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Abstract

Trust should be substantially based on evidence. Further, a key challenge for multiagent systems is

how to determine trust based on reports from multiple sources, who might themselves be trusted to varying

degrees. Hence an ability to combine evidence-based trust reports in a manner that discounts for imperfect

trust in the reporting agents is crucial for multiagent systems.

This paper understands trust in terms of belief and certainty: A’s trust in B is reflected in the strength of

A’s belief that B is trustworthy. This paper formulates certainty in terms of evidence based on a statistical

measure defined over a probability distribution of the probability of positive outcomes. This novel definition

supports important mathematical properties, including (1) certainty increases as conflict increases provided

the amount of evidence is unchanged, and (2) certainty increases as the amount of evidence increases

provided conflict is unchanged. Moreover, despite a more subtle definition than previous approaches, this

paper (3) establishes a bijection between evidence and trust spaces, enabling robust combination of trust

reports and (4) provides an efficient algorithm for computing this bijection.

∗This is a revised and extended version of [Wang and Singh, 2007].
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1 Introduction

In simple terms, an agent’s trust in another can be understood as a belief that the latter’s behavior will support

the agent’s plans. Subtle relationships underlie trust in social and organizational settings Castelfranchi and

Falcone [1998]. Without detracting from such principles, this paper takes a narrower view of trust: here

an agent seeks to establish a belief or disbelief that another agent’s behavior is good (thus abstracting out

details of the agent’s own plans and the social and organizational relationships between the two agents). The

model proposed here can, however, be used to capture as many dimensions of trust as needed, e.g., timeliness,

quality of service, and so on.

For rational agents, trust in a party should be based substantially on evidence consisting of positive and

negative experiences with it. This evidence can be collected by an agent locally or via a reputation agency or

by following a referral protocol. In such cases, the evidence may be implicit in the trust reports obtained that

somehow summarize the evidence. This paper develops a principled evidence-based approach for trust that

supports two crucial requirements of multiagent systems:

Dynamism. Practical agent systems face the challenge that trust evolves over time, both as additional infor-

mation is obtained and as the parties being considered alter their behavior.

Composition. It is clear that trust cannot be trivially propagated. For example, A may trust B who trusts C,

but A may not trust C. However, we need to combine trust reports that cannot themselves be perfectly

trusted, possibly because of their provenance or the way in which they are obtained.

Traditionally, principled approaches to trust have been difficult to come by because of the above requirements.

With few exceptions, current approaches for combining trust reports tend to involve ad hoc formulas, which

might be simple to implement but are extremely difficult to understand from a conceptual basis. The common

idea underlying a solution that satisfies the above requirements is the notion of discounting. Dynamism can

be accommodated by discounting over time and composition by discounting over the space of sources (i.e.,

agents). Others have used discounting before, but without adequate mathematical justification. For instance,

Yu and Singh [2002] develop such a discounting approach layered on their (principled) Dempster-Shafer

account.

The best multiagent application of the present approach is in the work of Wang and Singh [2006], who

develop an algebra for aggregating trust over graphs understood as webs of trust. Wang and Singh concentrate

on their algebra and assume a separate, underlying trust model, which is the one developed here. By contrast,

the present paper is neutral about the discounting and aggregation mechanisms, and instead develops a prin-

cipled evidential trust model that would underlie any such agent system where trust reports are gathered from

multiple sources.

Following Jøsang [2001], we understand trust based on the probability of the probability of outcomes, and

adopt his idea of a trust space of triples of belief (in a good outcome), disbelief (or belief in a bad outcome),

and uncertainty. Trust in this sense is neutral as to the outcome and is reflected in the certainty (i.e., one

minus the uncertainty). Thus the following three situations are distinguished:

• Trust in a party (i.e., regarding its being good): belief is high, disbelief is low, and uncertainty is low.

• Distrust in a party: belief is low, disbelief is high, and uncertainty is low.

• Lack of trust in a party (pro or con): uncertainty is high.

However, whereas Jøsang defines certainty in an ad hoc manner, we define certainty based on a well-

known statistical measure. Despite the increased subtlety of our definition, it preserves a bijection between

trust and evidence spaces, enabling combination of trust reports (via mapping them to evidence). Our defini-

tion captures the following key intuitions.
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Effect of evidence. Certainty increases as evidence increases (for a fixed ratio of positive and negative ob-

servations).

Effect of conflict. Certainty decreases as the extent of conflict increases in the evidence.

Jøsang’s approach satisfies the intuition about evidence but fails the intuition about conflict. It falsely pre-

dicts that mounting conflicting evidence increases certainty—and equally as much as mounting confirmatory

evidence. Say Alice deals with Bob four times or obtains (fully trustworthy) reports about Bob from four wit-

nesses: in either case, her evidence would be between 0 and 4 positive experiences. It seems uncontroversial

that Alice’s certainty is greatest when the evidence is all in favor or all against and least when the evidence is

equally split. Section 3.2 shows that Jøsang assigns the same certainty in each case.

Yu and Singh [2002] model positive, negative, or neutral evidence, and apply Dempster-Shafer theory to

compute trust. Neutral experiences yield uncertainty, but conflicting positive or negative evidence doesn’t

increase uncertainty. Further, for conflicting evidence, Dempster-Shafer theory can yield unintuitive results

Sentz and Ferson [2002]. Say Pete sees two physicians, Dawn and Ed, for a headache. Dawn says Pete has

meningitis, a brain tumor, or neither with probabilities 0.79, 0.2, and 0.01, respectively. Ed says Pete has a

concussion, a brain tumor, or neither with probabilities 0.79, 0.2, and 0.01, respectively. Dempster-Shafer

theory yields that the probability of a brain tumor is 0.725, which is highly counterintuitive, because neither

Dawn nor Ed thought that was likely.

This paper contributes (1) a rigorous, probabilistic definition of certainty that satisfies the above key in-

tuitions, (2) the establishment of a bijection between trust reports and evidence, which enables the principled

combination of trust reports, and (3) an efficient algorithm for computing this bijection.

2 Modeling Certainty

The proposed approach is based on the fundamental intuition that an agent can model the behavior of another

agent in probabilistic terms. Specifically, an agent can represent the probability of a positive experience with,

i.e., good behavior by, another agent. This probability must lie in the real interval [0, 1]. The agent’s trust

corresponds to how strongly the agent believes that this probability is a specific value (whether large or small,

we don’t care). This strength of belief is also captured in probabilistic terms. To this end, we formulate a

probability density function of the probability of a positive experience. Following [Jøsang, 1998], we term

this a probability-certainty density function (PCDF). In our approach, unlike Jøsang’s, certainty is a statistical

measure defined on a PCDF.

2.1 Certainty from a PCDF

Because the cumulative probability of a probability lying within [0, 1] must equal 1, all PCDFs must have the

mean density of 1 over [0, 1], and 0 elsewhere. Lacking additional knowledge, a PCDF would be a uniform

distribution over [0, 1]. However, with additional knowledge, the PCDF would deviate from the uniform

distribution. For example, knowing that the probability of good behavior is at least 0.5, we would obtain a

distribution that is 0 over [0, 0.5) and 2 over [0.5, 1]. Similarly, knowing that the probability of good behavior

lies in [0.5, 0.6], we would obtain a distribution that is 0 over [0, 0.5) and (0.6, 1], and 10 over [0.5, 0.6].
In formal terms, let p ∈ [0, 1] represent the probability of a positive outcome. Let the distribution of p be

given as a function f : [0, 1] 7→ [0,∞) such that
∫ 1

0
f(p)dp = 1. The probability that the probability of a

positive outcome lies in [p1, p2] can be calculated by
∫ p2

p1
f(p)dp. The mean value of f is

R
1
0

f(p)dp

1−0 = 1. When

we know nothing else, f is a uniform distribution over probabilities p. That is, f(p) = 1 for p ∈ [0, 1] and 0
elsewhere. This reflects the Bayesian intuition of assuming an equiprobable prior. The uniform distribution
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has a certainty of 0. As more knowledge is acquired, the probability mass shifts so that f(p) is above 1 for

some values of p and below 1 for other values of p.

Our key intuition is that the agent’s trust corresponds to increasing deviation from the uniform distribu-

tion. Two of the most established measures for deviation are standard deviation and mean absolute deviation

(MAD). MAD is more robust, because it does not involve squaring (which can increase standard deviation

because of outliers or “heavy tail” distributions such as the notorious Cauchy distribution). Absolute values

can sometimes complicate the mathematics. But, in the present setting, MAD turns out to yield straight-

forward mathematics. In a discrete setting involving data points x1. . . xn with mean x̂, MAD is given by
1
n
Σn

i=1|xi − x̂|. In the present case, instead of n we divide by the size of the domain, i.e., 1. Because a PCDF

has a mean value of 1, increase in some parts must match reduction elsewhere. Both increase and reduction

from 1 are counted by |f(p) − 1|. Definition 1 scales the MAD for f by 1
2 to remove this double counting.

Definition 1 The certainty based on f , cf , is given by cf = 1
2

∫ 1

0
|f(p) − 1|dp

Certainty captures the fraction of the knowledge that we do have. For motivation, consider randomly

picking a ball from a bin that contains N balls colored white or black. Suppose p is the probability that the

ball randomly picked is white. If we have no knowledge about how many white balls there are in the bin, we

can’t estimate p with any confidence That is, certainty c = 0. If we know that exactly m balls are white, then

we have perfect knowledge about the distribution. We can estimate p = m
N

with c = 1. However, if all we

know is that at least m balls are white and at least n balls are black (thus m + n ≤ N ), then we have partial

knowledge. Here c = m+n
N

. The probability of drawing a white ball ranges from m
N

to 1 − n
N

. We have

f(p) =







0, [0m
N

)
N

N−m−n
p ∈ [m

N
, 1 − n

N
]

0 (1 − n
N

, 1].

Using Definition 1, we can confirm that cf = m+n
N

:

cf = 1
2

∫ 1

0 |f(p) − 1|dp

= 1
2 (

∫ m
N

0
1 dp +

∫ 1− n
N

m
N

( N
N−m−n

− 1)dp +
∫ 1

1− n
N

1 dp

= 1
2 (m

N
+ N−m−n

N
( N

N−m−n
− 1) + n

N
)

= m+n
N

2.2 Evidence and Trust Spaces Conceptually

For simplicity, we model a (rating) agent’s experience with a (rated) agent as a binary event: positive or

negative. Evidence is conceptualized in terms of the numbers of positive and negative experiences. In terms

of direct observations, these numbers would obviously be whole numbers. However, our motivation is to

combine evidence in the context of trust. As Section 1 motivates, for reasons of dynamism or composition,

the evidence may need to be discounted to reflect the aging of or the imperfect trust placed in the evidence

source. Intuitively, because of such discounting, the evidence is best understood as if there were real (i.e., not

necessarily natural) numbers of experiences. Accordingly, we model the evidence space as E = R × R, a

two-dimensional space of reals. The members of E are pairs 〈r, s〉 corresponding to the numbers of positive

and negative experiences, respectively. Combining evidence is trivial: simply perform vector sum.

Definition 2 Define evidence space E = {(r, s)|r ≥ 0, s ≥ 0, t = r + s > 0}

Let x be the probability of a positive outcome. The posterior probability of evidence 〈r, s〉 is the condi-

tional probability of x given 〈r, s〉 [Casella and Berger, 1990, p. 298].
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Definition 3 The conditional probability of x given 〈r, s〉 is

f(x|〈r, s〉) = g(〈r,s〉|x)f(x)R 1
0

g(〈r,s〉|x)f(x)dx

= xr(1−x)sR 1
0

xr(1−x)sdx

where g(〈r, s〉|x) =

(

r + s

r

)

xr(1 − x)s

Traditional probability theory models the event 〈r, s〉 by (α, 1 − α), the expected probabilities of pos-

itive and negative outcomes, respectively, where α = r+1
r+s+2 . The traditional probability model ignores

uncertainty.

A trust space consists of trust reports modeled in a three-dimensional space of reals in (0, 1). Each point

in this space is a triple 〈b, d, u〉, where b + d + u = 1, representing the weights assigned to belief, disbelief,

and uncertainty, respectively. Certainty c is simply 1 − u. Thus c = 1 and c = 0 indicate perfect knowledge

and ignorance, respectively.

Combining trust reports is nontrivial. Our proposed definition of certainty is key in accomplishing a

bijection between evidence and trust reports. The problem of combining independent trust reports is reduced

to the problem of combining the evidence underlying them. (Definitions 2 and 4 are based on Jøsang [2001].)

Definition 4 Define trust space as T = {(b, d, u)|b > 0, d > 0, u > 0, b + d + u = 1}.

2.3 From Evidence to Trust Reports

Using Definition 3, define certainty based on evidence 〈r, s〉:

Definition 5 c(r, s) = 1
2

∫ 1

0
| (xr(1−x)sR 1

0
xr(1−x)sdx

− 1|dx

Throughout, r, s, and t = r + s refer to positive, negative, and total evidence, respectively. Importantly,

α = r+1
t+2 , the expected value of the probability of a positive outcome, also characterizes conflict in the

evidence. Clearly, α ∈ (0, 1): α approaching 0 or 1 indicates unanimity, whereas α = 0.5 means r = s, i.e.,

maximal conflict in the body of evidence. To capture this intuition, we define conflict as follows.

Definition 6 conflict(r, s) = min( r+1
s+1 , s+1

r+1)

We can write c(r, s) as c((t + 2)α − 1, (t + 2)(1 − α) − 1). When α is fixed, certainty is a function of

t, written c(t). When t is fixed, it is a function of α, written c(α). And, c′(t) and c′(α) are the corresponding

derivatives.

The following is our transformation from evidence to trust spaces. This transformation relates positive

and negative evidence to belief and disbelief, respectively, but discounted by the certainty. The idea of

adding 1 each to r and s (and thus 2 to r + s) follows Laplace’s famous rule of succession for applying

probability to inductive reasoning [Sunrise]. This reduces the impact of sparse evidence, and is sometimes

termed Laplace smoothing. If you only made one observation and it was positive, you would not want to

conclude that there would never be a negative observation. As the body of evidence increases, the increment

of 1 becomes negligible. More sophisticated formulations of rules of succession exist [Ristad, 1995], but

Laplace’s rule is simple and reasonably effective for our present purposes. Laplace’s rule is insensitive to

the number of outcomes in that 1 is always added. The effect of this statistical “correction” (the added 1)

decreases inversely as the number of outcomes being considered increases. More sophisticated approaches

may be thought of as decreasing the effects of their corrections more rapidly.
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Definition 7 Let Z(r, s) = (b, d, u) be a transformation from E to T such that Z = (b(r, s), d(r, s), u(r, s)),
where b(r, s) = αc(r, s), d(r, s) = (1 − α)c(r, s), and u(r, s) = 1 − c(r, s).

One can easily verify that c(0, 1) > 0. In general, because t = r + s > 0, c(r, s) > 0. Moreover,

c(r, s) < 1: thus, 1 − c(r, s) > 0. This coupled with the rule of succession ensures that b > 0, d > 0, and

u > 0. Notice that α = b
b+d

.

Jøsang et al. [1998] map evidence 〈r, s〉 to a trust triple ( r
t+1 , s

t+1 , 1
t+1 ). Two main differences with our

approach are: (1) they ignore the rule of succession and (2) in essence, they define certainty as t
t+1 . They

offer no mathematical justification for doing so. Section 3.2 shows a counterintuitive consequence of their

definition.

3 Important Properties and Computation

We now show that the above definition yields important formal properties and how to compute with it.

3.1 Increasing Experiences with Fixed Conflict

Consider the scenario where the total number of experiences increases for fixed α = 0.70. For example,

compare observing 6 good episodes out of 8 with observing 69 good episodes out of 98. The expected value,

α, is the same in both cases, but the certainty is clearly greater in the second. In general, we would expect

certainty to increase as the amount of evidence increases. Definition 5 yields a certainty of 0.46 from 〈r, s〉 =

〈6, 2〉, but a certainty of 0.70 for 〈r, s〉 = 〈69, 29〉.
Figure 1 plots how certainty varies with t when α = 0.5. Theorem 1 captures this property in general.
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Figure 1: Certainty increases with t when conflict (α = 0.5) is fixed; X-axis: t; Y-axis: c(t)

Theorem 1 Fix α. Then c(t) increases with t for t > 0.

Proof idea: Show that c′(t) > 0 for t > 0.

The full proofs of this and other theorems of this paper are included in the appendix.

3.2 Increasing Conflict with Fixed Experience

Another important scenario is when the total number of experiences is fixed, but the evidence varies to

reflect different levels of conflict by using different values of α. Clearly, certainty should increase as r or s
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dominates the other (i.e., α approaches 0 or 1) but should reduce as r and s are balanced (i.e., α approaches

0.5). Figure 2 plots certainty for fixed t and varying conflict.
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Figure 2: Certainty is concave when t is fixed at 10; X-axis: r+1; Y-axis: c(α); minimum occurs at r = s = 5

More specifically, consider Alice’s example from Section 1. Table 1 shows the effect of conflict where

t = 4.

Table 1: Certainty computed by different approaches for varying conflict

〈0, 4〉 〈1, 3〉 〈2, 2〉 〈3, 1〉 〈4, 0〉
Our approach 0.54 0.35 0.29 0.35 0.54

Jøsang et al. 0.80 0.80 0.80 0.80 0.80

Yu & Singh 0 0 0 0 0

Theorem 2 captures the property that certainty increases with increasing unanimity.

Theorem 2 c(α) is decreasing when 0 < α ≤ 1
2 , increasing when 1

2 ≤ α < 1 and c(α), and minimum at

α = 1
2 .

Proof idea: Show that c′(α) < 0 when α ∈ [0, 0.5) and c′(α) > 0 when α ∈ [0.5, 1.0).
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Figure 3: X-axis: r; Y-axis: s; Z-axis: certainty
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Putting the above results together suggests that the relationship between certainty on the one hand and

positive and negative evidence on the other is nontrivial. Figure 3 confirms this intuition by plotting certainty

against r and s as a surface.

3.3 Bijection Between Evidence and Trust Reports

The ability to combine trust reports effectively relies on being able to map between the evidence and the trust

spaces. With such a mapping in hand, to combine two trust reports, we would simply perform the following

steps: (1) map trust reports to evidence; (2) combine the evidence; (3) transform the combined evidence to a

trust report. The following theorem establishes that Z has a unique inverse Z−1.

Theorem 3 The transformation Z is a bijection.

Proof sketch: Given (b, d, u) ∈ T , we need (r, s) ∈ E such that Z(r, s) = (b, d, u). As explained in

Section 2.3, α = b
b+d

. Thus, we only need to find t such that c(t) = 1 − u. The existence and uniqueness of

t is proved by showing that

1. c(t) is increasing when t > 0 (Theorem 1)

2. limt→∞ c(t) = 1

3. limt→0 c(t) = 0

Briefly, Yu and Singh [2002] base uncertainty not on conflict, but on intermediate (neither positive not

negative) outcomes. Let’s revisit Pete’s example of Section 1. In our approach, Dawn and Ed’s diagnoses

correspond to two b, d, u triples (where b means “tumor” and d means “not a tumor”): (0.2, 0.79, 0.01) and

(0.2, 0.79, 0.01), respectively. Combining these we obtain the b, d, u triple of (0.21, 0.78, 0.01). That is,

the weight assigned to a tumor is 0.21 as opposed to 0.725 by Dempster-Shafer theory, which is unintuitive,

because a tumor is Dawn and Ed’s least likely prediction.

3.4 Algorithm and Complexity

No closed form is known for Z−1. Algorithm 1 calculates Z−1 (via binary search on c(t)) to any necessary

precision, ǫ > 0. Here tmax > 0 is the maximum evidence considered.

α = b
b+d

;1

t1 = 0;2

t2 = tmax;3

while t2 − t1 ≥ ǫ do4

t = t1+t2
2 ;5

if c(t) < c then t1 = t else t2 = t6

return r = ((t + 2)α − 1), s = t − r7

Algorithm 1: Calculating (r, s) = Z−1(b, d, u)

Theorem 4 The complexity of Algorithm 1 is Ω(− lg ǫ).

Proof: After the while loop iterates i times, t2 − t1 = tmax2−i. Eventually, t2 − t1 falls below ǫ, thus ter-

minating the while loop. Assume it terminates in n iterations. Then, t2 − t1 = tmax2−n < ǫ ≤ tmax2−n+1.

This implies 2n > tmax

ǫ
≥ 2n−1. That is, n > (lg tmax − lg ǫ) ≥ n − 1.
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4 Discussion

This paper is meant to offer a theoretical development of trust that would underlie a variety of situations where

trust reports based on evidence are combined. In particular, it contributes to a mathematical understanding of

trust, especially as it underlies a variety of multiagent applications. These include referral systems and webs

of trust in particular, in studying which we identified the need for this research. Such applications require a

natural treatment of composition and discounting in an evidence-based framework.

Further, an evidence-based notion of trust must support important properties regarding the effects of

increasing evidence (for constant conflict) and of increasing conflict (for constant evidence). The theoretical

validation provided here is highly valuable in a general-purpose conceptually driven mathematical approach.

The main technical insight of this paper is how to manage the duality between trust and evidence spaces in a

manner that provides a rigorous basis for combining trust reports.

Let’s briefly revisit the topic of trust dynamics from Section 1. The foregoing showed how trust evolves

with respect to increasing outcomes under different conditions. The same properties apply to the evolution

of trust over time, that is, as time passes and more evidence is obtained. A crucial observation is that because

of the bijection we established, the historical evidence at any point can be summarized in a belief-disbelief-

uncertainty triple. New evidence can then be added as explained above. Moreover, we can discount the value

of evidence over time if necessary, e.g., at every time step (chosen based on the domain: every hour or day,

or after every transaction). Thus new evidence would have a greater impact than older evidence.

A payoff of this approach is that an agent who wishes to achieve a specific level of certainty can compute

how much evidence would be needed at different levels of conflict. Or, the agent can iteratively compute

certainty to see if it has reached an acceptable level.

4.1 Directions

This work has opened up some important directions for future work. An important technical challenge is to

extend the above work from binary to multivalued events. Such an extension will enable us to handle a larger

variety of interactions among people and services. A current direction is to experimentally validate this work,

doing which is made difficult by the lack of established datasets and testbeds, but the situation is improving

in this regard [Fullam et al., 2005].

4.2 Literature on Trust

A huge amount of research has been conducted on trust, even if we limit our attention to evidential ap-

proaches. Abdul-Rahman and Hailes [2000] present an early model for computing trust. However, their

approach is highly ad hoc and limited. Specifically, various weights are simply added up without any mathe-

matical justification. Likewise, the term uncertainty is described but without any foundation.

The Regret system combines several aspects of trust, notably the social aspects [Sabater and Sierra, 2002].

It involves a number of formulas, which are given intuitive, but not mathematical, justification. A lot of other

work, e.g., Huynh et al. [2006], involves heuristics that combine multiple information sources to judge trust.

It would be an interesting direction to combine a rigorous approach such as ours with the above heuristic

approaches to capture a rich variety of practical criteria well.

Teacy et al. [2005] develop a probabilistic treatment of trust. They model trust in terms of confidence

that the expected value lies within a specified error tolerance. An agent’s confidence increases with the error

tolerance. Teacy et al. study combinations of probability distributions to which the evaluations given by

different agents might correspond. They do not formally study certainty. And their approach doesn’t yield a

probabilistically valid method for combining trust reports.
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4.3 Literature on Information Theory

Shannon entropy [1948] is the best known information-theoretic measure of uncertainty. It is based on a

discrete probability distribution p = 〈p(x)|x ∈ X〉 over a finite set X of alternatives (elementary events).

Shannon’s formula encodes the number of bits required to obtain certainty: S(p) = −
∑

x∈X p(x) log2 p(x).
Here S(p) can be viewed as the weighted average of the conflict among the evidential claims expressed

by p. More complex, but less well-established, definitions of entropy have been proposed for continuous

distributions as well, e.g., [Smith, 2001].

Entropy, however, is not suitable for the present purposes of modeling evidential trust. Entropy models

bits of missing information which ranges from 0 to ∞. At one level, this disagrees with our intuition that,

for the purposes of trust, we need to model the confidence placed in a probability estimation. Moreover, the

above definitions cannot be used in measuring the uncertainty of the probability estimation based on past

positive and negative experiences.
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A Proofs of Theorems and Auxiliary Lemmas

Lemma 5 fr,s(x) is increasing when x ∈ [0, r
r+s

) and decreasing when x ∈ ( r
r+s

, 1] fr,s(x) is maximized

at x = r
r+s

.

Proof: The derivative
dfr,s(x)

dx
= xr−1(1−x)s−1R 1

0
xr(1−x)sdx

(r(1 − x) − sx)

= xr−1(1−x)s−1R 1
0

xr(1−x)sdx
(r − (r + s)x)

Since r − (r + s)x > 0 when x ∈ [0, r
r+s

) and r − (r + s)x < 0 when x ∈ ( r
r+s

, 1], we have
dfr,s(x)

dx
> 0

when x ∈ [0, r
r+s

) and
dfr,s(x)

dx
< 0 when x ∈ ( r

r+s
, 1]. Then fr,s(x) is increasing when x ∈ [0, r

r+s
) and

fr,s(x) is decreasing when x ∈ ( r
r+s

, 1] fr,s(x) has maximum at x = r
r+s

.

Lemma 6 Given A and B defined by fr,s(A) = fr,s(B) = 1, 0 < A < r
r+s

< B < 1, we have cf =
∫ B

A
(fr,s(x) − 1)dx

Proof: Let fr,s(A) = fr,s(B) = 1, 0 < A < r
r+s

< B < 1
From Lemma 5, we have fr,s(x) < 1 when x ∈ [0, A) or x ∈ (B, 1] and fr,s(x) > 1 when x ∈ (A, B). By

the definition of PCDF, we have
∫ 1

0
(fr,s(x) − 1)dx = 0

So
∫ A

0
(fr,s(x) − 1)dx +

∫ 1

B
(fr,s(x) − 1)dx +

∫ B

A
(fr,s(x) − 1)dx = 0
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and
∫ A

0
(1 − fr,s(x))dx +

∫ 1

B
(1 − fr,s(x))dx

=
∫ B

A
(fr,s(x) − 1)dx. Thus

∫ 1

0
|fr,s(x) − 1|dx =

∫ A

0
1 − (fr,s(x))dx

+
∫ 1

B
(1 − fr,s(x))dx +

∫ B

A
(fr,s(x) − 1)dx

and 1
2

∫ 1

0 |fr,s(x) − 1|dx =
∫ B

A
(fr,s(x) − 1)dx

Lemma 7

∫ 1

0

xr(1 − x)sdx =
1

r + s + 1

r
∏

i=1

i

r + s + 1 − i

Proof:
∫ 1

0
xr(1 − x)sdx =

∫ 1

0
xrd( −1

s+1 (1 − x)s+1)

= −xr(1−x)s+1

s+1 |10 + r
s+1

∫ 1

0 xr−1(1 − x)s+1dx

= r
s+1

∫ 1

0 xr−1(1 − x)s+1dx

= · · ·
= r·(r−1)···1

(r+s)·(r+s−1)···(s+1)

∫ 1

0 (1 − x)r+sdx

= 1
r+s+1

r
∏

i=1

i
r+s+1−i

Lemma 8 When αt − 1 is a positive integer

lim
t→∞

t

√

√

√

√

αt−1
∏

i=1

i

t − 1 − i
= αα(1 − α)1−α

Proof: limt→∞
1
t
ln

αt−1
∏

i=1

i
t−1−i

= limt→∞
1
t
ln(

αt−1
∏

i=1

i
αt−1
∏

i=1

1
t−1−i

)

= limt→∞
1
t
ln(

αt−1
∏

i=1

i
αt−1
∏

i=1

1
(1−α)t−1+i

)

= limt→∞
1
t

αt−1
∑

i=1

ln i
(1−α)t−1+i

= limt→∞
1
t

αt−1
∑

i=1

ln
i
t

1−α+ i−1
t

=
∫ α

0 ln x
1−α+x

dx

= ln(αα(1 − α)1−α), so we have

limt→∞
t

√

αt−1
∏

i=1

i
t−1−i

= αα(1 − α)1−α

Lemma 9 In order to simplify proofs, we replace the variable t + 2 by t. So r = αt− 1 and s = (1− α)t−
1,c(t) = c(αt − 1, (1 − α)t − 1) Let A(t) and B(t) are A and B defined in Lemma 6,where 0 < α < 1 is

fixed. Suppose αt − 1 is a positive integer. limt→∞ A(t) = limt→∞ B(t) = α

Proof: A(t) and B(t) are two roots for the equation

xα(1 − x)1−α = t

√

x(1 − x)
∫ 1

0 xαt−1(1 − x)(1−α)t−1dx

12



By Lemma 7 limt→∞
t

√

x(1 − x)
∫ 1

0
xαt−1(1 − x)(1−α)t−1dx

= limt→∞
t

√

x(1 − x) 1
t−1

αt−1
∏

i=1

i
t−1−i

= αα(1 − α)1−α

Since xα(1 − x)1−α is maximized at x = α, and x = α is the only root of xα(1 − x)1−α = αα(1 − α)1−α,

we have

limt→∞ A(t) = limt→∞ B(t) = α

Proof of Theorem 1 c(t) is increasing for t > 0 and fixed α

Proof: c′(t) = d
dt

∫ B(t)

A(t) ( xαt−1(1−x)(1−α)t−1R
1
0

yαt−1(1−y)(1−α)t−1dy
− 1)dx

= B′(t)(Bαt−1(t)(1−B(t))(1−α)t−1R 1
0

yαt−1(1−y)(1−α)t−1dy
− 1)

−A′(t)(Aαt−1(t)(1−A(t))(1−α)t−1R 1
0

yαt−1(1−y)(1−α)t−1dy
− 1)

+
∫ B(t)

A(t)
d
dt

( xαt−1(1−x)(1−α)t−1R
1
0

yαt−1(1−y)(1−α)t−1dy
− 1)dx

=
∫ B(t)

A(t)
d
dt

( xαt−1(1−x)(1−α)t−1R 1
0

yαt−1(1−y)(1−α)t−1dy
)dx

= 1
d2 (

∫ B(r)

A(r)
d
dt

(xαt−1(1 − x)(1−α)t−1)dx
∫ 1

0
f(y, t)dy

−
∫ B(r)

A(r)
f(x, t)dx d

dt

∫ 1

0
yαt−1(1 − y)(1−α)t−1dy)

= 1
d2 (

∫ B(r)

A(r)
f(x, t)dx ln(xα(1 − x)1−α)

∫ 1

0
f(y, t)dy

−
∫ B(r)

A(r)
f(x, t)dx

∫ 1

0
f(y, t) ln(yα(1 − y)1−α)dy)

= 1
d2

∫ 1

0

∫ B(r)

A(r)
f(x, t)f(y, t) ln xα(1−x)1−α

yα(1−y)1−α dxdy

where f(x, t) = xαt−1(1−x)(1−α)t−1 and d =
∫ 1

0 f(y, t)dy According to Lemma 5
∫ A(t)

0 f(y, t) ln xα(1−x)1−α

yα(1−y)1−α dy+

∫ 1

B(t)
f(y, t) ln xα(1−x)1−α

yα(1−y)1−α dy > 0 when x ∈ [A(t), B(t)] and y ∈ (0, A(t)] ∪ [B(t), 1) so we have
∫ A(t)

0

∫ B(t)

A(t)
f(x, t)f(y, t) ln xα(1−x)1−α

yα(1−y)1−α dxdy

+
∫ 1

B(t)

∫ B(t)

A(t) f(x, t)f(y, t) ln xα(1−x)1−α

yα(1−y)1−α dxdy > 0

since
∫ B(t)

A(t)

∫ B(t)

A(t)
f(x, t)f(y, t) ln xα(1−x)1−α

yα(1−y)1−α dxdy = 0 we have c′(t) > 0, so c(t) is increasing when t > 0.

Lemma 10 Define L(t) = 1R
1
0

f(x,t)dx

∫ A(t)

0 f(x, t)dx and R(r) = 1R
1
0

f(x,t)dx

∫ 1

B(t) f(x, t)dx. Where

f(x, t) = xαt−1(1 − x)(1−α)t−1 Then

limt→∞ L(t) = 0 and limt→∞ R(t) = 0

Proof:
∫ A

0
xαt−1(1 − x)(1−α)t−1dx

=
∫ A

0 xαt−1d( −1
(1−α)t (1 − x)(1−α)t)

= −1
(1−α)t (1 − x)(1−α)t|A0 + αt−1

(1−α)t

∫ A

0
xαt−2(1 − x)(1−α)tdx

= αt−1
(1−α)t

∫ A

0 xαt−2(1 − x)(1−α)tdx − 1
(1−α)tA

αt−1(1 − A)(1−α)t

= · · ·

= 1
t−1

αt−1
∏

i=1

i
(1−α)t−1+i

(1 − (1 − A)t−1)

−
αt−1
∑

i=1

αt−1
∏

j=i

j
t−1−j

Ai

i
(1 − A)t−1−i

So L(t) = 1R 1
0

f(x,t)dx

∫ A

0 f(x, t)dx
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= (t − 1)
αt−1
∏

i=1

t−1−i
i

∫ A

0 f(x, t)dx

= 1 − (1 − A)t−1

−(t − 1)
αt−1
∑

i=1

(

t − 2
αt − 2

)

Ai

i
(1 − A)t−1−i

= (t − 1)(
∫ A

0 (x + 1 − A)t−2dx

−
αt−1
∑

i=1

∫ A

0

(

t − 2
αt − 2

)

xi−1(1 − A)t−1−idx)

where

(

t − 2
k

)

=
k
∏

i=1

t−1−i
i

for any positive integer k. Since (x + 1 − A)t−2 =
∞
∑

i=0

(

t − 2
i

)

xi(1 −

A)t−2−i

so we have

L(t) = (t − 1)
∞
∑

i=αt−1

∫ A

0

(

t − 2
i

)

xi(1 − A)t−2−idx

= (t − 1)
∞
∑

i=αt−1

(

t − 2
i

)

Ai+1

i+1 (1 − A)t−2−i

≤ t−1
αt−1A

∞
∑

i=αt−1

(

t − 2
i

)

Ai(1 − A)t−2−i

= t−1
αt−1A((A + 1 − A)t−2 −

αt−2
∑

i=0

(

t − 2
i

)

Ai(1 − A)t−2−i)

Since
αt−2
∑

i=0

(

t − 2
i

)

Ai(1 − A)t−2−i is the Taylor expansion of (A + 1 − A)t−2 = 1, so

lim
t→∞

1 −
αt−2
∑

i=0

(

t − 2
i

)

Ai(1 − A)t−2−i = 0

and since lim
r→∞

t−1
αt−1A = A

α
, we have

limt→∞ L(t) = 0 and similarly limt→∞ R(t) = 0

Lemma 11 limt→∞ c(t) = 1

Proof: Let g(x, t) = xαt−1(1−x)(1−α)t−1R
1
0

yαt−1(1−y)(1−α)t−1dy
. Then we have

c(t) =
∫ 1

0
g(x, t)dx − L(t) − R(t) − (B(t) − A(t))

since
∫ 1

0 g(x, t)dx = 1, limt→∞ B(t)−A(t) = 0 (by Lemma 9) and limt→∞ L(t) = limt→∞ R(t) = 0 (by

Lemma 10). So limt→∞ c(t) = 1

Lemma 12 limt→0 c(t) = 0, where t = r + s.

Proof: Let g(x, t) = xα(t+2)−1(1−x)(1−α)(t+2)−1R
1
0

yα(t+2)−1(1−y)(1−α)(t+2)−1dy
. g(x, t) ≤ M when t < 1. For ∀ǫ > 0, let δ = ǫ

2(M+1) ,

since g(x, t) approaches to 1 uniformly in the interval [δ, 1 − δ], when t → 0. So ∃ r0 > 0 such that,

|g(x, t) − 1| < ǫ when t < r0, x ∈ [δ, 1 − δ]. So when t < r0,

c(t) = 1
2 (

∫ δ

0 |g(x, t) − 1|dx +
∫ 1−δ

δ
|g(x, t) − 1|dx +

∫ 1

1−δ
|g(x, t) − 1|dx)

< 1
2 ((M + 1)δ + ǫ + (M + 1)δ) = ǫ. so we have lim

t→0
c(t) = 0

14


