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Abstract

Although users of high-performance computing are
most interested in raw performance, both energy and
power consumption have become critical concerns.
Some microprocessors allow frequency and voltage
scaling, which enables a system to reduce CPU per-
formance and power when the CPU is not on the crit-
ical path. When properly directed, such dynamic fre-
quency and voltage scaling can produce significant
energy savings with little performance penalty.

This paper presents an MPI runtime system that
dynamically reduces CPU performance during com-
munication phases in MPI programs. It dynamically
identifies such phases and, without profiling or train-
ing, selects the CPU frequency in order to minimize
energy-delay product. All analysis and subsequent
frequency and voltage scaling is within MPI and so
is entirely transparent to the application. This means
that the large number of existing MPI programs, as
well as new ones being developed, can use our sys-
tem without modification. Results show that the aver-
age reduction in energy-delay product over the NAS
benchmark suite is 10%—the average energy reduc-
tion is 12% while the average execution time in-
crease is only 2.1%.

1 Introduction

High-performance computing (HPC) tends to push
performance at all costs. Unfortunately, the “last
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drop” of performance tends to be the most expen-
sive. One reason is the cost of power consumption,
because power is proportional to the product of the
frequency and the square of the voltage. As an ex-
ample of the problem that is faced, several years ago
it was observed that on their current trend, the power
density of a microprocessor will reach that of a nu-
clear reactor by the year 2010 [17].

To balance the concerns of power and perfor-
mance, new architectures have aggressive power
controls. One common mechanism on newer micro-
processors is the ability of the application or operat-
ing system to select the frequency and voltage on the
fly. We call this dynamic voltage and frequency scal-
ing (DVFS) and denote each possible combination of
voltage and frequency a processor state, or p-state.

While changing p-states has broad utility, includ-
ing extending battery life in small devices, the pri-
mary benefit of DVFS for HPC occurs when the p-
state is reduced in regions where the CPU is not on
the critical path. In such a case, power consumption
will be reduced with little or no reduction in end-user
performance. Previously, p-state reduction has been
studied in code regions where the bottleneck is in the
memory system [19, 18, 5, 14, 13] or between nodes
with different workloads [21].

In contrast, this paper presents a transparent, adap-
tive system that reduces the p-state in communica-
tion phases—that is, in code regions where, while
the CPU is not idle, the executed code is not CPU in-
tensive. Our system is built as two integrated compo-
nents, the first of which trains the system and the sec-
ond of which does the actual shifting. We designed
several training algorithms that demarcate communi-
cation regions. In addition, we use a simple metric—
operations per unit time—to determine the proper p-
state for each region. Next, we designed the shifting
component, which includes the mechanics of reduc-



ing the p-state at the start of a region and increasing
it at the end.

Because our system is built strictly with code ex-
ecuted within the PMPI runtime layer, there is no
user involvement whatsoever. Thus, the large base of
current MPI programs can utilize our technique with
both no source code change and no recompilation of
the MPI runtime library itself. While we aim our
system at communication-intensive codes, no per-
formance degradation will occur for computation-
intensive programs.

Results on the NAS benchmark suite show that we
achieve up to a 20% reduction in energy-delay prod-
uct (EDP) compared to an energy-unaware scheme
where nodes run as fast as possible. Furthermore,
across the entire NAS suite, our algorithm that re-
duces the p-state in each communication region
saved an average of 10% in EDP. This was a sig-
nificant improvement compared to simply reducing
the p-state for each MPI communication call. Also,
importantly, this reduction in EDP did not come at a
large increase in execution time; the average increase
across all benchmarks was 2.1%, and the worst case
was only 4.5%.

The rest of this paper is organized as follows. In
Section 2, we provide motivation for reducing the
p-state during communication regions. Next, Sec-
tion 3 discusses our implementation, and Section 4
discusses the measured results on our power-scalable
cluster. Then, Section 5 describes related work. Fi-
nally, Section 6 summarizes and describes future
work.

2 Motivation

To be effective, reducing the p-state of the CPU
should result in a large energy savings but a small
time delay. As Figure 1 shows, MPI calls provide an
excellent opportunity to reduce the p-state. Specifi-
cally, this figure shows the time and energy as a func-
tion of CPU frequency for four common MPI calls at
several different sizes. (Function MPI_File_write is
included because it is used in BT and it communi-
cates with a remote file system, which is a different
action from other MPI communication calls.) For all
MPI operations, at 1000 MHz at least 20% energy
is saved with a time increase of at most 2.6%. The
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Figure 1: Micro-benchmarks showing time and en-
ergy performance of MPI calls with CPU scaling.

greatest energy savings is 31% when receiving 2 KB
at 1000 MHz. In addition, For the largest data size,
the greatest time increase was only 5%. In terms of
energy-delay product, the minimum is either 1000 or
800 MHz. Overall, these graphs show that MPI calls
represent an opportunity, via CPU scaling, for energy
saving with little time penalty.

However, in practice, many MPI routines are too
short to make reducing the p-state before and in-
creasing the p-state after effective. Figure 2(a) shows
a cumulative distribution function (CDF) of elapsed
times of all MPI calls in all of the NAS benchmark
suite. This figure shows that over 96% of MPI calls
take less than 20 ms, and more importantly, 64% take
less than 1 ms, and the median value is less than
0.1 ms. Considering that changing the p-state can
take up to 700 microseconds, both time and energy
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Figure 2: Cumulative distribution functions (CDF) of the duration of and interval between MPI calls for
every MPI call for all nine programs in our benchmark suite.

will increase if one tries to save energy during such
short MPI routines. Figure 2(b) plot the CDF for the
interval between MPI calls. It shows that 96% of in-
tervals are less than 5 milliseconds, which indicates
that MPI calls clustered in time.

Hence, we need to amortize the cost of changing
the p-state over several MPI calls. This brings up the
problem of how to determine groups of MPI calls, or
communication regions, that will execute in the same
reduced p-state. The next section describes how we
address this problem.

Finally, our solution only considers shifting at
MPI operations. However, there are other places
shifting can be done. For example, one could shift at
program (computational) phase boundaries or even
at arbitrary intervals. We rejected the latter because
such shifting is not context-sensitive, meaning that
we could not learn from previous iterations. The for-
mer is context-sensitive, and with elaborate phase
analysis it will likely find excellent shifting loca-
tions. However, shifting only at MPI operations can
easily be implemented transparently and in our tests
was effective.

3 Design and Implementation

The overall aim of our system is to save significant
energy with at most a small time delay. Broadly
speaking, this research has three goals. First, it will
identify program regions with a high concentration

of MPI calls. Second, it determines the “best” (re-
duced) p-state to use during such reducible regions.
Both the first and second goals are accomplished
with adaptive fraining. Third, it must satisfy the first
two goals with no involvement by the MPI program-
mer, i.e., finding regions as well as determining and
shifting p-states should be transparent. In addition
to the training component, the system has an shifting
component. This component will effect the p-state
shifts at region boundaries.

While we discuss the training and shifting com-
ponents separately, it is important to understand that
our system does not transition between these com-
ponents. Instead, program monitoring is continuous,
and training information is constantly updated. Thus
our system is always shifting using the most recent
information. Making these components continuous
is necessary because we may encounter a given re-
gion twice before a different region is encountered.

To achieve transparency—i.e., to implement the
training and shifting components without any user
code modifications—we use our MPI-jack tool. This
tool exploits PMPI [25], the profiling layer of MPI.
MPI-jack transparently intercepts (hijacks) any MPI
call. A user can execute arbitrary code before and/or
after an intercepted call using pre and post hooks.
Our implementation uses the same pre and post hook
for all MPI calls.

An MPI routine (such as MPI_Send) can occur in
many different contexts. As a result, the routine itself
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Figure 3: This is an example trace of an MPI program. The line shows the type of code executed over time. There
are 10 MPI calls, and calls 1-3 and 5-8 make up communication regions because they are close enough. Call 9 is con-
sidered a region because it is long enough. Even though they are MPI calls, calls 4 and 10 are not in a communication
region because they are neither close enough nor long enough.

is not a sufficient identifier. But it is easy to identify
the dynamic parent of a call by examining the re-
turn program counter in the current activation record.
However, because an MPI call can be called from a
general utility or wrapper procedure, one dynamic
ancestor is not sufficient to distinguish the start or
end of a region. Fortunately, it is simple and inex-
pensive to examine all dynamic parents. We do this
by hashing together all the return PCs from all acti-
vation records on the stack. Thus, a call is uniquely
identified by a hash of all its dynamic ancestors.

3.1 Assumptions

This work is based on two underlying assumptions.
First, we assume that the CPU is not on the critical
path during regions of communication, which also
implies that it is beneficial to execute in a reduced
p-state during this period. Our second assumption is
that communication regions have a high concentra-
tion of MPI calls. Therefore, we consider two MPI
calls invoked in a short period of time to be part of
the same communication region.

Figure 3 presents an example trace of an MPI pro-
gram, where we focus solely on whether the program
is in user code or MPI library code. The program be-
gins in user code and invokes 10 MPI calls. In Fig-
ure 3 there are two composite reducible regions—(1,
2, 3) and (5, 6, 7, 8). It also has a region consisting
of only call 9 that is by itself long enough to be ex-
ecuted in a reduce p-state. Thus, Figure 3 has three
reducible regions, as well as two single MPI calls
that will never execute in a reduce p-state.

3.2 The Training Component

The training component has two parts. The first is
distinguishing regions. The second is determining
the proper p-state for each region.

Starting from an MPI program with C' calls of MPI
routines, the goal is to group the C calls into R < C
regions based on the distance in time between adja-
cent calls, the time for a call itself, as well as the
particular pattern of calls.

First, we must have some notion that MPI calls
are close together in time. We denote 7 as the value
that determines whether two adjacent MPI calls are
“close”—anything less than 7 indicates they are.
Clearly, if 7 is oo, then all calls are deemed to be
close together, whereas if it is zero, none are. Next,
it is possible that an MPI call itself takes a signifi-
cant amount of time, such as an MP|_Alltoall using a
large array or a blocking MP|_Receive. Therefore,
we denote A as the value that determines whether an
MPI call is “long enough”—any single MPI call that
executes longer than A warrants reducing. Our tests
use 7 = 10 ms and A = 10 ms. Section 4.2 discusses
the rationale for these thresholds.

Finally, we must choose a training paradigm; we
consider three. The first is the degenerate case, none,
which has no training. It always executes in the
top p-state. The next paradigm, static, uses only
knowledge known prior to execution. This knowl-
edge can be extracted from compiler analysis or ex-
ecution traces of past runs. The third paradigm is
adaptive, which is what we focus on in this pa-
per. In this case, the system has no specific knowl-
edge about the particular program, so knowledge is



learned and updated as the program executes. For
adaptive, there are many ways to learn. Next, we
discuss two baseline region-finding algorithms, fol-
lowed by two adaptive region-finding algorithms.
Following that, we combine the best region-finding
algorithm with automatic detection of the reduced
p-state—this serves as the overall training algorithm
that we have developed.

First, there is the base region-finding algorithm, in
which there are no regions—the program always ex-
ecutes in the top p-state. It provides a baseline for
comparison. Next, we denote by-call as the region-
finding algorithm that treats every MPI call as its own
region. It can be modeled as 7 = 0 and A = 0: no
calls are close enough and all are long enough. Sec-
tion 2 explains that by-call is not a good general so-
lution because the short median length of MPI calls
can cause the shifting overhead to dominate. How-
ever, in some applications the by-call algorithm is
very effective, saving energy without having to do
any training.

We consider two adaptive region-finding algo-
rithms. The first, called simple, predicts each call’s
behavior based on what it did the last time it was
encountered. For example, if a call ended a region
last time, it is predicted to end a region the next time
it appears. The simple method is effective for some
benchmark programs. For example consider this pat-
tern.

..AB...AB ... AB ...

Each letter indicates a particular MPI call invoked
from the same call site in the user program; time
proceeds from left to right. Variable 7 is shown
graphically through the use of ellipses, which indi-
cates that the calls are not close. The pattern shows
that the distances between A and B are deemed close
enough, but the gaps from B to A are not. Thus, the
reducible regions in a program with the above pat-
tern always begins with A and ends after B. Because
every A begins a region and every B ends a region,
once trained, the simple mechanism accurately pre-
dicts the reducible region every time thereafter.

However, there exist patterns for which simple is
quite poor. Consider the following pattern.

. AALCAALLDAA L

The gap between MPI calls alternates between less
than and greater than 7. However, in this case both
gaps are associated with the same call. Because of
this alternation, the simple algorithm always mispre-
dicts whether A is in a reducible region—that is, in
each group simple predicts the first A will terminate
a region because the second A in the previous group
did. The reverse happens when the second A is en-
countered. This is not a question of insufficient train-
ing; simple is not capable of distinguishing between
the two positions that A can occupy.

Our second region-finding algorithm, composite,
addresses this problem. At the cost of a slightly
longer training phase, composite collates informa-
tion on a per-region basis. It then shifts the p-state
based on what it learned the last time this region was
encountered. It differs from simple in that it asso-
ciates information with regions, not individual calls.
The composite algorithm matches the pattern of these
calls and saves it; when encountered again, it will be
able to determine that a region is terminated by the
same final call.

The second part of training is determining the p-
state in which to execute each region. As mentioned
previously, extensive testing indicates that the MPI
calls themselves can execute in very low p-states
(1000 or 800 MHz) with almost no time penalty.
However, a reducible region also contains user code
between MPI calls. Consequently, we found that the
“best” p-state is application dependent.

The overall adaptive training algorithm we advo-
cate, called automatic, uses composite to find regions
and performance counters to dynamically determine
the best p-state on a per-region basis. Specifically,
in order to judge the dependence of the application
on the CPU in these reducible regions, automatic
measures the micro-operations' retired during the re-
gion. It uses the rate micro-operations/microsecond
(or OPS) as an indicator of CPU load. Thus a region
with a low OPS value is shifted into a low p-state.
Our system continually updates the OPS for each
region via hardware performance counters. (This
means the p-state selection for a region can change

'The AMD executes a RISC engine internally. It translates
x86 (CISC) instructions into RISC micro-operations. Therefore,
micro-operations are a better indicator of CPU performance than
instructions.



not "close enough”

pattern mismatch "close enough"

Figure 4: State diagram for composite algorithm.

over time.) Using large amounts of empirical test
data, we developed by hand a single table that maps
OPS to the desired p-state for a reduced region. This
table is used for all benchmark programs, so it is not
optimized for any particular benchmark.

3.3 The Shifting Component

There are two parts to the shifting component. The
first is determining when a program enters and leaves
a reducible region. The second part is effecting a p-
state shift.

The simple region-finding algorithm maintains be-
gin and end flags for each MPI call (or hash). The pre
hook of all MPI calls checks the begin flag. If set,
this call begins a region, so the p-state is reduced.
Similarly, the post hook checks the end flag and con-
ditionally resets the top p-state. This flag is updated
every time the call is executed: it is set if the region
was close enough or long enough and unset other-
wise.

Figure 4 shows a state diagram for the compos-
ite algorithm. There are three states: OUT, IN, and
RECORDING. The processor executes in a reduced
p-state only in the IN state; it always executes in
the top p-state in OUT and RECORDING. The ini-
tial state is OUT, meaning the program is not in a
reducible region. At the beginning of a reducible re-
gion, the system enters the IN state and shifts to a
reduced p-state. The other state, RECORDING, is
the training state. In this state, the system records a
new region pattern.

The system transitions from OUT to IN when it
encounters a call that was previously identified as be-

ginning a reducible region. If the call does not begin
such a region but it was close enough to the previous
call, the system transitions from OUT to RECORD-
ING. Tt begins recording the region from the previ-
ous call. It continues recording while calls are close
enough.

The system ordinarily transitions from IN to OUT
when it encounters the last call in the region. How-
ever, there are two exceptional cases—shown with
dashed lines in Figure 4. If the current call is
no longer close enough, then the region is trun-
cated and the state transitions to QUT. If the pat-
tern has changed—this current call was not the ex-
pected call—the system transitions to RECORDING.
A new region is created by appending the current call
to the prefix of the current region that has been ex-
ecuted. None of the applications examined in Sec-
tion 4 caused these exceptional transitions.

Our implementation labels each region with the
hash of the first MPI call in the region. When in the
OUT state at the beginning of each MPI call we look
for a region with this hash as a label. If the region
exists and is marked reducible, then we reduce the
p-state and enter the IN state.

There are limitations to this approach if a single
MPI call begins more than one region. The first prob-
lem occurs when some of these regions are marked
reducible and some are marked not reducible. Our
implementation cannot disambiguate between these
regions. The second problem occurs when one re-
ducible region is a prefix of another. Because we
do not know which region we are in (long or short),
we cannot know whether to end the region after the
prefix or not. A more sophisticated algorithm can
be implemented that addresses both of these limita-
tions; however, this was not done because it was not
necessary for the applications examined. Rather, our
system elects to be conservative in time, so our im-
plementation executes in top p-state during all ambi-
guities. However, this was not evaluated because no
benchmark has such ambiguities.

The second part of the execution phase is chang-
ing the p-state. In the AMD, the p-state is defined
by a frequency identifier (FID) and voltage identi-
fier (VID) pair. The p-state is changed by storing
the appropriate FID-VID to the model specific regis-
ter (MSR). Such a store is privileged, so it must be



MPI Reducible Calls Average time (ms) | Time fraction

calls regions | per region | Per MPI | Per region | MPI | region

EP 5 1 4 68.7 337.0 0.005 | 0.005
FT 46 45 1.0 18,400 18,810 0.849 | 0.860
IS 37 14 2.5 3100 8200 0.871 | 0.871
Aztec | 20,767 301 68.9 2.04 143 0.806 | 0.812
CG 41,953 1977 21.2 6.90 149 0.753 | 0.768
MG 10,002 158 63.3 3.77 272 0.500 | 0.574
SP 19,671 8424 32 20.6 49.4 0.441 | 0.453
BT 108,706 797 136.7 8.39 1145 0.865 | 0.891
LU 81,874 766 107.2 1.11 356 0.149 | 0.446

Table 1: Benchmark attributes. Region information from composite with 7 = 10 ms.

performed by the kernel. The cpufreq and powernow
modules provide the basic support for this. Some
additional tool support and significant “tweaking” of
the FID-VID pairs was needed to refine the imple-
mentation. The overhead of changing the p-state is
dominated by the time to scale—not the overhead
of the system call. For the processor used in these
tests, the upper bound on a p-state transition (includ-
ing system call overhead) is about 700 microseconds,
but the average is less than 300 microseconds [12].

4 Results

This section presents our results in three parts. The
first part discusses results on several benchmark pro-
grams on a power-scalable cluster. These results
were obtained by applying the different algorithms
described in the previous section. The second part
gives a detailed analysis of several aspects of our sys-
tem and particular applications.

Benchmark attributes FEight of our benchmark
applications come from the NAS parallel benchmark
suite, a popular high-performance computing bench-
mark [3]. The NAS suite consists of scientific bench-
marks including application areas such as sorting,
spectral transforms, and fluid dynamics. We test
class C of these benchmarks. The benchmarks are
unmodified with the exception of BT, which took
far longer than all the other benchmarks; to reduce
the time of BT without affecting the results, we exe-
cuted it for 60 iterations instead of the original 200.

The ninth benchmark is Aztec from the ASCI Purple
benchmark suite [2].

Table 1 presents overall statistics of the bench-
marks running on 8 or 9 nodes, which are distilled
from traces that were collected using MPI-jack. The
second column shows the number of MPI calls in-
voked dynamically. The number of regions (column
3) is determined by executing the composite algo-
rithm on the traces with the close enough threshold
(1) set to 10 ms. The table shows the average num-
ber of MPI calls per region in the fourth column. Be-
cause some MPI calls are not in reducible regions,
the product of the third and fourth columns is not
necessarily equal to the second column. Next, the
table shows the average time per MPI call and per
reducible region. The last two columns show the
fraction of the overall time spent in MPI calls and
regions, respectively

The table clearly shows that these applications
have diverse characteristics. In particular, in terms of
the key region parameters—the number of regions,
the number of calls per region, and the duration of
the regions—there are at least two orders of magni-
tude difference between the greatest and least values.
Finally, with the exception of EP, the reducible frac-
tion is at least 44%.

As we will show below, while several of the partic-
ular algorithms we developed may be best for some
benchmark, the wide variety of characteristics in the
entire suite means that they may be quite poor on
other benchmarks. Therefore, our goal was to find an
algorithm that works well for all benchmarks. Below
we will show that the automatic algorithm is such an
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algorithm.

Experimental methodology For all experiments,
we used a 10-node AMD Athlon-64 cluster con-
nected by a 100Mbps network. Each node has 1 GB
of main memory. The Athlon-64 CPU supports 7
p-states (from 2000 to 800 MHz). Each node runs
the Fedora Core 3 OS and Linux kernel 2.6.8, and
frequency shifting was done through the sysfs inter-
face. All applications were compiled with either gcc
or the Intel Fortran compiler, using the O2 optimiza-
tion flag. We controlled the entire cluster, so all ex-
periments were run when the only other processes on
the machines were daemons.

Elapsed time measurements are from the system
clock using the gettimeofday system call. A power
meter sits in between the system power supply of
each node and the wall. We read this meter to get the
power consumption. These readings are integrated
over time to yield energy consumption. Thus the
energy consumption measurements are empirically
gathered for the system.

4.1 Overall Results

Our work trades time for energy. This tradeoff is
difficult to evaluate because it has two dimensions,
and users may assign different values to the trade-
off. Energy-delay product (EDP) is one canonical
evaluation metric. It is used here to convert the two-
dimensional energy-time tradeoff into a single scalar
metric. Figure 5 shows the EDP of each method rela-
tive to the base case. This is a subset of the data in Ta-

ble 2. We conducted five tests for each of the bench-
marks. For each test, the measured elapsed time and
consumed energy are presented. EDP is computed
from these empirical measurements. The value rela-
tive to the base case is also presented. All tests were
conducted a minimum of three times, with the me-
dian value reported. The variance between any two
runs was very small, so it is not reported.

As mentioned previously, the base test executes
the program solely in top frequency (2000 MHz).
Linux puts the processor into a low-power halt state
when the run queue is empty, so we note that the
base test is already power-efficient to some degree.
Recall that the by-call, simple, and composite are
purely region-finding algorithms and do not choose
a particular p-state for regions. To provide a com-
parison with automatic, which uses OPS to choose
the p-state on the fly, we did an exhaustive search
of p-states. Then, the results for by-call, simple and
composite reported in Figure 5 and Table 2 are those
using the p-state yielding the lowest EDP.

The automatic test shows the results of the algo-
rithm that identifies regions with composite and se-
lects the reduced p-state for each region using OPS.
The last column in Table 2 shows the results of pro-
file; it executes a schedule of p-state changes that
were produced from profiling traces. Essentially, it
is automatic without any mispredictions. The profile
tests represents the “best one can do,” in that it uses
our best algorithm (automatic) with prior run infor-
mation. The first three algorithms (by-call, simple,
and composite) use a single reduced gear through-
out, while the last two may use several reduced gears



| [[ Base | By-call | Simple | Composite |  Automatic | Profile |
Time (s) 75.53 75.55 1.000 75.52 1.000 75.47 0.999 75.45 0.999 75.49 0.999
EP Energy (KJ) 59.876 59.878 1.000 | 59.857 1.000 | 59.878 1.000 | 59.946 1.001 59.669  0.997
EDP (MJ-s) 4.5225 4.5238 1.000 | 4.5202 1.000 | 4.5193 1.000 | 4.5289 1.001 | 4.5046 0.996
Time (s) 984.85 987.24 1.002 | 985.80 1.001 985.36 1.001 983.99 1.000 | 985.99 1.001
FT Energy (KJ) 606.45 479.24 0.790 | 486.21 1.802 | 487.41 0.804 | 49491 0.816 | 475.13 0.783
EDP (MJ-s) 597.26 473.12 0.792 | 479.30 0.802 | 480.27 0.804 | 486.99 0.815 | 468.48 0.784
Time (s) 133.26 133.87 1.005 133.41 1.001 133.48 1.002 133.51 1.002 133.70 1.003
IS Energy (KJ) 79.102 63.236 0.799 | 65.768 0.831 65.465 0.828 65.604 0.829 | 62.891 0.795
EDP (MJ-s) 10.541 8.4655 0.803 | 8.7739 0.832 | 8.7379 0.829 | 8.7590 0.831 8.4086  0.798
Time (s) 51.94 85.98 1.655 55.80 1.074 55.55 1.069 53.55 1.031 53.86 1.037
Aztec  Energy (KJ) 31.945 49.571 1.552 | 27.589 0.864 | 27.923 0.874 | 28.578 0.895 26.670  0.835
EDP (MJ-s) 1.6593 4.2619 2.568 1.5394  0.928 1.5510  0.935 1.5305 0.922 1.4364  0.866
Time (s) 378.50 414.87 1.096 | 402.81 1.064 | 396.74 1.048 | 393.49 1.039 | 396.14 1.047
CG Energy (KJ) 238.58 245.85 1.031 210.52  0.882 209.63 0.879 212.16  0.889 | 207.88 0.871
EDP (MJ-s) 90.301 101.00 1.130 | 84.801 0.939 | 83.565 0.925 | 83.484 0924 | 82.348 0912
Time (s) 76.84 90.35 1.176 81.90 1.066 78.87 1.027 78.67 1.024 78.88 1.027
MG Energy (KJ) 55.173 58.631 1.063 49.980 0.906 | 49.705 0.901 49.639 0.900 | 48.058 0.871
EDP (MJ-s) 4.2393 5.2971 1.250 | 4.0933 0966 | 3.9204 0.925 | 3.9051 0.921 3.7909  0.894
Time (s) 910.85 944.86 1.037 | 938.16 1.030 | 938.38 1.030 | 945.40 1.038 | 932.00 1.023
NI Energy (KJ) 758.56 715.92 0.944 | 672.85 0.887 672.01 0.886 | 650.80 0.858 | 653.86 0.862
EDP (MJ-s) 690.94 676.44 0.979 | 631.24 0914 | 630.60 0.913 | 61527 0.890 | 609.42 0.882
Time (s) 1027.2 1295.5 1.261 1061.3 1.033 1057.1 1.029 1040.3 1.013 1029.3 1.002
BT Energy (KJ) 646.01 774.96 1.200 | 590.38 0914 | 592.93 0918 579.35 0.897 | 577.01 0.893
EDP (MJ-s) 663.58 1003.94 1.513 | 626.54 0944 | 626.80 0.945 | 602.67 0908 | 593.92  0.895
Time (s) 628.74 841.69 1.339 | 662.94 1.054 | 654.67 1.041 657.12 1.045 | 658.83 1.048
LU Energy (KJ) 489.08 510.24 1.043 44124 0902 | 438.14 0.896 | 428.24 0.876 | 423.19 0.865
EDP (MJ-s) 307.51 429.46 1.397 | 292.51 0.951 286.83  0.933 | 281.41 0.915 | 278.81 0.907

Table 2: Overall performance of benchmark programs. Where appropriate, the value relative to the base case is also
reported. The p-state used in simple and composite is the one found to have the best energy-delay product.

depending on the OPS.

The applications fall into several categories based
on the performance of the algorithms. EP executes
less than 0.5% of the total execution time in MPI
calls, so no energy savings is possible with our mech-
anisms. Thus we do not evaluate EP any further.

The second category contains FT and IS, appli-
cations that perform well with the trivial by-call
method. These are the only two applications that
have singleton regions—an individual MPI call that
is longer than A, thus allowing a reduction in the
p-state. In FT, no calls are within 7. The average
length of MPI calls is 18.4 and 3.1 seconds for FT
and IS, respectively. Consequently, the reducible re-
gions are almost entirely MPI code and the reduced
p-state is 800 MHz—the lowest p-state. As a result,
these two benchmarks have the greatest energy sav-
ing. Although these programs are in the reduced p-
state more than 85% of the time, the increase in ex-
ecution time is less than 1%. Therefore, the EDP is
very low. This is our best case in terms of EDP, but
most applications do not fall into this category. For
example, SP is the only other benchmark that has an

energy savings using by-call because it has a rela-
tively large average time per MPI call.

The next class of programs are ones for which by-
call performs poorly due to excessive p-state switch-
ing, but simple is adequate. In our benchmark suite,
this includes only Aztec. The pattern of MPI calls in
Aztec is such that simple predicts well so there are
few false positives for composite to remove. More-
over, the longer training required by composite cre-
ates false negatives—which are lost opportunities to
save energy—that do not occur in simple. Therefore,
composite actually spends more time in the wrong p-
state than simple. As a result, simple is 0.7% lower
in EDP, 1% less energy but 0.5% more time, than
composite.

The fourth category, which consists of five pro-
grams, are those that both by-call and simple do not
perform well. In CG and MG, the EDP of compos-
ite is lower than simple because of improved region
finding. In these benchmarks, composite eliminates
both excessive p-state switching of by-call as well as
a non-trivial number of false predictions of simple.
Moreover, there is little difference between compos-



ite and automatic. On the other hand, there is no
difference between the region finding of simple and
composite in BT and SP. The automatic algorithm
has a lower EDP than simple or composite because
it is not limited to selecting a single reduced p-state.
The improvement of automatic is due to the dynamic
selection of a reduced p-state for each region. LU
benefits from both improved region finding and mul-
tiple p-state selection.

FT is the only application for which automatic is
not as good as composite. The reason is that the
region characteristics change over time. Accord-
ing to OPS, the best gear for the primary region
should be 1200 MHz for the first occurrence and
800 MHz thereafter. The composite algorithm uses
800 MHz for all, automatic first uses 2000 MHz,
then 1200 MHz, and not until the third occurrence
does it select 800 MHz. This delay in determining
the best p-state results in a 1.1% higher EDP in au-
tomatic than in composite. Again, keep in mind that
composite (and simple and by-call) is using the p-
state that was best over all possibilities.

Finally, the rightmost column shows the perfor-
mance of profile. In all cases, profile has the best
EDP; this is expected because it uses prior applica-
tion knowledge (a separate profiling execution). The
usefulness of profile is that it serves as a rough lower
bound on EDP. It is not a precise lower bound be-
cause of several reasons, including that the reduced
p-state in a given region cannot be proven to be best
for EDP. However, generally speaking, if a given al-
gorithm results in EDP that is close to profile, it is
successful.

Summary In summary, simple is generally better
than by-call due to less p-state switching overhead.
However, composite is generally better than simple
because it has, for several benchmarks, far fewer
false positives at the cost of a a small number of ad-
ditional false negatives. Finally, automatic is better
than simple or composite in all programs except for
FT (IS is within experimental error), because using
a customized p-state for each region is better than a
single p-state—even the best one possible based on
exhaustive testing—for the whole program.

4.2 Detailed Analysis

This section focuses on the details of how we
achieved the performance reported in the previous
section. In particular, it explains overhead then it
discusses false negatives and positives. Finally, it in-
vestigates how we selected our threshold values.

System Overhead This paragraph discusses the
overhead of the system in two parts. The first part
is the overhead of changing p-states. As stated above
on this AMD-64 microprocessor the average cost to
shift between p-states is slightly less than 300 mi-
croseconds. The greatest time to shift is just un-
der 700 microseconds [12]. The actual cost of this
overhead depends on the number of shifts between
p-states, which is twice the number of reducible re-
gions. Table 1 shows that the shortest average re-
gion length is approximately 50 milliseconds, which
is more than 160 times longer than the average shift
cost. Thus the overhead due to shifting is nominal.

The second part of the overhead is due to data col-
lection, which happens at the beginning and end of
each MPI call. The overhead consists of three parts:
hijacking the call, reading system time, and reading
the performance counters. The first two parts occur
every MPI call, while the latter occurs only at the be-
ginning and end of each region. The cost of all three
parts is approximately 1.3 microseconds. Because
shifting p-states changes elapsed time, we cannot di-
rectly compare the overhead of our technique to the
baseline, which does not shift. To measure the over-
head of the algorithm only, we modified the system
to perform all steps except shifting. In this case, we
can compare elapsed time to the baseline. The rela-
tive cost of this overhead is less than 1% on all the
NAS programs (the greatest overhead is 0.38% for
LU).

False negatives and positives Figure 6 compares
simple and composite. The algorithms are applied
postmortem to the collected trace data. In practice,
reducing the p-state can increase time. Furthermore,
there is overhead in shifting p-states and executing
each algorithm. This analysis does not consider ei-
ther of these factors because adding such costs ana-
lytically is approximate at best. Rather, this analysis
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Figure 6: Breakdown of execution time for adaptive
region-finding algorithms.

shows the potential impact by showing how much of
the base code is effected by our scaling.

This analysis divides the base, unscaled time into
into four categories along two dimensions: (a) IN or
OUT of a reducible region and (b) true or false pre-
diction. Correct predictions are determined by ex-
amining trace data, as is done in profile. In Figure 6,
bars labeled “IN (true)” and “OUT (true)” are cor-
rectly predicted. The bar labeled “IN (false)” is a
false positive; the application mistakenly executes in
a reduced p-state instead of the top p-state. The bar
labeled “OUT (false)” is a false negative; the appli-
cation mistakenly executes in the top p-state instead
of a reduce one. Generally, a false positive is consid-
ered worse than a false negative because it can result
in a time penalty. In contrast, a false negative repre-
sents an energy saving opportunity lost.

For FT and IS, simple has false negatives, which
explains why it is worse in EDP than by-call. Thus,
simple is slightly faster but consumes more energy.
Furthermore, with singleton regions there is no dif-

ference in the predictive power of simple and com-
posite. These plots show that the longer training
period in composite adds false negatives to Aztec
and BT. But because neither application has signifi-
cant false positives to eliminate, simple performs bet-
ter than composite. For the remaining three bench-
marks, composite eliminates significant mispredic-
tions compared to simple. For CG and LU there are
in fact no mispredictions in composite. For MG, all
false positive cases are eliminated as well.

Choosing 7 Figure 7 shows data for evaluating 7,
the threshold that determines whether two MPI rou-
tines are “close enough.” This evaluation is done
with composite. Three metrics are plotted: the frac-
tion of time for false negatives, the fraction of time
for false positives, and the number of regions.

Clearly, there is a tension in the choice of 7. If 7 is
too large, then a few, large regions will result. This
means that when using automatic, a large number
of false negatives would result, which in turn would
result in a significant fraction of time due to them.
For example, if 7 = oo, the training component will
run the whole program, and the executing component
will never run—the entire program is a false nega-
tive. On the other hand, if 7 is too small, then auto-
matic would approach by-call, which we know from
Section 4.1 is often an ineffective algorithm due to
excessive time due to p-state shifting.

Indeed, the figure shows that the value of 7 has a
significant impact on benchmarks that have several
short MPI calls (EP, IS, and FT do not and so are
not in the figure). The goal is, essentially, to choose
for 7 the smallest value possible such that the region
overhead (which is proportional to the number of re-
gions) is small. While there is not a choice that works
for all benchmarks—for CG it is around 45 ms, for
BT 48 ms, but for the others, it is closer to 10 or 20
ms. The one problematic application is SP, which has
numerous short regions, and the choice of a longer 7
can reduce EDP by more than 2%. We are currently
addressing this issue.

Choosing A The duration of MPI calls over all
benchmarks is generally small—Section 2 showed
that 95% of the calls take less than 10 ms. Basically,
there is an extreme bimodal distribution of times for
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Figure 7: Evaluating 7 in composite. Show fraction of time mispredicted and number of regions (right-hand
y-axis) as a function of 7. For readability, right-hand y-axis has different scale for CG and SP.

MPI calls over the programs, because the calls in IS
and FT take 3 and 18 seconds, respectively. Thus
all values of A between 10 and 2000 ms achieve the
same result. We do point out, though, that for differ-
ent benchmarks, where the calls may be more evenly
distributed, much more thought would need to go
into choosing A.

5 Related Work

The most relevant related work to this paper is in
high-performance, power-aware computing. Several
researchers have addressed saving energy with min-
imal performance degradation. Cameron et al. [5]
uses a variety of different DVS scheduling strate-
gies (for example, both with and without application-
specific knowledge) to save energy without signifi-
cantly increasing execution time. A similar run-time
effort is due to Hsu and Feng [18]. Our own prior
work is fourfold: an evaluation-based study that fo-
cused on exploring the energy/time tradeoff in the
NAS suite [14], development of an algorithm for
switching p-states dynamically between phases [13],
leveraging load imbalance to save energy [21], and
minimizing execution time subject to a cluster en-

ergy constraint [28].

The difference between all of the above research
and this paper is the type of bottleneck we are at-
tacking. This is the first work we know of to address
the communication bottleneck.

The above approaches strive to save energy for a
broad class of scientific applications. Another ap-
proach is to save energy in an application-specific
way; the work in [8] used this approach for a parallel
sparse matrix application.

There are also a few high-performance computing
clusters designed with energy in mind. One is Blue-
Gene/L [1], which uses a “system on a chip” to re-
duce energy. Another is Green Destiny [29], which
uses low-power Transmeta nodes. Unlike our ap-
proach, these machines use less powerful processors.

Another area of work closely aligned with sav-
ing energy in HPC applications is saving energy
in server systems. In sites such as hosting centers
where there is a sufficiently large number of ma-
chines, energy management may become an issue;
see [7, 24, 11] for examples of this using commer-
cial workloads and web servers. Such work shows
that power and energy management are critical for
commercial workloads, especially web servers [22].

12



Additional approaches have been taken to include
dynamic voltage scaling (DVS) and request batch-
ing [10]. The work in [26] applies real-time tech-
niques to web servers in order to conserve energy
while maintaining quality of service.

In server farms, disk energy consumption is also
significant; several have studied reducing disk en-
ergy (e.g., [6, 30, 23]). In this paper, we do not
consider disk energy as it is generally less than CPU
energy, especially if scientific programs operate pri-
marily in core.

Our work attempts to infer regions based on rec-
ognizing repeated execution. Others have had the
same goal and carried it out using the program
counter. Gniady and Hu used this technique to de-
termine when to power down disks [16], along with
buffer caching pattern classification [15] and ker-
nel prefetching [4]. In addition, dynamic techniques
have been used to find program phases [20, 9, 27],
which is tangentially related to our work.

6 Conclusion

This paper has presented a transparent, adaptive
system for reducing the p-state in communication
phases. The basic idea is to find such regions on
the fly by monitoring MPI calls and keep a state
machine that recognizes the regions. Then, we use
performance counters to guide our system to choose
the best p-state in terms of energy-delay product
(EDP). User programs can use our runtime system
with zero user involvement. Results on the NAS
benchmark suite showed an average 10% reduction
in EDP across the NAS suite.

Our future plans include integrating the idea of
reducing the p-state during communication regions
with our past work on reducing the p-state during
computation regions. Additionally, we will conduct
these experiments on a newer cluster, which has a gi-
gabit network and multi-core, multiprocessor nodes.
For computation, we leverage the memory or node
bottleneck to save energy, sometimes with no in-
crease in execution time. The overall goal is to de-
sign and implement one MPI runtime system that si-
multaneously exploits all three bottlenecks.

13

References

[1] N.D. Adiga et al. An overview of the BlueGene/L
supercomputer.  In Supercomputing, November
2002.

ASCI Purple Benchmark Suite. http://www.lInl.-
gov/asci/platforms/purple/rfp/benchmarks/.

(2]

[3] D. Bailey, J. Barton, T. Lasinski, and H. Simon.
The NAS parallel benchmarks. RNR-91-002, NASA

Ames Research Center, August 1991.

Ali Raza Butt, Chris Gniady, and Y. Charlie Hu. The
performance impact of kernel prefetching on buffer
cache replacement algorithms. In SIGMETRICS,
pages 157-168, 2005.

(4]

[5] K.W. Cameron, X. Feng, and R. Ge. Performance-
constrained, distributed dvs scheduling for scientific
applications on power-aware clusters. In Supercom-

puting, November 2005.
(6]

Enrique V. Carrera, Eduardo Pinheiro, and Ricardo

Bianchini. Conserving disk energy in network
servers. In Intl. Conference on Supercomputing,
June 2003.

[7] Jeffrey S. Chase, Darrell C. Anderson, Prachi N.
Thakar, Amin Vahdat, and Ronald P. Doyle. Man-
aging energy and server resources in hosting cen-
tres. In Symposium on Operating Systems Princi-

ples, 2001.

Guilin Chen, Konrad Malkowski, Mahmut Kan-
demir, and Padma Raghavan. Reducing power with
performance contraints for parallel sparse applica-
tions. In Workshop on High-Performance, Power-
Aware Computing, April 2005.

(8]

[9] A. Dhodapkar and J. Smith. Comparing phase de-
tection techniques. In International Symposium on

Microarchitecture, pages 217-227, December 2003.

[10] Elmootazbellah Elnozahy, Michael Kistler, and Ra-
makrishnan Rajamony. Energy conservation poli-
cies for web servers. In Usenix Symposium on Inter-

net Technologies and Systems, 2003.

E.N. (Mootaz) Elnozahy, Michael Kistler, and Ra-
makrishnan Rajamony. Energy-efficient server clus-
ters. In Workshop on Mobile Computing Systems
and Applications, Feb 2002.

[12] Mark E. Femal. Non-uniform power distribution in
data centers for safely overprovisioning circuit ca-
pacity and booasting throughput. Master’s thesis,
North Carolina State University, Raleigh, NC, May

2005.



[13]

[14]

[15]

[16]

[19]

[20]

[21]

[22]

[23]

[24]

Vincent W. Freeh, David K. Lowenthal, Feng Pan,
and Nandani Kappiah. Using multiple energy gears
in MPI programs on a power-scalable cluster. In
Principles and Practices of Parallel Programming,

June 2005.

Vincent W. Freeh, David K. Lowenthal, Rob
Springer, Feng Pan, and Nandani Kappiah. Explor-
ing the energy-time tradeoff in MPI programs on a
power-scalable cluster. In International Parallel and
Distributed Processing Symposium, April 2005.

Chris Gniady, Ali Raza Butt, and Y. Charlie
Hu. Program-counter-based pattern classification in
buffer caching. In OSDI, pages 395-408, 2004.

Chris Gniady, Y. Charlie Hu, and Yung-Hsiang
Lu. Program counter based techniques for dynamic
power management. In HPCA, pages 24-35, 2004.

Richard Goering. Current physical design tools
come up short. EE Times, April 14 2000.

Chung hsing Hsu and Wu chun Feng. A power-
aware run-time system for high-performance com-
puting. In Supercomputing, November 2005.

Chung-Hsing Hsu and Wu-chun Feng. Effective
dynamic-voltage scaling through CPU-boundedness
detection. In Fourth IEEE/ACM Workshop on
Power-Aware Computing Systems, December 2004.

M. Huang, J. Renau, and J. Torellas. Positional
adaptation of processors: Application to energy re-
duction. In International Symposium on Computer
Architecture, June 2003.

Nandani Kappiah, Vincent W. Freeh, and David K.
Lowenthal. Just in time dynamic voltage scaling:
Exploiting inter-node slack to save energy in MPI
programs. In Supercomputing, November 2005.

Charles Lefurgy, Karthick Rajamani, Freeman Raw-
son, Wes Felter, Michael Kistler, and Tom W. Keller.
Energy management for commerical servers. IEEE
Computer, pages 39-48, December 2003.

Athanasios E. Papathanasiou and Michael L. Scott.
Energy efficiency through burstiness. In Workshop
on Mobile Computing Systems and Applications,
October 2003.

Eduardo Pinheiro, Ricardo Bianchini, Enrique V.
Carrera, and Taliver Heath. Load balancing and
unbalancing for power and performance in cluster-
based systems. In Workshop on Compilers and Op-
erating Systems for Low Power, September 2001.

14

[25]

[26]

[27]

(28]

Rolf Rabenseifner. Automatic profiling of MPI ap-
plications with hardware performance counters. In
PVM/MPI, pages 35-42, 1999.

Vivek Sharma, Arun Thomas, Tarek Abdelzaher,
and Kevin Skadron. Power-aware QoS management
in web servers. In IEEE Real-Time Systems Sympo-
sium, Cancun, Mexico, December 2003.

Timothy Sherwood, Erez Perelman, Greg Hamerly,
and Brad Calder. Automatically characterizing large
scale program behavior. In Architectural Support for
Programming Languages and Operating Systems,
October 2002.

Robert C. Springer IV, David K. Lowenthal, Barry
Rountree, and Vincent W. Freeh.  Minimizing
execution time in MPI programs on an energy-
constrained, power-scalable cluster. In ACM Sym-
posium on Principles and Practice of Parallel Pro-
gramming, March 2006.

M. Warren, E. Weigle, and W. Feng. High-density
computing: A 240-node beowulf in one cubic meter.
In Supercomputing, November 2002.

Qingbo Zhu, Francis M. David, Christo De-
varaj, Zhenmin Li, Yuanyuan Zhou, and Pei
Cao. Reducing energy consumption of disk stor-
age using power-aware cache management. In

High-Performance Computer Architecture, Febru-
ary 2004.



