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Abstract

To facilitate managing access control in a system, ac-
cess control policies are increasingly written in specifica-
tion languages such as XACML. A dedicated software com-
ponent called a Policy Decision Point (PDP) interprets the
specified policies, receives access requests, and returns re-
sponses to inform whether access should be permitted or
denied. To increase confidence in the correctness of spec-
ified policies, policy developers can conduct policy testing
by supplying typical test inputs (requests) to the PDP and
subsequently checking test outputs (responses) against ex-
pected ones. Unfortunately, manual testing is tedious and
few tools exist for automated testing of XACML policies.

In this paper, we propose an automated mutation testing
framework for access control policies. The framework in-
cludes components of mutation-operator definition, mutant
generation, equivalent-mutant detection, and mutant-killing
determination. This framework allows us to evaluate cov-
erage criteria for test generation and selection, investigate
mutation operators, and determine a relationship between
structural coverage and fault-detection effectiveness. We
have implemented the framework and applied it to various
XACML policies. Our experimental results offer valuable
insights into choosing mutation operators in mutation test-
ing and choosing coverage criteria in test generation and
selection.

1. Introduction

Access control is one of the most fundamental and
widely used security mechanisms. It controls which prin-
cipals such as users or processes have access to which re-
sources in a system. To facilitate managing and maintaining
access control, access control policies are increasingly writ-
ten in specification languages such as XACML [1] and Pon-
der [4]. Whenever a principal requests access to a resource,
that request is passed to a software component called a

Policy Decision Point(PDP). A PDP evaluates the request
against the specified access control policies, and permits or
denies the request accordingly.

Assuring the correctness of policy specifications is be-
coming an important and yet challenging task, especially
as access control policies become more complex and are
used to manage a large amount of sensitive information or-
ganized into sophisticated structures. Identifying discrepan-
cies between policy specifications and their intended func-
tion is crucial because correct implementation and enforce-
ment of policies by applications is based on the premise
that the policy specifications are correct. As a result, policy
specifications must undergo rigorous verification and vali-
dation through systematic testing to ensure the policy spec-
ifications truly encapsulate the desires of the policy authors.

Software testing aims at efficiently detecting and correct-
ing errors in software through dynamic execution. Errors in
policy specifications may also be discovered by leveraging
existing techniques for software testing and applying them
to policy testing. In policy testing, test inputs are access
requests and test outputs are access responses. The execu-
tion of test inputs occurs as requests are evaluated by the
PDP against the access control policies under test. Policy
authors can inspect request-response pairs to check whether
they are expected. Access control policies are often tested
with manually defined access requests so that policy authors
may check the PDP’s responses against expected ones [3].
Unfortunately, current policy testing practice tends to bea
manual, ad hoc process. With such a process, it is question-
able that high confidence can be gained on the correctness
of access control policies.

Mutation testing [5] has historically been applied to
general-purpose programming languages in measuring the
quality of a test suite. In this paper, we propose a new
framework for automated mutation testing of access control
policies. In the framework, we define a set of new muta-
tion operators for XACML policies. We also develop a new
tool that automatically seeds a policy under test with faults
by applying these mutation operators, thereby producing



numerous mutant policies. We leverage a change-impact
analysis tool to detect equivalent mutants among generated
mutants. We determine whether a mutant policy is killed by
a request by comparing the responses for the request based
on the original policy and mutant policy. Our framework
can be applied on XACML policies together with our pre-
vious tools of test generation, test selection, and structural
coverage measurement for access control policies [15–17].
We perform an experiment that uses mutation testing to
evaluate structural coverage criteria for test generationand
test selection in terms of fault-detection capabilities. Our
experimental results offer valuable insights into choosing
mutation operators in mutation testing and choosing cover-
age criteria in test generation and selection.

The rest of the paper is organized as follows. We first
present related work in Section 2 and background in Sec-
tion 3. We then present our new mutation testing framework
in Section 4. Section 5 describes the experiment where we
apply the framework on various XACML policies. Finally
we conclude with Section 6.

2. Related Work

To help ensure the correctness of policy specifications,
researchers and practitioners have developed formal verifi-
cation tools for policies [7,12,20]. Fisler et al. [7] developed
a tool called Margrave that can verify XACML [1] poli-
cies against properties, if they are specified, and perform
change-impact analysis on two versions of policies when
properties are not specified. Margrave performs property
verification by automatically generating concrete counter-
examples in the form of specific requests that illustrate vio-
lations of the specified properties. Similarly, change-impact
analysis is performed by automatically generating specific
requests that reveal semantic differences between two ver-
sions of a policy. Although verification tools such as Mar-
grave are valuable, it is sometimes beyond the capabilities
of these tools to verify complex access control policies be-
cause of the tools’ limited support for various XACML fea-
tures. Furthermore, user-specified properties are often not
available [7]. Our mutation testing framework leverages
Margrave’s strengths for generating requests and detecting
equivalent mutants.

Although various coverage criteria [21] for software pro-
grams exist, only recently have coverage criteria for access
control policies been proposed in our previous work [17].
Policy coverage criteria are needed to measure how well
policies are tested and which parts of the policies are not
covered by the existing tests. In our previous work [17], we
have defined policy coverage and developed a policy cover-
age measurement tool. Because it is tedious for developers
to manually generate test inputs for policies, and manually
generated tests are often not sufficient for achieving high

policy coverage, we have also developed several techniques
of test generation. The first one iterates over all possible
requests for a given policy, if its domain set is finite. The
second one is a random test generation tool that randomly
generates tests for XACML policies [17]. The third tech-
nique [15] is a novel framework that automatically gener-
ates high-quality tests based on a change-impact analysis
tool such as Margrave [7]. Because the number of automat-
ically generated tests is often too large for manual inspec-
tion, we developed a request-reduction tool that greedily se-
lects a minimal set of tests for achieving the same policy
coverage as the original set of tests. Our new automated
mutator allows us to quickly evaluate test generators and
techniques of test selection in terms of fault-detection capa-
bilities.

3. Background

This section presents background information for our
framework, including a description of XACML and our pre-
vious work [15–17] on structural coverage measurement,
request generation, and request selection, which can be ap-
plied together with our new framework.

3.1. XACML

The eXtensible Access Control Markup Language
(XACML) is an XML based syntax used to express poli-
cies, requests, and responses. This general-purpose lan-
guage for access control policies is an OASIS (Organization
for the Advancement of Structured Information Standards)
standard [1] that describes both a language for policies and
a language for requests or responses of access control de-
cisions. The policy language is used to describe general
access control requirements and is designed to be extended
to include new functions, data types, combining logic, etc.

The five basic elements of XACML policies are
PolicySet, Policy, Rule, Target, andCondition. A
policy set is simply a container that holds other policies or
policy sets. A policy is expressed through a set of rules.
With multiple policy sets, policies, and rules, XACML must
have a way to reconcile conflicting rules. A collection of
combining algorithms serves this function [1]. Each algo-
rithm defines a different way to combine multiple decisions
into a single decision. Bothpolicy combining algorithms
and rule combining algorithms are provided. Seven stan-
dard combining algorithms are provided but user-defined
combining algorithms are also allowed [2].

To aid in matching requests with the appropriate policies,
XACML provides a target [1], which is basically a set of
simplified conditions for the subject, resource, and action
that must be met for a policy set, policy, or rule to apply
to a given request. Once a policy or policy set is found to

2



apply to a given request, its rules are evaluated to determine
the response.

Finally we have attributes, attribute values, and func-
tions. Attributes are named values of known types that de-
scribe the subject, resource, and action of a given access
request [1]. A request is formed of attributes that will be
compared to attributed values in a policy to make the ac-
cess decisions. Attribute values from a request are resolved
through two mechanisms: theAttributeDesignator
and theAttributeSelector [1]. The former lets the pol-
icy specify an attribute with a given name and type, whereas
the latter allows a policy to look for attribute values through
an XPath query.

3.2. Coverage Measurement

Sun has developed an open source, pure Java implemen-
tation of the XACML standard [2]. This implementation
supports parsing of policies, requests, and responses; deter-
mining applicable policies for a given request; evaluating
requests against a set of policies; as well as implementing
standard attribute types, functions and policy combining al-
gorithms.

Our previous work [17] defines three policy coverage
metrics and presents a tool called Poco for measuring pol-
icy coverage. Poco automatically measures three structural
coverage metrics: policy hit percentage, rule hit percentage,
and condition hit percentage. Poco is essentially an instru-
mented version of Sun’s XACML implementation that au-
tomatically collects policy coverage information as requests
are evaluated against a policy. Poco acts as a PDP that ac-
cepts access requests and returns access decisions.

As discussed in Section 3.1, XACML policies have three
major entities: policies, rules for each policy, and condi-
tions for each rule. Policy coverage is quantified for each of
these entities and is defined as follows [17]:

• Policy hit percentage. A policy is hit by a request if
the policy is applicable to the request. If all the condi-
tions in the policy’s target are satisfied by the request,
then the policy is applicable to the request. Policy hit
percentage is the number of hit policies divided by the
number of total policies.

• Rule hit percentage. A rule for a policy is hit by a re-
quest if the rule is also applicable to the request. If
the policy is applicable to the request and all the con-
ditions in the rule’s target are satisfied by the request,
then the policy’s rule is also applicable to the request.
Rule hit percentage is the number of hit rules divided
by the number of total rules.

• Condition hit percentage. The evaluation of the con-
dition for a rule has two outcomes: the true condition

and false condition. A true condition for a rule is hit
by a request if the rule is applicable to the request and
the condition is evaluated to be true. A false condition
for a rule is hit by a request if the rule is applicable to
the request and the condition is evaluated to be false.
Condition hit percentage is the number of hit true con-
ditions and hit false conditions divided by twice the
number of total conditions.

3.3. Random Test Generation

Because manually generating requests for testing poli-
cies is tedious, our previous work [17] developed a random
test generation tool for policies. The tool analyzes the pol-
icy under test and generates requests on demand by ran-
domly selecting requests from the set of all combinations
of attribute id-value pairs found in the policy. A particular
request is represented as a vector of bits. The length of this
vector is equal to the number of different attribute values
found in the policy set targets, policy targets, rule targets,
and rule conditions of the policy under test. Each attribute
value appears in the request if its corresponding bit in the
vector is1, otherwise the value is not present.

More specifically, all possible combinations can be rep-
resented by integers from0 to 2n wheren is the number of
attribute values found in the policy. Each request is gener-
ated by setting each bit in the vector to0 or 1 with proba-
bility 0.5. The number of randomly generated requests can
be configured by the user and the configured number can be
considerably smaller than the total number of combinations.
To construct a request from the integeri, we first converti
to binary and use then least significant bits as the vector
of bits that indicate the presence or absence of the possible
attribute values.

To help achieve adequate coverage with a small set of
random requests, we modified the random test generation
algorithm to ensure that each bit was set to1 and0 at least
once. In particular, we explicitly set theith bit to 1 for the
first n generated requests wherei = 1, 2, ...n. Similarly,
for the nextn requests, we explicitly set the(i− n)th bit to
0. This improved algorithm guarantees that each attribute
value is present and absent at least once as long as the num-
ber of randomly generated requests is greater than2n.

3.4. Test Generation with Change-Impact Analysis

To automatically generate high-quality test suites for ac-
cess control policies, our previous work has developed a
novel framework based on change-impact analysis [15].
Our framework receives a set of policies under test and out-
puts a set of tests in the form of request-response pairs for
developers to inspect their correctness. The framework con-
sists of four major components: version synthesis, change-
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impact analysis, request generation, and request reduction.
The key notion of the framework is to synthesize two ver-
sions of the given policies in such a way that test coverage
targets (e.g., certain policies, rules, and conditions) are en-
coded as the differences of the two synthesized versions.
Then a change-impact analysis tool can be leveraged to
generate counterexamples to witness these differences, thus
covering the test coverage targets. The framework gener-
ates tests (in the form of requests) based on the generated
counterexamples. We implemented this framework in a tool
called Cirg that leverages Poco and Margrave to automati-
cally generate test suites with high structural coverage [15].

3.5. Test Minimization

The number of generated requests can be large for com-
plex policies. In such cases it is infeasible for policy authors
to inspect each request-response pair; therefore, we need to
reduce the number of requests for inspection without incur-
ring substantial loss in fault detection capability.

We have defined request reduction problem [17] similar
to the test minimization problem for program testing [10]:

Given: request set QS, a set of requirementsr1, r2, ..., rn

that must be satisfied to provide the desired test coverage of
the policies, and subsets of QS,Q1, Q2,...,Qn, one associ-
ated with each of theris such that any one of the requestqj

belonging toQi can be used to testri.
Problem: Find a representative set of requests from QS that
satisfies all ofris.

In the problem statement, theris can represent policy
coverage requirements, such as covering a certain policy, a
certain rule, and a certain condition. In a representative set
of requests that satisfies all of theris, at least one request
satisfies eachri. We say a representative set isminimal if
removing any request from the set causes the set not to be
a representative set. Given a request setQS, there can be
several minimal representative setsQS′ ⊆ QS. Among
the minimal representative request sets, we could find a re-
quest set that has the smallest possible number of requests.
Finding such request tests reduces to optimization problems
called “minimum set cover” and “minimum exact cover”,
respectively; these problems are known to be NP complete,
and in practice approximation algorithms are used [13].

4. Framework

This section presents our framework for policy mutation
testing. We first introduce the general concept of muta-
tion testing and describe mutation testing for access control
policies. We then present how to detect equivalent mutants
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Figure 1. Overview of our framework for pol-
icy mutation testing.

among generated mutants. Finally, we present a set of mu-
tation operators used by our automated policy mutator.

4.1. Mutation Testing

Mutation testing [5] has historically been applied to gen-
eral purpose programming languages. The program under
test is iteratively mutated to produce numerous mutants,
each containing one fault. A test input is independently ex-
ecuted on the original program and each mutant program.
If the output of a test executed on a mutant differs from the
output of the same test executed on the original program,
then the fault is detected and the mutant is said to be killed.
The fundamental premise of mutation testing as stated by
Geist et al. [8] is that, in practice, if the software contains a
fault, there will usually be a set of mutants that can only be
killed by a test that also detects that fault. In other words,
the ability to detect small, minor faults such as mutants im-
plies the ability to detect complex faults. Because fault de-
tection is the central focus of any testing process, mutation
testing provides an external measure of the effectiveness of
that process. The higher the percentage of killed mutants,
the more effective the test set is at fault detection.

In policy mutation testing, the program under test, test
inputs, and test outputs correspond to the policy, requests,
and responses, respectively. An overview of our frame-
work for policy mutation testing is illustrated in Figure 1.
In the framework, we first define a set of mutation opera-
tors, whose details are described in Section 4.3. Given a
policy and a set of mutation operators, a mutator generates
a number of mutant policies. Given a request set, we evalu-
ate each request in the request set on both the original policy
and a mutant policy. The request evaluation produces two
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responses for the request based on the original policy and
the mutant policy, respectively. If these two responses are
different, then we determine that the mutant policy is killed
by the request; otherwise, the mutant policy is not killed.

Unfortunately, there are various expenses and barriers
associated with mutation testing. The first and foremost is
the generation and execution of a large number of mutants.
For general-purpose programming languages, the number
of mutants is proportional to the product of the number of
data references and the number of data objects in the pro-
gram [18]. For XACML policies, the number of mutants
is proportional to the number of policy elements, namely
policy sets, policies, targets, rules, conditions, and their as-
sociated attributes.

4.2. Equivalent-Mutant Detection

Cost of mutation testing also includes detection of equiv-
alent mutants [18]. Although there are syntactic differences
between an equivalent mutant and the program under test,
the mutant is semantically equivalent to the original one.
In other words, the mutant will produce the same result
as the original one for all test inputs and thus provides no
benefit. Equivalent-mutant detection provides a mechanism
to better evaluate mutation operators and more efficiently
perform mutation testing because computational resources
will not be wasted in evaluating test inputs or comparing
test outputs for equivalent mutants. Detecting such mutants
in software is generally intractable [6] and historically has
been done by hand [18] but using a change-impact analy-
sis tool such as Margrave [7] allows us to detect equivalent
mutants among generated mutants. We originally believed
equivalent-mutant detection to be an important efficiency
improvement though we found in practice that evaluating
requests and comparing responses to be computationally
cheaper than performing change-impact analysis with Mar-
grave. Furthermore, limitations of Margrave prevented the
detection of equivalent mutants for mutation operators on
conditions and some combining algorithms.

4.3. Mutation Operators

Previous studies [11,14] have been conducted to investi-
gate the types and effectiveness of various mutation opera-
tors for general-purpose programming languages; however,
these mutation operators often do not directly apply to mu-
tating policies. This section describes the chosen mutation
operators for XACML policies. An index of the mutation
operators is listed in Table 1 and their details are described
as below.

1. Policy Set Target True (PSTT). Ensure that the pol-
icy set is applied to all requests by removing the

Table 1. Index of mutation operators.
ID Description

PSTT Policy Set Target True
PSTF Policy Set Target False
PTT Policy Target True
PTF Policy Target False
RTT Rule Target True
RTF Rule Target False
RCT Rule Condition True
RCF Rule Condition False
CPC Change Policy Combining Algorithm
CRC Change Rule Combining Algorithm
CRE Change Rule Effect
RMPS Remove Policy Set
RMP Remove Policy
RMR Remove Rule

<Target> tag of eachPolicySet element. The num-
ber of mutants created by this operator is equal to the
number ofPolicySet elements with a<Target> tag.
The number of equivalent mutants created depends on
the specific policy under test.

2. Policy Set Target False (PSTF). Ensure that the pol-
icy set is never applied to a request by modifying the
<Target> tag of eachPolicySet element. The num-
ber of mutants created by this operator is equal to
the number ofPolicySet elements. The number of
equivalent mutants created depends on the specific pol-
icy under test.

3. Policy Target True (PTT). Ensure that the policy is ap-
plied to all requests simply by removing the<Target>
tag of eachPolicy element. The number of mu-
tants created by this operator is equal to the number of
Policy elements with a<Target> tag. The number
of equivalent mutants created depends on the specific
policy under test.

4. Policy Target False (PTF). Ensure that the policy is
never applied to a request by modifying the<Target>
tag of eachPolicy element. The number of mu-
tants created by this operator is equal to the number of
Policy elements. The number of equivalent mutants
created depends on the specific policy under test.

5. Rule Target True (RTT). Ensure that the rule is applied
to all requests simply by removing the<Target> tag
of eachRule element. The number of mutants cre-
ated by this operator is equal to the number ofRule

elements with a<Target> tag. The number of equiv-
alent mutants created depends on the specific policy
under test.
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6. Rule Target False (RTF). Ensure that the rule is never
applied to a request by modifying the<Target> tag of
eachRule element. The number of mutants created by
this operator is equal to the number ofRule elements.
The number of equivalent mutants created depends on
the specific policy under test.

7. Rule Condition True (RCT). Ensure that the condition
always evaluates toTrue simply by removing the con-
dition of eachRule element. The number of mutants
created by this operator is equal to the number ofRule

elements with a<Condition> tag. The number of
equivalent mutants created depends on the specific pol-
icy under test.

8. Rule Condition False (RCF). Ensure that the condition
always evaluates toFalse by manipulating the condi-
tion value or the condition function. The number of
mutants created by this operator is equal to the number
of Rule elements. The number of equivalent mutants
created depends on the specific policy under test.

9. Change Policy Combining Algorithm (CPC). Try all
possible policy combining algorithms. This high-level
mutation may change the way that various policies in-
teract. This operator is only meaningful if there is
more than onePolicy element in the policy under
test. Currently there are six policy combining algo-
rithms implemented in Sun’s XACML implementa-
tion [2] but four of these algorithms semantically re-
duce to two, leaving only four policy combining algo-
rithms, namely deny-overrides, permit-overrides, first-
applicable, and only-one-applicable. The number of
mutants created by this operator for policies with more
than onePolicy element is three and zero otherwise.
The number of equivalent mutants created depends on
the specific policy under test.

10. Change Rule Combining Algorithm (CRC). Try all
possible rule combining algorithms. This high-level
mutation may change the way that various rules inter-
act. This operator is only meaningful if there is more
than oneRule element in the policy under test. Cur-
rently there are five rule combining algorithms imple-
mented in Sun’s XACML implementation [2] but four
of these algorithms semantically reduce to two, leaving
only three rule combining algorithms, namely deny-
overrides, permit-overrides, and first-applicable. The
number of mutants created by this operator for poli-
cies with more than oneRule element is two and zero
otherwise. The number of equivalent mutants created
depends on the specific policy under test.

11. Change Rule Effect (CRE). Invert each rule’sEffect
by changingPermit to Deny or Deny to Permit. The

number of mutants created by this operator is equal to
the number of rules in the policy. This operator should
never create equivalent mutants unless a rule is un-
reachable, in which case the rule should probably be
removed.

12. Remove Policy Set (RMPS). If there is more than one
PolicySet element, then we remove each policy set
in turn. The number of created mutants is equal to the
number ofPolicySet elements in the entire policy.
This operator only creates equivalent mutants if the
removedPolicySet is unreachable or redundant in
which case the policy set should probably be removed.

13. Remove Policy (RMP). If there is more than one
Policy element, then we remove each policy in turn.
The number of created mutants is equal to the number
of Policy elements in the entire policy. This operator
creates equivalent mutants only if the removedPolicy

is unreachable or redundant, in which case the policy
should probably be removed.

14. Remove Rule (RMR). If there is more than oneRule el-
ement, then we remove each rule in turn. The number
of created mutants is equal to the number ofRule ele-
ments in the entire policy. This operator creates equiv-
alent mutants only if the removedRule is unreachable
or redundant in which case it should probably be re-
moved. (Note that we do not have aRemove Condition
(RMC)mutation operator, because this mutation oper-
ator has the exactly same semantic as RCT.)

5. Experiment

This section presents the experiment that we conducted
to evaluate our policy mutator and the defined mutation op-
erators. The policy mutator uses the defined mutation oper-
ators to automatically seed the policy under test with faults
for generating mutant policies. These mutant policies are
then used to evaluate request sets to determine the mutant-
killing ratios. This process provides a measure of quality
for each request set in terms of fault-detection capability.
Because two of these request sets are generated based on
the structural coverage of the policy, we can find correla-
tions between structural coverage and fault-detection capa-
bility. We first describe the experiment’s objective and mea-
sures as well as the experiment instrumentation. We then
present and discuss the experimental results and finally de-
scribe threats to validity.

5.1. Objective and Measures

The objective of the experiment is to investigate the fol-
lowing questions:
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1. How strong is the correlation between structural cover-
age and fault-detection capability? More specifically,
does test selection based on structural coverage criteria
produce request sets with high fault-detection capabil-
ity?

2. What are the individual characteristics of each muta-
tion operator? Are some more difficult to kill than oth-
ers? Are some easily killed by request sets selected
based on structural coverage criteria?

To help answer these questions, we collect several met-
rics to compare the request generation techniques based on
change-impact analysis, random request generation, and the
minimized random request set based on structural coverage.
The following metrics are measured for each policy under
test, each request set, and each mutation operator.

• Policy hit percentage. The policy hit percentage or pol-
icy coverage is the number of policies involved in eval-
uating the request set divided by the total number of
policies.

• Rule hit percentage. The rule hit percentage or rule
coverage is the number of rules involved in evaluating
the request set divided by the total number of rules.

• Condition hit percentage. The condition hit percentage
is the number of conditions involved in evaluating the
request set divided by two times of the total number of
conditions.

• Test count. The test count is the size of the request set
or the number of tests generated by the chosen test-
generation technique. For testing access control poli-
cies, a test is synonymous with request.

• Reduced-test count. Given a policy and the generated
set of requests, the reduced test count is the size of the
reduced request set based on policy coverage.

• Mutant-killing ratio. Given a request set, the pol-
icy under test, and the set of generated mutants, the
mutant-killing ratio is the number of mutants killed by
the request set divided by the total number of mutants.

Intuitively a set of requests that achieve higher policy
coverage are more likely to reveal faults. This notion is
easy to understand because a fault in a policy element that
is never covered by a request would never contribute to a
response and thus a fault in that element cannot possibly
be revealed. There is a direct correlation between the test
count and the test evaluation time because a large request
set would take longer to evaluate than a smaller set. Fur-
thermore, a low test count is highly desirable because the
request-response pairs may need to be inspected manually
to verify that the policy specification exhibits the intended
policy behavior. An ideal request set should have a low test
count, high structural coverage, and high fault-detectionca-
pability.

5.2. Instrumentation

In the experiment, we used the policy mutator for gener-
ating mutants, the Cirg tool for test generation [15] based
on change-impact analysis, a random request generation
tool [17], a policy coverage measurement tool [17] for test
selection, and Margrave [7] for limited equivalent-mutant
detection.

We collected policies from several sources as subjects
in our experiment. Each policy is preprocessed to ensure
unique policy element identifiers in order to correctly mea-
sure structural coverage. Once each policy has been pre-
processed, we can apply a request generation technique to
generate tests. We compare three requests sets. The first one
is generated by Cirg based on change-impact analysis. The
second one is randomly generated. The third one is actually
a subset of the second greedily selected to ensure equivalent
structural coverage.

The random test generation technique requires only the
complete policy. The technique parses the policy and enu-
merates all possible attribute id-value pairs. This set is rep-
resented as a vector of bits and each bit is randomly set to
0 or 1, which indicates the absence or presence of the cor-
responding attribute id-value pair in the generated request
as described in Section 3.3. We generate exactly50 ran-
dom requests for each subject. Finally, we greedily select
requests from this set based on structural coverage. Doing
so allows us to directly measure the reduction in fault detec-
tion capability when selecting requests based on structural
coverage.

The test generation technique based on change-impact
analysis uses only one of the variants of version synthesis
described in our previous work [15]. The policy versions
are essentially equivalent to the mutants generated with the
CRE operator. We use Margrave’s API to perform a change-
impact analysis on the original policy and each of the policy
versions. Based on the counterexamples produced by Mar-
grave, the request generator generates requests. Exactly one
request is generated from each version.

We used11 XACML policies collected from three dif-
ferent sources as subjects in our experiment. Table 2 sum-
marizes the basic statistics of each policy. The first column
shows the subject names. Columns 3-5 show the numbers
of policy sets, policies, rules, and conditions, respectively.
Theconference1 policy is a slightly modified version of
the policy used by Zhang et al. [19]. The<Condition>
tags were removed so Sun’s XACML implementation could
evaluate the requests. This policy relies on custom func-
tions implemented in the PDP that interact with a database
at runtime for request evaluation. Sun’s XACML imple-
mentation supports only the standard functions and so it

1http://www.cs.bham.ac.uk/∼mdr/research/
projects/05-AccessControl/
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Table 2. Policies used in the experiment.
Subject # PolSet # Pol # Rule # Cond

codeA 5 2 2 0
codeB 7 3 3 0
codeC 8 4 4 0
codeD 11 5 5 0
conference 0 1 15 0
default-2 1 13 13 12
demo-11 0 1 3 4
demo-26 0 1 2 2
demo-5 0 1 3 4
mod-fedora 1 13 13 12
simple-policy 1 2 2 0

failed to evaluate requests properly. Once the relevant con-
ditions were removed from the policy, requests were eval-
uated successfully. Although these modifications changed
the semantics of the policy, it is structurally similar and thus
suitable for the experiment. Five of the policies, namely
simple-policy, codeA, codeB, codeC, andcodeD are
examples used by Fisler et al. [7, 9]. The remaining poli-
cies are examples of real XACML policies used by Fe-
dora2. Fedora is an open source software that gives orga-
nizations a flexible service-oriented architecture for man-
aging and delivering digital content. Fedora uses XACML
to provide fine-grained access control to the digital content
it manages. The Fedora repository of default and exam-
ple XACML policies provided a useful resource of realistic
subjects.

5.3. Results

Table 3 summarizes the structural coverage metrics for
each policy and each request set. We do not show the min-
imized random request set because it has equivalent cov-
erage as its superset. Each row of the table corresponds
to a particular policy and each column group corresponds
to a request set. Within each column group, we show the
policy, rule, and condition coverage percentages. N/A indi-
cates that there are no policy elements of that type and thus
coverage cannot be computed. Both test generation tech-
niques achieve100% policy coverage for almost all subjects
because it is the most coarse measure of structural cover-
age. Cirg achieves only50% condition coverage because
the generation technique does not attempt to evaluate the
condition as trueandfalse but merely covers the condition’s
rule once. However, for policy and rule elements, Cirg is at
least as good as random generation at achieving high struc-
tural coverage.

2http://www.fedora.info
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Figure 2. Mutant-killing ratios for all opera-
tors by subjects.
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Figure 3. Mutant-killing ratios for all subjects
by operators.

Figure 2 illustrates the average mutant-killing ratios for
each request set grouped by subjects. By comparing these
results with those in Table 3, we observe that there is in-
deed a correlation between structural coverage and fault de-
tection capability. One example is the conference policy;
the structural coverage for the two random request sets is
zero and, as expected, the mutant-killing ratio is also zero.
Similarly we observe that the mutant-killing ratios across
all subjects for the random and selected random request
sets are quite similar. Unfortunately the mutant-killing ratio
is still low when considering the high structural coverage.
The observation indicates that a stronger criteria is needed.
Specifically the average mutant-killing ratios for the Cirg,
Random, and Selected Random request sets are59%, 47%,

8



Table 3. Structural coverage achieved by each request set.
Random Request Set Cirg

Subject Pol % Rule % Cond % # Req # Min Req Pol % Rule % Cond % # Req

codeA 100 100 N/A 50 2 100 100 N/A 2
codeB 100 100 N/A 50 3 100 100 N/A 3
codeC 100 100 N/A 50 6 100 100 N/A 4
codeD 100 100 N/A 50 6 100 100 N/A 5
conference 0 0 N/A 50 0 100 100 N/A 15
default-2 100 92.31 75 50 6 100 100 50 13
demo-11 100 100 75 50 2 100 100 50 2
demo-26 100 100 50 50 1 100 100 50 2
demo-5 100 100 75 50 3 100 100 50 3
mod-fedora 100 84.62 58.33 50 7 84.62 84.62 33.33 11
simple-policy 100 100 N/A 50 4 100 100 N/A 2

and38%, respectively.

Figure 3 illustrates the average mutant-killing ratios for
each request set grouped by mutation operators. Recall
that the CPC and CRC mutation operators exploit the way
that various policies and various rules interact, respectively.
These mutation operators have less than11% mutant-killing
ratios. The observation indicates that these operators pro-
duce mutants that are particularly difficult to kill. Con-
versely, RMPS, PSTF, and PSTT have over60% killing ra-
tios, and RMR, RTF, CRE, PTF, RMP, RCF, and PTT have
at least90% killing ratios. By inspecting the results, we
found that some of these mutation operators are redundant.
For example, RMPS and PSTF have identical killing ratios
across all request sets. This observation indicates that these
two operators are semantically equivalent. Similar results
are observed for the pairs of RMP-PTF and RMR-RTF. In
retrospect, these mutation operators should be semantically
equivalent because a target that is always evaluated to false
is semantically equivalent to removing the element that the
target applies to.

We provided the original policy and each mutant policy
to Margrave’s change-impact analysis feature to perform
equivalent-mutant detection. If Margrave finds counter-
examples that illustrate differences between the policies,
then theymust notbe equivalent. Unfortunately Margrave
supports only a subset of XACML features; therefore, the
converse does not hold, resulting in potential false posi-
tives. In other words, if Margrave doesnot find counter-
examples for a particular mutant, then the mutantmayor
may notbe equivalent. In our experiment, Margrave iden-
tified less than1% of all mutants as potentially equivalent.
Furthermore, these potentially equivalent mutants occurred
only for the CPC and CRC mutation operators. Perform-
ing equivalent mutation detection is costly, taking approx-
imately 45 minutes for the whole experiment. When con-
sidering the low percentage of detection, potential for false

positives, and high computational cost, we feel other means
of equivalent mutant detection are needed.

In summary, the results indicate that although struc-
tural coverage is indeed correlated to fault-detection capa-
bility, structural coverage is not strong enough to achieve
an acceptable level of fault detection. Note that the struc-
tural coverage investigated in this experiment is essentially
equivalent to statement coverage in general-purpose pro-
gramming languages. In future work, we plan to investi-
gate stronger criteria that correspond to path coverage. We
expect these stronger criteria to be much more effective
at achieving higher killing ratios. Similar to the findings
in mutation testing of general-purpose programming lan-
guages, we found that equivalent-mutant detection is expen-
sive and some mutation operators are redundant, indicating
a subset of mutation operators may be sufficient for muta-
tion testing.

5.4. Threats to Validity

The threats to external validity primarily include the de-
gree to which the subject policies, mutation operators, cov-
erage metrics, and test sets are representative of true prac-
tice. These threats could be reduced by further experimen-
tation on a wider type and larger number of policies and an
larger number of mutation operators. In particular, lower
level mutation operators are needed to operate on the sub-
ject, resource, and action attributes found in various pol-
icy elements. Currently the proposed mutation operators
operate only on higher level policy elements. The threats
to internal validity are instrumentation effects that can bias
our results such as faults in Sun’s XACML implementation,
faults in Margrave’s API and/or its limitations, as well as
faults in our own policy mutator, policy coverage measure-
ment tool, and request generators.
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6. Conclusion

We have developed an automated mutation testing
framework for access control policies. In this framework,
we have defined a set of mutation operators. We have im-
plemented a mutator that generates a number of mutant poli-
cies based on the defined mutation operators. We evaluate
each request in a given request set on both the original pol-
icy and a mutant policy. The request evaluation produces
two responses for the request based on the original policy
and the mutant policy, respectively. If these two responses
are different, then we determine that the mutant policy is
killed by the request. We have also leveraged a change-
impact analysis tool to detect equivalent mutants among
generated mutants. We have conducted an experiment on
various XACML policies to evaluate the mutation opera-
tors as well as request generation and selection techniques
in terms of fault-detection capabilities. Our experimental
results show that although structural coverage is a strong
indicator of fault-detection effectiveness, it is far fromopti-
mal. The shortcomings of test selection based on structural
coverage are highlighted by mutation operators that exploit
how different policy elements interact. Moreover, careful
test generation and selection techniques can substantially
reduce the size of the test suite while incurring a relatively
low loss of fault-detection capability.
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