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Abstract 

More than half of all of the vulnerabilities re-
ported can be classified as input manipulation, 
such as SQL injection, cross site scripting, and 
buffer overflows.  Increasingly, automated static 
analysis tools are being used to identify input ma-
nipulation vulnerabilities.  However, these tools 
cannot detect the presence or the effectiveness of 
black or white list input filters and, therefore, may 
have a high false positive rate.  Our research ob-
jective is to facilitate the identification of true 
input manipulation vulnerabilities via the combi-
nation of static analysis, runtime detection, and 
automatic testing.  We propose an approach for 
SQL injection vulnerability detection, automated 
by a prototype tool SQLUnitGen.  We performed 
case studies on two small web applications for the 
evaluation of our approach compared to static 
analysis for identifying true SQL injection vulner-
abilities. In our case study, SQLUnitGen had no 
false positives, but had a small number of false 
negatives while the static analysis tool had a false 
positive for every vulnerability that was actually 
protected by a white or black list.  Future work 
will focus on removing false negatives from 
SQLUnitGen and at generalizing the approach for 
other types of input manipulation vulnerabilities.    

                                                 

                                                

Copyright © 2006 Yonghee Shin, Laurie Williams, and 
Tao Xie. Permission to copy is hereby granted provided 
the original copyright notice is reproduced in copies 
made. 
 

1 Introduction 
More than half of all of the vulnerabilities 1  re-
ported in 2003-4 [28] were input manipulation 
vulnerabilities.  Some examples of input manipu-
lation include SQL injection, cross site scripting 
(XSS), and buffer overflows, according to the 
Open Source Vulnerability Database2 classifica-
tion.  Input manipulation vulnerabilities exploit 
the fact that dynamic operations, such as SQL 
queries, can be constructed with user input as 
variables and that these dynamic operations are 
not always safe.  For example, if an attacker en-
ters SQL commands in a user input field, such as 
user name field, the resulting dynamically-
generated SQL query may be altered from its in-
tended function in the application and may enable 
the attacker to perform an unauthorized task.   

By limiting user input such that only well-
formed strings are accepted into the application, 
input manipulation vulnerabilities can be reduced.  
To do this, applications can filter user input via 
white lists3, black lists4, or a combination of the 
two, prior to allowing the input to reach the logic 
of the application.  Validating input against a 
white list filter has been shown to be more feasi-
ble than matching against a potentially infinite 
black list [13, 15].   

One means of detecting input manipulation 
vulnerabilities is the use of automated static 
analysis tools [6, 7].  However, these tools cannot 

 
1 A vulnerability is a security flaw in the system that 
represents a valid way for an adversary to realize an 
adversary’s goals [26]. 
2 http://www.osvdb.com/ 
3 A white list represents valid input as specified by 
requirements for a software system [13]. 
4 A black list represents any input not defined as valid 
by the system requirements [13].  
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detect the presence or the effectiveness of black or 
white list input filters.  As a result, static analysis 
tools may have a high false positive rate when 
reporting input manipulation vulnerabilities in 
applications with effective filters.  Alternatively, 
SQL injection attacks (SQLIA) can be automati-
cally detected at runtime and prevent malicious 
SQL queries from being executed instead of rely-
ing on input validation functions in the program 
[12, 25, 27]    However, runtime detection does 
not provide information that can be used to fix the 
vulnerable code in the early development phase.    

Our research objective is to facilitate the 
identification of true input manipulation vulner-
abilities via the combination of static analysis, 
runtime detection, and automatic testing.  Specifi-
cally, this paper reports our first step in this re-
search objective, a prototype tool SQLUnitGen 
v0.5 that can be used to identify SQL injection 
vulnerabilities.  As we refine SQLUnitGen, we 
expect that the principles and techniques embod-
ied in this tool can be expanded for the identifica-
tion of other types of input manipulation 
vulnerabilities. 

To measure the effectiveness of SQLUnitGen 
v0.5, we performed case studies on two small web 
applications with the tool. We examined the abil-
ity of SQLUnitGen to detect SQLIAs for the ap-
plications with differing levels of input filtering.   
We compare these results with the vulnerability 
detection of FindBugs5, a static analysis tool. 

The rest of this paper is organized as follows. 
Section 2 provides background and Section 3 de-
scribes related work. Section 4 describes our ap-
proach. Section 5 describes our case studies and 
evaluation results. Section 6 concludes and dis-
cusses the future work. 

2 Background 

This section describes SQL Injection attacks with 
an example and describes the two tools, 
AMNESIA [12] and JCrasher [11], that 
SQLUnitGen is based on.   

2.1 SQL Injection Attacks 
Through a SQL query, a program can add, modify, 
or retrieve data in a database.  SQL injection en-
ables attackers to access, modify, or delete critical 
information in a database without proper authori-
                                                 
5 http://findbugs.sourceforge.net/ 

zation.  Via SQL injection, attackers can also exe-
cute arbitrary commands with high system privi-
lege in the worst case [2]. SQL injection has 
recently been one of the top issues in software 
security [1].  

In many cases, SQL queries are dynamically 
constructed via user input. Despite there being 
several safer ways to make SQL queries in sys-
tems such as using Java’s PreparedStatement, 
queries are often dynamically generated in string 
concatenations, an unsafe and poor programming 
practice. For example, Figure 1 shows a sample 
program including a SQL query to authenticate a 
user via id and password. The query is dynami-
cally created via the program statement in bold.  
In the query in Figure 1, id and password are 
obtained via user input.   

 
public boolean isRegistered(String id,  
                        String password) {  
 String driver = “com.mysql.jdbc.Driver”; 
 String to = “jdbc:mysql://cc.com/credit”; 
 Class.forName(driver).newInstance(); 
 Connection dbConn = 
       DriverManager.getConnection(to); 
String sqlQuery =  
      “SELECT userinfo FROM users  
       WHERE id = ‘“ + id + “’  
       AND password = ‘“ + password + “’”; 
Statement stmt =  
       dbConn.createStatement(); 
 ResultSet rs = 
       stmt.executeQuery(sqlQuery); 
 if(rs != null) return true; 
 else return false; 
} 

Figure 1: An example of SQL query. 

A SQL injection attack occurs when an input 
from a user includes SQL keywords so that the 
dynamically-generated SQL query changes the 
intended function of the SQL query in the applica-
tion. In the previous example, an attacker can 
enter the following input through the user inter-
face for the values of id and password: 

 
Username: ‘ OR ‘1’ = ‘1 
Password: ‘ OR ‘1’ = ‘1 
 
Which would generate the following query: 
 
SELECT userinfo FROM users  
WHERE id = ‘1’ OR ‘1’ = ‘1’  
AND password = ‘1’ OR ‘1’ = ‘1’; 
 
Because the given input makes the WHERE 

clause in the SQL statement always true (a tautol-
ogy), the database returns all the user information 
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in the table.  Therefore, the malicious user has 
been authenticated without a valid login id and 
password.  The use of tautology is a well-known 
SQL attack [2, 12, 25].  However, there are other 
types of SQLIAs using multiple SQL statements 
or stored procedures. SQL clauses such as 
“UNION SELECT”, “ORDER BY”, and 
“HAVING” are sometimes used to infer database 
structure.  The attackers also can infer database 
structure by exploit error messages from SQL 
command failure [2, 21] or simply by trial and 
error [20].   

2.2 AMNESIA 
AMNESIA[12] is a runtime SQLIA detection tool. 
AMNESIA consists of two parts; static analysis 
and dynamic detection. During static analysis, 
AMNESIA identifies hotspots where a hotspot is 
defined as “points in the application code that 
issue SQL queries to the underlying database.”  
[12]. Then, AMNESIA builds a model of SQL 
queries that could be generated by an application 
for each hotspot. At runtime, AMNESIA checks 
the dynamically-generated queries against the 
statically-built query model.  If they do not match, 
the AMNESIA runtime monitor returns an error 
and prevents the SQL query from being executed. 
Otherwise, the query is sent to the database server.  

The AMNESIA SQL query model is con-
structed based on Java String Analyzer (JSA) that 
uses a static string analysis technique [9]. JSA 
statically analyzes string data flow in Java pro-
grams and converts the flow graph to an approxi-
mated regular expression that can be easily 
converted into a finite state automaton.  Because 
the approximation is conservative, the resulting 
automaton represents all the possible strings that 
can be represented at a particular location in a 
program but also could include some impossible 
strings.  

AMNESIA converts the character-level 
automata generated by JSA into SQL query auto-
mata, which groups a SQL keyword into a transi-
tion. The transitions in the automata consist of 
SQL keywords, operators, constants, and a special 
keyword representing SQL query variables such 
as id in our example. Figure 2 shows the SQL 

query model built from the example SQL query in 
Figure 1. In Figure 2, β indicates a SQL query 
variable that holds user input.  

Our approach modifies SQL query models 
generated by AMNESIA to trace the user input 
that reaches a SQL query and to generate attack 
input for the test cases. AMNESIA is also used as 
a test oracle to detect the SQLIA during test exe-
cution.  A test oracle is a program or function that 
determines if a test execution passed or failed. 

2.3 JCrasher 
JCrasher automatically generates test cases 

for the methods in a class with predefined input 
values. For example, for integer types, JCrasher 
uses 1, 0, and -1 as input values. To generate test 
cases, JCrasher probes a type space, mapping a 
type to a set of pre-defined values or to methods 
returning the type, and constructs a parameter 
graph that represents possible combination of 
input values for parameters. 

The reasons we chose JCrasher among other 
tools are as follows. JCrasher generates concrete 
input values for string types, which is crucial for 
our approach. Secondly, JCrasher generates JUnit 
test cases written in Java language. Thirdly, be-
cause its source code is available we could modify 
JCrasher for our purpose. Finally, even though 
JCrasher was not designed for high test coverage, 
our experience showed that the test coverage pro-
vided by JCrasher was sufficient for our initial 
prototype. 

3 Related Work 
There are existing tools and techniques that can be 
used in development and testing time to detect or 
prevent input manipulation vulnerabilities and to 
improve programs so that input manipulation vul-
nerabilities can be reduced. This section discusses 
those techniques and compares with our approach.  

3.1 Manual Approaches 
This section describes manual approaches to de-
tect and prevent input manipulation vulnerabilities.  

3.1.1. Defensive programming Many input 

  
Figure 2: SQL query model.
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manipulation attacks can be prevented, by imple-
menting the application in a way that user input 
cannot contain malicious characters or keywords. 
Programmers can implement their own input fil-
ters by using white lists or black lists. Our ap-
proach helps to improve user input validation by 
providing information on vulnerable method ar-
guments and malicious input. Programmers can 
also use existing safe APIs that prevent malicious 
input by strong type checking or converting mali-
cious input into safer input. SQL DOM [22], Safe 
Query Objects [10], PreparedStatement in the 
JDBC API, and special APIs provided by DBMSs 
are in this category.  

However, some of these approaches require 
programmers to learn the usage of APIs. Because 
learning new APIs takes time, programmers tend 
to use the APIs they know when the time is lim-
ited or to reuse the existing source code. Addi-
tionally, legacy code can contain SQL injection 
vulnerabilities.  Furthermore, improper usage of 
PreparedStatement still can allow SQLIAs.  
Table names and column names cannot be used in 
a safe way even with PreparedStatement. 
Therefore, when a table name or a column name 
is used as a variable, it should be validated in the 
application [19].  

3.1.2 Code review Code review is known to 
be effective in detecting bugs with low cost [5]. 
However, code review is a time consuming task 
compared to automated static analysis [7] and 
may be skipped by software development teams 
rushing to ship an application. In addition, the 
reviewer must have deep knowledge about how 
SQLIAs work. A strength of our approach is that 
it provides fast and early detection of vulnerabili-
ties by non-security experts. 

3.1.3 Manual penetration testing “Penetra-
tion testing is security testing in which evaluators 
attempt to circumvent the security features of a 
system  based on their understanding of the sys-
tem design and implementation” 6 . Penetration 
testing is usually performed at the end of devel-
opment life cycle within a limited amount of time 
[3]. Therefore, the cost of removing the vulner-
abilities found during penetration testing is very 
expensive. Penetration testing is usually per-
formed in a black-box approach. Thus, the testing 
result does not directly inform the vulnerable lo-
cation in the application. On the other hand, our 

                                                 
6 http://www.atis.org/tg2k/_penetration_testing.html 

approach tests applications during the unit testing 
and integration testing periods. Therefore, SQL 
injection vulnerabilities can be detected and fixed 
earlier than with penetration testing.  In addition, 
our approach is a white-box approach and pro-
vides test results in a way programmers can easily 
identify the vulnerable location in the application. 

3.2 Automated Approaches 
This section describes automated approaches to 
detect and prevent input manipulation vulnerabili-
ties.  

3.2.1 Static analysis FindBugs [14] is a static 
analysis tool that detects various bugs in Java 
programs, including SQLIAs.  FindBugs gives a 
warning when a SQL query is constructed from 
variables instead of purely constant values.  How-
ever, FindBugs does not assess whether the input 
was validated properly before the input is used in 
a SQL query or not and, therefore, may generate 
many false positives. On the other hand, our ap-
proach provides more precise information about 
SQLIAs based on test execution.  

3.3.2 Web vulnerability scanning Web vul-
nerability scanners crawl and scan for web vul-
nerabilities by using software agents. These tools 
perform attacks against web applications and de-
tect vulnerabilities by observing their behavior to 
the attacks [4, 18].  WAVES [16], SecuBat [18], 
AppScan, ScanDo, and WebInspect [4] are in this 
category.  However, without exact knowledge 
about the internal structure of applications, it is 
difficult to generate precise attack input that can 
reveal input manipulation vulnerabilities.  On the 
other hand, our approach uses more precise attack 
input based on static analysis on application 
source code and identifies proper attack input for 
method arguments.  

4 Proposed Approach 

User input might take a circuitous path from the 
user interface through one or more methods that 
may or may not be input filter methods, and ulti-
mately to the SQL command to be executed.  Our 
approach  traces the flow of the input values that 
are used for a SQL query by using the AMNESIA  
SQL query model [12] and string argument in-
strumentation.  Based on the input flow analysis, 
we generate test attack input for the method ar-
guments used to construct a SQL query.  We gen-
erate test cases with an existing JUnit test case 
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generation tool, JCrasher, and modify the test 
input with attack input.  To help programmers to 
easily identify vulnerable locations in the program, 
our approach generates a colored call graph indi-
cating secure and vulnerable methods. 

This section provides an overview of our ap-
proach that consists of three phases and describes 
each phase in the following sections.  

4.1 Overview 
Our research objective is to facilitate the identifi-
cation of true input manipulation vulnerabilities 
via the combination of static analysis, runtime 
detection, and automated testing.  Our objective is 
based on the overarching goal of software security 
in which security is an integral part of the devel-
opment process [23]. 

Our approach involves three phases. In the 
first phase, test cases whose execution reaches 
SQL query statements are generated.  We call 
these test cases hotspot-reaching test cases.  Dur-
ing the second phase, the generated test cases are 
refined so that the input values of test cases are 
replaced with attack input. The attack input for 
method arguments is determined from an aug-
mented SQL query model which has additional 
input flow information than a standard SQL query 
model. In the third phase, test cases are executed 
to detect vulnerabilities and test result summaries 
are generated.  Programmers can then use the test 
result summaries to improve the program.  Figure 
3 shows the overview of test case generation 
process.  The following sections describe each 
phase in detail.  

4.2 Phase 1: Generate Hotspot-
reaching Test Cases 

Generating hotspot-reaching test cases is per-
formed in two steps.  At first, initial test cases are 
generated by JCrasher [11].  Then, hotspot-
reaching test cases are collected from the initial 
test cases.  To collect hotspot-reaching test cases, 
SQLUnitGen finds a hotspot from the Java appli-
cation’s byte code7 and instruments (modifies) the 
byte code so that an exception is raised right be-
fore the hotspot is executed using BCEL (Byte 

                                                 
7 Java byte code is the code the Java compiler produces 
from Java source code. Java byte code is interpreted 
(executed) by a Java Virtual Machine (JVM).  

Code Engineering Library)8.  BCEL provides the 
APIs to analyze byte code and change programs 
directly on the byte code level instead of modify-
ing the source code. Therefore, SQLUnitGen can 
search the method signature defined as hotspots 
using BCEL. Figure 4 shows an example of the 
instrumented code.  For ease of reading, we show 
the instrumentation on the source code level, in-
stead of byte code level.  In this example, right 
before a hotspot executeQuery is executed, 
HotspotException is raised. 
 
public boolean isRegistered(String id,  
                        String password) { 
 … 
 throw new HotspotException(); 
 ResultSet rs =  
      stmt.executeQuery(sqlQuery); 
 if(rs != null) return true; 
 else return false; 
} 

Figure 4: Hotspot instrumentation. 
 
SQLUnitGen collects the test cases that raise 

the instrumented exception as hotspot-reaching 
test cases.  The execution of these test cases is 
guaranteed to reach hotspots.  Therefore, if the 
execution of these test cases with malicious/attack 
input does not reach a hotspot, the program has 
effectively blocked the malicious input.  In Phase 
2, these test cases are modified to include attack 
input.   

4.3 Phase 2: Generate Attack 
Test Case 

For attack test cases, we need to generate attack 
input so that the attack input does not cause SQL 
syntax or semantic errors unnecessarily.  For ex-
ample, a column in a database table with character 
data type must use single quotation marks prop-
erly so that a SQLIA will not generate a SQL syn-
tax error.  We also need to identify the flow of 
user input from methods to hotspots to identify 
which arguments of which methods must have the 
generated attack input.  For these purposes, we 
use a SQL query model and string argument in-
strumentation, as described in Section 4.3.1 and 
Section 4.3.2. 

                                                 
8 http://jakarta.apache.org/bcel/ 
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Figure 3: Test case generation process. 

 

4.3.1 Building augmented SQL query model 
To trace the flow of input values, SQLUnitGen 
instruments the byte code so that, for each string 
type argument, its method name and argument 
index are added before and after the string argu-
ment value. Figure 5 shows an example of in-
strumentation.  For ease of reading, we show the 
instrumentation on the source code level, instead 
of byte code level.  The instrumentation is in bold. 
In this figure, the argument id and password 
are string types. Therefore, the argument id is 
tagged with the method name isRegistered 
and argument index 0 and the argument pass-
word is tagged with the method name isReg-
istered and argument index 1.   

The SQL query model built on the instru-
mented byte code includes the tagged information 
as if it is a part of the SQL query. We call the 
SQL query model with tagged information the 
augmented SQL query model. When the value of a 
variable cannot be determined in the application 
because it comes from user input, it is represented 
as a special keyword, β, in the SQL query model. 

The resulting augmented SQL query model is 
shown in Figure 6. In Figure 6, id and pass-
word are represented in β, which represents user 
input. 

 
public boolean isRegistered(String id, 
                      String password) {     
  id = “[isRegistered-0]” + id +  
       “[isRegistered-0]”; 

password = “[isRegistered-1]” +  
            password +   

              “[isRegistered-1]”; 
 … 
} 

Figure 5: String argument instrumentation. 
 
When an argument is passed through a chain 

of method calls, the tag includes all the methods 
involved in the method call chain.  For example, 
if method isRegistered is called by method 
Login as Figure 7, the beginning tag of variable 
id  becomes [isRegistered-0][Login-0] 
and the ending tag of variable id  becomes 
[Login-0][isRegistered-0] as a result of 

 
Figure 6: Augmented SQL query model. 
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string analysis.  
 

public boolean Login(String id,  
                     String password) {     
   boolean result = isRegistered(id,  
                                password); 
       … 
} 

Figure 7: Nested method call. 
 
Figure 8 shows the augmented SQL query 

model for the program segment in Figure 7.  Fig-
ure 8 shows only a part of the augmented SQL 
query model for the variable id. From this aug-
mented SQL query, we can trace the flow of ini-
tial input to a SQL query and identify method 
arguments that are used to construct a SQL query.  

 

 
4.3.2 Generating attack input For the suc-

cessful attack, attack input should not cause SQL 
exceptions including SQL syntax errors or SQL 
semantic errors unnecessarily.  SQL semantic 
errors occur when the attack input includes incor-
rect table names or column names.  SQL syntax 
error occurs when the dynamically constructed 
SQL query from the attack input results in a syn-
tactically illegal form.  For example, if we use 
“1’ OR ‘1’=’1” as attack input for an integer 
type column of a database table, the query will 
generate a syntax error.  In SQLUnitGen v0.5, we 
reduce syntax errors via the syntactical informa-
tion we can obtain from the SQL query model. 

However, some syntax errors are unavoidable.  
For example, when attack input includes multiple 
SQL statements, if a DBMS does not allow multi-
ple SQL statements in a query execution, the 
DBMS generates a syntax error.  When we count 
successful SQLIAs from test cases, we only count 
the test cases that were successful in SQL injec-
tion without causing SQL syntax errors.   

As attack input, SQLUnitGen v0.5 includes 
nine attack patterns gathered from various re-
sources [2, 17, 19, 21].  They are only a small 
subset of possible attack patterns. The nine attack 
patterns are described in Section 4.5 in detail.  We 
will include more attack patterns in the future 
releases 

4.3.3 Generating attack test cases From the 
previous two steps, we obtain the attack input for 

method arguments.  To generate attack test cases 
with SQLUnitGen, we modified JCrasher so that 
JCrasher changes test input of hotspot-reaching 
test cases to include the attack input identified in 
the previous steps for corresponding method ar-
guments.  Figure 9 shows a test case for method 
isRegistered generated by JCrasher during 
the first phase.  Figure 10 shows a modified test 
case containing attack input during the second 
phase.  The test case in Figure 10 tests if the vari-
able id in the example in Figure 1 is properly 
validated or not.  
 
public void test0() throws Throwable { 
      java.lang.String s4 = “normal"; 
      java.lang.String s5 = “normal"; 
      SampleApp s2 = new SampleApp(); 
      boolean result =  

Figure 8:Augmented SQL query model for nested 
method calls. 

               s2.isRegistered(s4, s5);          
}                                 

Figure 9: Test case before modification. 

 
public void test0() throws Throwable { 
     java.lang.String s4 = “1' OR '1'=’1"; 
     java.lang.String s5 = “normal"; 
     SampleApp s2 = new SampleApp(); 
     boolean result =  
               s2.isRegistered(s4, s5); 
} 

Figure 10: Test case after modification. 

4.4 Phase 3: Execute Test Cases 
and Generate Test Result 
Summary 

To detect SQLIAs, SQLUnitGen instruments ap-
plication byte code with the AMNESIA runtime 
monitor [12].  When the SQL query constructed 
from a test case and the SQL query model built by 
AMNESIA statically do not match, the 
AMNESIA runtime monitor raises a SQLIAEx-
ception. 

To help programmers to easily identify vul-
nerable locations in the program, SQLUnitGen 
generates a textual test result summary and a 
graphical test result summary.  A textual test re-
sult summary shows the test cases that succeeded 
or failed for each method.  Test success in a test 
case means that SQLIA was not detected from the 
test case. Test failure in a test case means that 
SQLIA was detected from the test case.   

A graphical test result summary shows a col-
ored call graph indicating the flow of input be-
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tween methods, and the demonstrated vulnerabil-
ity of each method.  On the call graph, methods 
are represented as ovals.  A green oval indicates 
that all the test cases for the method succeeded.  A 
red oval indicates that all the test cases for the 
method failed.  A yellow oval indicates that some 
of the test cases for the method succeeded and 
that some of them failed.  A black oval indicates 
there were no test cases for the method.  From the 
colored call graph, developers can identify how 
vulnerable input flows through the system and 
where to put input filters.  Figure 11 shows an 
example of colored call graph.  For ease of read-
ing a printed document, the color has been 
changed to black and white.  The color mapping is 
described in the Figure 11. 

In the figure, the numbers after a method 
name indicates the number of successful test cases 
and failed test cases.  For example, all the test 
cases for Login succeeded, which means the 
method is not vulnerable to the test input.  All the 
test cases for isRegistered failed, which 
means the method was vulnerable to the test input.  
Partial success can happen, as in getUserInfo, 
when input filtering is performed only for some of 
the arguments, or input filter does not check some 
of vulnerable characters.  

Even though isRegistered failed in all 
the test cases, isRegistered can be consid-
ered not to be vulnerable because the caller 
method Login is the only path to isRegis-
tered, and Login filtered all the vulner-
able input successfully.  If isRegistered can 
be called with user input without passing through 
Login, a programmer should consider putting 
input filters between isRegistered and the 
hotspot. 

A textual test result summary also provides 
the query used for each test case.  Therefore, pro-
grammers can easily identify why the test case 
failed and which user input is vulnerable using the 
textual test result summary and attack test cases 
with concrete attack input values.  Based on the 
information, programmers can add input filters in 
a proper location in a program or use safer APIs, 
or combine the two approaches.  

4.5 Attack Patterns 
Our initial set of nine attack patterns included in 
SQLUnitGen v0.5 were collected from published 
black lists [2, 17, 19, 21]. These initial nine are 
only a small set of commonly-referenced attacks. 
To generate attack inputs, we used the following 
attack patterns for character type variables that 
require a single quotation mark:  
 
AP1: 1’ OR ‘1’=’1 
AP2: 1’OR‘1’=’1 
AP3: 1'; exec master..xp_cmdshell  
        'dir';-- 
AP4: 1'; drop table sqliatest; create 
    table sqliatest (name varchar(10))-- 
AP5: 1'; delete from sqliatest;-- 

 
AP2 is similar to AP1, but AP2 does not have 

a space between 1’ and OR.  This attack pattern 
was added to test if the program tries to detect 
SQL injection attack based on a wrong regular 
expression, for example, “’ OR”. In some cases, 
the application cannot just block a single quota-
tion mark, because a single quotation mark in a 
name (e.g. O’Reilly) is legitimate data.  Even 
though the regular expression “’ OR” can detect 
AP1, this regular expression will fail to detect 
AP2.  In MySQL and PostgreSQL, ‘-- ' makes 

 
Figure 11: Call graph with test result. 
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remaining content in a SQL query a comment so 
that the remaining content is ignored. 

We used the following attack patterns for in-
teger type variables: 
 
AP6: 1 OR 1=1-- 
AP7: 1;exec master..xp_cmdshell  'dir'; -- 
AP8: 1; drop table sqliatest; create  
     table sqliatest (name varchar(10)) -- 
AP9: 1; delete from sqliatest;-- 

 
User input from web interface is transmitted 

as string data types.  Even though the input is for 
an integer type column in a database table, the 
string type user input can be used to construct a 
valid SQL query as long as the user input consists 
of numerical digits.  Therefore, AP6-9 can be 
used as attack input value for an integer type col-
umn if an application does not convert the user 
input into the integer type. 

AP1, AP2, AP6 are intended to detect attacks 
based on tautology as explained in Section 2.1. 
Some DBMSs allow multiple SQL statements in 
one query execution by default or by option.  AP3, 
AP4, AP5, AP7, AP8, and AP9 are intended to 
detect attacks involving multiple SQL statements.   
AP4, AP5, AP8, and AP9 show that attackers can 
arbitrarily manipulate data in a database.  With 
AP3, attackers can execute system commands 
using built-in stored procedure.   Microsoft SQL 
Server is known to be vulnerable to AP3 [2].  For 
repeatable test, AP8 creates table sqliatest 
after the table is dropped. 

4.6 Limitations 
Although our approach is useful to test SQL injec-
tion vulnerabilities, the current implementation 
has limitations as follows. 
1. Attack patterns in the test cases 

The ability to detect vulnerabilities in our ap-
proach is limited by the quality of attack patterns. 
Therefore, false negatives can happen when the 
attack patterns included in SQLUnitGen are not 
sufficient, as is the case with the nine current at-
tack patterns.  Due to the ever-evolving attack 
patterns, it is difficult to include all the attack 
patterns in the current implementation.  Therefore, 
an extendible interface to easily add new attack 
patterns must be provided.  
2. False negatives 

False negatives also can happen in the fol-
lowing cases.  First, false negatives can be gener-

ated when a SQL query model does not precisely 
reflect the possible SQL queries in an application 
and considers a SQL query constructed from at-
tack input as legal user input [12].  Second, false 
negatives can occur when the execution of ini-
tially-generated test cases do not reach hotspots 
through every possible path due to the lack of 
proper input.  In this case, the necessary attack 
test cases are not generated.  Therefore, the col-
ored call graph also may not include all the possi-
ble paths to hotspots.  Third, false negatives also 
can happen when a SQL query fails and the test 
case exits without executing the remaining SQL 
queries that can reveal SQLIA.   
3. User input APIs 

Our approach only can test user input passed 
as method arguments.  If a user input API and a 
hotspot that uses the input reside in the same 
method, test case cannot be generated properly.  
One way to solve this problem is to give warning 
to programmers when the user input is used at a 
hotspot without being passed as a method argu-
ment.  Such user input can be identified when an 
augmented SQL query model has no tagged in-
formation for a variable in a SQL query.  
4. Underlying techniques 

Our approach is limited by the ability of 
query-model building of AMNESIA and its un-
derlying string analyzer, JSA.  SQLUnitGen in-
herits the possibility of false negatives and false 
positives of AMNESIA due to the over-
approximation of underlying string analysis [12].  
In addition, the current implementation of JSA 
does not support the analysis of the string in a 
class field as it does for local string variables for 
its own purpose [8]. Therefore, when a method 
argument is a class and a member field of the 
class is used to construct a SQL query, our ap-
proach does not trace user input precisely. 
SQLUnitGen is also limited by the scalability of 
AMNESIA and JSA due to the possible large 
number of states and transitions in the generated 
automata [12]. 

5 Evaluation 
To investigate the effectiveness of our approach, 
we performed case studies on two small web ap-
plications. This is a preliminary study to examine 
and understand the possibility of using this ap-
proach as an improvement to current vulnerability 
detection methods, and to see what we can learn 
about improving this approach. The following 
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subsections describe our evaluation setup and the 
results.  

5.1 Evaluation Setup 
As test subjects, we used two small web applica-
tions, called Cabinet and Bookstore with 
SQLUnitGen v0.5.  Cabinet was developed as a 
class project by the first author and her team 
members in Fall 2004.  Cabinet has approximately 
2000 lines of code in 14 classes.  Cabinet allows 
users to register, login, and order cabinets.  Book-
store, approximately 20000 lines of code in 28 
classes, is publicly available from an open source 
web site 9 .  Bookstore was also used for the 
evaluation of AMNESIA [12].  For both of the 
applications, we used only the login modules as 
initial test.   

Due to Limitations 3 and Limitation 4 de-
scribed in Section 4.6, we modified a part of the 
subjects.  Because SQLUnitGen requires user 
input to be passed to a hotspot through a method 
call, we added a wrapper method for a hotpot 
when the input API and the hotspot reside in the 
same method.  Because underlying tool JSA does 
not analyze the fields as it does for local variables, 
we also modified the subjects so that the method 
arguments whose value is used for a hotspot are 
passed as string types rather than as a field in a 
class.  

In addition, to evaluate the effectiveness of 
generated test cases, we performed controlled 
fault injection.  For the fault injection, we modi-
fied the applications so that the applications have 
different levels of input filtering.  For each subject, 
Version 1 has no input filtering function.  Version 
2 has input filtering for a part of input arguments.  
Version 3 was intended to have exhaustive input 
filtering for every input from users.  The modified 
subjects are available online10.  Cabinet initially 
had no input filtering in the server-side code.  All 
input validation was implemented in the client 
side via Javascript. 

5.2 Evaluation Results 
We compared our results with the results of a 
static analysis tool, FindBugs [14].  FindBugs is a 
tool that detects various bug patterns in Java pro-

                                                 

                                                
9 http://www.gotocode.com 
10 
http://www4.ncsu.edu/~yshin2/sqlunitgen/examples.zip 

grams, including SQLIAs.  FindBugs gives a 
warning when a SQL query is constructed from 
variables, not purely from constant values.  We 
used MySQL11 v5.0.21 for the evaluation.  

Table 1 shows the comparison summary at 
the hotspot level.  Table 2, in the Appendix, pro-
vides a summary from a test case perspective and 
additional explanatory details.  In Table 1, the 
numbers beside the subject name are the version 
numbers indicating different levels of input filters, 
as described in Section 5.1.  A limitation of the 
evaluation is the small sample size of hotspots.  In 
our future work we will evaluate larger programs.   

For the comparison, we measured the number 
of false positives and false negatives.  False posi-
tives are vulnerabilities found when the vulner-
abilities do not exist.  False negatives are 
vulnerabilities that were not found when the vul-
nerabilities actually exist.  The false positives and 
false negatives are measured by counting the 
number of actual vulnerable hotspots in each ap-
plication and the number of errors or warnings 
from SQLUnitGen and FindBugs.  A vulnerable 
hotspot is a hotspot where a SQLIA can occur 
from the attack patterns defined in Section 4.5 via 
the execution through all possible paths starting 
from the top level of method call chain.  There-
fore, for SQLUnitGen, a vulnerable hotspot is a 
hotspot whose top level caller is not a green color 
in the colored call graph.  However, due to the 
Limitation 2 in Section 4.6, we manually in-
spected the vulnerable hotspots.  When a syntacti-
cally-correct SQL query at a hotspot cannot be 
created successfully from any method call, we did 
not count the hotspot vulnerable.  For example, in 
Bookstore, one method includes only a part of a 
SQL query that is impossible to execute the query 
without a syntax error from any method call in the 
class we tested.  

Bookstore Version 1 and Cabinet Version 1 
had one and five vulnerable hotspots, respectively. 
Bookstore Version 3 and Cabinet Version 3 had 
no vulnerable statements because all of the input 
was properly filtered. FindBugs had no false 
negatives for all vulnerable hotspots. However, 
FindBugs had high percentage of false positives 
in Cabinet Version 2 and Cabinet Version 3. The 
reason FindBugs has false positives is because 
FindBugs only analyze the hotspots without con-
sidering the execution flow of the methods that 
call the hotpots and, therefore, cannot find the 

 
11 http://www.mysql.com 
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filter. SQLUnitGen had no false positives for all 
the vulnerable hotspots. However, SQLUnitGen 
had two false negatives in Cabinet 1. The false 
negative was caused because two vulnerable SQL 
statements were in the same method and the 
method returned after the first SQL statement was 
executed without executing the second statement.  
We will address this limitation in our future work. 

6 Conclusions and Future 
Work 

We presented an automatic test case generation 
technique to identify SQL injection vulnerability.  
We used a combined approach of static analysis, 
runtime detection and automatic testing.  Static 
analysis using AMNESIA and string argument 
instrumentation is used to trace the user input to a 
vulnerable location (hotspot) in an application. In 
our evaluation, the prototype tool SQLUnitGen 
v0.5 had no false positives and small number of 
false negatives.  Many of the SQLIA vulnerabili-
ties that can be identified with SQLUnitGen can 
be addressed via the use of PreparedState-
ments. Since many legacy applications were not 
written using PreparedStatements, SQLUnit-
Gen can be particularly helpful in finding and 
addressing SQLIA vulnerabilities in legacy code 
as well as new code written that does not take 
advantage of newer, safer techniques.   

Due to the limitations that we described in 
Section 4.6, we could not perform large scale 
evaluation. However, the result of preliminary 

study shows that our technique is promising in 
detecting vulnerabilities with less false positives 
than static analysis tools. However, due to the 
possible false negatives of our tool, the two ap-
proaches can be used in a complementary way. 
That is, after detecting vulnerabilities with a static 
analysis tool such as FindBugs, we can check the 
real vulnerabilities with our tool.  

Our future work includes the following: First, 
we plan to investigate a new test case generation 
technique with high path coverage.  We can adapt 
symbolic execution approach combined with con-
crete execution [24] or infer the input values from  
existing manually-created test cases to reduce 
false negatives.  Second, we plan to apply our 
approach for other types of security vulnerabilities.  
Our approach can be applied to the vulnerabilities 
with known hotspots where string type user input 
is used.  Third, we plan to provide test coverage 
information to give high confidence on the testing 
results.  Fourth, we plan to construct attack pat-
tern database with more thorough attack input in a 
way new attack pattern can be easily added and 
used to generate test cases. 
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Appendix 
In this appendix, we present additional evaluation 
results to the evaluation results described in Sec-
tion 5.2. Table 2 describes the number of hotspots 
(H), the number of initially generated test cases 
(IT), hotspot-reaching test cases (HT), and gener-
ated attack test cases (AT) for each application. In 
addition, Table 2 includes the number of success-
ful SQLIAs and SQL exceptions.  

Because different DBMSs and database driv-
ers behave differently for the SQL query or for 
the same database interface APIs in some cases, 
we tested with two DBMSs, MySQL 12  v5.0.21 
and PostgreSQL13 v8.1.3.  For example, MySQL 
does not allow multiple SQL statements in an 
SQL execute command by default, but Post-
greSQL allows multiple SQL statements for cer-
tain APIs.  To test the effects of multiple SQL 
statements, we modified SQL APIs used in the 
applications so that the APIs allow multiple SQL 
statements.  For that purpose, executeQuery 
was changed to execute.  

In Table 2, SI indicates the number of test 
cases with successful SQL injections without SQL 
syntax or semantic errors. FSI, full path SQLIA, 
indicates the number of test cases with successful 
SQL injections from the top level method in the 
method call chain. SI counted the number of suc-
cessful SQLIA in terms of each method not con-
sidering the flow of input. FSI considered the 
flow of input. For example in Figure 11, even 
though isRegistered failed in all the test 
cases, isRegistered can be considered not to 
be vulnerable because the caller method Login 

                                                                                                                     
12 http://www.mysql.com 

is the only path to isRegistered, and 
Login filters all the vulnerable input success-
fully.   

SQ indicates the number of test cases with 
SQL syntax and semantic errors. SQL syntax er-
rors occur when attack input includes syntacti-
cally illegal input. SQL syntax error depends on 
the DBMS used in some cases. For example, mul-
tiple SQL statements cause a syntax error for 
MySQL, but not for PostgreSQL.  For Post-
greSQL, using a non-boolean expression in 
WHERE clause is a syntax error. However, 
MySQL allows non-boolean expressions in 
WHERE clause such as “WHERE 1”. A SQL se-
mantic error occurs when a generated SQL query 
uses incorrect table name or column name.  

In Bookstore, PostgresSQL has more full 
path SQLIAs than MySQL because PostgreSQL 
allows multiple SQL statements and the attack 
patterns we used include multiple SQL statements. 
In Cabinet, MySQL has more full path SQLIAs 
than PostgreSQL because PostgreSQL treated 
some SQL statements as illegal statements, when 
MySQL considered them legal, as described pre-
viously. Due to the different level of input filter-
ing, Bookstore 1 and Cabinet 1 had more 
successful SQLIAs than Bookstore 2 and Cabinet 
2, respectively. In Bookstore 3 and Cabinet 3, all 
of the SQLIA prevented in terms of FSI due to the 
input filtering.  

 

 

 
13 http://www.postgresql.org 

 Test case information MySQL PostgreSQL 
Subject H IT HT AT SI SQ FSI SI SQ FSI 

Bookstore 1 1 52 9 99 18 77 9 40 55 13 
Bookstore 2 1 52 9 99 14 76 6 36 54 9 
Bookstore 3 1 52 10 105 12 73 0 30 55 0 
Cabinet 1 5 348 142 60 24 24 21 23 25 20 
Cabinet 2 5 348 142 60 15 15 12 14 16 11 
Cabinet 3 5 348 142 60 0 0 0 0 0 0 

Table 2: Test result. 

H: Number of hotspots. IT: Number of initially generated test cases in the phase 1.  HT: Number of hotspot-
reaching test cases.  AT: Number of attack test cases.  SI: Number of successful attacks. SQ: Number of 
SQL syntax or semantic errors. FSI: Number of full path SQLIA. 
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