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Abstract

Traditional security policies largely focus on access
control requirements, which specify who can access
what under what circumstances. Besides access con-
trol requirements, the availability of services in many
applications often further imposes obligation require-
ments, which specify what actions have to be taken
by a subject in the future as a condition of getting
certain privileges at present. However, it is not clear
yet what the implications of obligation policies are
concerning the security goals of a system.

In this paper, we propose a formal metamodel that
captures the key aspects of a system that are rele-
vant to obligation management. We formally inves-
tigate the interpretation of security policies from the
perspective of obligations, and define secure system
states based on the concept of accountability. We also
study the complexity of checking a state’s account-
ability under different assumptions about a system.

Categories and Subject Descriptors: K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection

General Terms: Security, Theory

Keywords: Policy, Obligations

1 Introduction

Security policies are widely used in the management
of sensitive information and valuable resources in a
variety of applications and systems. Traditional se-
curity policies largely focus on the specification and
management of access control requirements, i.e., what
principals are allowed to access what objects and
when. Besides controlling principals’ privileges, the

availability of services as well as the correct oper-
ation of a system often imposes obligation require-
ments which specify what actions a subject is obliged
to perform in the future in order to allow certain ac-
tions to be taken at present. For example, if a cus-
tomer is allowed to subscribe to a certain service, then
she is obliged to pay the subscription fee by the end
of each month. In some situations, one’s obligations
may also result from the action performed by others
instead of by oneself. For example, in a conference
reviewing system, once a paper is assigned by the
program chair to a reviewer, the reviewer is obliged
to submit her review before a certain deadline.

Obligation requirements have traditionally been
hard-coded into applications. But recently, obliga-
tions are increasingly being expressed explicitly as
part of security policies. As is the case for many
policy-based systems, this approach offers advantages
in terms of flexible management and easy mainte-
nance of obligations. It allows a system to change
obligation requirements quickly when flaws in exist-
ing policies are found, to react to new circumstances
promptly, and to accurately enforce complex obliga-
tion requirements. In particular, supporting obliga-
tions in policies can be an important part of trans-
lating high level security goals into low level policies.

As traditional access control policies are only con-
cerned with permitting or denying subjects the ability
to take certain actions, they cannot be used directly
to express obligation requirements. Recently, sev-
eral security policy languages have been proposed to
support the specification of obligation requirements
[9,12,15,18]. Works have also been done on monitor-
ing the fulfillment of obligations [4,5].

The introduction of obligations inevitably compli-
cates the management of security policies. Tradition-



ally, a reference monitor of a system only needs to de-
termine whether an access request should be allowed,
purely from an access control perspective. When obli-
gations are added, it is not immediately clear how
they should affect the reference monitor’s decision. In
other words, the relationship between access control
and obligations is not yet well studied. Further, exist-
ing work on obligations focuses on the responsibility
of the subjects who receive obligations. However, to
ensure the correct operation of a system, a reference
monitor should not blindly assign obligations to sub-
jects and eventually check whether they have been
fulfilled. Instead, a system should only allow obliga-
tions to be assigned when the receiving subject will
have sufficient privileges as well as other resources in
the system to successfully fulfill the obligation. That
is, a diligent user should always be able to fulfill her
obligations. Otherwise, the obligation should be not
assigned in the first place.

Conceptually, a security policy defines what the
secure states are for a system, and the job of a refer-
ence monitor is to ensure the system stays in a secure
state and prevent it from transitioning into insecure
states. With obligations introduced in security poli-
cies, the questions of how to define secure states and
how to ensure the security of a system, to the best
of our knowledge, have not yet been adequately in-
vestigated. These are the focus of this paper. More
specifically, the contributions of this paper are as fol-
lows.

1. We abstract common system components that are
relevant to the management of obligations, and
propose a formal metamodel to capture a system
and its possible states from the perspective of obli-
gations.

2. Built on the above metamodel, we propose a for-
mal definition of secure states for obligation man-
agement. Our definition is based on the concept of
“accountability”. Intuitively, considering subjects
as autonomous entities, a system cannot prevent a
subject from failing to fulfill its obligations. Viola-
tion of obligations may not be avoidable. However,
once an obligation is violated, the system should be
able to clearly identify who is responsible. In this
paper, we view an obligation as a contract between
a system and a subject. A system is accountable if
and only if all the obligations will be fulfilled sup-
posing all the subjects are diligent. In other words,
a secure state implies that any obligation violation
can only be due to the lack of diligence of subjects.

3. We further study the problem of checking whether
a state is accountable. We identify a set of con-
ditions, which, when satisfied, allow the efficient
checking of a state’s accountability. We also show
that when some of the conditions do not hold,
the problem becomes intractable in the worst case,
when only considering the abstract construct of the
metamodel.

4. We study the accountability problem in the con-

text of a simple yet expressive authorization system

with obligations, and show the tractability of the

accountability checking problem even though the
system does not satisfy the above identified condi-
tions.

The rest of the paper is organized as follows. In sec-
tion 2, we propose a set of criteria for the specification
and management of obligations, and further elabo-
rate the problem addressed in the paper. Section 3
presents a formal metamodel for systems with obli-
gations as well as obligation policies. In section 4, we
formally define the concept of accountability in terms
of state transitions. In section 5, we study the prob-
lem of determining a state’s accountability, based on
the proposed model. In section 5, we show that the
accountability problem can be efficiently solved in an
authorization system with obligations. We report
closely related work in section 6, and conclude this
paper in section 7.

2 Properties of Obligations

An obligation is a requirement for a subject to take
some action at some time in the future. Such obliga-
tions are sometimes also referred to as positive obli-
gations, in contrast to “negative obligations” (or re-
frainments), where a subject is required not to take
some action at some time in the future. For example,
in privacy-enhanced systems, one common negative
obligation is that a company should not share users’
private information without their consent. In this
paper, we focus on positive obligations. Although we
believe that our model could handle negative obli-
gations, we do not include them because in central-
ized systems negative obligations can be easily trans-
formed into access control requirements, and thus can
be enforced directly by the reference monitor. Pos-
itive obligations, on the other hand, cannot be en-
forced by a system in a direct way. After all, if
a system could cause an action to happen, then it
would no longer be a user action, but instead a sys-



tem action. Negative obligations are more necessary
in distributed systems, a topic we will explore in later
papers.

Unenforcable. As mentioned above, an action re-

quired by an obligation cannot be forced to happen
by a system. For example, a system cannot force a
subscriber to pay his fee on time. Similarly, a pro-
gram chair cannot ensure that every reviewer will
submit their reviews before the deadline. This is
an essential difference from access control require-
ments, which must be enforcable by the systems.

Monitorable. Though a system cannot force an obli-

gation to be fulfilled, it should be able to moni-
tor the status of an obligation, i.e., whether it has
been fulfilled. Although it is conceivable that a sys-
tem could give a user an obligation which it cannot
monitor, such obligations are clearly not relevant
to any decisions or analysis which the system un-
dertakes.

If an obligation is to be feasibly monitored, there
are two conditions which must be met. The first is
that it must be clear when an obligation has been ful-
filled. And equally importantly, it must be clear when
a user has failed to fulfill an obligation with which he
has been charged. Ome implication of this require-
ment is that an obligation must have some sort of
deadline before which it must be accomplished. Oth-
erwise there is no point at which it can be said that
a user has violated his obligation. As such, there is
no real motivation for users to fulfill their obligations.
Therefore, a time window should be an intrinsic prop-
erty of an obligation.

Obligations arise in a system when a user is allowed
to take an action with the condition that they also
accept an obligation or when a user’s action causes
someone else to receive an obligation. For instance,
a policy may specify that users are allowed to run
certain tests, but only if they agree to submit a re-
port about the results of those tests within a week
afterwards. Or a policy might say that employees are
allowed to submit vacation requests, but when they
do, this gives the human resources department an
obligation to review those requests and take action
on them within a week.

3 A Metamodel for Systems
with Obligations

In this section, we present a formal metamodel that
encompasses the basic constructs of a system from the
perspective of obligations. The model serves as the
foundation for our later discussion on the account-
ability of states and checking of accountability.

First let us discuss how we model obligations them-
selves. An obligation is an action which some sub-
ject must carry out during some timeframe. Thus,
we model an obligation as a tuple obl(s, a, O, [ts,te]),
where s is a subject, a is an action, [ts,t.] is a time
window during which s is obliged to take action a,
and O is a finite sequence of zero or more objects on
which the action must be performed.

An obligation system consists of the following com-
ponents:

e 7: a countable set of time values. For simplicity
we take 7 to be the non-negative integers, with
0 indicating the system start time and each value
indicating a point in time after that by a multiple
of some appropriate, unspecified time interval.

e S: a set of subjects that could be added to the
state of the system.

e O: a set of objects with S C O.

e A: a finite set of actions that can be initiated by
subjects. Each action’s behavior is given by a func-
tion that takes as input the current system state
(defined just below), the subject performing the
action, and a finite sequence of zero or more ob-
jects. It outputs a new system state (except for
the new time which is managed separately).

e B=SxAXxO*xT xT: aset of obligations that
subjects can incur. Given an obligation b € B, we
use b.s to refer to the subject that is obligated, b.a
for the action the subject is obligated to perform,
b.0 for the finite sequence of zero or more objects
that are parameters to the action, and b.t; and b.t,
to refer to the start and end, respectively, of the
period in which the subject is obligated to perform
the action.

e ST =T X FP(S) x FP(O) x & x FP(B) : the
set of system states. Here, we use FP(X) ={X C
X|X is finite} to denote the set of finite subsets
of the given set. We use st = (t,5,0,0,B) to
denote systems states, where ¢ is the time in the
system, B is the set of pending obligations, and o is
a fully abstract representation of all other features



of the system state. X is possibly infinite. We use
Stewr = (tewrs Seurs Ocurs Ocury Beur) to denote the
current state of the system.

e P: a set of policy rules. Each policy rule spec-
ifies an action that can be taken, under what cir-
cumstances it may be taken, and what obliga-
tions (if any) results from that action. We de-
note policy rules of this type by using the notation
a(st,s,0) «— cond : F,y, where a € A and cond is
a predicate in SXT xXx O — {true, false}, indicat-
ing that subject s is authorized to perform action
a on objects O at time ¢ with the system in state o
if cond(s,t,0,0) is true. Fy; is an obligation func-
tion, which takes the current state of the system o,
the current time, the subject s, and the arguments
O as its input and outputs a finite set B C B of
obligations caused by the action. Note that obliga-
tions in B may not necessarily be incurred by the
same subject. If the action a is taken, then all the
obligations in B should be fulfilled.

We allow multiple action rules to have the same
action as their heads. As long as the condition of
one rule is true, the action is allowed, causing the
obligations resulting from that rule to be incurred.

As such, action rules can be used to express obliga-
tion requirements where a subject has a choice to
take one of several actions to fulfill its obligation.
We can simply have several rules with the same
head and condition but with different obligations.
The conditions in action rules essentially model ac-
cess control policies of a system. Here we adopt a
closed world assumption. If none of the conditions
of the action rules for an action is true, then a sub-
ject is not allowed to take that action.

An obligation obl(s,a, O, [ts,t.]) may be in one of
four states: invalid, pending, fulfilled, or violated. If it
is the case that the t. is already passed when it is as-
signed, then the obligation is inwvalid, as it, on its face,
can clearly not be carried out. If an obligation has
been assigned and its action has been carried out dur-
ing the time window [ts, t¢], then it has been fulfilled.
If it has been assigned, has not been fulfilled, and is
not invalid, but t. has passed, then it is violated. If
an obligation is not nwvalid but has not yet become
fulfilled or violated, then it is pending.

3.1 State Transition

As indicated above, we assume system time is dis-
crete, and model it as a non-negative integer repre-

senting the number of clock ticks from some prede-
termined start time. For simplicity, we assume that
each action can be finished in a single clock tick, and
its effect will be reflected in the state of the next clock
tick. Suppose the state of a system at time tg is sto,
and Alice takes an action at ty. This action will not
change sty. Instead the state st; at time ¢ty + 1 will
be affected by Alice’s action. When multiple actions
are attempted at the same time , we assume the sys-
tem uses a function fi,.qns to get the state of the next
clock tick. More specifically, firqns takes the current
state of the system (which also includes the current
time) and a set of actions attempted by subjects, and
returns for the next clock tick the state obtained by
applying the permitted actions in some unspecified,
fixed order which has the property that at the point
each action is taken the state satisfies a policy rule
which allows that action. In other words, we adopt a
deterministic model of state transition; from the cur-
rent state and the actions taken at present, we can
uniquely determine the next state.

In fact, since an action may have multiple action
rules associated with it, when a subject takes an ac-
tion, it may choose different rules to authorize the
action. This may result in different obligations as-
signed . Thus, when describing state transitions, be-
sides specifying what actions subjects take, it is also
necessary to indicate the policy rules applied for these
actions. Let AP be a set of tuples (s,a,r), where s
is a subject, a is an action and r is a policy rule for
a. (AP stands for “action plan”.) Let st be a state
at time t. We use st F4p st’ to denote that st has
transitioned to state st’ at time ¢t + 1 after actions in
AP have been taken at time t. Legal state transitions
must have the property that for each (s,a,r) € AP,
the condition of r is true at the state that is current
when (s, a,r) is reached in the unspecified, fixed or-
der in which members of AP are performed by firans-
If AP = (), then st’ corresponds to the system state
when the time is incremented by one clock tick, but
no other component of the system state is changed.

Definition 1. We say st F4p st’ is an obligation-
abiding transition, if (1) there are no two tuples
(s1,a1,71) and (s2,az2,72) in AP such that s1 = so
and a1 = ag; and (2) for any (s,a,r) € AP, there
exists a pending obligation (s,a, [ts,t.]) in st.B. An
obligation-abiding transition is valid if no pending
obligations in st become violated in st’.

An obligation-abiding transition corresponds to
the system evolution where subjects take actions



only to fulfill their obligations. A sequence of valid
obligation-abiding transitions corresponds to the sit-
uation where subjects are diligent and always fulfill
their obligations. Note that although a transition in
which no users take any actions will be guaranteed to
be obligation-abiding, it will not be guaranteed to be
valid.

3.2 An Example Obligation System

We use a simple conference reviewing system as an
example to show how a system with obligations can
be represented in the above metamodel.

In this system, after collecting submitted papers,
the program chair of a conference assigns papers to re-
viewers. Once the assignment is done, each reviewer
is obliged to submit their reviews by a certain dead-
line. A reviewer can also submit reviews for papers
not assigned to them. If a reviewer submits a review
for a paper, she is obliged to attend the discussion of
the paper, which decides whether the paper should
be accepted.

This system can be modeled as follows.

e Subjects s are the registered users in the system.

e Objects o are submitted papers (and the subjects).

e The actions allowed in the system include assign-
ing papers to reviewers, submitting a review and
joining discussion of a paper.

e The o-portion of the system state is no longer fully
abstract, but instead represents attributes of sub-
jects and objects. For instance, the set of roles of
subject s is given by o.roles(s).

The policy of the system may be the following:

o assign_reviewer(st, s1,{s2,0}) —
prog_chair € st.o.roles(sy) A
reviewer € st.o.roles(sz) A
st.o.name(ss) & st.o.author_list(o) :
{obl(sa, submit_review(ss, 0),
[06/01/06,07/15/06])}.
o submit_review(st, s, {o0}) «—
reviewer € st.o.roles(s) A
st.o.name(s) & st.o.author_list(o) :
{obl(s, discuss(s, 0),[07/22/06,07/22/06]),
obl(s,vote(s,0),[07/23/06,07/23/06])}.
(Once a reviewer submits a review of a paper, he
or she is added into the reviewer list of the paper.)

o discuss(st,s,{o}) < reviewer € st.o.roles(s) A
s.name € st.c.author_list(o) : 0.

e vote(st, s, {o}) —

s.name € st.o.reviewer_list(o) : 0.

We do not show the semantics of each action
since most of them are straightforward. Suppose
on 06/01/06 the program chair assigns Alice to re-
view papers p;, pz and p3. Then three pend-
ing obligations are added into the system: obl; =
obl(Alice, submit_review(Alice, p1), [06/01/06,
07/15/06]), obles = obl(Alice, submit_review(Alice,
p2), [06/01/06, 07/15/06]) and obly = obl(Alice,
submit_review(Alice, p3), [06/01/06, 07/15/06]). On
07/10/06, Alice submits her review for paper pj.
Then in the state of the system on 07/11/06, the
status of obl; becomes fulfilled, and a new pend-
ing obligation obly = obl(Alice, discuss(Alice, p1),
[07/23/06, 07/23/06]) is created. Note that the tran-
sition from the state of the system on 07/10/06 to
that on 07/11/06 is obligation-abiding, as the action
Alice takes is required by one of her obligations. Also,
since on 07/11/06 no pending obligations become
violated, the transition is a valid obligation-abiding
one.

On the other hand, suppose Bob, who is not as-
signed as one of the reviewers for pp, is interested
in the paper, and also submits a review for p; on
07/10/06. Then the transition is not obligation-
abiding, since Bob’s action is not required by any
obligation.

Further, suppose Alice fails to submit a review
for p3 before 07/15/06. Then the transition from
the state on 07/15/06 to that on 07/16/06 is still
obligation-abiding according to our definition. How-
ever, it is not a valid one since obls becomes violated
on 07/16/06.

4 Security Goals in Systems

with Obligations

Conceptually, a system’s security policy divides sys-
tem states into two disjoint sets: secure states and
insecure states. The goal of security is to ensure that
a system always stays in secure states and never tran-
sits into insecure states. Under the same principle,
we study the question of how we should interpret a
security policy which includes obligations, i.e., what
states are considered secure under policies with obli-
gations.

One straightforward approach is to define secure
states as those that have no obligations being vio-
lated. Such states are certainly desirable. However,
due to the unenforceable nature of obligations, a sys-



tem can never guarantee that an obligation will be
fulfilled. Instead, it seems more appropriate for a
system to ensure that all obligations can be fulfilled,
in the sense that the obligated user has the neces-
sary authorizations to perform the obligatory action.
However, as we will see, this alone does not provide
sufficiently clear guidance. Certainly if the system de-
termines that it is impossible for a user to fulfill the
obligation which would be incurred by his perform-
ing some requested action, then the system should
deny that action. Likewise, if the system is certain
that a user will have sufficient privileges to fulfill an
obligation before its deadline, then it should allow
the requested action. But what is the appropriate
thing for the system to do if the ability of the user
to perform the obligation depends on whether or not
actions are taken to change his privileges?

Suppose there exists one sequence of actions or
events which would cause the user to be unable to
fulfill his obligations and another which would cause
the user to be able to. One highly conservative re-
sponse would be always to deny requests that would
incur obligations that the obligated user might not
be able to fulfill. However, in any system with a su-
peruser, this would result in virtually every request
being denied. In fact, so long as there existed any
remedy which could take rights away from the user
in any circumstance, all requests from that user for
actions which carry obligations would be denied. One
can imagine a scenario in which a CEO is denied the
right to edit a file because it is theoretically possible
that the board of directors could oust her from her
position in the next five minutes.

Similarly, if one took the completely optimistic ap-
proach, the opposite scenario rears its head. So long
as there exists some possible way that the user might
be able to fulfill the incurred obligation, the requested
action would be permitted, even if the events neces-
sary for the user to have the required authorizations
are highly unlikely. For example, Bob, a mailroom
employee, could be allowed an action even though he
could only fulfill the associated obligation if the board
fired the CEO and hired Bob in his place within the
next five minutes. As such, it is clear that neither
strategy is acceptable.

In this paper, we offer the concept of accountability.
Rather than requiring that it be impossible for obli-
gations to be violated, instead we assume that it is
possible that obligations go unfulfilled, but when they
do, we would like to clearly identify whose fault it is.
Obviously, an obligation can go unfulfilled because a

subject simply fails to take the required action before
the deadline, even if he has sufficient privileges and
resources. It is desirable that this is the only reason
that an obligation will go unfulfilled.

Intuitively, if it is the case that all users have suffi-
cient privileges and resource to carry out their obliga-
tions so long as every other user carries out his or her
obligation, then a system is said to be in an account-
able state, because we can know that whoever first
fails to carry out an obligation is responsible for the
violation and anything which results from it. In this
paper, we describe systems which attempt to main-
tain accountability, but we reserve for future work
issues pertaining to assigning blame in more complex
scenarios such as failures after the system has left an
accountable state.

Note that when determining whether a state is ac-
countable, we only consider those actions that are re-
quired to be taken by obligations. Although a user
may actively take some actions which may interfere
with another user’s obligations, such actions can be
controlled by a system. Once the system determines
whether the resulting state will be accountable or not,
it can take appropriate actions. For example, it may
either prevent the user from taking the action, or it
may discharge or change the interfered obligations so
that the resulting state is still accountable. In this
paper, we focus on the definition and checking of ac-
countable states. We will briefly discuss the handling
of actions that may lead a system into an unaccount-
able state.

Before we give a formal definition of accountable
states, it is necessary to discuss in more detail what
situation it is in which a user is deemed as failing to
fulfill her obligation. Intuitively, when an obligation
(s,a,[ts,te]) is assigned, we can view it as a contract
between a subject s and a system. From the subject’s
perspective, it has promised to take action a during
the given time window. On the other hand, from
the system’s perspective, it also implicitly promises
that if everybody else fulfills their obligations, then
s should have the needed privileges and resources to
take action a. Depending on the interpretation of
obligations, we may have different definitions of ac-
countability.

Here we consider two types of interpretations. In
the first type, if everybody else fulfills their obliga-
tions, then a system guarantees that Alice can take
action a at any time point during [ts,t.]. This is a
very strong promise from the system, which means
that the condition of the rule for action a is always



true for Alice during the obligation’s time window.

In the second type, a system only promises that,
if everybody else fulfills their obligations, then Alice
can at least take action a at the end point ¢, of the
obligation’s time window. Note that it does not mean
that Alice has to take the action at t.; it only means
that in the worst case Alice will still be able to fulfill
the obligation at t.. Clearly, this type of promise
is weaker than the first one, since it only requires
that the condition of the rule for action a is true at
te instead of during the whole time window of the
obligation.

Generally speaking, the first type of accountability
is suitable for systems in which users may have addi-
tional restrictions of which the system is not aware.
If there are additional constraints on when a user is
available to fulfill her obligations, then the system
should ensure that the full time is available to the
user so that whenever the user has the opportunity
to fulfill one of her obligations, she has the necessary
authorizations to do so. For instance, a system at
a company with flexible work hours would probably
prefer strong accountability since it would not know
when employees would be available to fulfill their obli-
gations. By contrast, in a more all-encompassing sys-
tem, the weaker accountability is sufficient: since the
system is aware of all scheduling constraints, when-
ever the user chooses to attempt to fulfill the obliga-
tion, either she will be able to fulfill it at that time,
or the system will have ensured that she will again be
available at a later time prior to the deadline. Hence,
a system at a military base, where all users can be ex-
pected to be available precisely when the policies say
that they should, might be able to use weak account-
ability, and derive benefit from the fact that it is a
weaker requirement and therefore easier to ensure.

There is a third possible type of accountability, in
which the system ensures only that there exists some
time within the frame when the user will be able to
fulfill his obligation. This type, however, is not likely
to be generally suitable for ordinary users since it
would require that the user discover that time be-
fore it passes. It may be suitable for systems with
automated agents which could regularly poll the sys-
tem to see if the obligation can be fulfilled. However,
for reasons of space, we do not formalize or otherwise
discuss the implications of that third type of account-
ability in this paper.

Next, we formally define accountable states for
each of the first two interpretations. Recall from
Definition 1 that a transition is valid and obligation-

adbiding if all the actions in its action plan are from
existing obligations and no obligations are violated.

Definition 2. Let st be a system state with time t
and pending obligations obly, ..., obl,. We say st is a
type-1 undesirable state if there exists an obligation
obl; = obl(s;,a, [tsiytei]), 1 < i < n, such that (1)
the condition cond of each action rule for a; is false
for s;, i.e., cond(s;,t,st.o) = false; and (2) tg; <
b < e

A state is type-1 undesirable if a subject cannot ful-
fill an obligation although the current time is within
the time window of the obligation.

Definition 3. A state st is strongly accountable if
there exists no sequence of wvalid obligation-abiding
transitions that lead st to a type-1 undesirable state.

This definition of accountability corresponds to the
first interpretation of obligations. For the second in-
terpretation, we have the following definition.

Definition 4. Let st be a system state with time t
and pending obligations obly, ... ,o0bl,. We say st is a
type-2 undesirable state if there exists an obligation
obl; = obl(s;,a;,[tsiytei]), 1 < i < n, such that (1)
the condition cond of each action rule for a; is false
for s, i.e., cond(s;,t, st.o) = false; and (2) t = te;.

A state is type-2 undesirable if the current time is
the deadline of a pending obligation, which however
cannot be fulfilled at present.

Definition 5. A state st is weakly accountable if
there exists no sequence of valid obligation-abiding
transitions that lead st to a type-2 undesirable state.

Obviously, if a state is strongly accountable, it is
also weakly accountable. Let us consider the follow-
ing scenarios. Suppose in state st at time 0 Alice
does not have the privilege to read file f, but she has
an obligation to read f between time 10 and time
20. Meanwhile, Bob, whose is the owner of f, has
an obligation to grant the read privilege of f to Alice
between time 5 and time 15. According to our defi-
nition, st is not strongly accountable, as it is possible
that Alice decides to fulfill her obligation at time 12,
but she cannot do so because she lacks the read priv-
ilege. In this case Bob is not to blame, since Bob
can decide to fulfill his obligation at time 14 for ex-
ample. In other words, st may possibly transit into
a future state where a subject cannot fulfill its obli-
gation, which however is not due to any subject’s
negligence.



On the other hand, st is weakly accountable. This
is because Alice can always fulfill her obligation at
time 20. If she still does not have the privilege to
read f at time 20, it must be due to Bob’s negligence.

5 The Accountability Problem

In this section, we study the accountability problem,
i.e., given a state in a system, determining whether it
is accountable. This problem is naturally faced by a
reference monitor when a subject makes a request to
take an action which, if allowed, would result in the
assignment of obligations.

Note that since the constructs of our metamodel
are very abstract, it can accommodate systems with
arbitrarily complex internal structures. It is not hard
to see that, purely based on the metamodel without
any constraints on a system’s properties, the account-
ability problem can easily be undecidable. In the fol-
lowing, we show a reduction of the halting problem
to the accountability problem.

Given a Turing machine 7', we can construct a sys-
tem which emulates that Turing machine by specify-
ing that the system state, o, includes a potentially in-
finite tape, a position on that tape, a current machine
state, and a boolean variable which describes whether
or not the system has halted. Then we define a single
action ” Advance”, which changes the state and the
tape in accordance with the state transition rules of
T and, if T halts, sets the halt variable to true. For
purposes of simplicity, we define a single subject, s.
To make the Turing machine operate, we define an
initial obligation of (s, Advance, [1,1]). Then we de-
fine a policy rule for Advance so that the state can
be advanced so long as the machine has not halted
and causes an obligation to advance the state again.
Explicitly, the policy rule is Advance(s) «— halt =
false : f(o,t,s) = (s, Advance, curr + 1, curr + 1),
where curr denotes the current time of a system. As
such, if the machine ever halts, there will be an obli-
gation which cannot be fulfilled. But if it never halts,
there will not be one. Therefore, the question of
whether or not the state is unaccountable is equiv-
alent to the question of whether or not the Turing
machine will halt. As such, in the worst case, the ac-
countability problem is undecidable, when only con-
sidering the constructs of the metamodel without any
constraints.

To describe such a reduction is, of course, by no
means to say that the accountability problem is un-

decidable in all obligations systems. In specific sys-
tems, determining accountability may often be quite
easy. In particular, we are interested in identifying
the properties of obligation systems which allow us
to efficiently solve the accountability problem.

Let us consider obligation systems that satisfy the
following conditions:

e No cascading obligations. In the metamodel, the
action to fulfill an obligation may also incur further
obligations. If a system does not have such cascad-
ing obligations, then each obligation only involves
actions whose policies do not carry obligations.

e Monotonicity. From a given state, if the condition
on a policy is true for a subject, it will remain
true in all future states. In other words, the set of
rules that a subject can satisfy does not decrease
during state transitions. As such, the set of rules
is monotonic relative to time.

e Commutative actions. For any two actions, a; and
as if the conditions of the policy rules of both ay
and ay are met, then taking action a; followed by
as has the same effect on the system state as taking
action ao followed by a;.

These properties might seem a little draconian.
But as we will show later, if we remove any one of
them, without considering other specifics of a system,
the accountability problem is intractable. Again, this
does not mean that particular systems which do not
have these properties cannot be efficiently solved,
since any particular system would have additional
properties which we do not assume here. In fact, in
section 5 we will present a class of systems which do
not conform to all of these assumptions, but do have
an efficient algorithm for the accountability problem.
With that said, any time we have a system where the
above three properties hold, we can efficiently solve
the accountability problem, without looking at other
specifics of that system.

Theorem 1. Given a system that satisfies the above
three properties, the problem to check whether a given
state is weakly accountable is tractable.

Proof. Sketch. In a monotonic system, once an oblig-
atory action becomes enabled, it remains so in later
states. Thus, weak accountability in this context is
equivalent to requiring that each obligatory action
is enabled at the end of its time window. The sce-
nario that will be most challenging with respect to
enabling a given obligatory action is the one in which
all other obligatory actions are taken at the latest



possible time, right before their deadlines. There-
fore, we can evaluate a particular state by examining
what happens when each obligatory action in that
state is attempted at the obligation’s deadline. If by
so doing, every obligation can be fulfilled (presuming
that all other obligations are fulfilled), then the state
is weakly accountable. If there exists an obligation
in the state for whose action there exists no policy
rule whose condition is satisfied when the obligation’s
deadline has arrived, then the state is unaccountable.

Assuming it takes a constant time to check whether
a condition is satisfied in a state, the complexity of
the above algorithm is O(nm), where n is the number
of pending obligations in a state, and m is the number
of action rules in the policy. O

We have a similar result for the checking of strong
accountability.

Theorem 2. Given a system that satisfies the above
three properties, the problem to check whether a given
state is strongly accountable is tractable.

Proof. Sketch. In strong accountability, it must be
the case that an obligation can be fulfilled at any
point during its time frame. In a monotonic sys-
tem, this is equivalent to being able to be fulfilled
at the start of its time period. However, if we were to
simply schedule all obligations for the start points of
their time windows, we would not have a worst case
scenario, since all the conditions would be fulfilled as
soon as they possibly could.

Instead, we iterate through each obligation individ-
ually and consider whether or not it will be able to
be fulfilled at the beginning of its time period assum-
ing that the other obligations all happen as late as
possible. We can do this by assuming that all obliga-
tions whose end time is before the current obligation’s
start time have occurred and seeing if the state will
allow the current obligation to be fulfilled. If all obli-
gations can be fulfilled under these conditions, then
the state is accountable, elsewise it is unaccountable.
The complexity of this algorithm is O(n?m), where n
is the number of pending obligations in a state, and
m is the number of action rules in the policy. [

If we remove one of the above three properties,
then the accountability problem becomes intractable,
when only given the constructs of the metamodel.

Theorem 3. Given a system which only satisfies two
of above three properties, i.e., the no cascading obliga-
tion, the monotonicity and commutative action prop-
erties, the problem of determining whether a state

of the system is strongly/weakly accountable is in-
tractable.

Instead of attempting to reduce NP-complete prob-
lems to the accountability problem, it is in fact much
easier to reduce them to the problem of checking of
unaccountability, and as such we prove that under
the above conditions, the accountability problem is
Co-NP Hard. We present these three reductions in
appendix A.

6 A Concrete Model

As we saw in the previous section, in the abstract
model, determining the accountability of a system
can be done efficiently provided several restrictions
are placed on the system. In particular, one require-
ment was that actions perform state transitions that
cause the set of enabled actions in the system to ei-
ther increase (with respect to C) or stay the same. In
the abstract model, this could not be relaxed without
losing tractability. However in practice the restriction
is unlikely to be satisfactory, as it means that once
a subject is able to perform a given action, they will
always be able to perform that action.

By contrast with our meta-model, in practice, per-
mission states are structured objects. It turns out
that entirely realistic assumptions about that struc-
ture enable us to remove the assumption that actions
must increase while preserving tractability.

In this section we present a concrete model based
on the HRU access matrix model. Specifically, X,
the set of abstract states, is instantiated to be M =
28XOXR " the set of permission sets, in which R is
a set of access rights subjects can have on objects.
We denote permission sets by M and individual per-
missions by m = (s,0,r). Each permission is a triple
consisting of a subject, an object, and an access right,
and signifies that the subject has the right on the ob-
ject.

Actions are also modified so as to operate on per-
mission sets. Each action a € A is now assumed
to perform a finite sequence of operations that each
either add or remove a single permission from the
permission set (grant(m) and revoke(m)). Clearly, a
subject or an object with no associated permissions
has no effect on the system, so we assume that in
every state st, an object or a subject exists in st.O
and/or st.S if and only if it occurs in some permission
in the permission set st.M.



As we show below, the following restrictions on the
model make the problem of determining whether a
state is accountable tractable.

1. Policy rule conditions consist of a Boolean combi-
nation of permission tests (m € My, or m & Mey,)
expressed in conjunctive normal form.

2. Actions are partitioned into two sets—the first con-
sists of actions whose policy rules can impose obli-
gations and the second consists of actions that can
occur in those obligations. This means that one
cannot become obligated to take actions in the first
set, but performing such actions voluntarily can in-
cur obligations to perform actions in the second set.
Performing these latter actions does not incur any
obligations.

6.1 Algorithm for dealing with the
simplified concrete model

Given a current state steyr = (teur, Meur, Beur) that
is known to be accountable, we can use the proce-
dure below to determine whether or not adding a new
obligation b leaves the system in an accountable state.
Given a set of obligations B that need to be added, we
can use the procedure by considering the elements of
the set one at a time, adding each obligation in turn
to By, unless it would leave the system in an un-
accountable state, in which case we stop and return
the result that B cannot be added while preserving
accountability.

We are given an obligation b = (b.s, b.a, b.ts, b.t.).
Let the policy rule that governs a = b.a be a «
cond(s, t, M). Under the restrictions identified above,
cond(s, t, M) is a Boolean combinations of permission
membership tests expressed in conjunctive normal
form (i.e., a conjunction of disjunctions). The fol-
lowing steps are used to check each permission mem-
bership test in turn to see whether it is guaranteed.
The condition is guaranteed to be true if and only if
all of its conjuncts is true. Since any one conjunct
(/ie, any one disjunction) is guaranteed to be true
only if it is true in all possible schedules of obliga-
tions, we can know that we can evaluate the truth of
each conjunction without regard to any other. That
is, we are seeking to answer the question of whether
or not there exists a schedule which makes any one
of the conjuncts false.

So we examine each of the disjunctions individu-
ally, by initially examining all of the tests in a given
disjunction individually. If it is guaranteed to be true,

then we know that the disjunction is guaranteed to
be true, and we can move on to the next disjunction.
If we find that it is guaranteed to be false, then we
know that we can disregard it. If however, we find
that we do not know, we set it aside and later do a
more complex test.

This more complex test is not in the conference
version of this paper. It is necessary because it is
possible that although it may be the case that some
pair of rights 71 and r9 may each, individually, not be
guaranteed to exist in all possible schedules, r1 V o
could still be guaranteed. For instance, if there were
an obligation which both revoked r; and granted 75
and another obligation which both granted r; and
revoked 75 such that they had overlapping time in-
tervals, then neither 1 nor ro could be guaranteed,
but r1 V ro would be.

To test an individual right, all we are doing is
checking existing obligations to see what state the last
obligation to touches that permisison has left it in. If
it is unique and it has granted or revoked the right
we need, our answer is clear. But, if it is not clear
which obligation will be done last due to overlapping,
conflicting obligations, then we apply our more com-
plex analysis to see if the condition is guaranteed to
be satisfied.

6.1.1 Broad Algorithm

In the following, we assume a function
CheckDisjunction(O, M’ t,0,ty), which returns
true if there exists a schedule of obligations in O
which causes all of the permissions in M’ to not exist
at time ¢ when starting from state o at time ¢y5. The
algorithm to compute this function is discussed after
the general algorithm.

1. Check condition. We repeat the following for each
disjunction in the condition.

(a) Check if the disjunction contains any two tests,
m and —m for any permission m. If it does, skip
to the next disjunction.

(b)

(¢) We do the following for each test which is part
of the disjunction. We assume the test is posi-
tive (i.e., let it take the form ((s,0,7) € M). If
in fact the test is negative ((s,0,7) & M), then
the procedure is obtained from the following by
reversing the roles of “grant” and “revoke” and
negating permission membership tests. We refer
to the permission being tested as m.

Define a set of rights, M’, and initialize to .
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i

ii.

iii.

iv.

. If there is an overlapping revoke action, i.e.,

some br € B, has br.a revoke(b.s, 0,1)
and the intervals [b.ts, b.t.] and [br.ts, br.t] in-
tersect, than m cannot be guaranteed, and m
should be added to M’.

Otherwise, if the privilege exists in the current
state, i.e., (b.s,0,7) € My, then

A. If there is a prior revoke action, i.e., some
br € By, with br.a = revoke(b.s,0,r) has
br.te < b.ts, then pick such a br € By,
so as to maximize br.t, (subject to br.t, <
b.ts). The test can be guaranteed only
if there exists an obligation that someone
grant the permission (again) after br but
before b, i.e., only if some bg € By, has
bg.a = grant(b.s,o,r), brit. < bgts and
bg.te < b.ts. If the test can be guaranteed,
then proceed to the next disjunction. If it
cannot be guaranteed, then add m to M’.

B. Otherwise, the test can be guaranteed, and

we proceed to the next disjunction.

Otherwise, if the privilege does not exist in the
current state then

A. If there is some grant obligation for the
tested permission bg € B, that ends be-
fore b starts, then pick some bg so as to
maximize bg.ts while satisfying bg.t. < b.ts.
The test can be guaranteed only if no re-
voke obligation for the tested permission
br € By, that overlaps with the interval
[bg.ts,b.t.]. If the test can be guaranteed,
then we proceed to the next disjunction. If
the test cannot be guaranteed, then we add
m to M’.

Otherwise, the test cannot be guaranteed,
and we add m to M’.

B.

Next we need to evaluate whether or not there
exists any point ¢t between b.t; and b.t. at
which the condition is false. If such a t' ex-
ists, then there exists a such ¢’ which is equal
to either the start or end of b or the start or
end point of some other obligation, such that
that start or end point is in between b.ts and
b.t.. As such, we define a set 7" to be all such
start and end points (including b.t5 and b.t.).
Next we evaluate
CheckDisjunction(O, M’ t' o,ty) for all
t' € T' where O is the set of all pending
obligations other than b, ¢ is the current

state, and tg is the current time. If the result
is false for all ¢’ then we pass the test and
move to the next disjunction. If the result is
true for any t' then we are not accountable
and we terminate.

(d) If there are no disjunctions remaining, then we
are accountable and we terminate.

2. Check effect of b on overlapping and later obliga-
tions. The obligation b either grants or revokes
some right. Obligations which depend on the pres-
ence or absence of this right need to be considered.
To check them, we repeat step 1 of this algorithm
for each of them.

6.1.2 Helper Function

Next we must describe how to construct the
CheckDisjunction(O, M’ t',o,ty) function. First,
we remove any irrelevant obligations. O = O\{o €
Olo.te < to V oty > t'}. Then we define our base
cases. If M’ = then we return true. If O = then we
return false if any member of M’ is present in o and
true otherwise.

If neither of these is true then given that O is non-
empty, we find a set, L which is the possible obliga-
tions which can be the last obligation to occur before
t’. In order to do this, we find a set Lo which is
the set of all obligations with the latest start time.
If there is a single unique obligation with the latest
start time then Ly will have a single member. If there
is a tie, then Ly will have multiple members. Either
way, we will call the start time in question Lg.t.. L
is the set of all obligations which overlap Lg.t.. Any
obligation which does not overlap Lg.t. cannot be the
last obligation to occur.

Next we define R to be the subset of L which only
revokes permissions in M’ and does not grant any. If
R is empty, we check if any member of Ly overlaps t’'.
If no member of Lg overlaps ¢’ then we return false
and terminate. If some member of L overlaps ¢’ then
return CheckDisjunction(O\Lg, M',t', 0, tg).

If R is not empty, then assume that all statements
in R execute after all other statements in L. Be-
cause statements in R only revoke permissions and
do not grant any relevant permissions, we can order
them arbitrarily. Let Mg be the set of permissions
revoked by statements in R. All permissions in Mg
can be assumed to be revoked when the obligations
in R are executed. Hence, we know that a sched-
ule which denies all of M’ exists if we can order O\R
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such that all of M\ My is denied. As such, we return
CheckDisjunction(O\R, M'\Mgr,t',0,tg).

6.1.3 Timing Analysis

The first step of the main algorithm will be car-
ried out once for each obligation. Its substeps will
be carried out once for each disjunction in the con-
dition. Step 1(c)iv will invoke CheckDisjunction
up to twice for each pending obligation (if they all
overlap b with both their start and end). As such,
CheckDisjunction, is called O(n?m) times where n
is the number of obligations and m is the size of
the policy. When CheckDisjunction runs, it scans
through every obligation and every permission in-
volved in each obligation, so its run time is O(nm),
not counting the recursion. In each recursive case,
we remove at least one obligation before recursing.
As such, the depth of recursion is bounded by the
size of O. Since each call to CheckDisjunction can
result in at most one recursive call and the depth of
recursion is bounded by n, the total running time for
CheckDisjunction is O(n?m). And hence to total
running time for the algorithm is O(n*m?).

Theorem 4. Under the restrictions identified above,
the problem of determining whether a concrete system
is strongly accountable is in P.

6.2 Weak Accountability

Unfortunately, in the case of weak accountability,
there is an additional complication. Our above al-
gorithm, simplified to only check ¢ = b.t, would be
sound and would identify many weakly accountable
cases. However, it is not complete and would not in-
correctly identify certain accountable states as being
unaccountable. Specifically, if a system is strongly
accountable, and one obligation must wait to execute
until another one has completed, then those two obli-
gations must not overlap. In a weakly accountable
system, such overlap is acceptable, so long as the end
deadline for the dependent obligation falls after the
deadline of the other obligation.

As such, our definition of weak accountability re-
quires that we pay attention to such dependencies.
If two obligations overlap, we cannot assume that
they can happen in either order. Only some sched-
ules may be possible, and our algorithm above would
mark some states as unaccountable despite the fact
that the schedule which invalidates a given condition
cannot actually occur.
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It turns out, in fact, that in this case, unlike the
situation with the three general assumptions, that
it is more difficult to exactly determine accountabil-
ity in the weak accountability case. Specifically, the
problem of completely identifying weakly accountable
states in this concrete model is Co-NP Hard. In the
following subsection, we present a reduction of 3-SAT
to weak unaccountability checking.

6.2.1 Reduction

Given a 3-SAT expression S with a set of variables
X =x1,29,...,x,, we construct the following system:

Let there be a set of permissions, my, ..., m, and
also m*. To simplify things, rather than write a
policy and a list of pending obligations, we will as-
sume that there is a single user carrying out all
obligations and express the obligations in the form
(pre = condition, post = ef fect, [ts,te])-

The following pending obligations exist:

Ostart = (pre = true, post = Grant m*,[1,2])

01,4 = (pre = true, post = Grant my, []-a 2]
01,5 = (pre = true, post = Revoke mq, [17

On,t = (pre = true, post = Grant mq, [1, 2]
Op,f = (pre = true, post = Revoke myq, [1

or = (pre = true, post = Revoke m*, [3,9])
0g = (pre = 5’, post = Grant m*, [6,12])
0y = (pre = mx, post = nothing, [15, 20])

)
2))

)
2))

)

Where S’ is constructed as follows: Given a clause
(x; V- Vayg) from S, we replace it with (m;V—-m;V
myg V —m*) in S’

Then we ask whether or not this system is weakly
accountable. If it is not, then there exists a satisfying
assignment of variables for S.

The logic is as follows. Obviously, for 1 < i < n,
0;¢ and o; y will always be able to execute at their
deadline. Likewise, 0sqr¢ and o, will. And, o4 will
definitely be able to execute at its deadline, since the
execution of 0, guarantees that S’ will be true. How-
ever, whether or not o, will be able to execute at its
deadline depends on how o, and o, are scheduled.

If o, happens after oy, then m™ will not exist, and,
as such, o, will be unable to execute. As such, o,
will result in the state being unaccountable only when
o, cannot happen before o4. Clearly the time limits
do not prevent such a schedule. So the question is



whether or not a dependency does. If there is no sat-
isfying assignment for S, then S’ cannot be satisfied
until m* is revoked, in which case, o, depends on o,
and therefore cannot execute until after it. In that
case, the system is accountable. If there is a satis-
fying assignment, then it is not guaranteed that o,
occur after o, and, as such, o, is not guaranteed to
be able to execute, and the system is unaccountable.

As such, the problem of checking accountability in
a concrete system as described is Co-NP Hard. How-
ever, the model we have described is actually a su-
perset of the original HRU access matrix model. The
original model does not support either negative tests
for permissions or the use of logical or to connect
tests. We are still searching for an algorithm which
might solve the weak accountability question in the
more traditional version of the HRU access control
matrix.

7 Related Work

Several policy languages have been proposed recently
that support the specification of obligations in secu-
rity policies. XACML [27] and KAoS [28] both have a
limited model of obligations. Specifically, they model
obligations assigned to a system and cannot describe
user obligations, i.e., obligations assigned to ordinary
users who are not always trusted to fulfill obligations.
Ponder [9] and Rei [18] both support the specification
of user obligations. However, in the basic constructs
of both languages, time constraints of obligations,
e.g., deadlines, cannot be directly expressed.
Heimdall [12] is a prototype obligation monitoring
platform which keeps track of pending obligations.
It detects when obligations are fulfilled or violated.
This requires the modeling of time constraints in obli-
gations, which are explicitly supported in its policy
language xSPL. Sailer and Morciniec [23] propose a
means of using a third party to monitor obligation
compliance in contracts in web services settings.
Bettini et al. [4] studied the problem of choosing
appropriate policy rules to minimize the provisions
and obligations that a user receives in order to take
certain actions. In their policy model, each privilege
inference rule is associated with a set of obligations
and provisions, i.e., actions that have to be taken
before a request can be granted. Different from the
policy model used in this paper, they assume actions
in provisions and obligations are disjoint from those
requiring privileges. In other words, they can always
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be fulfilled. Clearly, with such policies, a system state
is always accountable. Bettini et al. [5, 6] further ex-
tended their policy model to express the handling of
obligation violations.

While the above works focus on the specification
and monitoring of obligations, this paper formally de-
fines secure states of a system with the presence of
obligations, and studies the complexity of checking
whether a state is secure. Therefore, this research is
complementary to the above mentioned works.

There have been other attempts to analyze sys-
tems with obligations to determine whether or not
parties have sufficient rights to carry out their obli-
gations. Firozabadi et al. [11] describe a system for
reasoning about obligations and policies in virtual or-
ganizations. However, their policies and obligations
are both just static allotments of resources at speci-
fied time periods, making the comparison quite sim-
ple at the cost of being very specific to their model.
Kamoda et al. [19] attempt something a little more
comprehensive in their model of policies in a web ser-
vices setting. They model obligations and privileges
which combine subjects, actions, and roles including
a model of role hierarchies. However, their model is
still limited because they model privileges and obli-
gations as being triggered only by events which are
independent of the actions in the system. As such
they are unable to model any situation in which user
actions can change the state of the system.

A large amount of work has been done on access
control policies. A variety of policy languages and
models have been proposed. Some of them are generic
(e.g., [10,16,17,24,29]) while others are for spe-
cific applications (e.g., [1,8,22,26]) or data models
(e.g., [2,3,13,20]). A common problem in access con-
trol is compliance checking, i.e., whether an access
should be allowed according to an access control pol-
icy. Depending on access control models, compliance
checking may be very simple (e.g., checking an access
control list), or quite complex (e.g., in distributed
trust management [7]). The problem of determining
whether a state is accountable is analogous to com-
pliance checking in access control, in that it must be
performed to determine whether to allow a requested
operation. However, since it needs to consider the
fulfillment of obligations in future states, the deter-
mining accountability is inherently more complicated.

Another important class of problems in access con-
trol is static policy analysis, e.g., safety analysis
[14,25] and availability analysis [21]. It is interest-
ing to investigate what types of policy analysis can



be performed in obligation policies, but existing work
does not address obligations. The analysis presented
in this paper is dynamic, but accountability can be
used in static analysis of systems.

8 Conclusion

Obligations can be important to the correct opera-
tion and availability of systems and applications. The
specification of obligations thus has increasingly been
integrated into security policies. In this paper, we
have proposed a useful means of modeling this com-
bination of security policies with obligation policies.
This has lead us to the concept of accountability,
which we have formally defined. Beyond that, we
proven several results concerning the complexity of
determining whether or not a system state is account-
able. We have also described a reasonable, more con-
crete system in our meta-model and outlined an algo-
rithm for checking the accountability of states in that
system. In short, we have investigated, formally, the
relationship between obligations and security policies.

However, many interesting open problems still ex-
ist in the management and analysis of obligations. In
particular, we would like to investigate the following
problems in the future.

e When a reference monitor determines that an ac-
tion will cause a system to become unaccountable,
there are several possible actions it could take.
Simple denial may have a negative impact on the
availability of services. Another possible approach
is to allow the action, but meanwhile adjust the
obligations in the system to make sure the result-
ing state is still accountable. For example, if Bob
would like to delete Alice from a system, then the
system may either transfer Alice’s obligations to
Bob or discharge them. What decisions the refer-
ence monitor makes should also be part of obliga-
tion management policies.

e In some systems it may be complex to check a
state’s accountability dynamically. However, there
may be static accountability analysis which can be
done. In particular, we would like to investigate
those properties of obligation policies which ensure
that when a system enforces its policies it will never
become unaccountable. For example, if the condi-
tions of the rules of those actions involved in obli-
gations are always true, then all the system states
are trivially accountable. We would like to identify
more such properties in the future.
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e We present a concrete model for authorization sys-
tems with obligations in section 5. It would be in-
teresting to make it more specific to support com-
monly available features in today’s access control
systems such as roles and cascading delegations.

e Obligations may also be assigned due to the oc-
curence of unexpected events instead of explicit ac-
tion requests [9]. For example, a policy may specify
that a system administrator is obliged to restore
the file server within 24 hours after a system crash.
We plan to extend our metamodel to support event
triggered obligations, and investigate how the con-
cept of accountability may be affected after intro-
ducing them.
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A Reductions

In section 5, we describe three system properties un-
der which we can solve the problem of accountability
efficiently. Here we show that if we remove any one
of these properties, the problem of unaccountability
become NP-hard, and hence the problem of account-
ability is CoNP-hard.

A.1 Without the Property of No Cas-
cading Obligations

First we show that if we allow cascading obligations,
we can reduce SAT to unaccountability. In SAT,
there is some set of boolean variables {x1,...,2,},
and some boolean expression of these variables
X(x1,...,25), and we are attempting to determine
if there is an assignment of values to variables such
that X is true.

To describe our reduction, we first define the state
of our system as being composed of a set of boolean
variables {z1,...,x,} and an integer counter m. We
also define our system having a single subject s.

There are 3n + 1 different actions available. The
first 2n of them are used for setting the variables to
either 0 or 1. However, simple assignment would not
meet our condition that different actions be commu-
tative. As such, we define them to be assignments
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which cannot decrease the value. Specifically, for
i =1,...,n we define actions set? which sets z; to
0 only if it was already 0 and also increments the
counter m by 1 and set} which sets z; to 1 in all cir-
cumstances and also increments m by 1. As such, if
both set? and set! occur in either order, the result
will be that x; is set to 1.

The next n actions we name start; fori =1,...,n.
These actions have no effect. The final action we
name check, and it also has no effect.

Then we have a set of policies for : = 1,...,n:

setd(s) « true: f(o,t,s) =10

setl(s) «— true: f(o,t,s) =0

start;(s) « true : f(o,t,s) = {(s,set?,2n +
2i,2n + 2i + 1)}
starti(s) « true : f(o,t,s) = {(s,set},2n +

2, 2n + 2i + 1)}

check(s) — m > nA=X(zq,...
0

73777«) : f(a-’ t? s)

Lastly, we define our initial state in which, ¢t =
x; 0 for 4 = 1,...,n, and we have a set
n + 1 initial obligations, {(s,start;,2i,2i + 1)|i
1,...,n}U{(s,check,3n,3n + 1)}. The question
whether or not this initial state is unaccountable i
equivalent to the question of whether or not X is sat-
isfiable. In short, the obligations are going to require
that each z; be set to either 1 or 0. Because the final
obligation has that X be unsatisfied as its condition,
the initial state will only be accountable if there is no
assignment of values which will cause X to be sat-
isfied. As such, if the initial state is unaccountable,
then X is satisfiable.

With our construction complete, we take a moment
to note that it is consistent with our other two as-
sumptions. As we described earlier, the operators
are all commutative. Also, the system is monotonic.
Only the policy for check has any chance of changing
at all. However, it is specifically structured so that it
will remain false until all variables are assigned, and
at that point it may either remain false, or become
true. It is not the case that it is monotonic with re-
spect to all possible actions, but it is monotonic with
respect to possible actions consistent with obligations
moving forward from our current state, which is all
that the property requires.



A.2 Without the Property of Mono-

tonicity

In this section, we assume that we can have systems
which are not monotonic, and show that in that case,
the set covering problem can be reduced to the unac-
countability problem.

In set covering problem, there is a set, S, and a
set of n subsets of S, {S1,...,S,}. There is also
a parameter, k, and the question is whether or not
there is a set of k of the subsets such that the union
of those sets is equal to S. That is, is every member
of S “covered” by one of the k subsets.

In this case we are not going to have cascading
options. So we cannot have a system in which the
obligations force us to make choices between different
options.

As such, our state, o is represented by a set S’ and
an integer m. We have a single subject, s. We have
n + 1 actions. For i = 1,...,n we define an action
remove; which removes S; from S’ and increments
the value of m by one. We also define an action check
which has no effect.

Next we define the policies for the actions. For
it =1,...,n we define policies remove;(s) «— true :
f(o,t,s) = 0 and check(s) «— —(m = kA S =10) :
flo,t,s) =0.

Our initial state is the state such that m
0, § S and we have a set of obligations
{(s,remove;,0,2n)li = 0,...,n}J{s, check,0,2n}.
All of the subset actions can be fulfilled. But only
those which are fulfilled before the check obligation
matter to the check of accountability. So, the ques-
tion of accountability is the question of whether or
not it’s possible to schedule k of the subset obliga-
tions before the check obligation which together cover
S. If it is possible, then the initial state is unaccount-
able. If it is impossible, then the initial state is ac-
countable, since that means that there is no schedule
which will result in an obligation failure. As such, we
have reduced Set Cover to unaccountability.

Again we finish by verifying that our other two
assumptions hold in our system. Clearly, there are
no cascading obligations as no policy contains any
new obligations. And it is the case that all actions
are commutative since for any two actions, remove;
and remove;, the result of apply them is that S takes
on the value of S’

(Si U S;) and m takes on the value m + 2.
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A.3 Without the Property of Commu-
tative Actions

For assuming that non-commutative actions are al-
lowed, we once again use SAT in our reduction. Again
we assume the existence of a set of n boolean variables
{z1,...,2,} and a boolean expression X (z1,...,%,).

Same as the previous construction, we define our
state to have a single user s. And we define our sys-
tem state, o as a set of boolean variables, {z1,...,z,}
and a counter, m. But this time, we only define 2n+1
actions. The first 2n are used for setting the variables
to either 0 or 1. However, unlike the previous case,
we do not need them to be commutative, and, in
fact, this construction would not work if they were.
So they are instead the more traditional assignment.
For i =1,...,n, we define actions set? which sets x;
to be 0 and increments m by 1 and set] which sets z;
to 1 and increments m by 1. Our last action is check,
and it has no effect.

Our policies are quite similar to the earlier reduc-
tion. We define, for i =1,...,n:

setd(s) « true: f(o,t,s) =0

setl(s) «— true: f(o,t,s) =0

check(s) — m > 2n A = X(x1,...,2,)
f(U7 t? 8) = @
Lastly, we define our initial state. In our ini-
tial state, ¢t = 0, z; = 0 for i = 1,...,n,

and we have a set of 2n initial obligations,
{(s,set?,3i,3i + 2)|i = 1,...,n}U{(s, set},3i,3i +
Dli =1,...,n}UJ{(s, check,3n,3n + 5)}. The ques-
tion of whether or not this initial state is unaccount-
able is equivalent to the question of whether or not
X is satisfiable. In short, the obligations are going to
require that each x; be set to either 1 or 0. In fact,
at some point it will be set to both 0 and 1, but only
whichever assignment appears last will be relevant to
the condition of check. Because the final obligation
has that X be unsatisfied as its condition, the initial
state will only be accountable if there is no assign-
ment of values which will cause X to be satisfied. As
such, if the initial state is unaccountable, then X is
satisfiable.

With our construction complete, we once more take
a moment to note that it is consistent with our other
two assumptions. The system is monotonic for the
same reasons that the system in the first reduction is
monotonic, namely that there is no valid sequence of
obligation actions going forward from our particular



initial state which can cause any condition to go from
true to false. It’s also clearly the case that there
are no cascading obligations as no policy carries any
obligation.
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