
Efficient SKYCUBE Computation using Bitmaps
derived from Indexes

Gayathri Tambaram Kailasam
North Carolina State University

gtambar@ncsu.edu

Jaewoo Kang
North Carolina State University

kang@csc.ncsu.edu

Abstract

Skyline queries have been increasingly used in multi-
criteria decision making and data mining applications.
They retrieve a set of interesting points from a potentially
large set of data points. A point is said to be interesting
if it is as good or better in all dimensions and better in at
least one dimension. Skyline Cube (Skycube) consists of
skylines of all possible non-empty subsets of a given set of
dimensions. In this paper, we propose two algorithms for
computing skycube using bitmaps that are derivable from
indexes. Point-based skycube algorithm is an improvement
over the existing Bitmap algorithm, extended to compute
skycube. Point-based algorithm processes one point at a
time to check for skylines in all subspaces. Value-based
skycube algorithm views points as value combinations and
probes entire search space for potential skyline points. It
significantly reduces bitmap access for low cardinality di-
mensions. Our experimental study shows that the two al-
gorithms strictly dominate, or atleast comparable to, the
current skycube algorithm in most of the cases, suggesting
that such an approach could be an useful addition to the set
of skyline query processing techniques.

1. Introduction

Skyline queries are increasingly used in decision support
applications such as multi-criteria decision making, data
mining, visualization [1] and user-preference queries. A
Skyline query overd dimensions returns a set of points that
are not dominated by any other point in those dimensions.
A point dominates another point if it is as good or better in
all dimensions and better in at least one dimension. Con-
sider an example scenario where a person travels to a city
and wants to select a hotel to stay by searching the database
of hotels in the city. An example dataset is shown in Table
1.

A user who is particular about hotel facilities may issue
a skyline query to search for hotels that are close to beach,

Table 1. Example of Hotel dataset
Price Distance hasPool hasGym

H1 30 2 0 1
H2 20 3 0 1
H3 40 4 1 1
H4 10 2 0 0
H5 50 1 1 0

has pool and gym facilities. The result of this query will
include H5, H1 and H3. These hotels are not dominated by
other hotels and hence will be interesting to the user. H2 is
dominated by H1 as H1 is closer to the beach than H2 and
also has gym facilities. Similarly, H4 is dominated by H1 as
H1 has gym facilities in addition to being at the same dis-
tance from beach as compared to H4. By eliminating hotels
that are completely dominated, decision making process can
be made much easier for the user.

The same dataset, shown in Table 1 may also be subject
to other skyline queries. For example, some customers may
prefer cheap hotels that are close to beach. They will issue
a skyline query forPrice andDistancedimensions. While
some others who intend to stay in hotel for a longer period
may prefer cheap hotels with excellent facilities and hence
may require skyline ofPrice, hasPoolandhasGymdimen-
sions. Depending on the customer preferences, one may ex-
pect a skyline query for any subset of dimensions included
in the dataset. This is especially true in decision support
systems where every parameter is likely to be of interest to
some set of users. Algorithms that efficiently calculate Sky-
cube (skyline results for all possible dimension subsets) can
be very useful for such applications.

Single skyline algorithms are typically not optimized for
Skyline cube computation and have high response times
when run multiple times for every dimension subset. The
only prior work done in this area was by Yuan et al. [13].
They proposed several computation sharing strategies and
proposed two algorithms for computing skycube efficiently.
In this paper, we propose two skycube computation algo-
rithms that exploit a bitmap structure to identify whether a

point is skyline in any dimension subset. Both the algo-
rithms are completely non-blocking and hence have very
low response times.

The first algorithm, calledPoint-based skycube, is an im-
provement over the single skyline Bitmap algorithm [11]
extended to calculate Skycube. In this approach, each
record is mapped to an m-bit vector, where m is the sum
of the number of distinct values in all dimensions. Once
the bitmaps are pre-computed, the algorithm steps through
each point to check if it belongs to skyline of any subset of
dimensions. It also identifies the duplicates of the current
point and masks the points that are dominated by the current
point. By identifying duplicates and dominated points (not
done in original Bitmap algorithm), the number of points to
be processed by the algorithm are significantly reduced.

The second algorithm, calledValue-based Skycube
searches the dimensions for prospective skyline points start-
ing with highest value in all dimensions and stepping down
each time the value combination is invalid (no point ex-
ists corresponding to the value combination). Once a sky-
line point is identified, all the value combinations below it
are pruned as they are guaranteed to be dominated by the
current value combination. The algorithm then repeats the
process with next non-dominated value combination. This
algorithm is optimized for dimensions with low cardinality
where the search space of every value combination of all
dimensions is much less than the search space of all points
in the database.

Skycube results are typically materialized for faster re-
trieval. But in some applications where this is not pre-
ferred, especially when data is prone to updates, it would
be beneficial to materialize some update-friendly interme-
diate results as this would return results faster than querying
base data. Our skycube algorithms are very much applica-
ble in these scenarios. By materializing the bitmaps, which
are easily updatable, skycube results can be obtained much
faster. This has an added advantage while servicing user-
preference queries.

For example, suppose that the user has a preference for
a particular set of hotels and would like to know if any of
those hotels are a part of final skyline or if there are any ho-
tels that are better than the current choices. While existing
algorithms may have to run to completion before they could
publish the results, which may take significant amount of
time, our Point-based algorithm only needs to access the
bitmaps corresponding to the selected hotels to return the
results. Another example is where the user enters arange
skyline queryas follows: return the list of skyline hotels
with price: 10-30, distance: 2-4 and hasGym. Instead of
computing the entire skyline and then filtering the results,
the Value-based algorithm can be made to run only for the
specified range of values and hence resulting in very low
response time. This is especially attractive because datasets

used for decision support systems tend to be very large and
calculating skycube and then applying the user filter may
turn out to be very expensive.

The rest of the paper is organized as follows. In the
next section we survey various skyline algorithms proposed
in the literature. In Section 3, we explain the Single sky-
line Bitmap algorithm, which forms the basis for our Point-
based algorithm. Section 4 explains how bitmaps can be
calculated from database indexes. Sections 5 and 6 ex-
plain the Point-based and Value-based skycube algorithms
respectively. We provide a thorough experimental evalua-
tion in Section 7 and finally conclude in Section 8.

2. Related Work

This section explains briefly the existing single skyline
and skyline subspace algorithms. For the rest of the paper,
we shall be considering skylines only for MAX annotations
(preferring points with high values in all dimensions) [1],
without any loss of generality.

The skyline operator was first introduced by Borzsonyi
et al. in [1]. The paper was the first to propose skyline al-
gorithms in database context namely, block nested loops,
divide and conquer and B-tree based algorithms. Block
Nested Loop (BNL) compares each point with every other
point efficiently by keeping a self-organizing list of candi-
date skyline points in memory. Chomicki et al. proposed
an improvement over BNL algorithm by first sorting the
dataset according to a monotone sorting function [2]. Di-
vide and Conquer (D&C) algorithm divides the dataset into
several partitions, calculates skylines within partitions using
a main memory algorithm and merges the result to output
the final skyline points. A new D&C algorithm for comput-
ing 2D skylines with optimal I/O costs was proposed by Lu
et al. in [7].

Tan et al. were the first to propose progressive skyline
algorithms based on bitmaps and indexes [11, 3]. Bitmap
algorithm is explained in detail in the next section. Index al-
gorithm transforms the points into single dimensional space
and organizes them into disjoint lists, each indexed using a
B-tree to return skyline points in batches. Nearest Neighbor
(NN) was another progressive (online) algorithm proposed
by Kossmann et al. in [6]. NN algorithm applies the divide
and conquer framework on datasets indexed by R-trees and
uses nearest neighbor search techniques [4, 10]. Branch and
Bound skyline (BBS) algorithm was proposed in [8] as a
progressive and I/O optimal algorithm. It efficiently prunes
points by accessing only those R-tree nodes that may con-
tain skyline points.

While all these algorithms compute single skyline effi-
ciently, they are not efficient for calculating skycube be-
cause they either 1) use specialized data structures for a par-
ticular set of dimensions and extending them for skycube

might exponentially increase the number of structures that
need to be built on the dataset or 2) are not optimized for
calculating skycube as do not adopt any resource or compu-
tation sharing strategies.

Recently, lot of research has been going on in the area of
skyline subspaces. Yuan et al. were the first to propose al-
gorithms to efficiently compute skycube [13] which consists
of skylines of all possible dimension subspaces. Bottom-Up
Skycube (BUS) computes skycube in a level-wise, bottom
up manner. Each skyline computation uses the results and
sorting output of the level below it. The Top-Down Skycube
(TDS) extends the basic Divide-and-Conquer algorithm by
computing multiple related skyline queries simultaneously.
BUS or TDS algorithm adopts several result and computa-
tion sharing strategies, while our algorithms reuse the in-
dexes built on the dimensions in addition to sharing compu-
tation and bitmap accesses.

Pei et al. introduced the notion of skyline groups and de-
cisive subspaces in [9] and proposed an algorithm, Skyey,
to compute subspace skyline points. Tao et al. proposed
the SUBSKY algorithm in [12] to efficiently support sky-
line queries in any subspace. This differs from the skycube
algorithms in that SUBSKY aims at computing the skyline
of one particular subspace as opposed to all subspaces.

3. Bitmap Algorithm for computing Skylines

This algorithm [11] uses a customized bitmap structure
to store all the information required to calculate the sky-
line points. For example, suppose that we haved dimen-
sional dataset consisting ofD points. Each pointx =
(x1, x2, ..., xd) in the dataset is encoded into an m-bit vec-
tor, where m is the total number of distinct values across all
dimensions.

• Let ki be the number of distinct values for dimension
i, 1 <= i <= d. Thenm =

∑d
i=1 ki. Let pij be

the jth distinct value in dimensioni and eachpij >
pij+1. Then eachpij is represented byki bits where
most significant1 to j − 1 bits are set to 0 and the rest
of the bits are set to 1.

• Eachxi must be equal to somepij and is mapped to
thatpij ’s bit vector of lengthki.

Consider an example shown in Table 1(a). The 3-
dimensional dataset consists of 3 points. Each of the dimen-
sions have 3, 2 and 2 distinct values and hence every point
is mapped to a 7{ 3+2+2} bit vector as shown. Consider
second pointP2{2, 1, 2}. The point has 2nd largest value
in dimension d1. Hence it is mapped to bitvector 011. Simi-
arly it has highest value in 2nd dimension (11), and highest
value in third dimension as well(11). Hence the bitmap cor-
respoding toP2{2, 1, 2} = {011, 11, 11}

(a) Data Points

d1 d2 d3
P1 3 1 1
P2 2 1 2
P3 1 0 1

(b) Bitmap Structure

d1 d2 d3
3 2 1 1 0 2 1

P1 1 1 1 1 1 0 1
P2 0 1 1 1 1 1 1
P3 0 0 1 0 1 0 1

Table 2. Example 1

Let BSij denote the bit-slice for thejth distinct value of
the ith dimension. It corresponds to the column vector in
Table 1(b). Number of bits inBSij will be equal toD, total
number of tuples in dataset. A bit that is set in positionk
will indicate that recordPk has a value ofj or higher in
dimensioni. In our example,BS13 = 100. This bitmap
indicates the records that have a value of 3 or higher in d1
dimension. In our dataset, onlyP1 has a value≥ 3 in d1.
Hence the bitmap has 1 forP1, 0 for P2 and 0 forP3.

To check if a pointx = (x1, x2, ..., xd) is in the skyline,
the following bitmap operations need to be performed:

1. LetA = Bitwise-and of the bit slices corresponding to
valuesx1, x2, .. xd. A bit that is set in positioni of
the resulting bitmap means that recordPi has values
that are good or better than the current point,x, in all
dimensions.

2. Let B = Bitwise-or of the bit slices corresponding to
just one value higher than each ofx1, x2, .. xd. A bit
that is set in positioni of the resulting bitmap indicates
that recordPi has higher value than current point,x, in
at least one dimension.

3. LetC = Bitwise-and of results [1] and [2]. A 1 in posi-
tion i of the resulting bitmap means that recordPi has
value that is as good or better thanx in all dimensions
and better in at least one dimension when compared
to x. In other words,Pi dominatesx. If on the other
hand, the resulting bitmap is all 0’s, then no point dom-
inatesx and hencex is a skyline point.

Example 1: Referring to the dataset in Table 2, to
determine if pointP2(2, 1, 2) is in the skyline of all three
dimensions, we carry out the above operations:

A = 110&110&010 = 010
This indicates that no point (other thanP2 itself) has

values that are good or better thanP2 in all dimensions.

B = 100|000|000 = 100
This indicates onlyP1 has value that is stricly better

thanP1 in at least one dimension.

C = A&B = 010&100 = 000
This indicates there is no point that has equal or higher

value thanP2 in all dimensionsandstrictly higher value in
at least one dimension. HenceP2 is a skyline point.

3.1. Applicability of Bitmap Algorithm for Skycube
computation

There are certain characteristics of the bitmap algorithm
that make it very suitable for Skycube computation.

• Bitmap Reuse: One of the major limiations of the
bitmap algorithm is the cost of accessing the bitmaps.
For each point,2 × d bitmaps have to be accessed
whered is the number of dimensions (d for calculat-
ing A value and anotherd accesses for calculatingB
value). It is worthwhile to note that the bitmaps ac-
cessed to check if pointP is in skyline for a particular
dimension set can be easily reused for checking if the
point is skyline in any of its subsets. This reuse of
bitmap amortizes their access cost over the computa-
tion of skylines for all non-emtpy dimension subsets
and hence could lead to better performance.

• Computation Reuse: On the lines of the above argue-
ment, if the same set of bitmaps could be used, then
the bitwise-and and bitwise-or of those bitmaps can be
reused as well.

From above, we can clearly see that the cost of bitmap
access for computing singled-dimensional skyline using
bitmap approach is same as the cost of bitmap access for
computing skycube for all non-empty dimension subsets
(2d − 1). We now turn to explain our algorithms for com-
puting skycube using the bitmap structure.

4. Using Indexes to build Bitmap structure

This section explains how to compute bitmaps from data-
base indexes. The bitmap structure computed as explained
in the previous section gives information about records that
have a value greater than or equal to the current point’s
value in a specific dimension. This information can be eas-
ily extracted from the database indexes, if we assume we
have either a Bitmap index or B+ tree index on each of the
columns included for skycube computation.

• Bitmap Indexon a particular dimension maintains a
bitmap for each distinct value present in the dimen-
sion. Each bit in the bitmap corresponds to a record,
and if the bit is set, it means that the record contains the
key value. The bitmap structure used in Bitmap skyline
algorithm can be built from Bitmap index by doing a
Bitwise-OR of bitmaps of all values greather than and

including the current value. The resulting bitmaps will
have the bits set for all records that have values greater
or equal to the key value. Hence by just doing one
pass over the bitmap index, the bit structure in Table
1(b) can be easily computed.

• B+ Tree Indexcan also be used to build the bitmap
structure in Table 1(b). By scanning the leaf pages of
the index from the greatest to the smallest order, one
will be able to retrieve the sorted order of the records
for the dimension on which the index is built. Once we
have a sorted list, building the bitmap structure for that
dimension is straightforward.

Many single skyline algorithms require a specific struc-
ture, either in R-tree or B+-tree format, for a particular set of
dimensions. The disadvantage with this is that these struc-
tures are special purpose data structures only used in skyline
computation and have very little use outside of skyline ap-
plications. Whereas, in a typical decision support system,
if any dimension is important enough to be included in sky-
cube computation it is reasonable to assume either B+ tree
or Bitmap index to exist on that dimension since they might
be needed by lots of other applications as well. Note that
even in the absence of the index for some or all dimensions,
the bitmap structure can still be computed by sorting the
dataset on the non-indexed dimensions. Database indexes
are usually optimized for disk acess and would give bet-
ter performance than any user implemented structures. The
bitmap structure can either be pre-computed or computed
on the fly.

5. Point-based Skycube Algorithm

Despite the simplicity of the bitmap algorithm presented
in Section 3, it has some serious limitations:

• The bit operations have to be performed for every point
in the dataset. This could be prohibitively expensive
for large datasets. By applying some efficient prun-
ing techniques, many points can be ruled out without
accessing their bitmaps.

• The algorithm fails to retrieve the maximum possible
information from the bitmap. For example, the algo-
rithm accesses the same set of bitmaps for every dupli-
cate record found in the dataset. If the algorithm were
able to identify duplicates, these extra bitmap accesses
and subsequent bit operations can be avoided, thus sig-
nificantly reducing the runtime of the algorithm.

In this section we present our Point-based skycube com-
putation algorithm. It is built on the single skyline Bitmap
algorithm explained in Section 3. Point-based algorithm

aims to retrieve the maximum possible information from the
bitmap by identifying points that areduplicateof anddom-
inated by the current point. We also propose an heuristic
technique to process the points having maximum dominat-
ing power first. The following sections explain the steps in
detail.

5.1. Point Pruning Techniques

5.1.1 Pruning Duplicate Points

The bit slices accessed by a particular record are determined
by the values that the record holds in a particular dimen-
sion. Hence every point that has the same value in all or
some of the dimensions, will repeatedly access the same
set of bitmaps and thereby increasing the number of bitmap
accesses. It should also be noted that, if a point is not in
the skyline for a particular set of dimensions, then none of
its duplicates are skyline points as well and vice versa. By
identifying and eliminating duplicates, we not only reduce
bitmap access but also converge to result faster as the total
number of points that need to be processed by the algorithm
are significantly reduced.

Recall the computation ofA andC values from Section
3. A bitmap has bit set for those records that have a value
higher or equal to the corresponding dimension values in
the current record andC bitmap has bit set for records that
dominate the current record. The difference (bitwise-xor)
between the two bitmaps identifies the records that have the
same value as the current record in all the dimensions:

duplicates = A xor C.
Hence by applying the result of current record to all its du-
plicates, we can avoid processing them separately.

5.1.2 Pruning Dominated Records

For each point in the dataset, the original bitmap algorithm
only checks if the current point is dominated by some other
point. It would be beneficial to identify and prune points
dominated by the current point as well. This can easily be
done without any extra computation or extra bit access.

Recall that theB value computed in the bitmap algo-
rithm has bit set for those points that have a value greater
than the current point in at least one dimension. That means
if a bit is not set for a particular point, then all of its values
are either equal or lesser than the current point. In other
words, these points are either duplicates of current point in
all dimensions or dominated by current point. Since dupli-
cates are handled separately as mentioned above, the points
that have bits unset in B bitmap can be pruned from further
processing.

5.2. Point-based Skyline Cube Algorithm

The algorithm, listed in Algorithm 1, maintains a Mask
(or pruned) bitmap of lengthD (number of tuples) for every
non-empty dimension subset. The bitmaps indicate records
that are masked from processing in each of the dimension
subsets. The bitmaps are initialized to 1, indicating that no
points are pruned in the beginning. The algorithm first cal-
culates all single dimensional skylines. Since, these points
have a high value in at least one dimension and are less
likely to be dominated by other points, they are the first
points to be considered for calculating Skyline cube (shown
in Algorithm 2).

Algorithm 1 Point-based Skyline Cube
1: for each non-empty dimension subseti do
2: initialize the mask bits to 1
3: end for
4: for 1 ≤ j ≤ d do
5: List L = Points with maximum value in this dimen-

sion
6: for each point P in Ldo
7: CheckSkylineCube(P)
8: end for
9: clear the mask bits to 0 indicating that the current

dimension is completed
10: end for
11: while (List L = getNextPoints()) is not emptydo
12: for each point P in Ldo
13: CheckSkylineCube(P)
14: end for
15: end while

After calculating one-dimensional skylines (lines 4-10),
the algorithm retrieves the next batch of points to be
processed and checks each point for skyline in all dimen-
sion subsets (lines 12-14).

Algorithm 2 CheckSkylineCube(Point P)
1: for each non-empty non-single dimension subset of P

do
2: if P is not masked in this dimension subsetthen
3: check if P is skyline point
4: apply the result to duplicates of P
5: mask the points dominated by P for this dimension

set in addition to masking P and its duplicates
6: end if
7: end for

The next batch of points to be processed (L = getNext-
Points()) can be retrieved in any order. It would not affect
the correctness of the algorithm. However, this order has
significant impact on the performance of the Point-based al-

gorithm. If a point with high dominating power is processed
first, it would prune out more number of points earlier, lead-
ing to potentially less number of steps to completion. In or-
der to improve the performance, we propose the following
heuristic approach for this ordering:

• The points with maximum dominating power are less
likely to be masked in many dimension subsets. Also
more points would be masked at lower levels of the
lattice (e.g. 1 dimension) than at the upper levels (e.g.
d dimensions). Hence, one heuristic technique to re-
trieve the next batch of points would be to do a bitwise-
& of mask bitmaps starting at top level of the lattice,
going down one level at a time and stopping just be-
fore all points are masked. The points that are still
unmasked in this step will be included in the batch for
next processing. We have used this technique in our
implementation.

6. Value-based Skyline Cube Algorithm

It is quite obvious that since Point-based algorithm
processes a single point at a time, the same bit slices may
be accessed multiple times. They do not have any specific
access pattern and hence caches might not be of much help.
As a result, the performance of Point-based algorithm de-
grades rapidly as the size of the dataset grows (i.e. the
number of points to process increases). Consider a case
where each dimension has a small number of distinct val-
ues and the dataset contains 1 million points. If there are
more dimensions, there will be lot more skyline points and
the Point-based algorithm might take significantly long time
to converge. In order to optimize the bit access, we pro-
pose the Value-based Skyline algorithm which exhaustively
searches the value combinations for potential skyline points
instead of enumerating the points.

6.1. Bitmap Structure for Value-based Algorithm

There is a slight difference in way the bitmaps are calcu-
lated for Value-based algorithm. For Point-based skycube
algorithm, ifpij is thejth distinct value in dimensioni and
eachpij > pi(j+1), then eachpij was represented byki bits
where most significant1 to j − 1 bits are set to 0 and the
rest of the bits are set to 1.

For Value-based algorithm, ifpij is thejth distinct value
in dimensioni, then onlyjth bit of pij will be set to 1. Rest
of the bits will be set to zero. Table 3 shows the bitmap used
by Value-based algorithm for our example dataset.

It is quite clear from the table that the bitmap structure
required by Value-based algorithm is no different from the
conventional bitmap index on each of the dimensions. It
means that for the dimensions having bitmap indexes, no

(a) Data Points

d1 d2 d3
P1 3 1 1
P2 2 1 2
P3 1 0 1

(b) Bitmap structure for Value-based sky-
cube algorithm

d1 d2 d3
3 2 1 1 0 2 1

P1 1 0 0 1 0 0 1
P2 0 1 0 1 0 1 0
P3 0 0 1 0 1 0 1

Table 3. Example 2

other extra data structure would be needed. This is one of
the main strengths of this algorithm.

6.2. Value-based Skyline Cube Algorithm

The Value-based algorithm, shown in Algorithm 3, starts
with highest value combination. For every value combina-
tion, it checks if there exists any point corresponding to the
current value combination and if there is, the current val-
ues are checked for skyline in all dimension subsets. Else,
the algorithm retrieves the next interesting point and contin-
ues the process until all value combinations are extracted.
checkSkyline()method is the same as explained in Algo-
rithm 2. The procedure for retrieving the next interesting
point, nextValueExists(), is explained in the following sec-
tion.

Algorithm 3 Value-based Skyline Cube
1: for i = 1 to NUM DIM do
2: // initial value combination to be checked should be
3: // the combination with maximum values in all
4: // dimensions (has maximum dominating power)
5: values[i] = maxValue[i]
6: end for
7: repeat
8: // isValid returns the first dimension where the value
9: // combination becomes invalid; returns -1 for valid

10: // combinations
11: if (dimToChange = isValid(values)) == -1then
12: checkSkyline(values)
13: end if
14: until nextValueExists(dimToChange, values)

Before we delve into the details of the algorithm, we
want to review the following examples in order to get some
insights.

Example 2: In this example, we explain Value-based
skycube algorithm using the dataset shown in Table 2(b).

1. The algorithm starts with a combination having highest
value in each dimension. i.e. (3, 1, 2) in our case. 3 is

the highest value in d1 dimension and 1, 2 are highest
values in d2 and d3 dimensions respectively.

2. The algorithm then checks if this value combination
is valid. This is done by doing a bitwise-& of the bit
slices corresponding to the dimension values. If the
resulting bitmap is all zeros, then there does not exist
any point with this value combination. Hence the value
combination becomes invalid. In our case,

bitwise-& of the bit slices =100&110&010 =
000 =⇒ the value combination is invalid.

3. For invalid points, the next logically lower value has
to be tried. This is retrieved by lowering the value
in the rightmost dimension, if possible, and increas-
ing the value in all subsequent dimensions (if any) to
the highest possible value. The next value in our case :
(3, 1, 2↓) ⇒ (3, 1, 1)

bitwise-& of the bit slices =100&110&101 =
100 =⇒ The value combination corresponds to point
P1 in our dataset.

4. Once the valid value combination is retrieved, check if
the value combination is in skyline of any of dimension
subsets. In our example (3, 1, 1) is in the skyline of
{d1}, {d1, d2}, {d1, d3} and{d1, d2, d3}.

5. Since the value combination was a skyline in{d1, d2,
d3}, the next logical value (3, 1,<1) is known to be
dominated by the current combination. Hence the al-
gorithm does not consider any points in the pruned
space (3, 1,<1). There are no such pruned points in
this case.

6. For valid points, the next value combination is got by
going to the highest value in the rightmost dimension
and going to lower value in the dimension preceding
to it. i.e. (3, 1↓, 1↑). This ensures that the next value
combination is not in the pruned region. In our exam-
ples, our next value would be (3, 0, 2). The algorithm
then continues the process from step [2] until the entire
search space is exhausted.

6.2.1 Retrieving next value combination

This algorithm has two cases: current value combination is
either 1) valid value combination or 2) invalid value combi-
nation.

1. Valid value combination: Let’s say the current
valid value combination corresponds to values
(x1, x2, ..., xd). The procedure to retrieve the next in-
teresting point does not depend on whether the value
combination corresponds to a d-dimensional skyline
point or not. This is because, if the current point is

in skyline, then all values combination in the region
(x1, x2, ..., < xd) would be dominated by the current
point and hence need not be considered. If the current
point is not in the skyline, the current value combina-
tion (x1, x2, ..., xd) is itself dominated and hence any
point in the region(x1, x2, ..., < xd) is guaranteed to
be dominated as well.

The next value combination to be considered is
obtained by finding the firsti for which xi 6=
maxV alue(i)1, i = d → 1. If ∃i, then updatexi =
maxV alue(i). The algorithm then tries to find the first
j for which xj 6= minV alue(j)2, j = i − 1 → 1. If
∃j, then updatexj =next lower value ofxj in dimen-
sion j. If no suchi or j exists, then all value com-
binations have been exhausted or dominated and the
algorithm is done. Table 4 shows some examples for
the same dataset shown in Table 2(a).

Table 4. Next Value for VALID points
Current Value i j Next Value
(3, 1, 1) 3 2 (3, 1 ↓, 1 ↑) = (3, 0, 2)
(2, 1, 2) 1 N/A All remaining values are

dominated

2. Invalid value combination: Let’s say the current
value combination becomes invalid at dimensiont.
This means that there exists some points with val-
ues (x1, x2, .., xt−1) upto t − 1 dimensions but no
point matches(x1, x2, .., xt−1, xt) combination in di-
mensiont. The next value combination to be con-
sidered is obtained by finding the firsti for which
xi 6= minV alue(i), starting fromi = t → 1. Up-
datexi to the next lower value ofxi in dimensioni.
Then∀j = i + 1 → d, xj = maxV alue(j). If no
suchi exists, then all value combinations have been
exhausted and the algorithm is done. Table 5 shows
some examples for the same dataset shown in Table
2(a).

Table 5. Next Value for INVALID points
Current Value t i Next Value
(3, 1, 2) 3 3 (3, 1, 2 ↓) = (3, 1, 1)
(3, 0, 2) 2 3 (3 ↓, 0 ↑, 2 ↑) = (2, 1, 2)

6.2.2 Dealing with columns having high Cardinality

Since the Value-based algorithm exhaustively searches the
entire data space for potential skyline points, it performs

1maxValue(i) returns the maximum value in dimension i.
2minValue(j) returns the minimum value in dimension j.

very well for low number of dimensions and low number of
distinct values per dimension. However, it is not uncommon
to have some columns with large number of distinct values.
In the hotel example shown in Table 1,Price is one such
attribute. In a dataset of around 1 million points, the number
of distinct price values would be at least 1000. And this
increase in number of distinct values in just one dimension
could blow up the size of the search space for the Value-
based algorithm.

To overcome that, we propose a bucketized version of the
Value-based algorithm, where dimensions with high cardi-
nality, will be split into multiple levels, each level contain-
ing a specified number of buckets. The number of buckets
will basically be the number of distinct values at each level.

While this increases the dimensionality of the dataset as
a result of splitting single dimension into multiple levels, the
advantage here is that we only need to access lower levels to
compare records within the same bucket. With the interest
of space, we omit the details of this generalization. Please
refer to [5] for full details.

7. Experimental Evaluation

This section provides a thorough performance analysis
of our Point-based and Value-based skycube algorithms. In
this section in order to validate our algorithms, we compare
the performance of our Point-based and Value-based algo-
rithms with the Top-Down skycube (TDS) algorithm pro-
posed in [13]. TDS performs much better than Bottom-Up
skycube (BUS) algorithms in almost all cases as shown in
[13] and hence we do not consider BUS in our experiments.
As mentioned before, single skyline algorithms are not op-
timized to share computation across dimension subspaces
and do not perform well for calculating skycube. As a re-
sult we limit our performance evaluation only to the previ-
ous skycube algorithm.

All experiments were carried out on a Linux machine
having two Intel Xeon 2.80GHz processors with total 4GB
main memory. The algorithms were implemented in C++.
Following the common practice in the literature, we used
independent, correlated and anti-correlated databases pro-
posed in [1] as benchmark databases. We experimented
with datasets having cardinality in the range of [100k, 1M]
and dimensionality(DIM) in the range of [3,7]. Number of
distinct values per dimension, in other words Column Car-
dinality (CC), is another important parameter in our exper-
iments as it determines the size of the bitmap table. The
datasets we used for the experiments have column cardinal-
ity in the range of [20, 100]. We measure the query time for
the different algorithms for skycube computation. The run
time measured for our algorithms include the time taken to
build the bitmap structure and the time to compute the sky-
cube results.

1 2 5 7 10

Number of Tuples (x 100k)

Q
u

er
y

T
im

e
(s

ec
s)

0
5

10
15

Point
Value
TDS

(a) Varying Number of Tuples
(DIM=4, CC=30)

4 5 6 7

Dimensionality

Q
u

er
y

T
im

e
(s

ec
s)

0
50

10
0

15
0

20
0

(b) Varying Dimensions (# of tu-
ples=1M, CC=30)

Figure 1. Point vs. Value vs. TDS for corre-
lated dataset

7.1 Comparing Point and Value algorithms

Throughout the experiments, we observed that Value-
based algorithm generally outperforms the Point-based
counterpart. Only exception was the case with correlated
datasets. As shown in Figure 1, with correlated dataset,
the Point algorithm outperformed the Value algorithm (and
TDS) moderately in varying number of tuples test (Figure
1(a)) and somewhat significantly in varying dimensions test
(Figure 1(b)). In the test with varying column cardinality
(graph not shown), the point algorithm performed compara-
bly with the other two algorithms.

It is because the Point-based algorithm processes points
in single dimensional skyline first, most points get pruned
in the initial stages of the algorithm as single dimension
skyline points are good in other dimensions as well (due
to correlated effect). On the other hand, Point algorithm
has to process much more points for independent and anti-
correlated datasets and hence its performance substantially
degrades in those cases. For example, in independent
dataset containing 1M points having 4 dimensions and 20
distinct values per dimension, Point algorithm takes 872
seconds to calculate skycube whereas Value and TDS fin-
ish in 11 and 30 seconds respectively. Hence, for the rest of
our evaluation, we only consider Value and TDS algorithms
for independent and anti-correlated datasets.

7.2 Effect of Tuple Cardinality

In this experiment, we study the effect of increase in
the number of tuples on the overall skycube computation
time. We compare the time taken for independent and anti-
correlated benchmarks with cardinality between 100k to
1M for 4 dimensions, each dimension having 30 distinct
values. Figure 2 shows the results of the experiment.

From the results, we find that Value-based algorithm

1 2 5 7 10

Number of Tuples (x 100k)

Q
u

er
y

T
im

e
(s

ec
s)

0
5

10
20

IndependentValue
TDS

1 2 5 7 10

Number of Tuples (x 100k)
Q

u
er

y
T

im
e

(s
ec

s)

0
20

60
10

0

Anti−Correlated

Figure 2. Effect of Cardinality (DIM=4, CC=30)

completely outperforms TDS algorithm in both datasets.
Our Value-based algorithm is faster by at least by a fac-
tor of 2 for independent datasets and at least by a factor of
3 for anti-correlated datasets. It should be noted that for
Value-based algorithm increase in the number of tuples in-
creases the skycube computation time only slightly for both
independent and anti-correlated databases, while there is a
significant increase in computation time for TDS algorithm.
As we can see in Section 7.4, time taken for the Value algo-
rithm depends more on the column cardinality than on the
number of tuples for a fixed dimension dataset.

7.3. Effect of Dimensionality

To study the effect of dimensionality on our algorithms,
we use datasets having 1M tuples, 30 distinct values per di-
mension and vary the dimensions from 4 to 7. Experimental
results are shown in Figure 3.

4 5 6 7

Dimensionality

Q
u

er
y

T
im

e
(s

ec
s)

0
20

0
40

0
60

0

IndependentValue
TDS

4 5 6 7

Dimensionality

Q
u

er
y

T
im

e
(s

ec
s)

0
20

0
40

0
60

0
80

0

Anti−Correlated

Figure 3. Effect of Dimensionality (# of tu-
ples=1M, CC=30) [Note: TDS algorithm failed to com-
plete for anti-correlated dataset]

It is quite clear from the figure that Value-based algo-
rithm is more than 4 times faster than TDS algorithm for in-
dependent dataset on an average. For example, in 6 dimen-
sions, Value algorithm completes in 112 seconds whereas
TDS takes 500 seconds to run to completion. Note that

the TDS algorithm failed to compute the skycube for anti-
correlated dataset and only the value algorithm is shown in
the second graph3.

7.4. Effect of Column Cardinality

20 30 40 50 70 100

Column Cardinality

Q
u

er
y

T
im

e
(s

ec
s)

0
10

20
30

40
50

IndependentValue
TDS

20 30 40 50 70 100

Column Cardinality

Q
u

er
y

T
im

e
(s

ec
s)

0
50

10
0

15
0

Anti−Correlated

Figure 4. Effect of Colum Cardinality (# of tu-
ples=1M, DIM=4)

Since the size of the bitmap table and hence the perfor-
mance of our Value-based algorithm depend on the number
of distinct values in each dimension, we study the effect
of Column Cardinality on our algorithms. We considered
column cardinalities in the range of [20, 100] for a dataset
having 1M records and 4 dimensions. Experimental results
are shown in Figure 4.

For varying dimensions, our Value-based algorithm is
faster on an average by a factor of 2.1 for independent
datasets and by a factor of 2.7 on an average for anti-
correlated datasets. As the number of distinct values in-
creases, search space for Value-based algorithm widens and
this explains the increase in computation time. Since TDS
algorithm does not depend on the column cardinality, we
can expect a break even point before which Value-based al-
gorithm would perform better and after which TDS would
be preferable to our Value algorithm. In the experiment
above, the break even point occurs at column cardinality
of 100 for anti-correlated dataset as can be seen from the
figure.

7.5. Effect of Point Pruning Strategies

In this section, we study the effect of point pruning
strategies on our algorithms. We evaluated the number of
bitmap accesses for the original single skyline Bitmap al-
gorithm (explained in Section 3) and our Point-based and
Value-based algorithms. The experimental results in this
section are implementation independent as we measure only

3We only obtained the executable from the authors and were not able
to investigate the problem further.

1 2 5 7 10

No of Tuples (x100k)

o

f
B

it
 A

cc
es

s

1
 e

+
02

1
 e

+
05

IndependentBitmap
Point
Value

1 2 5 7 10

No of Tuples (x100k)

o
f

B
it

 A
cc

es
s

5
 e

+
02

5
 e

+
04

Correlated

Figure 5. Efficiency of Point Pruning Strate-
gies(DIM=4, CC=30) [Note: Graph in LOG scale]

the number of bitmap accesses and not the time taken to ac-
cess them. It is important to note here that the number of
bitmaps accessed by Point/Value based algorithm for cal-
culatingd dimensional skycube is same as the number of
bitmap accesses done for computing single skyline ofd di-
mensions. The bitmap accesses were measured for a dataset
containing 1M records and 4 dimensions.

Results shown in Figure 5 explain the efficiency of our
pruning strategies. We show the results only for indepen-
dent and correlated datasets as the trend for anti-correlated
dataset was very similar to independent dataset. It can be
clearly seen that our skycube algorithms are orders of mag-
nitude better than the original Bitmap algorithm. Also, as
explained above, Point algorithm performs better for cor-
related datasets whereas Value algorithm is preferable for
independent and anti-correlated datasets. It is interesting
to note that the number of bitmap accesses is more or less
constant for Point-based algorithm whereas it constantly re-
duces for Value algorithm for a particular column cardinal-
ity. This is because, for Value algorithm increasing the num-
ber of tuples also increases the probability of hitting at a
skyline value combination early enough in the algorithm.
This significantly reducing the search space and hence the
number of bitmap accesses.

8. Conclusions

Skyline queries are important for several database appli-
cations including decision support, visualization and user
preference queries. In this paper, we presented two Skycube
computation algorithms that compute the skyline query re-
sults for every non empty subspace of a given set of dimen-
sions. The first algorithm, Point-based skycube, processes
dataset one point at a time to check for skyline in any dimen-
sion subset. This point-wise processing makes this algo-
rithm preferable for user preference queries, where a given
set of points, chosen by the user can be checked for sky-
line in any of the dimension subsets. The second algo-

rithm, Value based algorithm, checks value combinations
for prospective skyline points. It is targeted toward datasets
with low column cardinalities and very high number of tu-
ples. Our experimental study shows that our algorithms
significantly outperform the current skycube algorithms for
low cardinality, low dimensional datasets, while having a
comparable performance in other cases. One possible di-
rection for future work could be to come up with a hybrid
algorithm that combines the advantages of both Point and
Value based algorithms.

References

[1] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline
operator. InProceedings of the 17th International Con-
ference on Data Engineering, pages 421–430, Washington,
DC, USA, 2001. IEEE Computer Society.

[2] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting. InICDE, pages 717–816, 2003.

[3] P.-K. Eng, B. C. Ooi, and K.-L. Tan. Indexing for progres-
sive skyline computation.Data Knowl. Eng., 46(2):169–
201, 2003.

[4] G. R. Hjaltason and H. Samet. Distance browsing in spa-
tial databases.ACM Trans. Database Syst., 24(2):265–318,
1999.

[5] G. T. Kailasam and J. Kang. Efficient skycube
computation using bitmaps derived from indexes.
http://www.csc.ncsu.edu/faculty/kang/pubs/tr-2006-17.pdf.
Technical report, North Carolina State University, 2006.

[6] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in
the sky: An online algorithm for skyline queries. InVLDB,
pages 275–286, 2002.

[7] H.-X. Lu, Y. Luo, and X. Lin. An optimal divide-conquer
algorithm for 2d skyline queries. InADBIS, pages 46–60,
2003.

[8] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. InSIGMOD ’03:
Proceedings of the 2003 ACM SIGMOD international con-
ference on Management of data, pages 467–478, New York,
NY, USA, 2003. ACM Press.

[9] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best
views of skyline: A semantic approach based on decisive
subspaces. InVLDB, pages 253–264, 2005.

[10] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neigh-
bor queries. In M. J. Carey and D. A. Schneider, editors,
Proceedings of the 1995 ACM SIGMOD International Con-
ference on Management of Data, San Jose, California, May
22-25, 1995, pages 71–79. ACM Press, 1995.

[11] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive
skyline computation. InVLDB ’01: Proceedings of the 27th
International Conference on Very Large Data Bases, pages
301–310, San Francisco, CA, USA, 2001. Morgan Kauf-
mann Publishers Inc.

[12] Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient computation
of skylines in subspaces. InICDE, page 65, 2006.

[13] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang.
Efficient computation of the skyline cube. InVLDB, pages
241–252, 2005.

