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Abstract 
 

Policies and government regulations impose 
restrictions on information practices in healthcare and 
finance. These restrictions govern the use and 
disclosure of information that spans organizations and 
their business practices. To comply with policies and 
the law, organizations must demonstrate that they have 
verifiable procedures in-place to implement these 
restrictions. To this end, we present techniques that 
software engineers can use to systematically acquire 
software artifacts from natural language policies and 
regulations based on our in-depth analysis of the U.S. 
Health Insurance Portability and Accountability Act1 
(HIPAA). The techniques apply semantic primitives to 
regulatory statements to express class structures using 
the Z notation. From these structures, software 
engineers distinguish between necessary and 
discretionary software requirements and acquire the 
following software artifacts: specifications for 
transactions including interfaces between software and 
business processes; data schemas and data 
maintenance requirements; and event-based test cases 
for ensuring that systems comply with policies and 
regulations. 

1. Introduction 
In the United States, government regulations require 

organizations to develop policies and procedures that 
comply with the law. These regulations are specified in 
complex and ambiguous legalese (English) and 
generally prescribe business practices.  The increasing 
reliance on software systems to support these practices 
presents software engineers and system administrators 
with the daunting challenge of interpreting regulations 
to determine if their systems comply. The fact that new 
privacy regulations that govern information practices 
are primarily specified by individuals who are domain 
experts in non-engineering fields, such as medicine, 

                                                           
1 U.S. Public Law No. 104-191, est. 1996. 

finance or law, further complicates the compliance 
landscape. These domain experts are often not familiar 
with accepted requirements and software engineering 
practices. In our experience, this contributes to the 
plethora of ambiguous and complex regulations that 
are difficult if not impossible to test, or that are 
potentially intractable in software systems. 

To address these challenges, we are developing a 
methodology for analyzing policies and regulations 
with the aim of deriving software artifacts that 
demonstrate compliance to lawyers, business managers 
and auditors [8]. The methodology provides engineers 
with a systematic process for extracting two new and 
important requirements artifacts from regulatory 
documents: rights, which describe what actions 
stakeholders are permitted to perform, and obligations, 
which describe what actions stakeholders are required 
to perform. To support this endeavor, we developed 
several formal primitives and natural language patterns 
to model the deep semantics expressed in regulatory 
statements. These primitives allow us to identify 
ambiguities early-on and reason about consistency in 
regulatory requirements [6, 8]. 

In this paper, we discuss the implications that 
stakeholder rights and obligations have on software 
systems by demonstrating how our semantic primitives 
can be used to acquire software artifacts. We precisely 
define these primitives in the Z notation [11] using an 
object-oriented semantics to conceptually align the 
codified rights and obligations with corresponding 
interfaces, requirements and test cases. Together, the 
regulation text, codified rights and obligations, and the 
derived software artifacts provide auditors with a 
reproducible and certifiable chain of evidence that 
shows how software systems comply with the law. 

To motivate and illustrate this research, we have 
applied this process to an extensive U.S. Federal 
regulation developed to comply with the Health 
Insurance Portability and Accountability Act (HIPAA). 
The regulation, called the HIPAA Privacy Rule [12], 
governs the use and disclosure of electronic patient 
information in the healthcare industry and was 



 

 

developed by the U.S. Department of Health and 
Human Services (HHS). Since the effective 
compliance date in April 2003 for large healthcare 
providers, enforcement of the Privacy Rule by HHS 
has been entirely complaint-driven, with a reported 
18,000 complaints registered since March 2006 [20]. 
These complaints include improper use and disclosure 
of patient health information (PHI) and disclosing 
more information than the minimum necessary to 
complete a transaction. Until auditors have a 
reasonable mechanism for compliance auditing (as 
proposed in this paper), enforcement will continue to 
be complaint-driven. The final HIPAA Enforcement 
Rule requires increased accountability and imposes 
civil monetary penalties of up to $25,000 per violation 
for non-compliance; thus it behooves organizations to 
adopt methodologies that will facilitate accountability 
and compliance.  

The remainder of this paper is organized as follows: 
in Section 2, we review related work; in Section 3, we 
show how to manage traceability when deriving rights 
and obligations from regulations; in Section 4, we 
introduce the semantic primitives used to codify rights 
and obligations as object-oriented class structures; in 
Section 5, we present techniques to acquire software 
artifacts from codified rights and obligations; in 
Section 6, we conclude with the discussion and 
summary. 

2. Related Work 
The problem at hand concerns aligning the 

environment, which includes stakeholders and the 
actions they perform, with the operations of software 
systems [21]. This section begins with an evolution of 
methodologies to codify objects and properties from 
natural language statements [1, 9, 18, 19, 16]. Our 
approach is distinguished from these by the use of 
activity models to organize domain knowledge [8], 
similar to goal-based requirements engineering 
methods [10, 2]. After discussing our progress in this 
area, we briefly compare our methodology [8] to 
another approach analyzing the HIPAA that grew out 
of formal methods research [17].  

Early work to map natural language phrase structure 
to software artifacts includes Abbot’s classification 
system for objects and data properties using English 
nouns, adjectives and verbs [1] and Chen’s work with 
Entity-Relationship diagrams [9]. Recently, Overmyer 
et al. describe the Linguistic assistant for Domain 
Analysis (LIDA) that uses part-of-speech tagging to 
map nouns, adjectives and verbs to classes, attributes 
and operations in conceptual models [18]. 
Alternatively, others have developed natural language 
templates to help designers specify properties in finite 
state verification [19] and real-time requirements 

specification [16]. Following this trend, our work 
focuses on patterns for extracting activities from 
regulatory texts to specify system requirements.  

In requirements engineering, goals are semi-
structured statements that describe actions performed 
by actors within the environment. The KAOS 
framework provides a formal semantics for goals that 
includes goal refinement and temporal constraints 
between goals [10]. Goal refinement entails refining 
high-level organizational goals into low-level 
operational goals and requirements; goal refinement 
helps stakeholders realize their business practices in 
terms of software requirements [10, 2].  

To add rigor to the goal-acquisition process, Antón 
proposed the Goal-Based Requirements Acquisition 
Methodology (GBRAM) to extract goals from natural 
language documents [2]. The GBRAM has since been 
applied to financial and healthcare privacy policies [3]. 
Goals extracted from these policies have been used to 
construct a privacy taxonomy [4] and to develop new 
semantics for reasoning about goals [5, 6]. These new 
semantics enable the expression of goals in policies [6] 
and regulations [7, 8] as rights and obligations. In 
Deontic Logic, rights and obligations are those actions 
that distinguish “what is permissible” from “what 
ought to be” [14]. Because some stakeholder rights 
impose implies obligations on other stakeholders, 
engineers can use these semantics to increase 
requirements coverage by identifying the implied 
obligations that fulfill those rights [8].  

Goal-based requirements engineering and the new 
semantics from our previous studies [5. 6] inspired our 
methodology to extract rights, obligations and 
constraints from regulations [8]. The methodology was 
developed empirically using Grounded Theory [12] 
and applied in four studies: a formative study of a 
HIPAA fact sheet [7] that summarizes the Privacy Rule 
for patients; in the HIPAA Privacy Rule, a detailed 
case study of §164.520–§164.526 [8], regarding 
notification, amendment and restrictions to PHI and a 
broad study of all fourteen sections of the Privacy Rule 
to identify information use and disclosure rules. In this 
paper, we present the results of fifth study on §164.528 
and show how our models of regulatory statements are 
used to acquire software compliance artifacts. 

May et al. employ a methodology to derive formal 
models from regulations that they applied to §164.506 
in the HIPAA Privacy Rule [17]. Several of their basic 
assumptions, including 1) each paragraph has exactly 
one rule; and 2) external and ambiguous references are 
satisfied by default [17], are contradicted by our own 
study of four other sections in the Privacy Rule [8]. In 
contrast, not only do paragraphs contain multiple rules 
(e.g., different cases and different stakeholder actions), 
we discovered that cross-references introduce 



 

 

important constraints from other sections that restrict 
which rules apply. If unaccounted for, engineers are 
prone to make interpretations and inferences that are 
inconsistent with the law. To address these challenges, 
we show how to manage cross-references (see Section 
3) and provide semantic primitives that guide engineers 
in identifying resolving ambiguities (see Section 4). 

3. Traceability across Regulations 
Laws and regulations like the HIPAA are written in 

dense legalese with numerous cross references to other 
paragraphs, sections and other laws. In the Privacy 
Rule alone, there are over 400 cross-references. These 
references refer to restrictions that are described in 
other paragraphs and require the engineer to interpret 
those restrictions across multiple contexts [8]. For 
example, consider the regulation text paraphrased, 
below. The text is adapted precisely from the HIPAA 
Privacy Rule; text was only omitted and not changed in 
any other way. The italicized text identifies rights and 
obligations; the bold text is a condition keyword 
(except) and the underlined text is a purpose or a 
numerical constraint. 

 

Paraphrased from §164.528: 
(a) The individual has a right to receive an 
accounting of disclosures made by the CE, except 
for disclosures: … 

(iii) For notifications purposes as provided in 
§164.528; … 

(b) The CE must provide the individual with an 
accounting that: 

(i) Except as provided by paragraph (a) of 
this section, the accounting must include 
disclosures that occurred during the six 
years prior to the date of the request. 

 

Paraphrased from §164.510: 
(c) Permitted uses and disclosures: … 

(ii) The CE may disclose PHI to notify a 
family member of the individual’s location 
or general condition. 

 

Applying our methodology and its associated 
natural language patterns (see Section 4) yields the 
activities A1–A6. Activities stated as nouns and 
purposes are separated and replaced by a reference to 
the separate activity index (in parenthesis) as shown 
below. Each activity is followed by the reference, in 
bold, to the regulation paragraph from which it was 
extracted; and inferred phrases are italicized. The 
complexity of these regulations makes maintaining this 
kind of traceability critical.  

 

A1: [Right] The individual may receive an accounting 
of disclosures excluding (A2). §164.528(a) 

A2. The CE discloses PHI to an entity for the purpose 
of (A3). §164.528(a)(iii); §164.510(c)(ii) 

A3: The entity notifies a family member of the 
individual’s location or general condition. 
§164.510(c)(ii) 

A4: [Obligation] The CE must provide the individual 
with an accounting of disclosures, excluding (A2). 
§164.528(b), (b)(i), (a)(iii) 

A5: The disclosures occurred during the six years 
prior to the request (A5). §164.528(b)(i) 

A6: The individual requests an accounting of 
disclosures. §164.528(b)(i) 

 

Activity A1 is a right and A4 is an obligation. Both 
A1 and A4 are said to balance each other because each 
implies the other [8]. Also, note that activity A3 is the 
purpose of the disclosure in A2; the purpose is a 
frequent semantic primitive we formalize in Section 4. 
To appreciate the traceability challenge, observe how 
the disclosure A2 is first referenced generally in 
paragraph (a) in the phrase “except for disclosures” 
and is then incrementally refined in paragraph (a)(iii) 
by the phrase “for notification purposes” that it is 
ultimately detailed in paragraph (c)(ii) by “to notify 
family members of the individual’s location or general 
condition.” 

By isolating activities and tracing their references 
through cross-references, engineers can refine the 
specifications for stakeholder actions. Skipping these 
references, as others routinely do in their analyses of 
regulations [17], results in under-specifications that 
lead to unauthorized behavior or assumptions that 
contradict or violate the intent of the law. 

4. Modeling Regulatory Semantics 
Rigorously obtaining compliance artifacts from 

natural language regulations relies on consistently 
encoding governed business practices as formal 
structures. In Section 3, we showed how to informally 
extract discrete activities and constraints from 
regulations. To ensure consistency, we express these 
activities as class structures using the Z notation, 
pronounced Zed, based on Zermelo-Fraenkel set theory 
and first-order predicate logic [11], and published as 
the international standard ISO/IEC 13568:2002. These 
class structures are presented so that other engineers 
and researchers can reuse our approach. Other 
notations, such as the Unified Modeling Language2 
(UML) and Alloy [15], are insufficient to model 
complete regulatory statements: UML is ideal for 
visual presentation, whereas we require a concise 
formal semantics; and Alloy, developed to perform 

                                                           
2 The UML 2.0, Object Management Group (OMG), 
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model checking, lacks semantics for linear arithmetic 
expressions commonly found in numerical constraints. 
After a brief introduction to Z, we discuss how to 
specify objects, properties and constraints in Z before 
illustrating our regulatory class structures referred to in 
our results in Section 5. 

4.1. Brief Introduction to Z 
In the Z notation, a quantified expression has the 

following syntax: (Q v : R | c • p), where Q is the 
quantifier ∀ (for all) or ∃ (there exists), v is a bound 
variable in the range R, c is the constraint and p is the 
predicate. The expression is read “for all/ there exists v 
in R satisfying c such that p.” We use ⇔ (if and only 
if) and ⇒ (implies) to make inferences. For example, 
the constraint c must be satisfied by all elements in R 
bound to v and is treated as a logical conjunction ∧ or 
an implication ⇒ as follows: 

 

(∃ v : R | c • p)  ⇔ (∃ v : R • c ∧ p) 
(∀ v : R | c • p)  ⇔ (∀ v : R • c ⇒ p) 

 

Given two sets A, B of objects, we can define a 
binary relation R as a subset of the Cartesian product 
A × B that consists of ordered pairs (a, b), also written 
a ↦ b. Using the expression syntax, we define this 
relation as follows: R = {a:A; b:B • a ↦ b}. Relations 
are classified as symmetric, reflexive and transitive, as 
well. Binary relations with unique mappings from 
every element in their domain to every element in their 
range are called total, bijective functions in Z. In Z, the 
total, bijective function f = { z: ℤ • z ↣ z } maps every 
integer z in the set ℤ of integers to itself, called an 
identify function. 

4.2. Formal Definitions 
We present our primitives using an object-oriented 

semantics expressed in the Z notation with the intent 
that engineers can reuse these primitives to instantiate 
class objects from words in regulatory statements. 
These objects can then be used to identify the software 
artifacts presented in Section 5. In this paper, objects 
have two fundamental relationships: classes that 
organize objects into conceptual hierarchies with types 
and sub-types, and properties that define objects as 
either sets, called aggregation, or as constituent parts 
of a whole, called composition. 

Definition 1: A class is a finite set of objects and a 
sub-class is a subset of a parent class. The root (most 
abstract) class is the set Object that contains all objects. 
Two additional classes are presumed: the class Integer 
= { z:  ℤ | – n ≤ z ∧ z ≥ n } for some constant n is a 
sub-class Integer ⊆ Object; and the sub-class String ⊆ 

Object contains words consisting of printable 
characters. 

Definition 2: A property is an anti-reflexive, anti-
symmetric binary relation between the objects of two 
classes. For example, for two sub-classes Actor, 
Information ⊆ Object, we can define the property 
source = {a:Information; b:Actor • a ↦ b} such that 
the predicate source(a, b) is true if and only if the actor 
b is the source of the information a. If a property is 
required by a class, then excluding it from an object 
specification is an ambiguity. 

Regulatory statements use numerical constraints to 
specify deadlines and conditions on numerical 
properties. For example, the phrase “children younger 
than 13 years of age” contains a numerical constraint 
“younger than” on the age of children [7]. Numerical 
constraints are defined over object properties that have 
ranges in the class Integer. The expression for 
numerical constraints is: v Op w; where v is in Integer, 
Op is one of (=, >, <, ≥, ≤) and w is in Integer or an 
arithmetic expression with operators in (+,–,∗) for 
addition, subtraction and multiplication .  

4.3. Semantic Primitives and Class Structures 
The semantics are summarized from five studies of 

policies and regulations, to analyze: 
1. one hundred privacy goals in financial and 

healthcare policies [5, 6]; and 
2. a fact sheet summarizing patient rights [7] under 

the HIPAA Privacy Rule; 
3. information use and disclosure practices in 

fourteen sections §164.502–§164.532 of the 
Privacy Rule; 

4. policy notification and requests for restrictions, 
access and amendment of PHI in four sections 
§164.520–§164.526 [8] of the Rule; and 

5. in this paper, an individual’s right to receive an 
accounting of disclosures of PHI in §164.528 of 
the Rule. 

 

In the following sub-sections, we define the classes 
and properties to model regulatory statements. These 
formal relations are summarized in the UML diagram 
in Figure 1. Each sub-section begins with a sample 
regulatory statement, following by the general notation 
for expressing the primitive and concluding with the 
observed frequency for the primitives in the five 
studies as empirical evidence, suggestive of their 
importance.  

 



 

 

 
 

Figure 1: UML Class Diagram for Regulatory 
Semantics 

 

Based on our experience in analyzing policies and 
regulations from healthcare and finance, it is 
reasonable to expect that these semantics are domain-
independent and reusable in other domains. 
4.3.1. Basic Activities 

The basic activity is comprised of a subject (a noun) 
who performs an action (a verb) on some object. For 
example, “the covered entity (CE) documents an oral 
statement” has the subject “CE,” action “document” 
and object “oral statement.” More complex activities, 
such as transactions betweens stakeholders, extend this 
basic model. The sub-class Actor ⊆ Object contains all 
subjects; the sub-class Action ⊆ Object contains all 
actions; and the sub-class Activity ⊆ Object contains all 
activities. We define the following required properties 
for all activities: 

 

subject = {v:Activity; s:Actor • v ↦ s} 
action = {v:Activity; a:Action • v ↦ a} 
object = {v:Activity; o:Object • v ↦ o} 
 

Natural language statements describing a basic 
activity can be mapped to activity objects following a 
simple procedure. Consider the activity statement S1, 
followed by the class declarations C1 for the noun and 
verb phrases and the corresponding Z expression Z1: 

 

S1: The covered entity documents the oral statement. 
C1: CoveredEntity ⊆ Actor; OralStatement ⊆ Object; 

Document ⊆ Action 
Z1: (∃v:Activity; s:CoveredEntity; a:Document, 

o:OralStatement • subject (v,s) ∧ action (v,a) ∧ 
object (v,o) 

 

The statement S1 is defined formally by first 
creating sub-classes for noun phrases CoveredEntity, ⊆ 
Actor, OralStatement ⊆ Object and the verb Document 
⊆ Action, if they do not exist. In the Z expression, the 

variables v, s, a, o bind the instances of these classes to 
the properties of the activity. 

In regulation texts, most verbs indicate an activity 
and some nouns refer to activities. For example, the 
noun “disclosure” refers to the activity “to disclose” 
and “notification” refers to the activity “to notify.” The 
engineer must identify these activity nouns in 
regulations and attempt to identify the range 
restrictions for the subject, action and object properties 
associated with each activity. 

Sometimes, these activity nouns will appear before 
a preposition and another noun, such as “disclosures of 
PHI” or “request for suspension.” These phrases are 
not indicative of composition, they are partitive 
phrases that cannot be inverted into possessive phrases 
(e.g., information’s disclosure) and the engineer should 
exercise caution when considering these phrases as 
aggregations when the preposition “of” is concerned 
(e.g., accounting of disclosures). We further discuss 
this type of aggregation as description in Section 4.3.5. 

In our analysis of §164.502–§164.532, we identified 
306 separate activities that were information use and 
disclosure practices. In the more detailed analysis of 
§164.520–§164.528 in which we analyzed every 
statement in these sections, we identified 613 separate 
activities. 
4.3.2. Transactions 

Activities in which the action is performed between 
two parties are called transactions; for example, a 
disclosure of information from one party to another. 
Like general activities, we distinguish the subject, the 
actor who performs the action, from the target, the 
other actor with whom the action is performed. The 
sub-class Transaction ⊆ Activity contains all 
transactions and the required property target accounts 
for the other actor with whom the action is performed: 

 

target = { v:Transaction; t:Actor • v ↦ t } 
 

Consider the example transaction S2, a notification, 
class definitions C2 and instance Z2: 

 

S2: The covered entity notifies the individual about 
their privacy practices. 

C2: CoveredEntity, Individual ⊆ Actor; 
PrivacyPractice ⊆ Object; Notify ⊆ Action 

Z2: (∃v:Activity; s:CoveredEntity; a:Notify, 
o:PrivacyPractice, t:Individual; • subject(v, s) ∧ 
action(v, a) ∧ object(v, o) ∧ target(v, t)) 

 

In S2, the noun phrase for the other actor is modeled by 
the sub-class Individual in C2, which is instantiated by 
the variable t of the target property in Z2. 

In English, many transactions have complementary 
actions in which the activity can be viewed from the 
perspective of either the subject or the target. For 



 

 

example, the action “disclose” is complemented by the 
action “receive,” in which the target of the disclosure is 
the subject in the activity “to receive.” Observing these 
complements is important when evaluating which 
transactions become operationalized by the software 
interface (see Section 5). 
4.3.3. Events and Temporality 

Regulations restrict the scope of events to certain 
periods of time; these restrictions are called temporal 
constraints. For example, the statement “the 
disclosures occurred six years prior to the request” 
restricts the date of relevant disclosures to within six 
years of the date of the request. For simplicity, we 
reduce temporal constraints to linear arithmetic 
constraints over the smallest unit of time, in this case 
seconds, using total, bijective functions such as: 

 

second = { z: ℤ • z ↣ z } 
minute = { z: ℤ • z ↣ 60 ∗ second (z) } 
hour = { z:  ℤ  • z ↣ 60 ∗ minute (z) } 
day = { z: ℤ  • z ↣ 24 ∗ hour (z) } 
 

The performance of an action is called an event. All 
event objects are in the sub-class Event ⊆ Object with 
the following required properties: 

 

activity = {e:Event, a:Activity • e ↦ a } 
time = {e:Event, t: ℤ • e ↦ t } 
duration = {e:Event, d: ℤ • e ↦ d } 
 

The activity property specifies which activity the 
event pertains to; the time property specifies the start 
time of an event; and the duration property specifies 
the length of time during which the event has occurred. 
The stop time for an event is equal to the time plus 
duration. 

Consider the statement S3, followed by the class 
declarations C3 and temporal constraints in Z3: 

 

S3: The provision is before 60 days after the request. 
C3: Provision, Request ⊆ Activity 
Z3: (∃e1,e2:Event; v1:Provision; v2:Request; 

t1,t2:Integer | activity (e1, v1) ∧ activity (e2, v2) ∧ 
time (e1, t1) ∧ time (e2, t2) •  t2 < t1 ∧ t1 < t2 + 
day(60) ) 

 

The events e1, e2 for the activities v1 (a provision) and 
v2 (a request), respective, and the temporal constraint 
states that the time of e1 is after e2 but before 60 days 
after e2. By formalizing these constraints, we can 
derive function requirements that ensure these events 
occur within the intended deadline. 

In the Privacy Rule, we identified nine phrases with 
92 occurrences that are numerical constraints and 41 
occurrences that are arithmetic operations [7]. These 

results include temporal constraints expressed between 
activities using prepositions (e.g., before, after, during) 
but exclude temporal constraints acquired from verb 
tenses. 
4.3.4. Rules, Rights and Obligations 

Rules are statements intended to control behavior 
within the environment. Deontological rules are 
statements that include obligations, which express 
“what ought to be,” and rights, which express “what is 
permissible” [14]. On the other hand, causal rules are 
implications with condition keywords (if, unless, 
except if) that place pre- or post-conditions on events. 
We now discuss the two types of rules in more detail. 

Rights and obligations are identified using common 
phrases [7, 8]. For example, “must” and “is required 
to,” are phrases that indicate obligations and “may,” “is 
permitted to,” or “is a right of” indicate rights. The 
engineer must assign a single modality to occurrences 
of these phrases in the regulation text, observing that 
some phrases are ambiguous (e.g., “may” can mean “is 
permitted to” or “is capable of.”) To assign activities to 
actors as their rights or obligations, we use the 
following two optional properties: 

 

right = {a:Actor; v:Activity • a ↦ v} 
obligation = {a:Actor; v:Activity • a ↦ v} 
 

In §164.502–§164.532, we codified 256 rights to 
“use or disclose PHI” and 50 obligations “to not use or 
disclose PHI.” In §164.520–§164.528, among the 
individual activities we identified 51 rights and 88 
obligations. In prior work, we show how the rights of 
one stakeholder can be used to uncover the implied 
obligations of another stakeholder using formal models 
[8]. In Section 5, we further show how to 
operationalize stakeholder rights and obligations into 
discretionary and mandatory requirements. 

Causal rules have an antecedent that must be 
satisfied before the consequent is satisfied. For an 
antecedent a and consequent c, we express a causal 
rule using the implication a ⇒ c. In regulatory 
statements, the events in causal rules use different 
tense verbs. Consider the following causal rule from 
§164.528, paragraph (a)(2)(i), describing the covered 
entity (CE) and health oversight agency (HOA): 

 

S4: The CE must suspend an individual’s right to 
receive an accounting of disclosures to a HOA, if 
the HOA provides the CE with a written statement 
that such an accounting would be reasonably 
likely to impede the agency’s activities. 

S4.1: The CE suspends an individual’s right to receive 
an accounting of disclosures to a HOA. 

S4.2: The HOA provides the CE with a written 
statement. 

 



 

 

The activities from statement S4 are separated into 
S4.1 and S4.2. Using the patterns for basic activities and 
transactions, we derive v4.1 and v4.2 from S4.1 and S4.2, 
respectively, and the pattern for events to derive e4.1 
and e4.2. We express the rule in S4 as a combined 
causal/ deontological rule, as follows: 

 

Z4.5: ∃a:Actor • (e4.2 ⇒ target (v4.2, a) ∧ 
obligation (a, v4.1 ) ) 

 

The statement S4 states that, in the event of e4.2, the 
actor a  ∈ CE is obligated to perform the activity v4.2. 
We can thus infer, if the actor fulfils their obligation 
v4.1, that the event e4.2 would occur sometime in the 
future. In regulations, the distinction between causal 
and deontological rules is intended to help engineers 
distinguish between the existence of rights and 
obligations from the conditions governing their 
assignment to stakeholders. 
4.3.5. Descriptions as Aggregations` 

Descriptions are trivial activities, e.g., “a 
description describes something.” To simplify matters, 
descriptions are treated as aggregations of the things 
that they describe. In the Privacy Rule, there are 
several objects that are modeled as descriptions, 
including: written and oral statements, authorizations, 
requests, testimonials and accountings, each of which 
contains important information to complete a related 
transaction. The contents of these descriptions include 
deadlines for performing actions, records of activities 
such as disclosures to third parties and beliefs about 
past and future events. When these contents appear in a 
stakeholder transaction that is operationalized, the 
descriptions must be formalized as an aggregation of 
data objects. We account for these aggregations using 
the sub-class Description  ⊆ Object; recognizing that 
sub-classes in Description have properties motivated 
directly by statements in the regulation text. 

For example, consider the description for an 
“accounting of disclosures” from §164.528, paragraph 
(b)(2), and paraphrased as follows: 

 

S5: The accounting must include for each disclosure: 
(i) The date of the disclosure; 
(ii) The name of the entity who received the PHI 

and, if known, the entity’s address.  
(iii) A brief description of the PHI. 
(iv) A brief statement of the purpose of the 

disclosure. 
 

Notice that the accounting of disclosures does not 
contain the disclosure objects, per se, but records that 
contain properties of disclosures including the date, 
object, target, and purpose. We define the sub-classes 
Record, Accounting ⊆ Description and the property: 

 

record = {a:Accounting, r:Record • a ↦ r} 
 

We first define any new properties on the objects used 
to derive the description, such as the name and address 
of the entity. For example, based on the statement (ii) 
in S5, we define the name property:  

 

name = {a:Actor, s:String • a ↦ s} 
 

The properties of a record are defined as a subset of 
properties of other objects; thus, the name in a record is 
the name of the actor who receives PHI in a disclosure. 
The name′ property in a record achieves this degree of 
abstraction, as follows: 

 

name′ = {r:Record, s:String |  
(∃a:Actor; n:String | name(a, n) • n) • r ↦ n} 

 

Descriptions, if operationalized, are class structures 
that map directly to data schema and that entail 
corresponding data maintenance requirements, as 
discussed in Section 5. 
4.3.6. The Act of Production 

Productions are activities that yield other objects or 
properties. For example, in regulatory statements the 
activities “to account” and “to document” yield the 
objects Accounting and Documentation, respectively. 
In some cases, the same noun refers to the production 
(the act) as well as the product. For example, the noun 
“accounting” means two different things –– the act “to 
account” and the product of the act, an “accounting.” 
We define the sub-class Production ⊆ Activity that 
consists of these production objects with the required 
property: 

 

product = {p:Production, o:Object • p ↦ o} 
 

For example, consider the statement S5 from 
§164.528, paragraph (d)(2), paraphrased below: 

 

S5: The CE must document the written accounting 
provided to the individual. 

 

In statement S5, the activity “to document” yields an 
object that describes the written accounting, in this 
case, the accounting specified in statement S5. The 
documentation of an accounting is only a description 
of the accounting and not the actual accounting object. 
Regulations that are complete and consistent will 
describe these products so that, if these activities are 
stakeholder obligations, they can be realized as data 
objects within systems. 

5. Deriving Software Artifacts 
The semantic primitives in Section 4 were applied 

to §164.528 in the Privacy Rule to codify 65 classes 
and 25 properties. The classes and properties were then 



 

 

used to specify software artifacts, including interfaces 
between business and software processes, discretionary 
vs. mandatory requirements, data schemas and data 
requirements and event-based test cases. We now 
present the techniques to acquire these artifacts. 

5.1. Identifying the Software Interfaces 
The first step to derive software artifacts from 

regulated activities is to select the “in-scope” 
stakeholder activities to be supported by the system. In 
§164.528, we identified 9 actors whose role in an 
activity could be defined by a software interface. For 
example, Figure 2 shows the in-scope activities in 
§164.528 where the covered entity (CE) plays a role; 
here, the third parties are external to the system scope 
but transactions that involve the CE are all in-scope. 
Arrows indicate transactions directed from the subject 
to the target of the transaction (e.g., the CE discloses 
PHI to the Business Associate). The lines without 
arrows are actions performed by the CE that are not 
transactions with other stakeholders. 

 

 
 

Figure 2: In-Scope Stakeholder Activities 
 
The transactions that cross the in-scope boundary to 

third parties define the software interfaces, in which 
the objects of the transaction are encoded by a user 
interface and later processed by the system.  For 
example, in Figure 2, the suspension requested by law 
enforcement will become an object with an electronic 
“description” in terms of classes and class properties 
sufficient to complete the transaction. The time of the 
suspension and disclosures to which the suspension 
pertains, encoded as properties of the suspension 
object, are passed through the interface defined by this 
transaction. In §164.528, we extracted 30 transactions, 
each of which could be made an “in-scope” activity. 

The other “in-scope” activities that are not 
transactions are also refined into requirements, 
although their interfaces will be internal to the system. 
We next discuss this refinement process in terms of 
discretionary vs. mandatory requirements. 

5.2. Discretionary vs. Mandatory Requirements 
In general, stakeholder rights within the system 

scope are refined into discretionary requirements 
whereas “in-scope” obligations are refined into 
mandatory software requirements. Exceptions to the 
general rule are discussed in this section. Consider the 
following regulation statement from §164.528, 
paragraph (c)(1), in which the right follows from the 
obligation: 

 

A7: [Obligation] The CE must provide the individual 
with the requested accounting within 60 days of 
the date of the request. §164.528(c)(1), (c)(1)(i) 

A8: [Right] The CE may extend the time to provide 
the accounting by no more than 30 days. 
§164.528(c)(1)(ii) 

 

Because the provision of accountings to individuals 
is within the system scope, the obligation A7 is refined 
as the following mandatory requirement, in which the 
stakeholder is replaced by the system or component 
designated to implement this requirement: 

 

Req1: The system shall provide the individual with the 
requested accounting within 60 days of the date 
of the request. 

 

The extended deadline described by right A8, however, 
reflects a discretionary requirement; meaning, the CE 
can develop a system that implements the mandatory 
requirement and never worry about the extended 
deadline –– assuming the verified system never fails. 

However, the CE may find other factors beyond the 
system’s control that would cause the system to violate 
the mandatory requirement; such as including the 
disclosures made by business associates beyond the 
system scope. These factors make absorbing the costs 
to implement discretionary requirements, necessary. 
By identifying regulated activities as rights or 
obligations, the stakeholders and system designers can 
weigh the value of discretionary requirements based on 
their unique circumstances to avoid introducing 
unnecessary costs and complexity into the system. 

For obligations that follow from (or are implied by) 
a stakeholder exercising their right, the obligation must 
be refined into a mandatory requirement only if that 
right is also refined into a system requirement. When 
implementing discretionary requirements from rights, 
the engineer must enumerate any causal rules that were 
extracted from the regulations (see Section 4.3.4), in 
which a right implies an obligation, to identify new 
mandatory requirements. 

In §164.528, we identified five discretionary 
requirements, 10 mandatory requirements and five 
causal rules that affect rights or obligations. There are 
two cases in which obligations are pre-conditions to 



 

 

other rights; that is, the circumstances that obligate the 
stakeholder are necessary to permit the stakeholder to 
exercise the right. In one case, the right allows the 
stakeholder to mitigate non-compliance by extending a 
deadline; in the other case, the right allows the 
stakeholder to optimize redundancy in a required 
communication with a third party. 

5.3. Data Maintenance Requirements 
For each in-scope activity, the object of the activity 

is a candidate data element. The benefit of using the 
patterns from Section 4 is that these objects are already 
described in object-oriented structures, which can be 
directly mapped to a modeling language like the 
eXtensible Markup Language3 (XML) or the UML. 
For example, consider the following activities: 

 

A9: The covered entity must document the titles of the 
offices that (A9). §164.528(d)(3) 

A10: The offices receive requests for an accounting 
from individuals. §164.528(d)(3) 

 

In statement A9, the activity “to document” has the 
object “titles of offices” which is specified as the title 
property over the classes Office, String ⊆ Object, as 
follows: 

 

title = {o:Office; s:String • o ↦ s} 
 

Because this is an in-scope obligation, the engineer 
derives the following data maintenance requirement: 

 

Req2: The system shall maintain the titles of the offices 
that receive requests for accountings from 
individuals. 

 

Typically, activities within the system scope that are 
descriptions (see Section 4.3.5) or productions (see 
Section 4.3.6) incur data requirements because the 
objects described or produced must be stored in the 
system for later use. Furthermore, the properties of 
objects that appear in descriptions and numerical 
constraints also yield data requirements. In §164.528, 
we identified eight data requirements for objects that 
are descriptions or products in a production and 25 
properties of objects that appear in in-scope activities 

5.4. Functional Requirements and Test Cases 
Test cases derived from functional requirements can 

be used to ensure that systems comply with policies 
and regulations. Events are ideal candidates for 
developing test cases to evaluate runtime systems, 
provided these events have codified temporal 
constraints (see Section 4.3.4). For example, recall 
activities A6 and A7, below: 

 

                                                           
3 The XML, W3C, http://www.w3.org/XML 

A6: The individual requests an accounting of 
disclosures. §164.528(b)(i) 

A7: The CE must provide the individual with the 
requested accounting within 60 days of the date of 
the request. §164.528(c)(1), (c)(1)(i) 

Z7: ∃u,v:Integer • (time (e7, u)  ∧ time (e6, v) ∧ u < v + 
day(60) ) 

 

In Z7, we state that the time of the event e7, which 
corresponds to the occurrence of activity A7, must be 
less than 60 days after the time of the event e6, which 
corresponds to the occurrence of A8. By adding 60 
days to the time of event e6, the temporal constraint 
creates a functional requirement in which the system 
can compare the in-scope event times for occurrences 
of e6 and e7. Corresponding test cases would evaluate 
these constraints based on a simulated or runtime 
environment, allowing stakeholders to take corrective 
action if systems deviate from expected behavior. 

We identified 11 such test cases from temporal 
constraints in the study of §164.528. Among these 
constraints, there were six arithmetic constraints in 
which a constant quantity of time, such as 60 days, was 
added to the time of another event. 

6. Discussion and Summary 
Increasingly, organizations must be able to 

demonstrate that they have verifiable procedures in-
place to implement the restrictions imposed on 
information collection and use by government 
regulations and policies. As such, software engineers 
need support for identifying and classifying 
ambiguities in policy and regulatory documents, so 
they may distinguish between necessary and 
discretionary software requirements that will lead to 
demonstrably compliant software systems. Using 
examples from our in-depth analysis of the HIPAA, we 
have shown how to create the following software 
artifacts to achieve this objective: specifications for 
transactions including interfaces between business and 
software processes; data schemas and data 
maintenance requirements; and functional 
requirements with associated test cases for ensuring 
that systems comply with policies and regulations. 

Currently, we are continuing to validate this 
approach via our analysis of §164.520-§164.526 to 
further validate the scalability of the techniques and to 
identify alternative or additional ways to acquire 
artifacts from formal models of activities. The growing 
body of structured domain knowledge we have 
developed from our HIPAA analyses, including the 
generalized natural language patterns and techniques to 
perform formal consistency checking [8], are being 
integrated into tool support to assists others in applying 
this approach to other regulations and standards. 



 

 

Finally, we are seeking opportunities to work with 
auditors and compliance officers to assess the 
challenges they face in aligning the formal abstractions 
from our methodology with legacy information 
systems to support their compliance goals. 
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