Designing an Information Integration and
Interoperability System — First Steps

Dongfeng Chen Rada Chirkova Fereidoon Sadri

October 19, 2006
Revised: November 15, 2006

1 Introduction

The problem of processing queries in semantic interoperability has received significant attention
because of its relevance to different kinds of data formats (e.g., XML or relational) and data-
management problems. Our goal is to design an information-integration and interoperability system
to impove the efficiency of query processing. We introduce the concept of “super peers” [3] into
data integration and query processing in our system. Used in peer-to-peer (P2P) systems, super
peer nodes act as a centralized resource for a small number of clients, while connecting to each
other to form a pure P2P network. We discuss system architecture, query processing, and query
optimization in this framework.

We begin by presenting our motivation. A well-known peer-based REVERE system [I] supports
decentralized data sharing, where query processing is peer-based. Its goal is to provide mediation
between schemas in a decentralized, incremental, bottom-up fashion that does not require global
standardization. The strength of the REVERE system is that it discards the global or mediated
schema. However, its disadvantage is that it doesn’t deal with “inter-source” queries very well.
Given a collection of data sources, inter-source queries refer to the class of queries that can not
be answered completely by aswering the query on each source separately and then combining the
answers. Rather, there is a need to answer the query on combinations of data from multiple sources
at a time.

The coordinator-based system [2] is a two-tier architecture, where the top tier is a coordinator
on which queries are posed. It supports inter-source query processing. Unfortunately, its main
disadvantage is that it does not scale very well, and the coordinator may become the bottleneck in
designing large-scale data-sharing systems.

Thus, we introduce “super peers” (or super coordinators) into the heterogeneous structure to
replace a single coordinator. Figure [1| depicts the topology of a super coordinator system. The
main advantage of this approach is to accommodate large-scale data sharing without losing semantic
interoperability among data sources.

2 Super Coordinators

A super coordinator is in charge of management and coordination of query execution at its sub-
ordinate sources. While each data source is connected to only one super coordinator, a super
coordinator may have multiple subordinate sources. (We call a super coordinator and its data
sources a cluster). Each super coordinator has the semantics of data stored at the (subordinate)
data sources in its cluster, including local source declarations and mappings to the system model.
Super coordinators are also in charge of query preparation, translation, and optimization. We note

Figure 1: Proposed architecture of a super coordinator system.

that a super coordinator can become a single point of failure for its cluster. In this case, one
of the data sources can be selected to assume the responsibilities of its super coordinator. The
coordinator-based system can be viewed as a special case of a super-peer system with only one
super coordinator (see Figure . Similarly, the peer-based system can be regarded as a super-peer
system where each super coordinator has only one subordinate data source (see Figure (3).

Figure 2: Architecture of a coordinator-based system.

On the other hand, super coordinators connect to each other to form a peer-based system.
Super coordinators can serve as logical mediators or as query nodes. Schema mappings may be
needed between small sets (of size, e.g., two) of super coordinators. Together with the mappings in
their clusters, these schema mappings can be used by super coordinators to make use of relevant
data anywhere in the system. As a result, query processing needs two mapping and data-translation
steps in general: (a) mapping between a super coordinator and data sources in its cluster, and (b)
mapping between a super coordinator and its peer super coordinators.

Figure 3: Architecture of a peer-based system.

3 System Architecture

As mentioned in Section [2], there exist two mapping stages: one is mapping between the schemas of
a super coordinator and of its subordinate data sources (i.e., mapping within a super-coordinator
cluster); the other is mapping which between peer super coordinators.

3.1 Mapping within a Super-Coordinator Cluster

This type of mapping can be set up using the process described in [2]. The database administrator
at the super coordinator should determine the system model for the sources in the cluster under
its coordination. The system model consists of binary predicates that are based on local source
schema declarations, and provide a view of the sources data. The database administrator also
provides mappings (or transformation rules) that map source data to the predicates in the system
model of the super coordinator of the cluster.

3.2 Mapping between Peer Super Coordinators

In REVERE [I], each peer is a data source with its own schema. In the super-coordinator system,
each peer is a coordinator, and the system model of the cluster plays the role of the peer schema.
Mappings between the system models of super-coordinators should be provided. The ideal situation
is when super-coordinators use the same set of binary predicates in their system model, in which
case these mappings are trivial.

4 Query Processing

Systemwide user queries can be posed on any super coordinator, in a way that frees the user from
having to learn the schemas or predicates of the remaining super coordinators. The super coordi-
nator chosen as the user-query site (we call this super coordinator “originating super coordinator”)
is in charge of the query translation and optimization. A user query is translated into a set of local

and inter-source subqueries. These subqueries are executed at the data sources. The originating
super coordinator merges the answers to the subqueries posed on the data sources and returns the
resulting final answer to the user.

4.1 Query Translation between Coordinators

In the first step of query processing, a user query should be translated (by the originating super
coordinator) between super coordinators before it is executed at data sources. This translation
depends on how we set up mappings between the super coordinators. We may do it in a way
similar to our query-to-subquery translation process:

e Store mappings between coordinators into an XML document.
e Parse this XML document.
e Take a user query as an input, translate this query by combining mappings and other extra
rules (if needed).
4.2 Query Translation in a Super Coordinator

After receiving the query @' which is the result of translating the user query @ by combining
mappings between coordinators, a super coordinator translates Q)" into a collection of local and inter-
source sub-queries for the data sources in its cluster, according to the concept of interoperability.

4.2.1 Deriving local subqueries

The process here is similar to that described in [2]. We now give a high-level description of the
process:

e Define an XML Schema for mappings. Since mappings are composed of binary predicates, it
is easy to build their XML Schema.

e Create an XML document for the mappings.

e Taking the query @’ and the XML document as inputs, expand the query by replacing each
global predicate by the union of local fragments.

The pseudocode in Algorithm (1| gives the details of local sub-query generation for a data source.

Source mappings are stored in an XML file. Each mapping has a predicate, type, first argument,
second argument, and glue variable. The global query is an XQuery stored in a file. The output
sub-query is also an XQuery.

4.2.2 Deriving inter-source subqueries

The process of defining inter-source subqueries is similar to that for local subqueries, except that
now we consider combinations of various data sources and their local fragments. In addition, we
should take inter-source query optimization into account (See Section [5.1)).

Algorithm 1: Local sub-query generation for a data source

input : Global query @, source mappings m; for source i
output: An output file containing local subquery (); at source ¢ resulting from Q

1 Document zqueryDoc = getDoc(m;);
2 FileReader fr = new FileReader(Q);
3 BufferedReader br = new BufferedReader(fr);
4 while (strLine = br.readLine()) # null do
5 if strLine contains a predicate then
6 retreive predicate, first argument, second argument, and glue variable from
xqueryDoc;
replace “*-*/tuple” in strLine by the local predicate from xqueryDoc;
if strLine contains arguments then
replace “tuple/*” by the corresponding arguments in the predicate;
10 write the new strLine into the output file;
11 continue;
12 if strLine contains a variable X then
13 L replace X by the glue variable in the corresponding predicate;
14 else if strLine merely contains a variable X then
15 L replace X by the glue variable in the corresponding predicate;
16 else
17 L don’t change strLine;
18 | write strLine into the output file;

19 close all opened files;

4.2.3 Query Processing

Local subqueries are executed locally at data sources. We can use an XQuery Engine, e.g., open
source engines (such as SAXON), or commercial products (such as IBM DB2).

For inter-source subqueries, query optimization can achieve a number of goals. One goal (see
Section|5.1)) is to eliminate inter-source processing which typically has high costs. Another goal is to
improve the efficiency of inter-source processing when we can not eliminate inter-source processing.

Consider query @’ defined using a join of predicates p and ¢, such that the processing of @’
involves inter-source processing of p; X g; , © # j.

1. One approach is to first materialize one of the predicates (say source ¢) locally and send
it to a temporary directory of the other source (source j). Then only transform query variable
declarations on the second predicate to its corresponding document, and execute the query (using
the first predicate and the second document). After execution, this temporary directory is removed
from source j.

2. Another approach is to use outer joins: Each source computes the full outer join of the
fragments it has, then sends the result to its super coordinator. Super coordinators should take
partial outer joins, then forward the results to the coordinator on which the user query is posed,
using the transitive closure of the respective coordinator-to-coordinator mappings.

4.3 Merging Results of Subqueries

After query execution, super coordinators collect all the results of the local and inter-source sub-
queries. Super coordinators then merge these intermediate results into the final answer to the user
query.

Here is what the Merge Operation does: Given k XML documents with the same schema,
produce a single document that is the result of merging the £ documents in a meaningful way. There
exist many ways to merge multiple documents: One is linear merge, where we merge documents
one by one; another is binary merge, where we merge several pairs of documents at a time; yet
another is parallel merge, where we merge all documents at the same time.

Algorithm 2 shows one way to merge XML documents.

Algorithm 2: Merging XML Data
input : XML documents and their schema
output: Single XML document D

parseSchemal(fileStr);
D = mergeAll(dirStr);

Procedure parseSchema(schemaStr)
retrieve keys, unique nodes and other constraints from the schema;
treewalk all elements from root and classify elements into our pre-defined types;

Function mergeAll(dirStr)
foreach XML in the directory dirStr do
DocumentnextDoc = get Doc(X M L);
L rsDoc = mergeTwoDocs(rsDoc, nextDoc);
write rsDoc into an XML document D;
return D

Function mergeTwoDocs(rsDoc, nextDoc)
get root element rootl from rsDoc;
get root element root2 from nextDoc;
foreach element under rootl do
| mergeElements(element, root2, rsDoc, nextDoc);
return rsDoc;

In Algorithm 2 all XML documents under the directory dirStr are merged into a single XML
document D. Procedure parseSchema() is used to obtain keys and integrity constraints (e.g.,
logical identifires for elements, implicit and explicit constraints) from the XML schema. Procedure
parseSchema() can also classify all elements in the XML documents into several types, which are
specified in our merge rules. A number of methods can be used to merge multiple documents.
For now, we merge two documents at a time. The temporary result is used as one of those two
documents, which is used for the merge at the next step (see Algorithm .

5 Query Optimization

5.1 When can Inter-Source Queries be Avoided?

Terminology and Notations:

e Number of XML sources is n, number of predicates (binary relations) in the system model is
m, and we are considering a user query involving the join of k predicates.

e Relations (Predicates) in the user query: rq,...,r.

e Fragments of predicates: Each predicate r; has (up to) n fragments, r},...7", where rf is the
fragment of r; at source j.

Given a user query Q = ry X --- X r, it can be computed by k™ subqueries that arise from
expanding @) as follows:

Q = mX..-Xrg
= (rU---Urf) XX (rpu
= (rfr) U (e My) U U (g)

Among these k™ subqueries, only n are local subqueries. That is, each subquery (ri X r% X
e X r};), 1 =1,...,n, uses only fragments from a single source i, and is called a local subquery.
The remaning k™ — n subqueries need fragments from multiple (at least two) sources, and are called
inter-source subqueries.

We will henceforth use k-tuples to represent the subqueries. For example, (z1,...,xy) repre-
sents the subquery ri* X ... X rﬁk, namely, the join fragments r{*,. .. ,r,f’“.

The following result is from [2]:

Theorem 1 Given r;(A, B) and rj(B,C), if B is the key of ro and a foreign key constraint holds
from ri tor; on B, then v Wi 2D ri X Té’.' for all x and y. We say rj X rj subsumes 7 X T;/, for
all x and y. Note that ri W r7 is the join of fragments of r; and r; at the same source x. Hence,
the local subqueries ri X ri,x=1...,n, subsume all inter-source subqueries r; X r?, Yy £ x, in

this case. [|

Hence, if the conditions of the theorem hold, then r; X r; can be computed by computing only
the local subqueries. We would like to extend this result to general select-project-join queries with
any number of predicates. Thus, the question we pose is what are the conditions under which all
inter-source subqueries are subsumed by local ones. First we need some definitions and preliminary
results.

DEFINITION 1 (LocAaL JoOIN PROPERTY) Given 7;(A, B) and 7;(B,C), if B is the key of r;
and a foreign key constraint holds from r; to r; on B, we say r; M r; has the local join property,
and denote it by r;—r;.]

Note that in the most general case, local join properties may exist between fragments of predi-
cates at a source. That is, for a source h, we may have that B is the key for r?(B , C) and foreign key
constraint holds from r*(A, B) to r;-l(B, C) on B. So, we are assuming that our notation r;—r; is

a shorthand for: for all h, Tzh—ﬂ’?. In practice, a local join property is determined by the semantics
of the predicates, and is expected to hold for the data at all sources. But a local XML schema at
a given source does not necessarily enforce the constraint.

The Local Join Graph

DEFINITION 2 Let rq,...,ry be all the predicates in the system model. We can represent the
local join property by a graph G = (N, E), where the set of nodes N corresponds to the predicates
T1,-..,"m, and (r;,7;) € E if r; and r; have the local join property. [|

Theorem 2 Given the user query QQ = rqy X --- X ry, the local subqueries subsume all inter-source
subqueries if the local join graph restricted to {r1,...,r;} contains a directed spanning tree. [|

We will use the following Lemma in the proof of Theorem

Lemma 1 If rj—rj, then (ri* M- Xrf Moo X Moo MXrk) subsumes (17t M- Mrf M- X
réf’ X - X k) for all s, @, and y.
Proof: Since r;—7;, then 7§ Xr7 2 rif X r;/ for all x and y by Theorem |1} The lemma follows. ®

Proof of Theorem 2k

Let G be the local join graph of the predicates. Without loss of generality, assume ry is
the root, and rqi,ro,...,7; is the depth first search order of the directed spanning tree of the
predicates in the user query. The user query can be written as ry XM rg X - X . We will
show that each inter-source subquery ri* X r3? X ... X r* is subsumed by the local subquery
rit Mgt). Xt For simplicity, we will use our notation to represent the above subsumption
as follows: (s1,81,...,81) 2 (81,52,...,8k).

We will show, by (backward) induction, from j = k to j = 1, that

(81,...781) D) (81,...781,8j+1,...,8k)

Basis j = k: Obviously, (s1,s1,...,51) 2 (s1,51,...,51).

Induction: Assume the inductive hypothesis holds for j, that is, (s1,...,51) 2 (s1,...,51,8j41,---
We want to show (sq,...,s1) 2 (s1,...,51,8j,...,5). Let parent of r; in the directed span-
ning tree be r;. Then, since rq,...,r; is the depth-first ordering of the tree, we must have
i < j. By ri—r; and Lemma [I, we have (rf’ d ..o M 778 M oo M3t Moo M rpF) sub-
sumes (r{' X .- XSt X X rjy M ... X k), for all y. Let y = s;. Written in our nota-
tion: (s1,...,81,8j41,---,8k) 2 (S1,.--,8;,8j41,--.,5;). Combined with inductive hypothesis and
by transitivity of subsumption: (s1,...,51) 2 (S1,...,81,8j415---38k) 2 (S1,.+-385, 541, -, Sk)-

This completes the proof of the induction.

Hence, the local subqueries (i,...,7), i = 1,...,n (n is the number of sources), subsume all
inter-source subqueries. No inter-source subquery is needed in the computation of the user query.
|

Theorem [2| gives a sufficient condition, based on key and foreign key constraints, where no
inter-source subquery is needed for the evaluation os a user query. The question naturally arises
whether the condition of Theorem [2]is also necessary? In other words, if the restriction of the local
join graph to query predicates does not have a directed spanning tree, does the evaluation of the
query require evaluation of some inter-source subqueries? In the following sequence of results we
answer this question in the positive.

Let G be the local join graph of all predicates in the system model. Consider a user query @
with k predicates. Let G’ be the restriction of G' to the predicates in Q. We will first study the
case where G’ is acyclic.

Theorem 3 Let Q and G’ be as above. If G' is acyclic and further does not have a directed spanning
tree, then a database instance exists where (at least one) inter-source subquery is not subsumed by
any local sunqueries.

Proof: Let user query) involve predicates 71, ...,7; Since G’ is not cyclic, it must have a node
with indegree 0. Assume node r; in G’ has indegree 0. Further, there should be at least one node,
r;, that is not reachable from r;. Otherwise, G’ would have a directed spanning tree rooted at r;.
Further, r; is also not reachable from r;, since its indegree is zero.

Consider the following sets of nodes in G’:

e N; is the set of nodes in G’ that are reachable from r; (including r; itself). This set is
non-empty.

e N, is the set of nodes from which r; can be reached (including r; itself). This set is also
non-empty. Note that since r; is not reachable from r;, then Ny and N2 must be disjoint.

e Nj is the set of remaining nodes, namely, N3 = N — (N7 U N3), where N is the set of nodes
of G'.

We will construct an instance of a database, with two sources, where the inter-source subquery

DM emons (rf) Poens ()
is not subsumed by any local subqueries. The database instance is constructed as follows:

e Fragments at source 1: For each predicate r;(A4, B) € Ny U Na, r} contains the tuple (a,b).
That is, for each attribute, we use a unique value (such as a for A and b for B) and build one
tuple for each fragment determined by the attributes of the fragment. Every other fragment
of source 1, that is Tll where r; € N3, is empty.

e Fragments at source 2: riz is empty. All other fragments rl2 with the schema r;(A, B) contain
one tuple (a,b) as explained above.

We can verify that

1. Fragments at sources 1 and 2 satisfy all the constraints (key and foreign key) specified by G'.

Proof: First, all key constraints are satisfied since each fragment is either empty or has
one tuple. Further, for each edge r;—r,, in G’, and each source, the database construction

guarantees that either the fragment of r; is empty, or the fragment of r,, is non-empty. That
is, if, wlog, the schemas of the predicates are r;(A, B) and r,,(B,C), and fragment of r; is
not empty (hence it has one tuple (a, b)), then the fragment of r,, also has one tuple (b, ¢).
Hence, foreign key constraints are also enforced.

2. The local subqueries r{ X --- X 7} and r? X --- X r? are both empty.

1

2
; and r; are empty.

Proof: Since r

3. The inter-source subquery ere Nyuns (T7) Nne N, (r?) contains one tuple, namely the tuple
(a,b,...) consisting of the values associated with attributes that appear in the schemas of
Ty s Tk
Proof: All fragments in the join are non-empty, and contain the tuple of values associated
with their attributes. [|

Theorem [3] settles the question whether having a direceted spanning tree is sufficient and
necessary for the case of acyclic local join graphs. In practice, there is one type of cycles that
occur frequently in local join graphs of system models. Consider, for example, an entity with key
A and properties (attributes) B and C that are required and single-valued. The system model will
contain predicates (A4, B) and ra(A,C), and the local join graph has edges r1—7ro and ro—r.
In fact, an entity with key A and single-valued, required properties By,..., B,, gives rise to nodes
corresponding to r1(A4, By),...,mm(A, By,) in the local join graph, with edges between every such
r; and r; pairs. The same phenomenon is also observed when an n-ary relationship, n > 2, is
represented by a set of binary predicates. In the following, we extend our results to the important
case of local join graphs that contain this type of cycles.

Let G be the local join graph of the system model, Q be a user query, and G’ be the restriction
of G to the predicates of). We write rj<r; if 7,—r; and r;—r;. Obviously, < is an equivalence
relation for the above cases. For the graph G’, we define a reduced graph G” by collapsing all nodes
in each equivalence class of < into a single node. Obviously, G’ does not have any cycles of length
2. But, in general, it can still be cyclic. We can extend Theorem |3| to the case where G” is acyclic.

Theorem 4 Let Q and G” be as above. If G" is acyclic and further does not have a directed
spanning tree, then a database instance exists where (at least one) inter-source subquery is not
subsumed by any local sunqueries.

Proof: Proof of Theorem [3| can be applied to G” as follows: We define the node sets Ny, Na, N3
as before for G” (instead of G’). The same database instance construction is used in this case,
except, we observe that a node in G may represent an equivalence class of nodes in G’, and hence
it represents a set of fragments. The instance construction is applied to all predicate fragments
represented by a node in G”. Hence, as dictated by the construction, either all these fragments are
empty, or, for each r;(A, B) in the equivalence class represented by the node, the corresponding
fragment has the tuple (a,b) in it.

We can verify that the database instance constructed in this way satisfies all key and foreign
key constraints. The constrains for all fragments within one equivalence class is satisfied since
either all are empty or all contain one tuple as determined by their schema. Foreign key constraints
between fragments belonging to different nodes in G are also satisfied by the construction of Ny,
Ny, and N3 as before.

10

Further, similar to the previous case, the database instance will have at least one non-empty
inter-source subquery, while the local subqueries are empty.]

Observation 1 If G” has a directed spanning tree, then so does G'. Hence, by Theorem [3, all
inter-source subqueries are subsumed by local subqueries in this case.]

Finally, we can extend our results to general local join graphs by collapsing all cycles. The
following definition formalizes the approach.

Let G be the local join graph of the system model, Q be a user query, and G’ be the restriction
of G' to the predicates of . We say r; is reachable from r; if there is a path from r; to r; in
G'. We write r;<1r; when r; is reachable from r; and r; is reachable from r;. Obviously, < is an
equivalence relation. For the graph G’, we define a totally-reduced graph G by collapsing all nodes
in each equivalence class of < into a single node. Obviously, G" is acyclic. Note that we do not
consider self loops (of the form 7;—r;) that may appear in G"”. Self loops represent foreign key
constraints within predicates in an equivalence class, and are not relevant to the database instance
construction utilized in the proofs of our theorems.

Theorem 5 Let Q and G"” be as above. No inter-source subquery is needed in the evaluaiotpn of
Q if and only if G" has a directed spanning tree.

Proof: Proofs of Theorems |3| and 4] can be applied to G’ as well. Further, Observation [1| applies
to G"”" as well. Theorem follows. [|

6 Summary and Conclusion
What we have done is the following:

e We proposed our prototype of super-coordinator systems.

e We presented mapping formalisms among data sources.

We implemented translating a query into local subqueries.

We proposed theorems about eliminating inter-source query processing and query optimiza-
tion.

We implemented merge operation.
What we are doing and going to do may be:

e To complete the design of our system.

e To enhance interoperability between super coordinators.

To build up the mapping program between super coordinators.

To implement inter-source query execution.

To implement the full outer join for XML data.

Other relevant issues.

11

References

[1] Alon Halevy, Oren Etzioni, AnHai Doan, Zachary Ives, Jayant Madhavan, Luke McDowell, and
Igor Tatarinov. Crossing the structure chasm. In CIDR, pages 117-128, 2003.

[2] Laks V. S. Lakshmanan and Fereidoon Sadri. Interoperability on XML data. In International
Semantic Web Conference (ISWC), pages 146-163, 2003.

[3] Beverly Yang and Hector Garcia-Molina. Designing a super-peer network. In ICDE, pages
49-60, 2003.

12

Algorithm 3: Merging XML Data (continued)

Procedure mergeElements(el, elelnNextDoc, rsDoc, nextDoc)
get this el’s type typeVal;
switch typeVal do

case Single Requried Leaf
check existance of the corresponding element e2 in nextDoc;

compare el’s value with e2’s value;
if neither e2 exists, nor its value is equal to el’s, print ERROR,;
break;

ase Single Optional Leaf
if e2 exists, compare el’s value with e2’s value;

| break;

ase Single Requried NonLeaf
check existance and size of eleInNextDoc in nextDoc;
ele2 = eleInNextDoc’s child;

foreach element under el do
| mergeElements(element, ele2, rsDoc, nextDoc);

| break;
ase Single Optional NonLeaf
if the size of eleInNextDoc is 1, CALL mergeElements() recusively;
| break;
case Multi Unique Leaf
merge eleInNextDoc’s children;
remove duplicates which have the same logical identifiers;
| break;
case Multi optional Leaf
merge eleInNextDoc’s children, if they exist;
remove duplicates which have the same logical identifiers;
| break;
case Multi Unique NonLeaf
check the unique node in the result of parseSchemal();
CALL mergeElements() recusively;
| break;
case Multi Optional NonLeaf
case Multi Reduplicate Leaf

case Multi Reduplicate NonLeaf
merely attach eleInNextDoc’s children;

| break;
case Set Node
CALL mergeElements() recusively;
| break;
otherwise
print ERROR
| break;

Q

Q

Q

13

	Introduction
	Super Coordinators
	System Architecture
	Mapping within a Super-Coordinator Cluster
	Mapping between Peer Super Coordinators

	Query Processing
	Query Translation between Coordinators
	Query Translation in a Super Coordinator
	Deriving local subqueries
	Deriving inter-source subqueries
	Query Processing

	Merging Results of Subqueries

	Query Optimization
	When can Inter-Source Queries be Avoided?

	Summary and Conclusion

