

Personas: Moving Beyond Role-Based Requirements Engineering

 Granville Miller Laurie Williams
 Microsoft Corporation North Carolina State University
 randymil@microsoft.com williams@csc.ncsu.edu

Abstract

A primary vehicle for understanding the user in
the context of the requirements for a system has been
the role. For example, the role is captured through the
use of actors in the use case diagram and use case
descriptions. Recently, personas have been used in
conjunction with scenarios in participatory design to
go deeper into examining the different types of people
who could play a role. A persona is an archetype of a
fictional user representing a specific group of typical
users. This paper expands the use of personas to
scenario-based requirements engineering. Personas
and scenarios are being used together for specifying
requirements at Microsoft. The result of this
combination has been a more comprehensive
understanding of the target customers' behaviors to
drive and refine our scenarios and subsequently our
product development.

1. Introduction

In requirements engineering, a role is the specific
behavior of an entity participating in a particular
context [10]. Use case models capture roles in the
‘actor’ modeling construct. In use case models, an
actor is an entity that interacts with the system for the
purpose of completing an event [11]. Actors are used
to describe how a system interacts with users and
external systems within a use case description.

Roles alone may not allow analysts and consumers
of a use case model to develop a deep understanding of
the users of the system because the role is a rather
homogeneous view of the users of the system. Within a
given role, there can be many different types of users.
For example, some people in the role may be “power
users” while others may only have a superficial
knowledge of the system. The view of a role as a
homogeneous construct may not provide the system
designers, developers, and testers enough information
to make key decisions that could make the system
more appealing to its users.

The lack of understanding of the user community
has lead to the suggestion that we bring some subset of
our users onsite [3]. Certainly, user involvement is an
important element in the success of a project [22] and
may be the best option for many projects. However,
very few projects find themselves able to get dedicated
users available for the duration of the project.
Additionally, requirements analysts of mass-market,
commercial software can have trouble finding
representative users [9].

Recently, Grudin and Pruitt [9, 16] have suggested
using personas in conjunction with scenarios as a
participatory design technique and as a compromise
between the actor and the on-site customer. In the
context of product development, a persona is an
archetype of a fictional user representing a specific
group of typical users. Personas have hypothetical
names, likenesses, occupations, friends, and other
specific personal data. Posters with photographs of the
personas and their information can be hung in places
frequented by the analysts and development team [9].
The photographs are of models that have a likeness to
an archetypical user.

The powerful psychological identification with
and engagement between an analyst and a persona can
bring about the inclusion of complex and realistic
social and political aspects of the persona within a
scenario. Additionally, the persona aids in
communication among stakeholders. Instead of talking
about a group of users in an abstract, impersonal,
“middle ground” way, a persona represents a 'proxy'
for the user group and can be discussed by name, such
as “Would Dave use this feature?” [8]. The persona,
therefore, provides a means to talk and reason about
the group through the characteristics of one fictional
individual, the persona.

Personas are currently being used by many of the
development groups within Microsoft and have more
recently been incorporated into the concrete software
development processes included in Version 4.0 of the

Microsoft Solutions Framework (MSF)1 . The most
widely known of the groups using personas are the
Windows and the Visual Studio development
organizations. However, smaller groups such as
Hotmail, MapPoint, and MSN Money also utilize this
technique. In this paper, we will share experiences of
the Visual Studio team.

The rest of this paper is organized as follows. In
Sections 2 we will provide basic information about
personas and scenarios. In Sections 3 and 4, we will
discuss the use of personas for security requirements
and exploratory testing. Section 5 presents information
about the use of personas at Microsoft by the Visual
Studio development organization in the context of the
Microsoft Solution Framework. We present our
conclusions in Section 6.

2. Personas and Scenarios

In this section, we provide background and
explanatory information about personas and scenarios.

2.1. Personas

A persona contains information about a fictitious,
archetypical person who holds an interest in the system.
The descriptions of personas hold information about
the persona’s knowledge, skills, and abilities. They
also hold information about their goals, motives, and
concerns. Finally, the persona description will often
describe the usage patterns that a persona would have
of the system. A sample persona of Mort, a Visual
Basic developer used in Visual Studio scenarios, is
shown in Figure 1. A template with directions for
documenting the information on a persona appears in
the appendix.

The idea is that the personalization of a role via
the persona psychologically makes a longer lasting
impression on the extended development team
(business analysts, project managers, architects,
developers, and testers). As members of this team ask
questions about the users, they can look to the persona
as a method of reasoning about the solution.
Ultimately, any decisions must be validated by the real
user community. However, the intent is for personas
to keep business analysts, developers, and testers from
becoming stymied by the many design and usability

1
http://msdn.microsoft.com/vstudio/enterprise/msf/defa
ult.aspx
MSF version 3.0 is a framework for processes. Version
4.0 will continue this heritage while delivering two
specialized processes for software development.

decisions that are not directly specified by the
requirements.

Figure 1: Nachi, a Visual Basic developer

The depth of information instilled in a persona can
vary. Simple personas can reflect superficial
knowledge, goals, and usage patterns. Others can
reflect a deep psychological profile of the user base,
and there are many levels of detail in between. The
amount of information gathered to create the persona
involves an implicit balance between the resources
required to create the persona and the ultimate ease and
accuracy of the decisions made based upon the persona
details.

Finding personas is similar to finding actors. There
are often several roles that will interact with a system.
Once these roles have been determined, we can further
refine these roles by providing personas. There are
typically three to five types of people per role [12]. The
personas for a product are created by writing a
description for each of the targeted types of users.

Personas and actors are not the same. An actor is
a homogeneous role, and any descriptions of it are
couched in terms of the role rather than the people who
play the role. A closer concept to a persona is an agent.
An agent is someone who plays a role like a persona
but does not consolidate the information of many users
[5]. For example, consider a developer using an
integrated development environment (IDE). A ‘role’
view could treat all developers in the same manner.
Yet, some developers like to build systems by looking
at and following examples of code while others like to
write algorithms from scratch. Some developers are
interested in building systems as rapidly as possible
while others strive for maintainability. These
differences cannot be accounted for by a single role,
the developer.

Personas were initially introduced by Cooper [8]
as a usability concept. Grudin and Pruitt [9, 16] have
implemented personas as a participatory design
technique with Microsoft MSN Explorer and Windows
development teams over a period of approximately
three years. Personas were used to provide guidance
on product design and development decisions as well
as to prioritize requirements via a weighted priority
matrix. Each persona is assigned a weight according to
the proportion of the market each represents. Each
requirement is assigned a value for each persona:
• -1: The persona is confused, annoyed, or in some

way harmed by the requirement
• 0: The persona does not care about the

requirement
• 1: The feature provides some value to the persona
• 2: The persona loves the feature or the feature

does something wonderful for the Persona even if
the persona does not realize it

A weighted sum for each requirement is computed.
Requirements with the highest weighted sum are given
the highest priority in development.

The following benefits were noted in the
Microsoft experience [9, 16] of using personas with
mass-marketed software:
• Personas create a focus on users and work contexts.
• Personas utilized the minds of the team members

to extrapolate from partial knowledge of people to
create a coherent whole, more completely than
with generic “actors.”

• The act of creating personas made their
assumptions more explicit.

• Personas provided a medium for communication
(“Patrick cannot use the search tool on your web
page.”)

• Personas were used by testers in their test scripts
and activities.
However, Grudin and Pruitt [9, 16] experienced

that getting the right set of personas and a
comprehensive portrait of a persona is challenging.
They also caution against over-reusing personas and of
overusing the persona technique. Additionally, one
study of the use of personas for participatory design
[18] in the telecom industry demonstrated that
technology, market, and competition issues might
dominate over the issues surfaced by personas.

2.2. Scenarios

The relationship between the user and the system
is characterized in a scenario as follows:

The scenario identifies the person as having
certain motivations toward the system,

describes the actions taken and some reasons
why these actions were taken, and
characterizes the results in terms of the user’s
motivations and expectations. [4]

There is a clear need to examine the user’s desire
in this definition. Personas are complimentary to a
scenario-based approach to requirements engineering.
Specific names of the personas are used in the
description of the scenario. Since there are many types
of scenarios, the term scenario does not have a
commonly accepted definition [20]. For our purposes,
a scenario describes the system’s behavior through a
sequence of concrete interactions with its users who
are trying to achieve some goal [1]. The sequence
contains detailed interactions that illustrate one of
nearly infinitely many ways of interacting with a
nontrivial system. Scenarios reflect a concrete path or
set of steps toward a goal.

Methods of determining the scenarios usually
involve finding goals [17]. A goal is a statement of the
desired problem that a user needs to be solved [1]. A
scenario can be expressed as a series of actions and
system responses (called a transaction in a use case
model) that attempt to reach the goal. During this
attempt, obstacles may prevent the goal from being
reached [15]. As the persona attempts to reach his or
her goal, the scenario records the specific steps that are
taken. The combination of the motivations, knowledge,
and goals of the persona lead to their behavior. This
behavior is exactly what a scenario is intended to
capture.

In contrast to use cases, scenarios provide specific
details of the interactions between a system and its
users. These details can provide value and challenges.
Patterns which would be discovered through an
abstraction process may be lost in the detailed
information and thus never be surfaced [20].
Additionally, many more scenarios may be required to
cover the same area as a use case. In fact, taken to the
extreme, attempting to cover every facet of a product
may result in scenario explosion [20]. This condition is
caused by writing too many scenarios instead of only
the relevant ones. On the other hand, an advantage of
scenarios is that they focus on real interactions in a
testable way, causing analysts to address the “devil in
the details” [20]. Abstract requirements models may go
unquestioned whereas a scenario approach requires an
understanding of the assumptions of the model [20].

Understanding how to create a sufficient set of
scenarios is one of the difficult problems in
requirements engineering [20]. Sutcliffe [20]
characterizes the issues associated with this coverage
problem as follows:

1. Steps can be left out of scenarios due to
assumptions resulting from implicit or tacit
knowledge.

2. Individual views of the problems encountered may
make it difficult to distill the views into a common
set of problems.

3. Scenarios must cover not only the “sunny day”
situations but also the situations where things go
wrong.

4. Abnormal examples are often forgotten or
exaggerated. Problems encountered most recently
or frequently are likely to be recalled but those
less frequently encountered may not.

Creating a sufficient set of scenarios requires that we
create an accurate representation of the solution to the
current problem.

The use case approach addresses Sutcliffe’s issues
three and four by using a goal-oriented approach. This
approach follows three steps:
1. Find the actors (or roles)
2. Find the use cases (or goals of the actors)
3. Write the use case descriptions (or all of the paths

in an abstract way that could lead to the resolution
or attempted resolution of the goals).

We start by building the “sunny day” scenario first [20].
These scenarios explain the easiest way to achieve
some goal of the system. Once this is in place, we can
gather the alternatives and exceptions and fill in the
abnormal situations. However, this goal-oriented
approach does not focus on building an understanding
of users or their roles

Personas offer a similar mechanism to actors in
determining the goals of the system and are similarly
concrete. In many ways the persona/scenario-based
approach parallels the role/use case-based approach:
1. Find personas
2. Find “sunny day” scenarios of the personas
3. Write the scenarios for both the “sunny day”

situations and the alternatives
However, the introduction of the persona can make it
easier to understand whose goals the system is
attempting to satisfy. The result is a better method of
dealing with issues three and four of the coverage
problem.

The suggested solution to the problem of the
missing steps or the individual variation (Sutcliffe
issues one and two of the coverage problem) is to
create a set of common scenarios and use these as
“hooks” for questions later about different individual
strategies for using the system [20]. The idea is that the
set of scenarios can be further refined through a series
of on-going user reviews. However, each of these
reviews may result in changes to existing scenarios
without an understanding of origin of the changes.
Moreover, some of these changes may be conflicting

and thus result in confusion among those who did not
interact with the users.

2.3. Individual variation between scenarios

We can examine the idea of individual variation
between scenarios by creating scenarios for creating a
unit test in an IDE. One scenario might read:

The developer selects the “new unit test” option
and enters the unit test class name, “MoneyTest.” The
system responds by creating the new unit test class.

The developer enters the new unit test method,
“TestCurrencyExchange” with two currency amounts
and two currency types. The system creates the unit
test method stub inside the unit test class. The default
test failure logic ”throw new Exception (“Unit test is
not implemented”);” is inserted.

The developer replaces the default test failure
logic with the appropriate unit test logic. The system
notes any compiler errors and displays the test logic..

This scenario would most likely be implemented
through a wizard that walks a developer through the
process of creating a unit test. Wizards are a great way
to learn how to write unit tests. However, they become
cumbersome when developers become experienced
with writing unit tests. Advanced developers or “power
users” of the IDE will write these unit tests the same
way that they write normal classes. A scenario for a
more experienced user could be as follows:

The developer enters the unit test class construct,
several test methods and their appropriate logic. The
text reads “…”. The system notes any compiler errors
and displays the test logic.

These two scenarios are related in that they have
the same goal and that one is close to providing a
subset of the other. However, without both scenarios,
one of the two options may not be enabled by the
system. In other words, both scenarios must be
included in the sufficient set to cover the needs of a
“developer.” The role “developer” is overloaded in
these examples. These two scenarios may appear as
individual variation when, in fact, there are two
different types of developers. The goal is the same for
both scenarios, “to create a unit test.” However there
are significant differences in the implementation of the
two scenarios.

Let’s define two personas who wish to create a
unit test. The first is Nachi who is a student, a novice
developer. Nachi’s counterpart is the persona Mark.
Mark is an expert developer and has been working in
the field for fifteen years. It is easy to associate each of
these personas with one of the “Create Unit Test”

scenarios. We would expect Nachi and Mark to exhibit
individual variation. We can also use Nachi and Mark
to drive the discovery of these alternative scenarios.
The fundamental premise of this model is based on the
understanding that the combination of knowledge,
interactions, and goals leads to behavior.

The difference between Nachi and Mark is their
knowledge. They may have similar goals. They may
even have similar interactions with the system.
However, their resulting behavior may be dramatically
different. While the system responds in a deterministic
way, we must account in our scenarios for this
different behavior.

Figure 2 displays an annotated use case diagram.
The actor is the Developer and the Developer has
a Create Unit Test use case. This use case can
be made more specific through the creation of
scenarios. The figure shows two scenarios, an
Expert Scenario and a Novice Scenario, as
discussed earlier in this section. By replacing “the
developer” with “Nachi” and “Mark,” a greater
understanding of the needs of the user can emerge.

The knowledge level of a generic “developer”
actor is unclear. We could certainly fix the knowledge
level of the developer actor, but the resulting scenarios
would be incomplete. Since the knowledge level of an
actor may not be the same as one of the many personas
that plays the role, the scenarios generated may be very
different. Since there is one actor but multiple personas,
the actor model may fail to achieve coverage or a
sufficient set of scenarios to be representative of the
current problem.

Knowledge is just one aspect that is captured in a
persona. Depending on the depth reached in a persona,
there may be deeper understandings of the motivations
and behavior beyond the simple interactions to
consider. This depth is achieved through the constant
refinement of the personas over a longer period of time.

Once we have created a persona, we can utilize
lifestyle snapshots or “a day in the life of” a persona to
uncover additional scenarios [2]. Lifestyle snapshots
are another means of goal elicitation. Often, if we look
at the system from different perspectives, we can
understand it more thoroughly. Each lifestyle snapshot
will determine a number of candidate scenarios. They
provide further context for the goals of the system.

3. Security Requirements

Scenarios are good at describing and analyzing
functional behavior of the system. However, there are
better ways to describe the nonfunctional or quality of

service (QoS) requirements2. One form of these QoS
requirements center on security. Other QoS
requirements focus as constraints on scenarios such as
performance, load, and stress requirements.

Application security has been a recent focus.
Seventy-five percent of system security breaches have
occurred at the application level [14]. Threat modeling
is a systematic method for determining the
vulnerabilities of a system [21]. Two keys to
understanding these vulnerabilities are the system’s
assets and the adversaries that might want to modify,
steal, access, or manipulate them.

Threat modeling looks at the system from the
outside-in because this is the approach that an
adversary would take [21]. Key elements to
understanding this view are the entry points, assets,
and trust levels. An entry point is a location where data
or control transfers between systems. Assets are the
tangible or intangible resources that the adversary
might wish to steal. Trust levels are the privileges or
credentials assigned to protect the assets.

Threat modeling moves through the architecture of
a system to determine threats and vulnerabilities. A
vulnerability is a condition in a system, or in the
procedures affecting the operation of the system, that
makes it possible to perform an operation that violates
the explicit or implicit security (or survivability) policy
of the system [6]. From a threat model, we obtain a list
of these vulnerabilities. These vulnerabilities become
security requirements. Understanding the importance
of an asset to an adversary is the key to determining an
acceptable level of security.

To determine the importance of an asset, it is
important to understand the adversary. Personas can be
used to build this understanding. The result is two
forms of personas, the favored persona and the
disfavored persona. A favored persona is a user of the
system that utilizes the system in the intended manner.
The disfavored persona, or adversary, attempts to
bypass security measures and obtain a system’s assets.

Trust levels can be applied to all personas, as
shown in the persona template in the appendix. These
trust levels represent a set of rights given to a persona
based upon the system’s knowledge of that persona
[21]. A trust level is a group in which the persona
belongs, such as a “normal user” or “administrator.”
An adversary may attempt to elevate his trust level
through bypassing a system security mechanism.

2 The term “quality of service requirement” is used at
Microsoft because “nonfunctional requirements” sound
like the requirements are broken.

Figure 2: Annotated Use Case Diagram

Trust levels can be used in scenarios to describe
how a persona should be treated when he or she
attempts this elevation of privilege. QoS requirements
can fill in details about how the system should protect
its assets against the misuse by adversaries. These
scenarios and QoS requirements should also look
“innocent” misuse by favored personas as well.

The use of roles in security analysis began almost
ten years ago with the advent of role-based access
control (RBAC) [19]. In RBAC, a role is defined as a
job function within the organization that describes the
authority and responsibility conferred on a user
assigned to the role. The use of personas can augment
the RBAC-type role by further delineating favored and
disfavored people in various roles.

4. Exploratory Testing

Requirements drive most forms of testing.
However, there is a form of testing called exploratory
testing which is designed to find new requirements as
well as bugs. Exploratory testing is a systematic
method of testing that applies heuristics instead of
being driven by requirements [13]. The idea of
exploratory testing is to “think outside of the box” and
to look for problems outside of the normal validation
testing used to verify a scenario’s functionality.

The goal of exploratory testing is to create test
cases and execute them at the same time. The
understanding gained by running a test leads to new
tests. Thus, exploratory testing seeks to maximize
creativity in the determination of a system’s problems
through testing. Exploratory testing sessions are
usually bounded by time. They also tend to concentrate
on a single area or facet of the system.

One of the heuristics for exploratory testing is to
adopt a mindset of a persona and look for areas of the
product that would cause problems for that persona.
The goal is to find missing requirements, poor existing
requirements, or bugs that fall outside of the normal
requirements. The tester must consider the knowledge,
goals, and usage patterns of the persona when working
through the goals of the system.

5. Use of Personas at Microsoft

As discussed in Section 2, development groups at
Microsoft have been utilizing personas and scenarios
since the mid 1990s. These personas appear on posters
in the halls of the buildings in which the developers
reside. Each development group shares its persona
experiences with the other groups. Scenarios which
reference personas are found in the requirements
documents for each group. The scenarios are

implemented and become part of the functionality of
the a specific product/release. However, personas live
and are refined from release to release.

5.1. Using personas and scenarios to build
development tools

The Developer Division is a several hundred
person line of business which builds developer tools at
Microsoft. In the Developer Division, we have
developed three personas that represent the developer
role. These personas were developed through on-going
interactions with our user community. Each persona
was carefully refined over a six-month period. Like the
other groups in Microsoft, these personas appear on
posters that hang on the walls of our building. These
three personas appear in our scenarios and aid us in
seeing the scenario unfold through the user’s eyes.
Since the personas respectfully represent these users,
their names are used in the scenario document rather
than a role name.

We find that scenarios are more effective at
getting to the system details. Additionally, personas
have helped us find the missing steps in a scenario
during the gathering of requirements. When missing
steps are discovered during development, personas
help the program manager and developers find the
needed functionality. There are often discussions about
what a persona would do in a given situation.
Decisions can be made in real time without extensively
rewriting the scenarios because there is a shared
understanding between all of the development team
members of the people who will be using the system.

While this mechanism helps us make decisions
more rapidly, we recognize that user interaction cannot
be replaced by these personas. We are constantly
verifying our new products through external design
reviews, usability labs, and beta releases. The feedback
from these sessions is reflected in both the personas
and the scenarios.

Microsoft Visual Studio, our flagship product, has
a very large user community. This product is an IDE
that supports three different programming languages
and a variety of development styles. A single developer
role could not do justice to this large a community.
With the addition of Visual Studio Team System3, we
have expanded beyond the developer into the extended
development roles of project management, business

3 Microsoft Visual Studio Team System is an extension
to the Visual Studio integrated development
environment that covers the entire software
development lifecycle from requirements through test
and deployment.

analyst, architect, and tester communities. We have
created new personas to fill these extended
development roles. The personas for these roles are not
nearly as detailed as the three developer roles, partly
because they are much newer. One of the ways that we
have dealt with the lack of detail is to create fewer
personas. In other words, until we have enough
information to create a distinct, memorable persona,
we use the persona like a role. Once additional
information is obtained, we add personas to represent
the individual variation.

Another consideration of how many personas to
create is how different are each of the personas. If the
resulting scenarios are very similar, there is no need to
spend the time to create personas for each type of
person. Another consideration is if a user transitions
from one persona to another. For example, does a
“Nachi” become a “Mark” with experience? How
quickly does this occur?

5.2. Microsoft Solutions Framework

As a result of our experience, we are deeply
embedding the use of personas in our new, externally-
available software development processes. Microsoft
is creating two of these processes geared toward two
different communities. MSF Agile is directed toward
the agile software developers while MSF Formal is
geared for those wanting the rigor of the Software
Engineering Institute’s Capability Maturity Model
Integration 4 (CMMI) [7].

Both MSF Agile and MSF Formal are scenario-
driven development processes for building .NET, Web,
Web Service, and other object-oriented applications.
Both also directly incorporate practices for handling
QoS requirements, such as performance and security.
Finally, they utilize a context-driven approach to
determine how to operate the project. MSF Agile and
MSF Formal will be made available as part of Version
4.0 of MSF.

Personas and scenarios play a central role in
driving the MSF software development processes. All
of the downstream development and testing activities
are driven by these central work products. Even the
architectural and other requirements elements are
deeply connected to the scenarios. For example, QoS
requirements constrain the functionality of scenarios in
many areas including security, performance, stress,
load, and platform. Architecture uses the scenarios as a
basis when creating the form for the functionality of

4 CMMI and Capability Maturity Model are registered
trademarks of the Software Engineering Institute.

the system. Tests are created based on the functionality
described in the scenarios.

In MSF Agile, scenarios are constrained to be
small enough to drive short development iterations.
Since an iteration is typically between two and six
weeks, each scenario must be small enough to be
completed by a small team in that period of time.
Typically, several scenarios are finished in an iteration.
This is usually not possible with larger vehicles such as
a use case. MSF Agile utilizes a scenario list to
capture the backlog of scenarios on the project. New
scenarios can be added to the backlog as they are
discovered. Just enough of the scenario is written to
allow a rough order of magnitude estimate to be
created.

Scenarios are also robust enough that they can be
combined with traditional requirements in MSF Formal.
A formal approach requires an estimate of the amount
of time necessary to complete the project with some
level of accuracy. Scenarios provide a decent level of
information to provide veterans the ability to determine
these estimates. Such a capability is often required for
fixed-priced contracts.

6. Conclusion

Personas and scenarios can be combined the way
that use cases and actors have been. Through the use of
personas/scenarios at Microsoft for several years, we
have found that personas have led to a more
comprehensive understanding of the target customers'
behaviors to drive and refine our scenarios and
subsequently our product development. In isolation,
personas are strictly a usability concept. But usability
does not drive the architecture, development, and
testing elements of a software development process.
Instead, requirements drive these elements. The
addition of personas unifies concepts from threat
modeling for architecture and drives certain types of
exploratory testing the way that scenarios drive
validation tests.

Personas and scenarios have been used together at
Microsoft for several years. However, this technique
has not been described outside of Microsoft until
recently. The release of two upcoming processes, MSF
Agile and MSF Formal will be part of new additions to
the Microsoft Solutions Framework in Version 4.0.
These processes capture best practices from Microsoft
for dealing with QoS requirements, security, and
innovations in agile and formal software development.

References

[1] I. F. Alexander and Neil Maiden, J.P. Wiley.,
"Scenarios, Stories, Use Cases Through the System
Development Life-Cycle." New York: John Wiley & Sons,
2004.
[2] D. Anderson, "Lifestyle Snapshots: Solving the
Context Problem for Wireless Design,"
http://www.uidesign.net/2000/papers/lifestylesnapshot.html,
2000.
[3] K. Beck, Extreme Programming Explained:
Embrace Change. Reading, Mass.: Addison-Wesley, 2000.
[4] J. M. Carroll, "Introduction: The Scenario
Perspective on System Development," in Scenario-Based
Design: Envisioning Work and Technology in System
Development, J. M. Carroll, Ed. New York: John Wiley and
Sons, 1995, pp. 1-17.
[5] J. M. Carroll, Making Use: Scenario-Based Design
of Human-Computer Interactions. Cambridge, MA: MIT
Press, 2000.
[6] S. Cheung, U. Lindqvist, and M. W. Fong,
"Modeling Multistep Cyber Attacks for Scenario
Recognition," DARPA Information Survivability Conference
and Exposition (DISCEX'03), Washington, DC, 2003, pp.
284-292.
[7] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI:
Guidelines for Process Integration and Product Improvement.
Boston, MA: Addison Wesley, 2003.
[8] A. Cooper, The Inmates Are Running the Asylum:
Why High Tech Products Drive Us Crazy and How to
Restore the Sanity. [need city]: Sams, 1999.
[9] J. Grudin and J. Pruitt, "Personas, Participatory
Design, and Product Development: An Infrastructure for
Engagement," The Participatory Design Conference, Malmö,
Sweden, 2002, pp. 144-161.
[10] I. Jacobson, G. Booch, and J. Rumbaugh, The
Unified Software Development Process. Reading,
Massachusetts: Addison-Wesley, 1999.
[11] I. Jacobson, M. Christerson, P. Jonsson, and G.
Övergaard, Object-Oriented Software Engineering: A Use

Case Driven Approach. Wokingham, England: Addison-
Wesley, 1992.
[12] S. Johnson, "Buyer and User Personas,"
ProductMarketing.com, vol. 1, no. 4, pp. 8-9, Nov/Dec 2003.
[13] C. Kaner, J. Bach, Bret Pettichord, and J. P. Wiley.,
Lessons Learned in Software Testing. New York: John Wiley
& Sons, 2001.
[14] T. Lanowitz, "Security at the Application Level:
Are You Ready?" Gartner Application Development
Summit: The Path to Modern AD, 2004, pp.
[15] C. Potts, "ScenIC: A Strategy for Inquiry-Driven
Requirements Determination," 4th IEEE International
Symposium on Requirements Engineering, Limerick, Ireland,
1999, pp. 58-65.
[16] J. Pruitt and J. Grudin, "Personas: Practice and
Theory," Conference on Designing for User Experiences, San
Franciso, CA, 2003, pp. 1-15.
[17] C. Rolland, G. Grosz, and R. Kla, "Experience
With Goal-Scenario Coupling in Requirements Engineering,"
4th IEEE International Symposium on Requirements
Engineering, Limerick, Ireland, 1999, pp. 74-81.
[18] K. Rönkkö, M. Hellman, B. Kilander, and Y.
Dittrick, "Personas is not Applicable: Local Remedies
Interpreted in a Wider Context," Participatory Design
Conference, Toronto, Canada, 2004, pp. 112-120.
[19] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C.
E. Youman, "Role-based access control models," IEEE
Computer, vol. 29, no. 2, pp. 38-47, 1996.
[20] A. Sutcliffe, "Scenario-based Requirements
Engineering," 11th IEEE International Symposium on
Requirements Engineering, Monterey, California, 2003, pp.
320-329.
[21] F. Swiderski and W. Snyder, Threat Modeling.
Redmond, WA: Microsoft Press, 2004.
[22] The Standish Group International, "Extreme
Chaos,"
http://www.standishgroup.com/sample_research/PDFpages/e
xtreme_chaos.pdf, 2001.

Appendix: The MSF Agile Persona Template

Name: Enter a respectful, fictitious name for the
persona.

Status and Trust Level: Favored
or disfavored and level of
credentials

Role: Place the user group in which the persona
belongs.

Demographics: Age and
personal details optional

Knowledge, skills, and abilities: Group real but generalized information about the
capabilities of the persona.

Goals, motives, and concerns: Describe the real needs of the users in the user group
represented by the persona. If multiple groupings exist, write a persona for each
grouping.

Usage Patterns: Write the frequency and usage patterns of the system by the persona.
Develop a detailed understanding of what functions would be most used. Look for any
challenges that the system must help the persona overcome. Note the learning and
interaction style if the system is new. Does the persona explore the system to find new
functionality or need guidance? Keep this area brief but accurate.

