept. of Computer Science, North Carolina State Univ.

890 Oval Drive, Campus Box 8206
Raleigh, NC 27695-8206, USA

+1-919-513-4151

williams@csc.ncsu.edu

ABSTRACT
Performance is one important attribute of a software system. To
develop a software system of acceptable performance, the team
needs to specify precise performance requirements, design appro-
priate test cases, and use appropriate techniques to analyze the
performance characteristics. However, the lack of a management
framework for performance engineering may impair the effec-
tiveness of the techniques. In this paper, we propose the Perform-
ance Refinement and Evolution Model (PREM) as a performance
management framework. Based on the specification of quantita-
tive measurement and workloads, PREM classifies performance
requirements into four levels. At each level, we show what infor-
mation should be included in the requirement, and what tech-
niques can be used to estimate the performance. We use PREM
on a Web-based student project to define the performance re-
quirements. The process of performance requirements specifica-
tion and example results are provided in this paper.

Keywords
Software performance engineering process; software performance
testing; performance requirements.

1. INTRODUCTION
Performance is an important non-functional requirement for a
software system. A system that runs too slowly is likely to be
rejected by all users. Failure to achieve some expected perform-
ance level might make the system unusable, and the project might
fail or get cancelled if the system performance objective is not
met [34]. To build a software system with acceptable perform-
ance, the development team needs to take performance into con-
sideration through the whole development cycle [12]. Many
models, techniques, and methodologies have been proposed to
address software performance issues. A development team needs
to apply several performance engineering techniques to achieve
the desired performance level. However, the lack of a manage-
ment framework for performance engineering may impair the
effectiveness of the techniques. For example, if an unnecessarily
complicated performance model is used during the early stages,
the development team may need to make assumptions for the
unknown but required factors for the model. The assumptions
may render the model inaccurate or even useless. The develop-
ment team needs to choose proper performance techniques, based
on the understanding of the performance characteristics of the
system, for the techniques to provide useful information.

We propose the Performance Refinement and Evolution Model
(PREM) as a framework to manage software performance devel-
opment. PREM, as illustrated in Figure 1, is a four-level model.
Quantitative requirements and workloads specifications distin-
guish the levels. A higher level means the better understanding of
the performance characteristics. At each level, the model de-
scribes how the performance requirements and test cases are
specified and proper approaches to analyze the performance. The
development team can design the performance engineering proc-
ess and organize the engineering activities based on PREM. With
PREM, the development team starts from Level 0, specifying
PREM-0 performance requirements. Then the team can apply the
techniques from PREM-0 to understand the performance charac-
teristics of the system. When more performance characteristics
are obtained, the development team can go to a higher PREM
level, until the specified requirements are good enough for the
project.

In this paper, we use a Web application to demonstrate how
PREM can be applied. The example used in this paper is iTrust,
an on-line medical record system. We will use this example to
demonstrate how the performance engineering process is de-
signed, and the how the performance requirements are refined and
evolved.

The rest of the paper is organized as follows. Section 2 provides
the background and related work for requirements specification

PREM-1

PREM-0

PREM-2

PREM-3

Specify qualitative
performance requirements

Specify quantitative
 performance requirements
Specify PREM-1 test cases

Estimate workloads
Specify PREM-2 test cases

Collect workloads
Specify PREM-3 test cases

Figure 1. The Performance Refinement and Evolution Model.

and performance testing; Section 3 describes PREM in detail;
Section 4 shows how PREM is applied in iTrust; and Section 5
concludes the paper and points out future research directions.

2. BACKGROUND AND RELATED WORK
This section provides related research and literatures for software
performance requirements specification and testing. An overview
of Software Performance Engineering (SPE) [31, 33], from which
several techniques are adapted in this paper, is also presented in
this section.

2.1 Requirements Specification
Performance requirements can be specified qualitatively or quan-
titatively. Quantitative specifications are usually preferred be-
cause they are measurable and testable. Basili and Musa advocate
that quantitative specification for the attributes of a final software
product will lead to better software quality [5]. For performance
requirements, Nixon suggests that both qualitative and quantita-
tive specifications are needed, but different aspects are empha-
sized at different stages of development [23]. At early stages, the
development focus is on design decisions, and brief, qualitative
specifications suffice for this purpose. At late stages, quantitative
specifications are needed so that the performance of the final
system can be evaluated with performance measurements. PREM
follows the same character. At Level 0, requirements are speci-
fied qualitatively, while requirements of higher levels are speci-
fied quantitatively and with more details.

Most software requirements are specified with natural languages
[10]. However, requirements specified in a natural language can
be imprecise [6, 7]. Some approaches have been proposed to
detect imprecision in natural language specifications (for example,
[11]) or to prevent the introduction of imprecision (for example,
[25]). Several formal specification languages, such as the Z nota-
tion [16] and Vienna Development Method [15], are also avail-
able. Although not adopted widely in the industry, formal speci-
fications are precise, and the specified behaviors can be proven
mathematically. In PREM, we do not propose a new language
construct for requirements specification. Instead, we point out the
necessary elements for the specification. After the elements are
specified for a requirement, they can be transformed to a language
or presentation to the team’s preference.

2.2 Performance Testing
Specified workloads, or a collection of requests, need to be
generated for performance testing. After the workloads are
generated, performance measurements can be collected. The
system complies with the performance requirements if the
performance measurements meet the expectations stated in the
requirements specification.

Average workloads and peak workloads are especially important
for software performance testing [35]. Performance testing with
average workloads shows how the system performs under regular
usage from the users’ perspective. Performance testing with peak
workloads provides information about performance degradation
under heavy usage. For a software system, operational profiles
can be used as average workloads [2]. An operational profile of a
software system is a complete set of the operations the system
performs, with the occurrence rates of the operations [21]. The

occurrence rates can be collected from the field usage, or obtained
from existing business data, or from the information of a previous
version or similar systems [22].

At early stages of development, operational profiles or workload
data may not be available. In this case, the development team can
estimate the workload. SPE, described in Section 2.4, provides a
systematic way to estimate the system workloads and
performance by building and solving performance models.

Quantitative performance measurements and workloads
specifications are essential for software performance requirements
and testing. Therefore, in PREM, we use the specification of
quantitative measurements and workloads to assess the level for
performance requirements and testing methods and to categorize
performance analysis activities.

2.3 Performance Testing Tools
JUnit1 is a popular unit testing framework. Beginning from Ver-
sion 4 which was released in 2006, JUnit provides a “timeout”
parameter to support performance-related testing. A test method
with a timeout parameter can only pass if the test is finished in the
specified amount of time. Figure 2 shows an example of a test
method with a timeout parameter. However, JUnit does not pro-
vide any functionality to generate workloads for performance
testing.

JUnitPerf2 is a library of JUnit decorators that perform both timed
and load tests. Figure 3 shows an example of JUnitPerf perform-
ance testing code. In the JUnitPerf example, the time between
every two test instances is fixed. JUnitPerf can also generate a
workload with a uniform distribution.

These JUnit-based test frameworks provide an easy, program-
matic way to write performance test cases. However, JUnit-based
test frameworks may be insufficient when a complex workload or
performance scenario is favored. To design more complicated
performance test cases, one should consider more advanced per-
formance testing tools, for example, script-based (e.g., The
Grinder3 [36]), user action recording and playback (e.g., Apache

1 http://www.junit.org
2 http://www.clarkware.com/software/JUnitPerf.html
3 http://grinder.sourceforge.net/

JUnit 4 timed test: only passes if it
//finishes in 200 ms.
@Test(timeout=200) public void perfTest()
{

//test scenario
...

}

Figure 3. JUnit timeout parameter example

//JUnitPerf load test: run 10 instances
//of test, with 100 ms intervals between
//them – max elapsed time is 1000 ms.
Timer timer = new ConstantTimer(100);
Test test = new MyTest("Perf Test");
Test loadTest =
 new LoadTest(test, 10, timer);
Test timeLoadTest =
 new TimedTest(loadTest, 1000);

Figure 2. JUnitPerf example

JMeter4 or OpenSTA5) or other commercial, high-end tools. Ad-
vanced performance testing tools are usually designed with a
distributed architecture where workloads are generated by multi-
ple machines. This feature allows heavy workloads to be gener-
ated by a limited number of resources.

2.4 Software Performance Engineering (SPE)
SPE [31, 33] is an approach to integrate performance engineering
into software development process. In SPE, performance models
are developed early in the software lifecycle to estimate the per-
formance and to identify potential performance problems. To
make SPE effective, the authors of SPE suggest three modeling
strategies [33]:

 Simple-Model Strategy: Early SPE models should be sim-
ple and easy to solve. Simple models can provide quick
feedback on whether the proposed software is likely to meet
the performance goals.

 Best- and Worst-Case Strategy: Early in the development
process, many details are not clear. To cope with this uncer-
tainty, SPE uses best- and worst-case estimation for the fac-
tors (e.g., resource constraints) that have impact on the per-
formance of the system. If the prediction from the best-case
situation is not acceptable, the team needs to find alternative
design. If the worst-case performance is satisfactory, the de-
sign should achieve the performance goal, and the team can
proceed to the next stage of development. If the result is
somewhere in between, the model analysis provides informa-
tion as to which part of the software plays a more important
role in performance.

 Adapt-to-Precision Strategy: Later in the development
process, more software details are obtained. If the informa-
tion has impact on the performance, it can be added to the
SPE models to make the models more precise.

SPE uses two types of models: software execution model, and
system execution model. The software execution model character-
izes the resource and time requirements. Factors related to multi-
ple workloads, which can affect the software performance, are
specified in the system execution model. The software execution
model can be easily built, and provides quick feedback on soft-
ware performance. On the other hand, the system execution
model provides analytical results of the system performance un-
der multiple workloads.

In SPE, execution graphs are used to present software execution
models. An execution graph specifies the steps in a performance
scenario. Execution graphs are presented with nodes and arcs. A
node presents a software component, and an arc presents transfer
of control. The time required for the step is specified with each
node. Graph reduction algorithms are used to solve the model and
calculate the time needed for the performance scenario. The
model presentation and the graph reduction algorithms are defined
in Smith and Williams’ work [33].

The results from the software execution models are used to derive
the parameters for the system execution models. The system

4 http://jakarta.apache.org/jmeter/
5 http://www.opensta.org/

execution models describing the hardware and software compo-
nents in a system are based on queueing network models. Per-
formance metrics, including the resource utilization, throughput,
and waiting time for the requests, can be evaluated from the sys-
tem execution models. Automatic tools are available for model
analysis (for example, SPE·ED [32]).

Table 1 shows how SPE models and techniques fit in PREM.
SPE focuses on quantitative performance evaluation, so no
PREM-0 techniques are suggested. Performance requirements
and testing approaches are not emphasized in SPE, either.

3. PERFORMANCE REFINEMENT AND
EVOLUTION MODEL (PREM)
In this section, we provide an overview of PREM6. PREM pro-
vides guidelines on the level of detail needed in a performance
requirement, both in specification and testing. Performance engi-
neering techniques are also classified in proper PREM levels.
Therefore, the development team can analyze the performance
using appropriate techniques.

3.1 Model Description
The structure of PREM is shown with a UML class diagram in
Figure 4. The elements in this structure are explained as follows.

PREM: PREM is the model we discuss in this paper.

PREM Level: In PREM, performance requirements specifica-
tions, testing, and activities are classified in four levels, starting
from Level 0. A requirement or test case in a higher PREM level
specifies more performance characteristics of the software system.
To analyze performance specified at a certain PREM level, the
development team can apply the activities at the same level.

6 PREM is based upon our previous work that was called the Per-

formance Requirements Evolution Model [14].

Figure 4. The meta-model of PREM

Table 1. PREM levels for SPE models and techniques

PREM-0 N/A
PREM-1 Software execution model
PREM-2 System execution model
PREM-3 SPE data collection

Starting Criteria: A PREM level has one or more starting crite-
ria. The starting criteria show the required properties of the re-
quirements before the activities at the PREM level can be applied.

Goal Criteria: A PREM level has one or more goal criteria. The
goal criteria show the required properties of the requirements for
them to be classified as being at a certain PREM level. If a per-
formance requirement satisfies all the goal criteria of PREM level
n, the requirement is called a PREM-n requirement. A perform-
ance test case specified based on a PREM-n requirement is called
a PREM-n test case. A performance analysis activity for PREM-n
requirements is called a PREM-n activity.

Activity: When a requirement satisfies all the starting criteria of a
PREM level, and the development team decides to achieve the
PREM level, the team shall apply some of the activities for the
level. After the selected activities are successfully performed, the
performance requirement specification and related test cases shall
achieve the goal criteria of the PREM level. This paper also sug-
gests several techniques for each activity.

Performance Type: A performance type is an attribute that is
used to describe the system performance. Currently, PREM is
designed to work with the following performance types:
 Response time is the time requirement for the completion of

an operation (e.g., transaction process time);
 Throughput presents the quantity of operations that need to

complete in an amount of time (e.g., number of transactions
per second).

Testing Approach: Performance testing shows whether the soft-
ware system achieves the desired performance goals. The PREM
testing approach shows how test cases shall be designed to reflect
the performance requirement of a PREM level.

Specification Part: Specification parts are the elements that are
used to specify requirements. A specification part may be manda-
tory or optional. After the specification parts are identified for a
requirement, transformation rules may be applied to generate
presentations for the requirement. In some presentations, short
names are more appropriate than full descriptions. Therefore, a
specification part may be assigned with a shorter name, or alias.

Presentation: A presentation shows a requirement in a particular
form that is transformed from the specification parts with a trans-
formation rule. In this paper, we provide transformation rules for
two important presentations: natural-language-based requirements
specification, and performance test case. The following example
shows how the transformation works.

At PREM Level-1, the response time requirement has three speci-
fication parts: preparation, event, and time. To specify the re-
sponse time requirement of an operation, these parts describe the
preconditions that must hold before the operation, the event that
initiates the operation, and the response time constraint for the
operation. A possible combination of the parts is shown as fol-
lows with the aliases in the parentheses.

preparation: (OpenLogInPage) the user opens the Log In page
event: (Submit) the user enters the valid user name and password,
and clicks the Submit button
time: three seconds

A template is used for the natural language transformation rules.
To generate a natural-language-based specification, the specifica-

tion parts in the template shall be replaced with corresponding
contents. For PREM-1 response time requirements, the following
template is used:

[After preparation,]when event, the response time shall be less
than time.

Applying the specification parts in the template, we can have a
natural-language-based requirements specification:

After the user opens the Log In page, when the user enters the
valid user name and password, and clicks the Submit button, the
response time shall be less than three seconds.

The test case transformation is done in the same manner. In this
paper, the output of test case transformation is presented in
pseudo code. A template, as shown in Figure 5, is used for
PREM-1 test case transformation for response time requirements.

After applying the transformation rule, a test case for this re-
quirement is generated. Figure 6 shows the generated test case.

The transformation rules shown in this paper are intended for
general purposes. A development team should define specific
transformation rules for the application domain. For example, test
case transformation can be designed so that the result of transfor-
mation is the script that can be used with the performance testing
tool. The rest of this section presents PREM using this structure.

3.2 PREM Level-0
Starting Criteria: Functional requirements are specified in re-

quirements documents.

Goal Criteria: Qualitative performance requirements are
specified in requirements documents.

Testing
Approach:

Qualitative evaluation.

PREM-0 represents performance requirements with only qualita-
tive, casual descriptions. An example of PREM-0 requirement is:
The authentication process shall be completed quickly. PREM-0
requirements are essentially placeholders for future work in per-
formance requirement specification. By specifying PREM-0
requirements, customers identify the operations for which per-
formance matters. PREM-0 requirements are the starting point
which customer and developer will refine or evolve to more pre-
cise specifications via PREM-1 or higher requirements.

call preparation.alias
startTime current time
call event.alias
endTime current time
assert(time > endTime – startTime)

Figure 5. An example of transformation rule

call OpenLogInPage
startTime current time
call Submit
endTime current time
assert(three seconds > endTime – startTime)

Figure 6. An example of transformation result

3.2.1 Activities
The main activity for PREM-0 is to identify performance re-
quirements. Ideally all the functionalities of a software system
should have good performance and consume the least amount of
resources. However, in reality, time and budget constraints make
this goal infeasible. Additionally, performance goals might con-
flict with other requirements. For example, to make a functional-
ity run faster, the development team might use an implementation
that consumes more memory. Therefore, the first step toward
software performance is to identify which parts of the system
require more performance focus. The development team should
focus on the requirements for which the performance is sensitive
to the users. For example, product search should be responsive
for an e-commerce Web site. On the other hand, the efficiency of
off-line report generation is not visible from the users’ perspec-
tive, and therefore the performance concern is less significant.

Qualitative PREM-0 requirements can be gathered from the dis-
cussion with stakeholder such as the user representatives or the
marketing department. The development team may ask the users
to prioritize the requirements with respect of performance and
performance types. The prioritization information shows the parts
of the system of which the performance is important to the users.

Another PREM-0 requirements management approach is the Per-
formance Requirements Framework (PeRF) [23]. Based on the
Non-Functional Requirements Framework [24], PeRF provides a
systematic way to organize and refine performance requirements,
resolve conflicts among requirements, and justify requirements
decisions. The development team can use PeRF to decide
whether to move toward or away from a requirement.

3.2.2 Specification Parts
PREM-0 requirements help the development team focus on the
appropriate performance requirements. At this level, brief, high-
level performance requirements are sufficient for the team to
make initial requirements decisions. A free-form, natural-
language-based specification should be used for PREM-0 re-
quirements. Therefore, we do not provide the specification parts
for PREM-0 requirements. However, identifying PREM-0 re-
quirements helps the team to find out the values for specification
parts at higher PREM levels.

3.3 PREM Level-1
Starting Criteria: Performance requirements are defined quali-

tatively in requirements documents.

Goal Criteria: Quantitative performance requirements
are specified in requirements documents.

 Appropriate test cases are specified.
Testing
Approach:

Run the test scenario once and then take per-
formance measurement.

PREM-1 represents performance requirements with quantita-
tively-measurable expectations. An example of PREM-1 re-
quirement is: After the user enters the user name and password,
and clicks the Submit button on the Log In page, the response
time for authentication and Main page rendering shall be within
three seconds. Quantitatively measurable specification is the first
step to test the requirement in an objective way.

3.3.1 Activities
The focus of PREM-1 is to specify quantitative requirements and
expected performance level for the functionalities of the system.
The steps for quantitative performance requirements specification
are provided as follows.

3.3.1.1 Specify Performance Scenarios
A performance scenario describes specific steps involved in a
particular software execution that demonstrates certain perform-
ance characteristics of the software system. If use cases are em-
ployed to describe the requirements, a scenario is an end-to-end
sequence or flow specified in a use case. Performance scenarios
are developed from performance requirements identified at
PREM-0.

One presentation for performance scenarios is UML sequence
diagrams with features from message sequence chart (MSC) [17].
The MSC extension allows the development team to specify op-
tional steps, loops, and alternative steps in a sequence diagram.
The sequence diagram plus MSC extension presentation is used in
SPE. Because sequence diagrams and collaboration diagrams are
semantically equivalent, performance scenarios can also be pre-
sented with collaboration diagrams. However, sequence diagrams
emphasize the time-ordering of the flow of events, and are more
suitable for performance modeling [33].

3.3.1.2 Choose Performance Metrics
Before a quantitative expectation can be specified, the develop-
ment team needs to choose a quantitative metric. Table 2 shows
typical performance metrics for different performance types.

3.3.1.3 Specify Quantitative Requirements
After the performance scenario and metrics are determined, the
next step is to specify quantitative expectations. Anecdotal ex-
periences (e.g., [4, 29, 30]), although not validated, can offer
some hints of how well a software system should perform. The
development team should have more realistic estimations for the
system under development, based on their own team’s experi-
ences and the environments for the software.

Several types of models can be used to estimate the performance
at PREM Level 1. Bertolino and Morandola show how UML
sequence diagrams and deployment diagrams with proper annota-
tion can be used to estimate the performance of a component-
based system [8]. The execution graph described in SPE also
provides PREM-1 estimation. A detail description of execution
graph and reduction rules are provided in [31, 33]. In PREM-1
performance models, a performance scenario is broken into sev-

Table 2. Typical performance metrics (adapted from [13])

Performance
Type Performance Metrics

Response
Time

Transaction processing time
Page rendering time
Query processing time

Throughput

Number of transactions per second
Number of messages per second
Number of pages rendered per second
Number of queries per second

eral small steps. Estimating the response time for each small step
is usually easier than estimating the response time for the whole
scenario. Additionally, performance test cases can be developed
for the small steps. The “performance testing for the small” can
help the development team identify the locations of performance
problems.

3.3.2 Specification Parts
A response time requirement should point when the measurement
is started being taken. Therefore, we use the following three parts
to describe a PREM-1 response time requirement of an operation:
preparation: The phrases that describe the preconditions that must
hold before the operation can be carried out. The preparation
part is optional.
event: A phrase that describes the event that initiates the operation
on which the response time measurement is taken. Response time
measurement starts as soon as the events have happened.
time: The constraint for the time needed to complete the opera-
tion.

The transformation rules for PREM-1 response time requirements
are shown in Table 3. The optional components are surrounded

with square brackets.

For a concurrent system, the specification of throughput is am-
biguous if the workloads are not specified. Therefore, we do not
provide the specification parts for PREM-1 throughput require-
ments. To specify throughput requirements and test cases for
concurrent systems, PREM-2 specification parts and transforma-
tion rules should be used. However, in a system where tasks are
processed sequentially, throughput is the reverse of response time.
In such systems, throughput requirements can be translated to
response time requirements.

3.4 PREM Level-2
Starting Criteria: Quantitative performance measurements are

specified with the requirements.

Goal Criteria: Estimated average or peak workloads are
specified with the requirements in the re-
quirements documents.

 Appropriate test cases are specified.
Testing
Approach:

Generate asynchronous requests according to
the specified workloads. After the requested
operations are completed, take performance
measurements.

PREM-2 performance requirements and test cases are specified
with estimated workloads. Workloads specification describes the
frequency of the requests for the functionalities of a software

system. From the users’ perspective, a software system has dif-
ferent performance when the software is under different work-
loads. Therefore, workloads specification is required for concrete
performance requirements. An example of PREM-2 requirement
is: After the user opens the Log In page, the user enters the valid
user name and password, and clicks the Submit button. On aver-
age, this scenario happens 20 times per minute. After the user
opens the Log In page, when the user enters the valid user name
and password, and clicks the Submit button, 80% of the response
time shall be less than 3 seconds. PREM-2 requirements can be
specified with either or both the peak or average workload estima-
tions.

3.4.1 Activities
Workloads can be estimated based on experience or observation.
However, the process to derive experience- or observation-based
estimation tends to be ad-hoc. Joines et al. develop several work-
sheets in [18] for performance estimation and testing. Some of
the worksheets are used to estimate the workloads. Although
based heavily on experience and observation, the worksheets list
the necessary input data (for example, estimate of number of user
visits per day and number of hours per day the system is used)
and the possible source for the data. Compared to the ad-hoc
approach, the worksheet approach is more systematic.

Sometimes the workloads information for a previous release or
other similar systems is available. Such information is a good
source of workloads estimation for the system under development.
Although the system under development may not have exactly the
same functionalities as the existing systems, the existing data can
give us a good picture of how the system might be used. For
example, if a new functionality is designed to replace two func-
tionalities in the previous release, good workload estimation for
the new functionality is the summation of the workloads of the
two original ones. If the new functionality is not related to any-
thing in the previous release, other estimation approaches can still
be used.

If no workloads data from a previous release are available, we
may still get the information from several alternative sources. For
example, market or industrial research reports are available from
the government7 or private research companies. Those research
reports can provide a rough picture of how the software system
might be used. The marketing or customer service department in
the client organization might have similar data.

Several performance models can be used to evaluate the perform-
ance under estimated workloads. For example, queueing network
[19], where a software system is modeled as a network of servers
and queues, is the basis for system execution model in SPE [33].
Some studies demonstrate the possibility of transforming software
architecture specifications to queueing-network-based models.
For example, Petriu and Shen propose a method to generate lay-
ered queueing networks from UML collaboration and sequence
diagrams [27]; Cortellessa and Mirandola demonstrate an incre-
mental methodology to transform sequence diagrams and de-
ployment diagrams to extended queueing network models [9];

7 For example, the market research reports available at the U.S.

Government Export Portal (http://www.export.gov/
marketresearch.html).

Table 3. PREM-1 response time transformation rules

Natural Language Test Case
[After preparation,]when
event, the response time
shall be less than time.

[call preparation.alias]
startTime current time
call event.alias
endTime current time
assert(time > endTime – startTime)

Table 5. PREM-2 transformation rules

Performance Type Natural Language Test Case

Response Time

[After preparation,]event. In load level situa-
tion, this scenario happens process. [After
preparation,] when event, degree of the re-
sponse time shall be less than time.

reqTime() numbers from process
[for i 1 to size(reqTime)
 call preparation.alias in thread(i)]
for i 1 to size(reqTime)
 wait until time reqTime(i)
 in thread(i)
 respTime(i) currentTime
 call event.alias
 respTime(i) currentTime – respTime(i)
wait until all requested operations are completed
select(degree)
 case “on average”:
 assert(average(respTime) < time)
 case “n%”:
 success 0
 for all t in respTime()
 if(t < time) success success + 1
 assert(success / size(respTime) > n%)
 case “the maximum”:
 assert(max(respTime) < time)

Throughput

[After preparation,]event. In load level situa-
tion, this scenario happens process. The sys-
tem shall handle such requests at the rate of
rate.

reqTime() numbers from process
startTime currentTime
[for i 1 to size(reqTime)
 call preparation.alias in thread(i)]
for i 1 to size(reqTime)
 wait until time reqTime(i)
 call event.alias in thread(i)
wait until all requested operations are completed
runTime currentTime - startTime
assert(size(reqTime) / runTime > rate)

Menascé and Gomaa present an approach to derive performance
models for client/server systems from class diagrams and collabo-
ration diagrams [20]. Petriu and Woodside also show that layered
queueing performance models can be generated from software
requirements specified with scenario models, including activity
diagrams, sequence diagrams, and use case maps [26]. A sum-
mary of performance models is provided in [3].

3.4.2 Specification Parts
In addition to PREM-1 specification parts, the following parts are
necessary to describe a PREM-2 response time requirement:
load level: A description of whether the peak or average work-
loads are used. The value can be either “peak load” or “average.”
process: A series of ascending numbers that describe the instances
of request arrival time for the system. Because different proc-
esses require various parameters, specialized specification parts
and transformation rules need to be specified for each type of
process. For example, Table 4 shows the specification parts and
transformation rules for a Poisson process.
degree: A phrase describing of the degree how the time constraint
is satisfied. The value of degree can be one of following: “the
average”, “n%”, or “the maximum.”

For throughput requirements, we need to specify the following
parts:
preparation and event: As described in PREM-1 response time
specification parts.

load level and process: As described in PREM-2 response time
specification parts.
rate: The expected throughput of the requirement.

The transformation rules for PREM-2 performance requirements
are shown in Table 5. The specification part load level is not used
in the test case. However, in natural-language-based specification,
load level makes the specification clearer by showing whether the
system is under the peak or average load. In the test case trans-
formation rules, variables with parenthesis, for example,
reqTime(), are arrays with the index starting from 1. The function
“size” returns the size of the array; “average” returns the average
of the numbers in the array; and “max” returns the largest number
in the array. A special array, thread(), contains the threads that
are used to create the concurrent requests. preparation and event
can be called in a thread contained in the thread() array.

3.5 PREM Level-3

Table 4. Specification parts and natural-language-based
transformation rule for Poisson process

Spec. Parts Transformation Rule
t: the amount of time for
performance testing
m: the mean value of the
number of requests during t

on average m times in t according
to a Poisson process.

Starting Criteria: Quantitative performance measurements are
specified with the requirements.

Goal Criteria: Peak or average workloads are collected
and specified in the requirements docu-
ments.

 Appropriate test cases are specified.
Testing
Approach

Generate asynchronous requests according to
the specified workloads. After the requested
operations are completed, take performance
measurements.

PREM-3 represents quantitative performance requirements with
workloads from collected data. An example of a PREM-3 re-
quirement is “The system is running under the heaviest possible
workloads defined in Appendix IV. The average response time for
displaying the promotional message on the mobile tablet after a
customer enters a lane where the promotional items are located
shall be below 1 second.” At PREM Level-3, the workloads de-
scription defines the workloads for different types of requests. If
the description is too lengthy or complicated to be specified with
the requirement, it can be moved to a separate document, such as
Appendix IV in this example.

PREM-3 and PREM-2 share the same starting criteria. As soon as
quantitative PREM-1 requirements are specified, the development
team is ready to perform PREM-2 and PREM-3 activities. If
PREM-3 is needed for a project, the development team can de-
velop PREM-2 models and collect PREM-3 data at the same time.
However, this does not suggest that a team should skip PREM
Level 2. PREM-3 activities take much more time than PREM-2
activities. If PREM Level 2 is skipped, the requirements will stay
at Level 1 until PREM-3 data are collected. By applying PREM-
2 activities, the team can have early estimation of the system per-
formance. The only exception might be the situation where the
workloads information from a very similar system, perhaps an
earlier release of the system under development, is already avail-
able. In such a situation, the existing data can be used directly,
and PREM-2 can be skipped.

3.5.1 Activities
To test or analyze the average performance for a system, a work-
load that represents the usage of the system needs to be generated.
In a software system, the operational profile [21] can be used to
describe the workload of the system [35]. An operational profile
of a software system is a complete set of the operations the sys-
tem performs, with the occurrence rates of the operations [21].
To collect operational profiles, an internal event counter needs to
be implemented with the software [33]. Furthermore the time and
duration for data collection need to be taken into consideration
[35]. The data for peak and average workloads are available in
different timeframes. Experiences show that, the time required to
workload data collection ranges from two to twelve months [1].

If the operational profiles from a previous release or similar ap-
plications are available, with a little modification, they can be
used for the software under development. For this purpose, the
team can benefit if minimal functionality is built into the software
to collect operational profile information.

If no existing data are available, the development team can de-
velop a quick prototype and collect operational profile data from

the prototype. For operational profiles, we should collect at least,
for each incoming request, the time and the type of the request.
Depending on the application, other data might also be relevant.
For example, if a user can access an application from the local or
external network, the location of the user should be recorded. The
development team needs to determine the time and duration of
data collection. For example, a shopping Web site may need to
collect year-round data in order to understand the usage of the
Web site during the shopping seasons, weekends, and other time.
Because data collection requires time, the prototype should be
provided as early as possible. In addition to prototypes, we can
also use information from intermediate releases, such as alpha or
beta ones. However, we need to know who the users are for the
intermediate releases, and how different they use the system com-
pared to the target customers [22].

3.5.2 Specification Parts
PREM-3 performance requirements specification and testing are
similar to those of PREM-2. PREM-3 and PREM-2 requirements
have the same specification parts. However, in PREM-3, work-
loads for multiple types of requests are specified. For each type
of request, we need to specify zero or more preparation, one
event, and one process. A natural language transformation rule
for PREM-3 workloads specification is provided in Figure 7. The
rest part of the requirement is similar to that at PREM Level-2.
Similarly, in PREM-3, a multi-thread test case is used to generate
the requests. The test case transformation rule can be adapted and
modified from PREM-2.

4. AN ILLUSTRATIVE EXAMPLE: iTrust
In this section, we demonstrate how PREM is used to design the
performance engineering process for iTrust8. iTrust is a Web-
based medical records application. iTrust was a student term
project for a graduate-level Software Testing and Reliability
course at North Carolina State University (NCSU). The course
has a learning objective of combining appropriate testing tech-
niques for the development of a reliable and secure system. The
functional requirements of iTrust are specified by a surgeon in
Pennsylvania. Use cases are used to describe the functional
documents. The length of the functional requirements document
is six pages, with eleven use cases. A complete set of functional
requirements can be found at the project Web site. The project
development time lasted three months, divided into five small
iterations.

8 http://agile.csc.ncsu.edu/iTrust

The system is running in load level situation. [After prepa-
ration1,] event1. This scenario happens process1. [After
preparation2,] event2. This scenario happens process2. …

Figure 7. PREM-3 natural language transformation rule
for workloads specification

We use PREM to design the performance engineering process for
iTrust, as shown in Figure 8. In this process, we assume that an
automatic tool is used to transform the specification parts into
performance requirements specifications and test cases. There-
fore, the steps for test case specification are not shown in the
process. The performance goal in this example is, for the soft-
ware system, to pass PREM-3 test cases. The process is an exam-
ple of PREM implementation. The development team should
choose familiar techniques that are suitable for the project and
customize the process. The rest of this section shows how the
techniques in the process are applied. In this example, we assume

that iTrust is deployed in a virtual hospital. The medical workers
access the system from the local area network, while the patients
access the system from the Web. The performance requirements
specifications are available at the project Website.

4.1 Identify Qualitative Requirements
Because of the small size of the requirements, we did not use
PeRF to identify qualitative requirements. We decided to specify
response time requirements for each use case, because response
time is the most obvious performance attribute for the users. The
only exception is the use case which specifies the format of log
for each use case. We refer to this use case as Logging. For the
Logging use case, we plan to specify throughput requirements.

In the following subsections, we use the View Records use case as
the example to show how the performance requirements are de-
rived. At this step, the performance requirement is specified as
The system shall provide quick feedback when the user views the
medical records.

4.2 Build and Evaluate PREM-1 Model
When requirements are specified with use cases, an end-to-end
flow may be used for a scenario. In iTrust, each use case has
several alternative subflows and exception subflows. The alterna-
tive subflow shows an execution option for the use case, and the
exception one shows an exception handling process if something
goes wrong. If an alternative subflow has n exception subflows,
where n is greater than or equal to 0, n + 1 scenarios can be iden-
tified from this alternative subflow. The number of scenarios that
can be identified from a use case is the sum of the number of sce-
narios that can be identified from each alternative subflows in-
cluded in the use case.

In the View Records use case, both a patient and a licensed health
care profession (HCP) can view the medical records. The use
case is specified with two subflows based on the role of the user.
Between the two roles that may access this functionality, the li-
censed HCP needs to view the records on a regular basis. There-
fore, the licensed HCP viewing records is used as a performance
scenario. The scenario with the response time estimation for each
step is presented in a sequence diagram in Figure 9. In the sce-
nario, the HCP sends the request to the Web server by confirming
the patient’s ID for the records. The Web server then queries the
medical records for the patient from the database, renders the
Records Page with the query results, and forwards the page to the
HCP. Summing up the time required for each step, the response
time for the whole scenario is 1.5 seconds. Therefore, a PREM-1

Identify Qualitative
Requirements

Select Performance
Scenario

Choose Performance
Metrics

Build and Evaluate
Sequence Diagram

Performance Models

Specify PREM-1
Requirements

Estimate Peak and
Average Workloads

Build and Evaluate
Queueing Network

Performance Models

Specify PREM-2
Requirements

Collect Operational
Profiles

Evaluate Performance
with Collected Workloads

Specify PREM-3
Requirements

Adjust Performance
Objectives or Models

Adjust Performance
Objectives or Models

Adjust Performance
Objectives or Models

PREM-0

PREM-1

PREM-2

PREM-3

[acceptable]

[unacceptable]

[acceptable]

[acceptable]

[unacceptable]

[unacceptable]

Figure 8. The performance engineering process for iTrust

Figure 9. Sequence diagram for the performance scenario

specification parts for the View Records use case are:
preparation: HCP enters the patient’s ID, and reaches the Con-
firm page
event: HCP clicks the Confirm button
time: 1.5 seconds

4.3 Build and Evaluate PREM-2 Model
Because no existing data are available, we need to estimate how
often the system receives a View Records request from HCP.
After some observation, we find out that, on average, a HCP fin-
ishes the examination in ten minutes. During the examination, the
HCP needs to view the record once. If there are always 100 HCP
on duty, the average request rate for View Records by a HCP is

17.0100600/1 =× requests per second.

The response time for View Records can be evaluated with a
queueing network model, which is shown in Figure 10. In the
model, each rectangle represents a server with a queue. To solve
the model, either manually or with an automatic tool, we need to
derive the following parameters from the sequence diagram

model.

 Flow probabilities after the Web server: In the HCP Views
Records scenario, the Web server is responsible for receiving
the requests from HCP, rendering the Records page, and for-
warding the Records page to HCP. After the Web server fin-
ishes any of these jobs, one of three things might happen: the
Web server queries the records from the database; the Web
server inserts a log to the database; or the Records page is for-
warded to the HCP and the scenario ends. Therefore, after the
job leaves the Web server, the probability that the job flows to
the database server (p2) is 0.67, and the probability that the
job exits the system is (p1) 0.33.

 The throughput of the Web server: Out of the three types of
jobs performed by the Web server, two of them take 200 ms,
and the other takes 300 ms. On average, the Web server fin-
ishes a job in 3/7003003/12003/2 =×+× ms = 7 / 30 sec-
onds. Therefore, the throughput for the Web server is 30 / 7 =
4.29 jobs per second.

 The throughput of the database server: The average time for a
database server to finish a job is 0.4 seconds. Therefore, the
throughput for the database server is 2.5 jobs per second.

After these parameters are determined, we may solve the model
with a tool or with manual computation. The solution shows that
the average waiting time for this queueing network is 1.88 sec-
onds. The formulas for solving the queueing network model are
provided in the Appendix. The books by Ross [28] and Kleinrock
[19] provide the mathematical background for solving various

types of queueing network models. If the estimated performance
is acceptable, the PREM-2 specification parts for this response
time requirement are:
preparation: As specified at PREM-1
event: As specified at PREM-1
Time: 1.88 seconds
load level: average
process: Poisson (t = 500 seconds, m = 85)
degree: the maximum

For the queueing model to have a solution, the request rate for
View Records by a HCP must be lower than 1.23 requests per
second. This may be used as peak load estimation. If the peak
load or the estimated performance based on the peak load is not
satisfactory to the client, the throughput of the Web or database
servers needs to be improved. The improvement can be achieved
by, for example, optimizing the implementation or upgrade the
hardware.

4.4 Collect Operational Profiles
Before the implementation of iTrust, we have decided to go
through all PREM Levels. Therefore, operational profile data
collection mechanism is built with the system. When the server
receives a request, the user ID, the time and type of the request is
logged to the database. The collected data are used in the queue-
ing network models periodically to make sure the evaluated per-
formance is still within the acceptable range. At the end of data
collection, if the estimated performance is acceptable, the col-
lected data are used in PREM-3 requirements specifications.

4.5 Potential Pitfalls
As we were specifying the performance requirements for iTrust,
we found that the specification parts proposed in this paper are
best suitable for event-based software behaviors. We can use the
proposed specification parts to specify the performance require-
ments for operations triggered by external events, such as user
interaction. However, specifying the parts that contain phrases
(for example, preparation and event) is tricky for an operation
without external triggers. Additionally, the natural language
transformation rule might produce specifications that look rather
odd for non-user-interactive programs. For example, we may
specify a performance requirement for off-line report generation:
Report A shall be generated within thirty minutes. If we use “the
system starts generating report A” as the event, the transformed
result is: When the system starts generating report A, the response
time shall be less than thirty minutes. The result is, although
clear, less straightforward than the intended specification. For
these requirements, other transformation rules may be applied.
For example, the following rule may be used for non-user-
interactive performance requirements:

[After preparation,]when event, the elapse time shall be less than
time.

5. CONCLUSION AND FUTURE WORK
In this paper, we show how performance requirements can be
specified by identifying the required parts in the requirements.
Transformation rules can be applied on the specification parts to
generate different presentations of requirements. We use PREM,
a model for software performance development, to find out the

Figure 10. The queueing network model for View Records

specification parts and corresponding values. We show how
PREM principles and related techniques can be applied. We also
show the transformation rules for natural-language-based specifi-
cation and test case for PREM Level 1 through 3. When perform-
ance requirements are refined and evolved with more perform-
ance-related information, the corresponding test cases can be
regenerated to reflect the new performance characteristics.

We use iTrust as an example to show how PREM can be applied
in a Web application project. In the example, we demonstrate a
performance engineering process based on PREM. We also show
how performance models and techniques are used throughout the
process. As more performance information is gathered, the re-
quirements are refined to reflect the newest information.

The specification parts we propose in this report need to be vali-
dated to show their efficacy. To validate the specification parts,
we need to show that:
 The parts are sufficient for all performance requirements.
 Performance requirements specified with the parts are less

ambiguous than specification without using the parts.
 Performance requirements specified with the parts are more

complete than specification without using the parts.

Currently, we do not have strong evidence suggesting when the
requirements refinement should stop. We believe the required
precision for performance requirements specification depends on
the type of project. For example, for a system that processes its
job sequentially and does not accept concurrent requests, PREM-1
requirements and analysis seem sufficient. However, in a hard
real time system controlling multiple machines in a factory,
PREM-3 requirements and analysis may be required. We need to
conduct empirical studies to see how the application of PREM
affects the outcome of a project.

6. ACKNOWLEDGMENTS
The authors would like to thank the comments and feedbacks
from the RealSearch reading group at NC State University. This
research was funded by the Center for Advanced Computing and
Communication.

7. REFERENCES
[1] Avritzer, A., J. Kondek, D. Liu, and E. J. Weyuker, "Soft-

ware Performance Testing Based on Workload Characteriza-
tion," in Proceedings of the 3rd International Workshop on
Software and Performance, pp. 17-24, Rome, Italy, Jul 2002.

[2] Avritzer, A. and E. J. Weyuker, "Generating Test Suites for
Software Load Testing," in Proceedings of International
Symposium on Software Testing and Analysis, pp. 44-57,
Seatle, WA, Aug 1994.

[3] Balsamo, S., A. D. Marco, and P. Inverardi, "Model-Based
Performance Prediction in Software Development: A Sur-
vey," IEEE Transactions on Software Engineering, vol. 30,
no. 5, pp. 295-310, May 2004.

[4] Barber, S., "Beyond Performance Testing Part 3: How Fast
Is Fast Enough?" developerWorks, 2004. Available at
http://www-
128.ibm.com/developerworks/rational/library/4249.html.

[5] Basili, V. R. and J. D. Musa, "The Future Engineering of
Software: A Management Perspective," IEEE Computer, vol.
24, no. 9, pp. 90-96, Sep 1991.

[6] Berry, D. M. and E. Kamsties, "Ambiguity in Requirements
Specification," in Perspectives on Requirements Engineer-
ing, J. C. S. P. Leite and J. Doorn, Eds.: Kluwer, 2004, pp. 7-
44.

[7] Berry, D. M. and E. Kamsties, "The Syntactically Dangerous
All and Plural in Specifications," IEEE Software, vol. 22, no.
1, pp. 55-57, Jan/Feb 2005.

[8] Bertolino, A. and R. Mirandola, "Towards Component-Based
Software Performance Engineering," in Proceedings of the
6th Workshop on Component-Based Software Engineering,
pp. 1-6, Portland, OR, May 2003.

[9] Cortellessa, V. and R. Mirandola, "PRIMA-UML: A Per-
formance Validation Incremental Methodology on Early
UML Diagrams," Science of Computer Programming, vol.
44, no. 1, pp. 101-129, Jul 2002.

[10] Denger, C., D. M. Berry, and E. Kamsties, "Higher Quality
Requirements Specifications through Natural Language Pat-
terns," in Proceedings of International Conference on Soft-
ware: Science, Technology, and Engineering, pp. 80-90,
Hertzeliyah, Israel, Nov, 2003.

[11] Fantechi, A., S. Gnesi, G. Lami, and A. Maccari, "Applica-
tion of Linguistic Techniques for Use Case Analysis," in
Proceedings of IEEE Joint International Conference on Re-
quirements Engineering, pp. 157-164, Essen, Germany, Sep
2002.

[12] Fox, G., "Performance Engineering as a Part of the Devel-
opment Life Cycle for Large-Scale Software Systems," in
Proceedings of The 11th International Conference on Soft-
ware Engineering, pp. 52-62, Nice, France, Mar 1990.

[13] Gao, J. Z., J. H.-S. Tsao, and Y. Wu, Testing and Quality
Assurance for Component-Based Software. Norwood, MA:
Artech House Publishers, 2003.

[14] Ho, C.-W., M. J. Johnson, E. M. Maximilien, and L. Wil-
liams, "On Agile Performance Requirements Specification
and Testing," in Proceedings of Agile 2006 International
Conference, pp. 47-52, Minneapolis, MI, Jul 2006.

[15] ISO/IEC, International Standard ISO/IEC 13817-1: Informa-
tion Technology -- Programming Languages, Their Envi-
ronments and System Software Interfaces -- Vienna Devel-
opment Method -- Specification Language -- Part 1: Base
Language, 1996.

[16] ISO/IEC, International Standard ISO/IEC 13568: Informa-
tion Technology -- Z Formal Specification Notation -- Syn-
tax, Type System, and Semantics, 2002.

[17] ITU, ITU-T Recommendations Z. 120 (04/04) Message Se-
quence Chart (MSC), 2004.

[18] Joines, S., R. Willenborg, and K. Hygh, Performance Analy-
sis for Java Web Sites. Boston, MA: Addison-Wesley, 2003.

[19] Kleinrock, L., Queueing Systems Volume I: Theory. New
York City, New York: Wiley-Interscience, 1975.

[20] Menascé, D. A. and H. Gomaa, "A Method for Design and
Performance Modeling of Client/Server Systems," IEEE
Transactions on Software Engineering, vol. 26, no. 11, pp.
1066-1085, Nov 2000.

[21] Musa, J. D., "Operational Profiles in Software Reliability
Engineering," IEEE Software, vol. 10, no. 2, pp. 14-32, Mar
1993.

[22] Musa, J. D., "Chapter 2: Implementing Operational Profiles,"
in Software Reliability Engineering: More Reliable Software
Faster and Cheaper, 2nd ed. Bloomington, IN: Au-
thorHouse, 2004, pp. 93-151.

[23] Nixon, B. A., "Managing Performance Requirements for
Information Systems," in Proceedings of the 1st Interna-
tional Workshop on Software and Performance, pp. 131-144,
Santa Fe, NM, Oct 1998.

[24] Nylopoulos, J., L. Chung, and B. Nixon, "Representing and
Using Nonfunctional Requirements: A Process-Oriented Ap-
proach," IEEE Transactions on Software Engineering, vol.
18, no. 6, pp. 483-497, Jun 1992.

[25] Ohnishi, A., "Software Requirements Specification Database
Based on Requirements Frame Model," in Proceedings of the
2nd International Conference on Requirements Engineering,
pp. 221-228, Colorado Springs, CO, Apr 1996.

[26] Petriu, D. B. and M. Woodside, "Software Performance
Models from System Scenarios," Performance Evaluation,
vol. 61, no. 1, pp. 65-89, Jun 2005.

[27] Petriu, D. C. and H. Shen, "Applying the UML Performance
Profile: Graph Grammar-Based Derivation of LQN Models
from UML Specifications," in Proceedings of the 12th Inter-
national Conference on Computer Performance Evaluation:
Modelling, Techniques, and Tools, pp. 159-177, London,
UK, Apr 2002.

[28] Ross, S. M., Introduction to Probability Models, 8th Edition.
Burlington, MA: Academic Press, 2003.

[29] Sevcik, P., "How Fast is Fast Enough" Business Communica-
tions Review, 2003. Available at
http://www.bcr.com/architecture/network_forecasts%10sevci
k/how_fast_is_fast_enough?_20030315225.htm.

[30] Sevcik, P., "Web Performance -- Not a Simple Number,"
Business Communications Review, 2003. Available at
http://www.bcr.com/architecture/network_forecasts%10sevci
k/web_performance_20030116240.htm.

[31] Smith, C. U., Performance Engineering of Software Systems.
Reading, MA: Addison-Wesley, 1990.

[32] Smith, C. U. and L. G. Williams, "Performance Engineering
Evaluation of Object-Oriented Systems with SPE·ED™,"
Lecture Notes in Computer Science, vol. 1245, pp. 135-154,
1997.

[33] Smith, C. U. and L. G. Williams, Performance Solutions: A
Practical Guide to Creating Responsive, Scalable Software.
Boston, MA: Addison-Wesley, 2002.

[34] Sommerville, I., Software Engineering, 7th ed. Boston, MA:
Addison-Wesley, 2004.

[35] Weyuker, E. J. and F. I. Vokolos, "Experience with Perform-
ance Testing of Software Systems: Issues, an Approach, and

Case Study," IEEE Transactions on Software Engineering,
vol. 26, no. 12, pp. 1147-1156, Dec 2000.

[36] Zadrozny, P., P. Aston, and T. Osborne, J2EE Performance
Testing with BEA WebLogic Server. Birmingham, UK: Ex-
pert Press, 2002.

Appendix: Open Queueing Network Solution
Open queueing network models are used when evaluating the
performance of iTrust at PREM Level 2. This appendix covers
the formulas for open queueing network model solution. The
model used in iTrust is shown in Figure 10. The input parameters
for the model are:

 Flow probabilities after the Web server p1 and p2.
 The request arrival rate r. The arrival is a Poisson process.
 The throughput of the Web server and the database server, μW

and μD, respectively.

To solve the model, we need to derive the request arrival rates for
the Web server (λW) and the database server (λD). We use the
rule that, for each server, the request arrival rate equals to the
request departure rate. Then the request rates can be written as:

W2D

DW

λλ
λλ
×=
+=

p
r

Or

2

2
D

2
W 1

 ,
1 p

rp
p

r
−

=
−

= λλ

The average number of requests in the system is derived with the
following formula:

DD

D

WW

W

λμ
λ

λμ
λ

−
+

−
=l

To have a meaningful result from this formula, for each arrival
rate must be less than the throughput. That is, λW < μW and λD <
μD. Finally, the average waiting time is:

lrw /=

