
An Introduction to Performance Testing

Chih-wi Ho, Laurie Williams
North Carolina State University

dright@acm.org, williams@csc.ncsu.edu

Performance Testing is an important technique for ensuring a system will run as expected
by the customer. In this chapter, we will explain the following:

• the role of performance requirements in performance testing
• information on how to do performance testing
• when to consider performance in the software development lifecycle

In a software system, performance is the degree to which a system or component
accomplishes its designated functions within given constraints, such as speed, accuracy,
or memory usage [12]. Performance is an external quality based upon user requirements
[10] and the user’s view of the operational system. Performance is also especially critical
for real-time systems in which actions must complete within a specified time limit for
correct operation [6] (i.e. the system will not operate correctly if the timing does not meet
the specification, even if the user cannot perceive the performance problems).
Performance may be described with the following indices:

• Latency: the time interval between the instant at which an instruction control unit
issues a call for data and the instant at which the transfer of data has started [12];
the delay between request and completion of an operation [7].

• Throughput: the amount of work that can be performed by a computer system or
component in a given period of time; for example the number of jobs in a day
[12].

• Resource consumption: the amount of memory or disk space consumed by the
application [16].

The performance of a system is highly visible to the software user. A system that runs too
slow is likely to be rejected by all users. Therefore, software engineering teams must
understand their customers’ performance requirements and test their systems to ensure
the system meets these requirements. Most of the products which fail in the market (after
the release) are not system crashes or incorrect system responses, but performance
degradation [19]. Data from 30 architectural reviews AT&T Labs indicated that 30% of
the projects are at a medium or high risk of failure. In these architectural reviews, 93%
of the performance-related project-affecting issues were found in these medium or high
risk projects [20].

Performance testing is the testing conducted to evaluate the performance of a system with
specified performance requirements [12]. During the process of performance testing,
data must be collected. This data enables the accurate prediction of system behavior
under varying workloads [1].

Performance Testing

NCSU CSC TR 2006-25 2

1. The Role of Requirements in Performance Testing
Customers’ performance expectations are documented as performance requirements. A
performance requirement is a requirement that imposes conditions on a functional
requirement; for example, requirement which specify the speed, accuracy, or memory
usage within which a given functionality must be performed [12]. As such, performance
is considered a non-functional requirement 1 . Non-functional requirements, such as
performance, can easily be overlooked when customers and requirements elicitors focus
too much on the functionality that the software development team needs to deliver.
Poor performance costs the software industry millions of dollars annually in lost revenue,
decreased productivity, increased development and hardware costs, and damaged
customer relations [22]. As a result, software development teams need to focus on
performance from requirements elicitation throughout development and into the testing
phases.

Performance requirements can be specified qualitatively or quantitatively. Quantitative
specifications are usually preferred because they are measurable and testable. Basili and
Musa advocate that quantitative specification for the attributes of a final software product
will lead to better software quality [3]. For performance requirements, Nixon suggests
that both qualitative and quantitative specifications are needed, but different aspects are
emphasized at different stages of development [16]. In the early stages, the development
focus is on design decisions, and brief, qualitative specifications suffice for this purpose.
At late stages, quantitative specifications are needed so that the performance of the final
system can be evaluated with performance measurements.

Some example requirements, with an increasing amount of detail now follow:
• The authentication process shall be completed quickly.
• After the user enters the user name and password, and clicks the Submit button on the

Log In page, the response time for authentication and Main page rendering shall be
within three seconds.

• After the user opens the Log In page, the user enters the valid user name and
password, and clicks the Submit button. On average, this scenario happens 20 times
per minute. After the user opens the Log In page, when the user enters the valid user
name and password, and clicks the Submit button, the response time shall be less than
3 seconds 80% of the time.

• The system is running under the heaviest possible workloads [defined elsewhere].
The average response time for displaying the promotional message on the mobile
tablet after a customer enters a lane where the promotional items are located shall be
below 1 second.

The first requirement is imprecise and not measurable/testable because no quantitative
measures are provided. However, such a qualitative requirement may be appropriate
early in the development lifecycle. The remaining three are testable – but the testing is
more complex for each successive requirement. The difference between the third and

1 Non functional requirements are not specifically concerned with the functionality of a system but place
restrictions on the product being developed [13]

Performance Testing

NCSU CSC TR 2006-25 3

fourth descriptions is that, in the third one, the requirement describes how often a single
service is requested by the users, while the fourth describes the request patterns of the
whole system.

2. Performance Testing
Performance testing is usually via black box testing2 done after software development
and functionality testing is complete with the system tested for functional correctness.
The true performance of a system cannot be assessed until all system elements are fully
integrated [17], and the system is tested in a representative environment so that “real-
world” loading and use can be evaluated. However, the performance of individual
modules may be assessed as white-box tests3 to obtain an early warning of performance
problems [11]. Additionally, performance test cases need to be written to specifically test
the performance criteria rather than functional correctness [22]. Functional correctness
can be ignored in performance testing, though. Some functional defects only surface
under heavy workload. For example, if a program does not release the database
connection, this problem does not show up if we just run the program once. At a heavy
workload, the available database connections are quickly consumed. After no database
connection is available, the program may generate an exception, and result in very short
response time. If the functional correctness is not checked, the testing result might show
good performance even though the system is not working properly.

Specified workloads, or a collection of requests, need to be generated for performance
testing. Suppose we were developing a Web-based course registration system for a
university with 5,000 students. We might expect 200 concurrent users for this system at
the last days of course registration. Using 200 physical machines to simulate 200
concurrent users for performance testing is impractical. On the other hand, if all 200
requests are generated from a single machine, the machine will be busy context-switching
among the threads or processes. As a result, the generated requests may not be the same
as specified in the requirement. In a real performance testing environment, the workloads
are generated from relatively limited resource. Five machines might be used to simulate
200 “virtual users” for this course registration system.

Figure 1 shows an architecture that is used in most performance testing tools. In this
architecture, the software system is deployed on several servers, including maybe Web
servers, database server, and so on. When performance testing starts, the centralized
controller initializes the load drivers with the workload information. A load driver is a
software program that takes the workload information as input, and generates requests
that mimic the user behavior [18]. After the requests are generated and sent to the servers,
the performance monitors installed on the servers observe the server behavior and record
performance. A monitor is a program that observes, supervises, or controls the activities
of other programs [21], such as its performance. The collected performance data may be
sent back to the controller during testing, if the tool supports real-time performance

2 Black box testing is testing that ignores the internal mechanism of a system or component and focuses
solely on the outputs generated in response to selected inputs and execution conditions [12].
3 White box testing that takes into account the internal mechanism of a system or component [12].

Performance Testing

NCSU CSC TR 2006-25 4

monitor. Otherwise, the data can be analyzed after performance testing is done. Using
this architecture, workloads can be generated more precisely, and performance data
collection has little effect on the performance of the system under test.

After the performance data are collected, we can analyze the data and calculate
performance measurements. Performance testing tools usually provide analysis and
reporting tools. The system complies with the performance requirements if the
performance measurements meet the expectations stated in the requirements specification.

Average workloads and peak workloads are especially important for software
performance testing on concurrent systems [20]. Performance testing with average
workloads shows how the system performs under regular usage from the users’
perspective. Performance testing with peak workloads provides information about
performance degradation under heavy usage. For a software system, operational profiles
can be used as average workloads [2]. An operational profile of a software system is a
complete set of the operations the system performs, with the occurrence rates of the
operations [14]. The occurrence rates can be collected from the field usage, or obtained
from existing business data, or from the information of a previous version or similar
systems [15].

In addition to a load generator and monitor, a profiler is another often-used performance
testing tool. A profiler is a type of performance monitor that provides code-level
measurement, including timing, memory usage, and so on [8]. Profilers are useful when
we want to locate performance bottlenecks in a software system. A performance
bottleneck is the location in software or hardware where the performance is lower than
that in other parts of the system and thereby limits the overall throughput. To
demonstrate how to locate performance bottlenecks with a profiler, consider the Java
code in Figure 2.

Figure 1: An abstract architecture for performance testing tools

Performance Testing

NCSU CSC TR 2006-25 5

 private static String reverse(String s) {
 if(s.equals("")) return "";
 String temp = s;
 String result = "";
 for(int x=0; x<s.length(); x++) {
 result += temp.substring(temp.length() - 1);
 temp = temp.substring(0, temp.length() - 1);
 }
 return result;
 }

Figure 2: The reverse method

The code shows a bad practice in Java programming: using “+” to concatenate strings.
Figure 3 shows the result generated from a profiler4. The result shows that, in the
reverse method, a large amount of time is spent on StringBuilder.append and
StringBuilder.toString. These two methods are called if “+” is used for string
concatenation.

Figure 3: Profiling result for the reverse method

A better way to concatenate two strings is via a StringBuffer. Figure 4 shows the
modified reverse method.

 private static String reverse(String s) {
 if(s.equals("")) return "";
 String temp = s;
 StringBuffer result = new StringBuffer();
 for(int x=0; x<s.length(); x++) {
 result.append(temp.substring(temp.length() - 1));
 temp = temp.substring(0, temp.length() - 1);
 }
 return result.toString();
 }

Figure 4: Modified version of the reverse method

4 The profiler used here is Extensible Java Profiler. See http://ejp.sourceforge.net/ for more details.

Performance Testing

NCSU CSC TR 2006-25 6

Figure 5 shows the profiling result after the modification. We can see that the new
reverse method takes virtually no time to complete.

Figure5: Profiling result for the modified reverse method

Benchmarks are also used as an indication of software performance. A benchmark is a
standard against which measurements or comparisons can be made [12]. If the test
results meet or exceed the benchmarks, the system is said to be performing well. The goal
of the benchmarking technique is to test how the system works when deployed in real life
environment. However, testers should ensure that the validity of the benchmark is
assessed periodically to prevent measurement against an obsolete benchmark.

A clearly defined set of expectations is essential for meaningful performance testing. The
definition of metrics to assess the comprehensiveness of a performance test case selection
algorithm relative to a given program [20] are essential to definitively determining if
performance requirements have been met. Two main variables are considered: load and
response time:

• Expected load in terms of concurrent users: Test cases can be written to simulate the

users at the client side. The number of simultaneous users can be increased gradually
at the client side till the system crashes in a form of testing called stress testing.
Stress testing is testing conducted to evaluate a system or component at or beyond the
limits of its specified requirements [12]. When the system crashes, the operational
limits of the system can be ascertained.

• Acceptable response time: The delay time between the request sent by the user from
the client and the response from the server side should have an upper bound value. If
the request does not come back within the specified limit, we can conclude that there
is a performance issue that is to be addressed. For example, whenever a patient tries
to login from his browser by providing his Patient ID and password, he gets validated
from the server. The patient will be very frustrated if he or she is kept waiting for
what is perceived as an excessive amount of time.

Performance Testing

NCSU CSC TR 2006-25 7

3. When to Consider Performance in Development Lifecycle
To build a software system with acceptable performance, the development team needs to
take performance into consideration through the whole development cycle [9]. During
requirements specification and analysis, performance requirements need to be specified.
Although the design and implementation details are not usually available during the
requirements phase, the performance requirements should still capture the desired
performance level. At design and architecture stages, performance models can provide
early feedback on the performance of the design. A performance model is a model that is
used to analyze the performance of a system. After analyzing the performance of several
design candidates, the development team can select a design that can achieve the desired
performance level. If a requirement specifies unreasonable performance expectation, the
development team can identify the problem before the software is implemented, and
negotiate with the customer for an achievable performance requirement. At development
phase, the developers implement the software system based on the design that is validated
with performance models. During software testing, performance test cases are
instrumented to make sure that the performance of the resulting system is at least as good
as specified in the requirements.

Software performance engineering (SPE) is a systematic, quantitative approach to
constructing software systems that meet performance objectives. SPE is an approach to
integrate performance engineering into software development process [23]. In SPE,
performance models are developed early in the software lifecycle, usually at the
architecture design stage, to estimate the performance and to identify potential
performance problems. SPE prescribes principles for creating responsive software, the
data required for evaluation, procedures for obtaining performance specifications, and
guidelines for the types of evaluation to be conducted at each development stage. SPE
uses adaptive strategies, such as upper- and lower-bounds estimates and best- and worst-
case analysis to manage uncertainty. For example, when there is high uncertainty about
resource requirements, analysts use estimates of the upper and lower bounds of these
quantities [23].

Consideration of performance requirements is crucial in the early development stages,
when important architectural choices are made [7]. When performance is not considered
early in the process, the development team may end up with “universally slow code,”
meaning that, even with a profiler, bottlenecks cannot be identified because every piece
of code is slow. In this situation, “tuning” code to improve performance is likely to
disrupt the original architecture, negating many of the benefits for which the architecture
was selected. Performance tuning is the process of transforming code that does not meet
the performance requirements into code that meets the expected performance level
without changing the behavior of the code [18]. Additionally, “tuned” code may never
have the performance of code that has been engineered for performance [23]. In the worst
case, the system design cannot be tuned to meet performance goals, necessitating a
complete redesign or even cancellation of the project [23].

Early testing of software systems helps to reveal the modifications like design changes,
hardware compatibility issues, which might be required in the product. Changes can be

Performance Testing

NCSU CSC TR 2006-25 8

made more easily and cheaper if faults, including those that drive performance problems,
are detected as early as possible [5]. Estimates of performance are used to reveal flaws in
the original architecture or to compare different architectures and architectural choices.
Development of models which give performance estimates early enough during the
development may give useful hints of the performance and help identify bottlenecks [7].

Another camp claims that the developers should not optimize the system performance
until the functionalities are implemented. Auer and Beck list a family of software
efficiency patterns called Lazy Optimization [1], which reflects the famous quote from
Knuth that “Premature optimization is the root of all evil in programming,”5 and the
“You Aren’t Gonna Need It (YAGNI)” philosophy of Extreme Programming [4]. These
patterns can be summarized as follows. Early in development, the system performance is
estimated with a short performance assessment. Rough performance criteria are specified
to show performance concerns in the system, and are evolved as the system matures.
Tune performance only when the functionality works but does not pass the performance
criteria. Smith and Williams, authors of SPE, criticize that the “fix-it-later” attitude is
one of the causes of performance failures [17].

4. Conclusion
Many project teams expend a great deal of resources testing the functionality of the
system, but spend little or no time doing performance testing, even though performance
problems often significantly impact the project’s ultimate success or failure [17]. A
performance test suite should include test cases that are a representative portrayal of the
workload of the system under test, as well as a representative portrayal of the workload
that is likely to be resident with the system when it is operational.

5. Acknowledgements
Praveen Yeri contributed to an early draft of this introduction.

Table 1: Key Ideas for Performance Testing
 Performance is highly visible to the software user. A system that runs too slow is

likely to be rejected by all users.
 Performance can easily be overlooked when customers and requirements

elicitors focus too much on the functionality.
 Often the performance of tuned code is not as good as the performance of code

that has been engineered for performance.
 A clearly defined set of expectations is essential for meaningful performance

testing.
 The performance issues that arise may be because of one or some of the reasons:

lack of performance estimates, the failure to have proposed plans for data
collection, or the lack of a performance budget.

5 “Computer Programming as an Art,” 1974 Turing Award lecture.

Performance Testing

NCSU CSC TR 2006-25 9

Glossary of Chapter Terms

Term Definition Source
Benchmark (1) A standard against which measurements or

comparisons can be made; (2) a procedure problem, or
test that can be used to compare systems or components
to each other or to a standard as in (1).

[12]

bottleneck the location in software or hardware where the
performance is lower than that in other parts of the
system and thereby limits the overall throughput

black box testing
(also called
functionality testing)

Testing that ignores the internal mechanism of a system
or component and focuses solely on the outputs
generated in response to selected inputs and execution
conditions.

[12]

latency The time interval between the instant at which an
instruction control unit issues a call for data and the
instant at which the transfer of data has started; the
delay between request and completion of an operation

[12]
[7]

load driver a software program that takes the workload information
as input, and generates requests that mimic the user
behavior.

[18]

monitor A program that observes, supervises, or controls the
activities of other programs.

[21]

performance Degree to which a system or component accomplishes
its designated functions within given constraints, such as
speed, accuracy, or memory usage

[12]

performance
requirement

Requirement that imposes conditions on a functional
requirement; for example a requirements that specifies
the speed, accuracy, or memory usage with which a
given functionality must be performed

[12]

performance testing Testing conducted to evaluate the compliance of a
system or component with specified performance
requirements

[12]

profiler a type of performance monitor that provides code-level
measurement, including timing, memory usage, and so
on

[18]

resource
consumption

the amount of memory or disk space consumed by the
application

[16]

stress testing testing conducted to evaluate a system or component at
or beyond the limits of its specified requirements

[12]

throughput The amount of work that can be performed by a
computer system or component in a given period of
time; for example the number of jobs in a day

[12]

tuning the process of transforming code that does not meet the
performance requirements into code that meets the
expected performance level without changing the

[18]

Performance Testing

NCSU CSC TR 2006-25 10

behavior of the code.
white box testing Testing that takes into account the internal mechanism

of a system or component
[12]

REFERENCES:

[1] A. Avritzer, J. Kondek, D. Liu, and E. J. Weyuker, "Software Performance

Testing Based on Workload Characterization," the 3rd International Workshop on
Software and Performance, Rome, Italy, 2002, pp. 17-24.

[2] A. Avritzer and E. J. Weyuker, "Generating Test Suites for Software Load
Testing," International Symposium on Software Testing and Analysis, Seatle,
WA, 1994, pp. 44-57.

[3] V. R. Basili and J. D. Musa, "The Future Engineering of Software: A
Management Perspective," in IEEE Computer, vol. 24, 1991, pp. 90-96.

[4] K. Beck, Extreme Programming Explained: Embrace Change, Second ed.
Reading, Mass.: Addison-Wesley, 2005.

[5] B. W. Boehm, Software Engineering Economics. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1981.

[6] E. J. Braude, Software Engineering: An Object-oriented Perspective. New York:
John Wiley and Sons, Inc., 2001.

[7] G. Denaro, A. Polini, and W. Emmerich, "Early Performance Testing of
Distributed Software Applications," Workshop on Software and Performance,
Redwood Shores, California, 2004, pp. 94 - 103

[8] D. G. Firesmith and B. Henderson-Sellers, The OPEN Process Framework: An
Introduction: Addison-Wesley, 2002.

[9] G. Fox, "Performance Engineering as a Part of the Development Life Cycle for
Large-Scale Software Systems," The 11th International Conference on Software
Engineering, Nice, France, 1990, pp. 52-62.

[10] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software
Engineering. Englewood Cliffs, NJ: Prentice Hall, 1991.

[11] C.-w. Ho, M. J. Johnson, L. Williams, and E. M. Maximilien, "On Agile
Performance Requirements Specification and Testing," Agile 2006, Minneapolis,
MN, 2006, pp. 47-52.

[12] IEEE, "IEEE Standard 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology," 1990.

[13] G. Kotonya and I. Sommerville, Requirements Engineering: Processes and
Techniques. Chichester: John Wiley and Sons, 1998.

[14] J. D. Musa, "Operational profiles in Software-Reliability Engineering," IEEE
Software, vol. 10, no. 2, 1993, pp. 14-32.

[15] J. D. Musa, "Chapter 2: Implementing Operational Profiles," in Software
Reliability Engineering: More Reliable Software Faster and Cheaper, 2nd ed.
Bloomington, IN: AuthorHouse, 2004, pp. 93-151.

[16] B. A. Nixon, "Managing Performance Requirements for Information Systems,"
the 1st International Workshop on Software and Performance, Santa Fe, NM,
1998, pp. 131-144.

Performance Testing

NCSU CSC TR 2006-25 11

[17] R. Pressman, Software Engineering: A Practitioner's Approach, Fifth ed. Boston:
McGraw Hill, 2001.

[18] C. U. Smith and L. G. Williams, Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software. Boston, MA: Addison-Wesley, 2002.

[19] F. I. Vokolos and E. J. Weyuker, "Performance Testing of Software Systems," 1st
International Workshop on Software and Performance, Santa Fe, NM, 1998, pp.
80-87.

[20] E. J. Weyuker and F. I. Vokolos, "Experience with Performance Testing of
Software Systems: Issues, an Approach, and Case Study " IEEE Transactions on
Software Engineering, vol. 26, no. 12, December 2000, pp. 1147-1156.

[21] Wikipedia, "http://www.wikipedia.org/," no.
[22] L. G. Williams and C. U. Smith, "Five Steps to Solving Software Performance

Problems," http://www.perfeng.com no., June 2002.
[23] L. G. Williams and C. U. Smith, "Performance Evaluation of Software

Architectures," The 1st international workshop on Software and performance,
Santa Fe, NM, October 1998, pp. 164-177.

