

Acquiring Software Compliance Artifacts from Policies and Regulations

Travis D. Breaux and Annie I. Antón
Department of Computer Science
North Carolina State University
Raleigh, NC, 27695-8206 USA
{tdbreaux,aianton}@ncsu.edu

Abstract

Policies and government regulations impose
restrictions on information practices in healthcare and
finance. These restrictions govern the use and
disclosure of information that spans organizations and
their business practices. To comply with policies and
the law, organizations must demonstrate that they have
verifiable procedures in-place to implement these
restrictions. To this end, we present techniques that
software engineers can use to systematically acquire
software artifacts from natural language policies and
regulations based on our in-depth analysis of the U.S.
Health Insurance Portability and Accountability Act1
(HIPAA). The techniques apply semantic primitives to
regulatory statements to express class structures using
the Z notation. From these structures, software
engineers distinguish between necessary and
discretionary software requirements and acquire the
following software artifacts: specifications for
transactions including interfaces between software and
business processes; data schemas and data
maintenance requirements; and event-based test cases
for ensuring that systems comply with policies and
regulations.

1. Introduction
In the United States, government regulations require

organizations to develop policies and procedures that
comply with the law. These regulations are specified in
complex and ambiguous legalese (English) and
generally prescribe business practices. The increasing
reliance on software systems to support these practices
presents software engineers and system administrators
with the daunting challenge of interpreting regulations
to determine if their systems comply. The fact that new
privacy regulations that govern information practices
are primarily specified by individuals who are domain
experts in non-engineering fields, such as medicine,

1 U.S. Public Law No. 104-191, est. 1996.

finance or law, further complicates the compliance
landscape. These domain experts are often not familiar
with accepted requirements and software engineering
practices. In our experience, this contributes to the
plethora of ambiguous and complex regulations that
are difficult if not impossible to test, or that are
potentially intractable in software systems.

To address these challenges, we are developing a
methodology for analyzing policies and regulations
with the aim of deriving software artifacts that
demonstrate compliance to lawyers, business managers
and auditors [8]. The methodology provides engineers
with a systematic process for extracting two new and
important requirements artifacts from regulatory
documents: rights, which describe what actions
stakeholders are permitted to perform, and obligations,
which describe what actions stakeholders are required
to perform. To support this endeavor, we developed
several formal primitives and natural language patterns
to model the deep semantics expressed in regulatory
statements. These primitives allow us to identify
ambiguities early-on and reason about consistency in
regulatory requirements [6, 8].

In this paper, we discuss the implications that
stakeholder rights and obligations have on software
systems by demonstrating how our semantic primitives
can be used to acquire software artifacts. We precisely
define these primitives in the Z notation [11] using an
object-oriented semantics to conceptually align the
codified rights and obligations with corresponding
interfaces, requirements and test cases. Together, the
regulation text, codified rights and obligations, and the
derived software artifacts provide auditors with a
reproducible and certifiable chain of evidence that
shows how software systems comply with the law.

To motivate and illustrate this research, we have
applied this process to an extensive U.S. Federal
regulation developed to comply with the Health
Insurance Portability and Accountability Act (HIPAA).
The regulation, called the HIPAA Privacy Rule [12],
governs the use and disclosure of electronic patient
information in the healthcare industry and was

developed by the U.S. Department of Health and
Human Services (HHS). Since the effective
compliance date in April 2003 for large healthcare
providers, enforcement of the Privacy Rule by HHS
has been entirely complaint-driven, with a reported
18,000 complaints registered since March 2006 [20].
These complaints include improper use and disclosure
of patient health information (PHI) and disclosing
more information than the minimum necessary to
complete a transaction. Until auditors have a
reasonable mechanism for compliance auditing (as
proposed in this paper), enforcement will continue to
be complaint-driven. The final HIPAA Enforcement
Rule requires increased accountability and imposes
civil monetary penalties of up to $25,000 per violation
for non-compliance; thus it behooves organizations to
adopt methodologies that will facilitate accountability
and compliance.

The remainder of this paper is organized as follows:
in Section 2, we review related work; in Section 3, we
show how to manage traceability when deriving rights
and obligations from regulations; in Section 4, we
introduce the semantic primitives used to codify rights
and obligations as object-oriented class structures; in
Section 5, we present techniques to acquire software
artifacts from codified rights and obligations; in
Section 6, we conclude with the discussion and
summary.

2. Related Work
The problem at hand concerns aligning the

environment, which includes stakeholders and the
actions they perform, with the operations of software
systems [21]. This section begins with an evolution of
methodologies to codify objects and properties from
natural language statements [1, 9, 18, 19, 16]. Our
approach is distinguished from these by the use of
activity models to organize domain knowledge [8],
similar to goal-based requirements engineering
methods [10, 2]. After discussing our progress in this
area, we briefly compare our methodology [8] to
another approach analyzing the HIPAA that grew out
of formal methods research [17].

Early work to map natural language phrase structure
to software artifacts includes Abbot’s classification
system for objects and data properties using English
nouns, adjectives and verbs [1] and Chen’s work with
Entity-Relationship diagrams [9]. Recently, Overmyer
et al. describe the Linguistic assistant for Domain
Analysis (LIDA) that uses part-of-speech tagging to
map nouns, adjectives and verbs to classes, attributes
and operations in conceptual models [18].
Alternatively, others have developed natural language
templates to help designers specify properties in finite
state verification [19] and real-time requirements

specification [16]. Following this trend, our work
focuses on patterns for extracting activities from
regulatory texts to specify system requirements.

In requirements engineering, goals are semi-
structured statements that describe actions performed
by actors within the environment. The KAOS
framework provides a formal semantics for goals that
includes goal refinement and temporal constraints
between goals [10]. Goal refinement entails refining
high-level organizational goals into low-level
operational goals and requirements; goal refinement
helps stakeholders realize their business practices in
terms of software requirements [10, 2].

To add rigor to the goal-acquisition process, Antón
proposed the Goal-Based Requirements Acquisition
Methodology (GBRAM) to extract goals from natural
language documents [2]. The GBRAM has since been
applied to financial and healthcare privacy policies [3].
Goals extracted from these policies have been used to
construct a privacy taxonomy [4] and to develop new
semantics for reasoning about goals [5, 6]. These new
semantics enable the expression of goals in policies [6]
and regulations [7, 8] as rights and obligations. In
Deontic Logic, rights and obligations are those actions
that distinguish “what is permissible” from “what
ought to be” [14]. Because some stakeholder rights
impose implies obligations on other stakeholders,
engineers can use these semantics to increase
requirements coverage by identifying the implied
obligations that fulfill those rights [8].

Goal-based requirements engineering and the new
semantics from our previous studies [5. 6] inspired our
methodology to extract rights, obligations and
constraints from regulations [8]. The methodology was
developed empirically using Grounded Theory [12]
and applied in four studies: a formative study of a
HIPAA fact sheet [7] that summarizes the Privacy Rule
for patients; in the HIPAA Privacy Rule, a detailed
case study of §164.520–§164.526 [8], regarding
notification, amendment and restrictions to PHI and a
broad study of all fourteen sections of the Privacy Rule
to identify information use and disclosure rules. In this
paper, we present the results of fifth study on §164.528
and show how our models of regulatory statements are
used to acquire software compliance artifacts.

May et al. employ a methodology to derive formal
models from regulations that they applied to §164.506
in the HIPAA Privacy Rule [17]. Several of their basic
assumptions, including 1) each paragraph has exactly
one rule; and 2) external and ambiguous references are
satisfied by default [17], are contradicted by our own
study of four other sections in the Privacy Rule [8]. In
contrast, not only do paragraphs contain multiple rules
(e.g., different cases and different stakeholder actions),
we discovered that cross-references introduce

important constraints from other sections that restrict
which rules apply. If unaccounted for, engineers are
prone to make interpretations and inferences that are
inconsistent with the law. To address these challenges,
we show how to manage cross-references (see Section
3) and provide semantic primitives that guide engineers
in identifying resolving ambiguities (see Section 4).

3. Traceability across Regulations
Laws and regulations like the HIPAA are written in

dense legalese with numerous cross references to other
paragraphs, sections and other laws. In the Privacy
Rule alone, there are over 400 cross-references. These
references refer to restrictions that are described in
other paragraphs and require the engineer to interpret
those restrictions across multiple contexts [8]. For
example, consider the regulation text paraphrased,
below. The text is adapted precisely from the HIPAA
Privacy Rule; text was only omitted and not changed in
any other way. The italicized text identifies rights and
obligations; the bold text is a condition keyword
(except) and the underlined text is a purpose or a
numerical constraint.

Paraphrased from §164.528:
(a) The individual has a right to receive an
accounting of disclosures made by the CE, except
for disclosures: …

(iii) For notifications purposes as provided in
§164.528; …

(b) The CE must provide the individual with an
accounting that:

(i) Except as provided by paragraph (a) of
this section, the accounting must include
disclosures that occurred during the six
years prior to the date of the request.

Paraphrased from §164.510:
(c) Permitted uses and disclosures: …

(ii) The CE may disclose PHI to notify a
family member of the individual’s location
or general condition.

Applying our methodology and its associated
natural language patterns (see Section 4) yields the
activities A1–A6. Activities stated as nouns and
purposes are separated and replaced by a reference to
the separate activity index (in parenthesis) as shown
below. Each activity is followed by the reference, in
bold, to the regulation paragraph from which it was
extracted; and inferred phrases are italicized. The
complexity of these regulations makes maintaining this
kind of traceability critical.

A1: [Right] The individual may receive an accounting
of disclosures excluding (A2). §164.528(a)

A2. The CE discloses PHI to an entity for the purpose
of (A3). §164.528(a)(iii); §164.510(c)(ii)

A3: The entity notifies a family member of the
individual’s location or general condition.
§164.510(c)(ii)

A4: [Obligation] The CE must provide the individual
with an accounting of disclosures, excluding (A2).
§164.528(b), (b)(i), (a)(iii)

A5: The disclosures occurred during the six years
prior to the request (A5). §164.528(b)(i)

A6: The individual requests an accounting of
disclosures. §164.528(b)(i)

Activity A1 is a right and A4 is an obligation. Both
A1 and A4 are said to balance each other because each
implies the other [8]. Also, note that activity A3 is the
purpose of the disclosure in A2; the purpose is a
frequent semantic primitive we formalize in Section 4.
To appreciate the traceability challenge, observe how
the disclosure A2 is first referenced generally in
paragraph (a) in the phrase “except for disclosures”
and is then incrementally refined in paragraph (a)(iii)
by the phrase “for notification purposes” that it is
ultimately detailed in paragraph (c)(ii) by “to notify
family members of the individual’s location or general
condition.”

By isolating activities and tracing their references
through cross-references, engineers can refine the
specifications for stakeholder actions. Skipping these
references, as others routinely do in their analyses of
regulations [17], results in under-specifications that
lead to unauthorized behavior or assumptions that
contradict or violate the intent of the law.

4. Modeling Regulatory Semantics
Rigorously obtaining compliance artifacts from

natural language regulations relies on consistently
encoding governed business practices as formal
structures. In Section 3, we showed how to informally
extract discrete activities and constraints from
regulations. To ensure consistency, we express these
activities as class structures using the Z notation,
pronounced Zed, based on Zermelo-Fraenkel set theory
and first-order predicate logic [11], and published as
the international standard ISO/IEC 13568:2002. These
class structures are presented so that other engineers
and researchers can reuse our approach. Other
notations, such as the Unified Modeling Language2
(UML) and Alloy [15], are insufficient to model
complete regulatory statements: UML is ideal for
visual presentation, whereas we require a concise
formal semantics; and Alloy, developed to perform

2 The UML 2.0, Object Management Group (OMG),
http://www.uml.org

model checking, lacks semantics for linear arithmetic
expressions commonly found in numerical constraints.
After a brief introduction to Z, we discuss how to
specify objects, properties and constraints in Z before
illustrating our regulatory class structures referred to in
our results in Section 5.

4.1. Brief Introduction to Z
In the Z notation, a quantified expression has the

following syntax: (Q v : R | c • p), where Q is the
quantifier ∀ (for all) or ∃ (there exists), v is a bound
variable in the range R, c is the constraint and p is the
predicate. The expression is read “for all/ there exists v
in R satisfying c such that p.” We use ⇔ (if and only
if) and ⇒ (implies) to make inferences. For example,
the constraint c must be satisfied by all elements in R
bound to v and is treated as a logical conjunction ∧ or
an implication ⇒ as follows:

(∃ v : R | c • p) ⇔ (∃ v : R • c ∧ p)
(∀ v : R | c • p) ⇔ (∀ v : R • c ⇒ p)

Given two sets A, B of objects, we can define a
binary relation R as a subset of the Cartesian product
A × B that consists of ordered pairs (a, b), also written
a ↦ b. Using the expression syntax, we define this
relation as follows: R = {a:A; b:B • a ↦ b}. Relations
are classified as symmetric, reflexive and transitive, as
well. Binary relations with unique mappings from
every element in their domain to every element in their
range are called total, bijective functions in Z. In Z, the
total, bijective function f = { z: ℤ • z ↣ z } maps every
integer z in the set ℤ of integers to itself, called an
identify function.

4.2. Formal Definitions
We present our primitives using an object-oriented

semantics expressed in the Z notation with the intent
that engineers can reuse these primitives to instantiate
class objects from words in regulatory statements.
These objects can then be used to identify the software
artifacts presented in Section 5. In this paper, objects
have two fundamental relationships: classes that
organize objects into conceptual hierarchies with types
and sub-types, and properties that define objects as
either sets, called aggregation, or as constituent parts
of a whole, called composition.

Definition 1: A class is a finite set of objects and a
sub-class is a subset of a parent class. The root (most
abstract) class is the set Object that contains all objects.
Two additional classes are presumed: the class Integer
= { z: ℤ | – n ≤ z ∧ z ≥ n } for some constant n is a
sub-class Integer ⊆ Object; and the sub-class String ⊆

Object contains words consisting of printable
characters.

Definition 2: A property is an anti-reflexive, anti-
symmetric binary relation between the objects of two
classes. For example, for two sub-classes Actor,
Information ⊆ Object, we can define the property
source = {a:Information; b:Actor • a ↦ b} such that
the predicate source(a, b) is true if and only if the actor
b is the source of the information a. If a property is
required by a class, then excluding it from an object
specification is an ambiguity.

Regulatory statements use numerical constraints to
specify deadlines and conditions on numerical
properties. For example, the phrase “children younger
than 13 years of age” contains a numerical constraint
“younger than” on the age of children [7]. Numerical
constraints are defined over object properties that have
ranges in the class Integer. The expression for
numerical constraints is: v Op w; where v is in Integer,
Op is one of (=, >, <, ≥, ≤) and w is in Integer or an
arithmetic expression with operators in (+,–,∗) for
addition, subtraction and multiplication .

4.3. Semantic Primitives and Class Structures
The semantics are summarized from five studies of

policies and regulations, to analyze:
1. one hundred privacy goals in financial and

healthcare policies [5, 6]; and
2. a fact sheet summarizing patient rights [7] under

the HIPAA Privacy Rule;
3. information use and disclosure practices in

fourteen sections §164.502–§164.532 of the
Privacy Rule;

4. policy notification and requests for restrictions,
access and amendment of PHI in four sections
§164.520–§164.526 [8] of the Rule; and

5. in this paper, an individual’s right to receive an
accounting of disclosures of PHI in §164.528 of
the Rule.

In the following sub-sections, we define the classes
and properties to model regulatory statements. These
formal relations are summarized in the UML diagram
in Figure 1. Each sub-section begins with a sample
regulatory statement, following by the general notation
for expressing the primitive and concluding with the
observed frequency for the primitives in the five
studies as empirical evidence, suggestive of their
importance.

Figure 1: UML Class Diagram for Regulatory
Semantics

Based on our experience in analyzing policies and
regulations from healthcare and finance, it is
reasonable to expect that these semantics are domain-
independent and reusable in other domains.
4.3.1. Basic Activities

The basic activity is comprised of a subject (a noun)
who performs an action (a verb) on some object. For
example, “the covered entity (CE) documents an oral
statement” has the subject “CE,” action “document”
and object “oral statement.” More complex activities,
such as transactions betweens stakeholders, extend this
basic model. The sub-class Actor ⊆ Object contains all
subjects; the sub-class Action ⊆ Object contains all
actions; and the sub-class Activity ⊆ Object contains all
activities. We define the following required properties
for all activities:

subject = {v:Activity; s:Actor • v ↦ s}
action = {v:Activity; a:Action • v ↦ a}
object = {v:Activity; o:Object • v ↦ o}

Natural language statements describing a basic
activity can be mapped to activity objects following a
simple procedure. Consider the activity statement S1,
followed by the class declarations C1 for the noun and
verb phrases and the corresponding Z expression Z1:

S1: The covered entity documents the oral statement.
C1: CoveredEntity ⊆ Actor; OralStatement ⊆ Object;

Document ⊆ Action
Z1: (∃v:Activity; s:CoveredEntity; a:Document,

o:OralStatement • subject (v,s) ∧ action (v,a) ∧
object (v,o)

The statement S1 is defined formally by first
creating sub-classes for noun phrases CoveredEntity, ⊆
Actor, OralStatement ⊆ Object and the verb Document
⊆ Action, if they do not exist. In the Z expression, the

variables v, s, a, o bind the instances of these classes to
the properties of the activity.

In regulation texts, most verbs indicate an activity
and some nouns refer to activities. For example, the
noun “disclosure” refers to the activity “to disclose”
and “notification” refers to the activity “to notify.” The
engineer must identify these activity nouns in
regulations and attempt to identify the range
restrictions for the subject, action and object properties
associated with each activity.

Sometimes, these activity nouns will appear before
a preposition and another noun, such as “disclosures of
PHI” or “request for suspension.” These phrases are
not indicative of composition, they are partitive
phrases that cannot be inverted into possessive phrases
(e.g., information’s disclosure) and the engineer should
exercise caution when considering these phrases as
aggregations when the preposition “of” is concerned
(e.g., accounting of disclosures). We further discuss
this type of aggregation as description in Section 4.3.5.

In our analysis of §164.502–§164.532, we identified
306 separate activities that were information use and
disclosure practices. In the more detailed analysis of
§164.520–§164.528 in which we analyzed every
statement in these sections, we identified 613 separate
activities.
4.3.2. Transactions

Activities in which the action is performed between
two parties are called transactions; for example, a
disclosure of information from one party to another.
Like general activities, we distinguish the subject, the
actor who performs the action, from the target, the
other actor with whom the action is performed. The
sub-class Transaction ⊆ Activity contains all
transactions and the required property target accounts
for the other actor with whom the action is performed:

target = { v:Transaction; t:Actor • v ↦ t }

Consider the example transaction S2, a notification,
class definitions C2 and instance Z2:

S2: The covered entity notifies the individual about
their privacy practices.

C2: CoveredEntity, Individual ⊆ Actor;
PrivacyPractice ⊆ Object; Notify ⊆ Action

Z2: (∃v:Activity; s:CoveredEntity; a:Notify,
o:PrivacyPractice, t:Individual; • subject(v, s) ∧
action(v, a) ∧ object(v, o) ∧ target(v, t))

In S2, the noun phrase for the other actor is modeled by
the sub-class Individual in C2, which is instantiated by
the variable t of the target property in Z2.

In English, many transactions have complementary
actions in which the activity can be viewed from the
perspective of either the subject or the target. For

example, the action “disclose” is complemented by the
action “receive,” in which the target of the disclosure is
the subject in the activity “to receive.” Observing these
complements is important when evaluating which
transactions become operationalized by the software
interface (see Section 5).
4.3.3. Events and Temporality

Regulations restrict the scope of events to certain
periods of time; these restrictions are called temporal
constraints. For example, the statement “the
disclosures occurred six years prior to the request”
restricts the date of relevant disclosures to within six
years of the date of the request. For simplicity, we
reduce temporal constraints to linear arithmetic
constraints over the smallest unit of time, in this case
seconds, using total, bijective functions such as:

second = { z: ℤ • z ↣ z }
minute = { z: ℤ • z ↣ 60 ∗ second (z) }
hour = { z: ℤ • z ↣ 60 ∗ minute (z) }
day = { z: ℤ • z ↣ 24 ∗ hour (z) }

The performance of an action is called an event. All
event objects are in the sub-class Event ⊆ Object with
the following required properties:

activity = {e:Event, a:Activity • e ↦ a }
time = {e:Event, t: ℤ • e ↦ t }
duration = {e:Event, d: ℤ • e ↦ d }

The activity property specifies which activity the
event pertains to; the time property specifies the start
time of an event; and the duration property specifies
the length of time during which the event has occurred.
The stop time for an event is equal to the time plus
duration.

Consider the statement S3, followed by the class
declarations C3 and temporal constraints in Z3:

S3: The provision is before 60 days after the request.
C3: Provision, Request ⊆ Activity
Z3: (∃e1,e2:Event; v1:Provision; v2:Request;

t1,t2:Integer | activity (e1, v1) ∧ activity (e2, v2) ∧
time (e1, t1) ∧ time (e2, t2) • t2 < t1 ∧ t1 < t2 +
day(60))

The events e1, e2 for the activities v1 (a provision) and
v2 (a request), respective, and the temporal constraint
states that the time of e1 is after e2 but before 60 days
after e2. By formalizing these constraints, we can
derive function requirements that ensure these events
occur within the intended deadline.

In the Privacy Rule, we identified nine phrases with
92 occurrences that are numerical constraints and 41
occurrences that are arithmetic operations [7]. These

results include temporal constraints expressed between
activities using prepositions (e.g., before, after, during)
but exclude temporal constraints acquired from verb
tenses.
4.3.4. Rules, Rights and Obligations

Rules are statements intended to control behavior
within the environment. Deontological rules are
statements that include obligations, which express
“what ought to be,” and rights, which express “what is
permissible” [14]. On the other hand, causal rules are
implications with condition keywords (if, unless,
except if) that place pre- or post-conditions on events.
We now discuss the two types of rules in more detail.

Rights and obligations are identified using common
phrases [7, 8]. For example, “must” and “is required
to,” are phrases that indicate obligations and “may,” “is
permitted to,” or “is a right of” indicate rights. The
engineer must assign a single modality to occurrences
of these phrases in the regulation text, observing that
some phrases are ambiguous (e.g., “may” can mean “is
permitted to” or “is capable of.”) To assign activities to
actors as their rights or obligations, we use the
following two optional properties:

right = {a:Actor; v:Activity • a ↦ v}
obligation = {a:Actor; v:Activity • a ↦ v}

In §164.502–§164.532, we codified 256 rights to
“use or disclose PHI” and 50 obligations “to not use or
disclose PHI.” In §164.520–§164.528, among the
individual activities we identified 51 rights and 88
obligations. In prior work, we show how the rights of
one stakeholder can be used to uncover the implied
obligations of another stakeholder using formal models
[8]. In Section 5, we further show how to
operationalize stakeholder rights and obligations into
discretionary and mandatory requirements.

Causal rules have an antecedent that must be
satisfied before the consequent is satisfied. For an
antecedent a and consequent c, we express a causal
rule using the implication a ⇒ c. In regulatory
statements, the events in causal rules use different
tense verbs. Consider the following causal rule from
§164.528, paragraph (a)(2)(i), describing the covered
entity (CE) and health oversight agency (HOA):

S4: The CE must suspend an individual’s right to
receive an accounting of disclosures to a HOA, if
the HOA provides the CE with a written statement
that such an accounting would be reasonably
likely to impede the agency’s activities.

S4.1: The CE suspends an individual’s right to receive
an accounting of disclosures to a HOA.

S4.2: The HOA provides the CE with a written
statement.

The activities from statement S4 are separated into
S4.1 and S4.2. Using the patterns for basic activities and
transactions, we derive v4.1 and v4.2 from S4.1 and S4.2,
respectively, and the pattern for events to derive e4.1
and e4.2. We express the rule in S4 as a combined
causal/ deontological rule, as follows:

Z4.5: ∃a:Actor • (e4.2 ⇒ target (v4.2, a) ∧
obligation (a, v4.1))

The statement S4 states that, in the event of e4.2, the
actor a ∈ CE is obligated to perform the activity v4.2.
We can thus infer, if the actor fulfils their obligation
v4.1, that the event e4.2 would occur sometime in the
future. In regulations, the distinction between causal
and deontological rules is intended to help engineers
distinguish between the existence of rights and
obligations from the conditions governing their
assignment to stakeholders.
4.3.5. Descriptions as Aggregations`

Descriptions are trivial activities, e.g., “a
description describes something.” To simplify matters,
descriptions are treated as aggregations of the things
that they describe. In the Privacy Rule, there are
several objects that are modeled as descriptions,
including: written and oral statements, authorizations,
requests, testimonials and accountings, each of which
contains important information to complete a related
transaction. The contents of these descriptions include
deadlines for performing actions, records of activities
such as disclosures to third parties and beliefs about
past and future events. When these contents appear in a
stakeholder transaction that is operationalized, the
descriptions must be formalized as an aggregation of
data objects. We account for these aggregations using
the sub-class Description ⊆ Object; recognizing that
sub-classes in Description have properties motivated
directly by statements in the regulation text.

For example, consider the description for an
“accounting of disclosures” from §164.528, paragraph
(b)(2), and paraphrased as follows:

S5: The accounting must include for each disclosure:
(i) The date of the disclosure;
(ii) The name of the entity who received the PHI

and, if known, the entity’s address.
(iii) A brief description of the PHI.
(iv) A brief statement of the purpose of the

disclosure.

Notice that the accounting of disclosures does not
contain the disclosure objects, per se, but records that
contain properties of disclosures including the date,
object, target, and purpose. We define the sub-classes
Record, Accounting ⊆ Description and the property:

record = {a:Accounting, r:Record • a ↦ r}

We first define any new properties on the objects used
to derive the description, such as the name and address
of the entity. For example, based on the statement (ii)
in S5, we define the name property:

name = {a:Actor, s:String • a ↦ s}

The properties of a record are defined as a subset of
properties of other objects; thus, the name in a record is
the name of the actor who receives PHI in a disclosure.
The name′ property in a record achieves this degree of
abstraction, as follows:

name′ = {r:Record, s:String |
(∃a:Actor; n:String | name(a, n) • n) • r ↦ n}

Descriptions, if operationalized, are class structures
that map directly to data schema and that entail
corresponding data maintenance requirements, as
discussed in Section 5.
4.3.6. The Act of Production

Productions are activities that yield other objects or
properties. For example, in regulatory statements the
activities “to account” and “to document” yield the
objects Accounting and Documentation, respectively.
In some cases, the same noun refers to the production
(the act) as well as the product. For example, the noun
“accounting” means two different things –– the act “to
account” and the product of the act, an “accounting.”
We define the sub-class Production ⊆ Activity that
consists of these production objects with the required
property:

product = {p:Production, o:Object • p ↦ o}

For example, consider the statement S5 from
§164.528, paragraph (d)(2), paraphrased below:

S5: The CE must document the written accounting
provided to the individual.

In statement S5, the activity “to document” yields an
object that describes the written accounting, in this
case, the accounting specified in statement S5. The
documentation of an accounting is only a description
of the accounting and not the actual accounting object.
Regulations that are complete and consistent will
describe these products so that, if these activities are
stakeholder obligations, they can be realized as data
objects within systems.

5. Deriving Software Artifacts
The semantic primitives in Section 4 were applied

to §164.528 in the Privacy Rule to codify 65 classes
and 25 properties. The classes and properties were then

used to specify software artifacts, including interfaces
between business and software processes, discretionary
vs. mandatory requirements, data schemas and data
requirements and event-based test cases. We now
present the techniques to acquire these artifacts.

5.1. Identifying the Software Interfaces
The first step to derive software artifacts from

regulated activities is to select the “in-scope”
stakeholder activities to be supported by the system. In
§164.528, we identified 9 actors whose role in an
activity could be defined by a software interface. For
example, Figure 2 shows the in-scope activities in
§164.528 where the covered entity (CE) plays a role;
here, the third parties are external to the system scope
but transactions that involve the CE are all in-scope.
Arrows indicate transactions directed from the subject
to the target of the transaction (e.g., the CE discloses
PHI to the Business Associate). The lines without
arrows are actions performed by the CE that are not
transactions with other stakeholders.

Figure 2: In-Scope Stakeholder Activities

The transactions that cross the in-scope boundary to

third parties define the software interfaces, in which
the objects of the transaction are encoded by a user
interface and later processed by the system. For
example, in Figure 2, the suspension requested by law
enforcement will become an object with an electronic
“description” in terms of classes and class properties
sufficient to complete the transaction. The time of the
suspension and disclosures to which the suspension
pertains, encoded as properties of the suspension
object, are passed through the interface defined by this
transaction. In §164.528, we extracted 30 transactions,
each of which could be made an “in-scope” activity.

The other “in-scope” activities that are not
transactions are also refined into requirements,
although their interfaces will be internal to the system.
We next discuss this refinement process in terms of
discretionary vs. mandatory requirements.

5.2. Discretionary vs. Mandatory Requirements
In general, stakeholder rights within the system

scope are refined into discretionary requirements
whereas “in-scope” obligations are refined into
mandatory software requirements. Exceptions to the
general rule are discussed in this section. Consider the
following regulation statement from §164.528,
paragraph (c)(1), in which the right follows from the
obligation:

A7: [Obligation] The CE must provide the individual
with the requested accounting within 60 days of
the date of the request. §164.528(c)(1), (c)(1)(i)

A8: [Right] The CE may extend the time to provide
the accounting by no more than 30 days.
§164.528(c)(1)(ii)

Because the provision of accountings to individuals
is within the system scope, the obligation A7 is refined
as the following mandatory requirement, in which the
stakeholder is replaced by the system or component
designated to implement this requirement:

Req1: The system shall provide the individual with the
requested accounting within 60 days of the date
of the request.

The extended deadline described by right A8, however,
reflects a discretionary requirement; meaning, the CE
can develop a system that implements the mandatory
requirement and never worry about the extended
deadline –– assuming the verified system never fails.

However, the CE may find other factors beyond the
system’s control that would cause the system to violate
the mandatory requirement; such as including the
disclosures made by business associates beyond the
system scope. These factors make absorbing the costs
to implement discretionary requirements, necessary.
By identifying regulated activities as rights or
obligations, the stakeholders and system designers can
weigh the value of discretionary requirements based on
their unique circumstances to avoid introducing
unnecessary costs and complexity into the system.

For obligations that follow from (or are implied by)
a stakeholder exercising their right, the obligation must
be refined into a mandatory requirement only if that
right is also refined into a system requirement. When
implementing discretionary requirements from rights,
the engineer must enumerate any causal rules that were
extracted from the regulations (see Section 4.3.4), in
which a right implies an obligation, to identify new
mandatory requirements.

In §164.528, we identified five discretionary
requirements, 10 mandatory requirements and five
causal rules that affect rights or obligations. There are
two cases in which obligations are pre-conditions to

other rights; that is, the circumstances that obligate the
stakeholder are necessary to permit the stakeholder to
exercise the right. In one case, the right allows the
stakeholder to mitigate non-compliance by extending a
deadline; in the other case, the right allows the
stakeholder to optimize redundancy in a required
communication with a third party.

5.3. Data Maintenance Requirements
For each in-scope activity, the object of the activity

is a candidate data element. The benefit of using the
patterns from Section 4 is that these objects are already
described in object-oriented structures, which can be
directly mapped to a modeling language like the
eXtensible Markup Language3 (XML) or the UML.
For example, consider the following activities:

A9: The covered entity must document the titles of the
offices that (A9). §164.528(d)(3)

A10: The offices receive requests for an accounting
from individuals. §164.528(d)(3)

In statement A9, the activity “to document” has the
object “titles of offices” which is specified as the title
property over the classes Office, String ⊆ Object, as
follows:

title = {o:Office; s:String • o ↦ s}

Because this is an in-scope obligation, the engineer
derives the following data maintenance requirement:

Req2: The system shall maintain the titles of the offices
that receive requests for accountings from
individuals.

Typically, activities within the system scope that are
descriptions (see Section 4.3.5) or productions (see
Section 4.3.6) incur data requirements because the
objects described or produced must be stored in the
system for later use. Furthermore, the properties of
objects that appear in descriptions and numerical
constraints also yield data requirements. In §164.528,
we identified eight data requirements for objects that
are descriptions or products in a production and 25
properties of objects that appear in in-scope activities

5.4. Functional Requirements and Test Cases
Test cases derived from functional requirements can

be used to ensure that systems comply with policies
and regulations. Events are ideal candidates for
developing test cases to evaluate runtime systems,
provided these events have codified temporal
constraints (see Section 4.3.4). For example, recall
activities A6 and A7, below:

3 The XML, W3C, http://www.w3.org/XML

A6: The individual requests an accounting of
disclosures. §164.528(b)(i)

A7: The CE must provide the individual with the
requested accounting within 60 days of the date of
the request. §164.528(c)(1), (c)(1)(i)

Z7: ∃u,v:Integer • (time (e7, u) ∧ time (e6, v) ∧ u < v +
day(60))

In Z7, we state that the time of the event e7, which
corresponds to the occurrence of activity A7, must be
less than 60 days after the time of the event e6, which
corresponds to the occurrence of A8. By adding 60
days to the time of event e6, the temporal constraint
creates a functional requirement in which the system
can compare the in-scope event times for occurrences
of e6 and e7. Corresponding test cases would evaluate
these constraints based on a simulated or runtime
environment, allowing stakeholders to take corrective
action if systems deviate from expected behavior.

We identified 11 such test cases from temporal
constraints in the study of §164.528. Among these
constraints, there were six arithmetic constraints in
which a constant quantity of time, such as 60 days, was
added to the time of another event.

6. Discussion and Summary
Increasingly, organizations must be able to

demonstrate that they have verifiable procedures in-
place to implement the restrictions imposed on
information collection and use by government
regulations and policies. As such, software engineers
need support for identifying and classifying
ambiguities in policy and regulatory documents, so
they may distinguish between necessary and
discretionary software requirements that will lead to
demonstrably compliant software systems. Using
examples from our in-depth analysis of the HIPAA, we
have shown how to create the following software
artifacts to achieve this objective: specifications for
transactions including interfaces between business and
software processes; data schemas and data
maintenance requirements; and functional
requirements with associated test cases for ensuring
that systems comply with policies and regulations.

Currently, we are continuing to validate this
approach via our analysis of §164.520-§164.526 to
further validate the scalability of the techniques and to
identify alternative or additional ways to acquire
artifacts from formal models of activities. The growing
body of structured domain knowledge we have
developed from our HIPAA analyses, including the
generalized natural language patterns and techniques to
perform formal consistency checking [8], are being
integrated into tool support to assists others in applying
this approach to other regulations and standards.

Finally, we are seeking opportunities to work with
auditors and compliance officers to assess the
challenges they face in aligning the formal abstractions
from our methodology with legacy information
systems to support their compliance goals.

Acknowlegdements
This work was supported in part by NSF ITR #032-

5269, NSF CT #043-0166 and Purdue, CERIAS.

References
[1] R.J. Abbot, “Program design by informal English

descriptions.” Comm. ACM, 26(11):882-894, 1983.
[2] A.I. Antón, “Goal-based requirements analysis,” 2nd

IEEE Int’l Conf. Requirements Engineering, pp. 136-
144, 1996.

[3] A.I. Antón, J.B. Earp, Q. He, W. Stufflebeam, D.
Bolchini, C. Jensen, “Financial privacy policies and the
need for standardization,” IEEE Sec. and Privacy,
2(2):36-45, 2004.

[4] A.I. Antón, J.B. Earp, “A requirements taxonomy for
reducing web site privacy vulnerabilities,” Requirement
Engineering, 9(3):169-185, 2004.

[5] T.D. Breaux, A.I. Antón, “Deriving semantic models
from privacy policies,” 6th IEEE Int’l Workshop on
Policies for Dist. Sys. and Net., pp. 67-76, 2005.

[6] T.D. Breaux, A.I. Antón, “Analyzing goal semantics for
rights, permissions and obligations,” 13th IEEE Int’l
Conf. Reqs. Engr., pp. 177-186, 2005.

[7] T.D. Breaux, A.I. Antón, “Mining rule semantics to
understand legislative compliance,” ACM Workshop on
Privacy Elec. Soc., pp. 51-54, 2005.

[8] T.D. Breaux, M.W. Vail, A.I. Antón, “Towards
compliance: extracting rights and obligations to align
requirements with regulations,” 14th IEEE Int’l Conf. on
Reqs. Engr., 2006.

[9] P. P-S. Chen, “English sentence structure and entity-
relationship diagrams” Information Sciences, 29(2-3),
pp. 127–149, 1983.

[10] A. Dardenne, A. van Lamsweerde, S. Fickas, “Goal-
directed requirements acquisition,” Science of Computer
Programming, 20(1-2):3-50, 1993.

[11] J. Davies, D. Woodcock, Using Z: Specification,
Refinement and Proof, Prentice Hall, Upper Saddle
River, New Jersey, 1996.

[12] B.C. Glaser, A.L. Strauss, The Discovery of Grounded
Theory, Aldine Publishing Co., 1967.

[13] “Standards for Privacy and Individually Identifiable
Health Information,” U.S. Department of Health and
Human Services, Federal Register, 67(157): 53182–
53273, Aug. 14, 2002.

[14] J.F. Horty, Agency and Deontic Logic, Oxford
University Press, New York NY, 2001.

[15] D. Jackson, “Alloy: a lightweight object modeling
notation,” ACM Trans. Soft. Engr. Meth. 11(2): 256-
290, 2002.

[16] S. Konrad, B.H.C. Cheng, “Real-time requirements
specification patterns.” 27th IEEE Int’l Conf. Soft. Engr.
pp. 372-381, 2005.

[17] M.J. May, C.A. Gunter, I. Lee, “Privacy APIs: Access
Control Techniques to Analyze and Verify Legal
Privacy policies,” 19th IEEE Computer Security
Foundations Workshop, pp. 85-97, 2006.

[18] S.P. Overmyer, B. Lavoie, O. Rambow, “Conceptual
modeling through linguistic analysis using LIDA.” 23rd
IEEE Int’l Conf. Soft. Engr., pp .401-410, 2001.

[19] R.L. Smith, G.S. Avrunin, L.A. Clarke, L.J. Osterweil.
“PROPEL: an approach supporting property
elucidation,” 24th IEEE Int’l Conf. Soft. Engr., pp. 11-
21, 2002.

[20] W. Wilkinson, “The office for civil rights and health
care privacy,” 12th National HIPAA Summit,
Washington, D.C., April 10, 2006.

[21] P. Zave, M. Jackson, “The four dark corners of
requirements engineering”, ACM Trans. Soft.
Engr. Methods., 6(1):1-30, 1997.

