
Concurrency control in distributed caching

Kashinath Dev Rada Y. Chirkova

kdev,chirkova@csc.ncsu.edu

Abstract

Replication and caching strategies are increasingly being used to improve performance and reduce

delays in distributed environments. A query can be answered more quickly by accessing a cached copy

than making a database round trip. Numerous techniques have been proposed to achieve caching and

replication in various contexts. In our context of flat cluster-based networks, we have observed that none

of the schemes prove to be optimal for all scenarios. In this technical report we look at concurrency

control techniques for achieving consistency in distributed caching in flat cluster-based networks. We

then come up with heuristics to choose some concurrency control mechanisms over others, depending on

the parameters such as the number of data requests and the ratio of read to write requests.

1 Introduction

1.1 Overview

In client-server architectures, data are usually stored in a central database server. The central server interacts
with several client servers, which interface with end users. If these client servers are remote, then data from
the central server will have to be retrieved over long distances. This type of data retrieval contributes to
the shortage of resources such as communication bandwidth, and typically results in an unacceptably long
response time. One mechanism for solving this problem, called caching, is to store frequently retrieved data
at the point of usage or along the way. Caching is a tried and tested mechanism for dramatically speeding
up applications [8]. In the client server architecture, the cache resides on the local machine and the database
is on the remote server. When data are cached locally on machines, the local cache services the request for
data. This lessens retrieval time, since the number of roundtrips to the database are reduced. Data are
often distributed and replicated over several caches to improve memory and CPU utilization [26]. Since the
data are stored locally in this case, local data updates on these individual caches may lead to situations
where the information in the database and the cache drift out of synchronization. This may cause invalid
data and results being returned. Concurrency control deals with issues involved with allowing multiple end
users simultaneous access to shared entities, such as objects or data records. If we wish to achieve the goal
of consistency of data in caches, we need to use concurrency control methods, so that multiple nodes can
simultaneously and correctly access the data for reading or updating.

The goal of this paper is to come up with heuristics to choose some concurrency control mechanisms over
others, depending on scenarios such as the number of data requests and the ratio of read to write requests.
We adapt existing concurrency control schemes from distributed databases, distributed systems and web
server caches for the context of replicated distributed caching in flat cluster-based networks.

1.2 Motivation

Distributed caching is used in many applications that run in distributed environments. The primary advan-
tages of using caching are improvements in the availability of data and overall performance. In the J2EE
environment [10], which is a platform for developing and deploying distributed multi-tiered enterprise ap-
plications, there are many provisions provided for caching in many parts of the architecture. Entity bean
caching is one such provision [22]. Many existing application servers provide caching to improve application
performance. Websphere Application Server [21], Oracle Application Server [2], BEA WebLogic Server [19],
JBoss Application Server [20] are a few of the many application servers that implement caching.

1

There are scenarios where additional application level caching needs to be implemented, over what is
already provided by the application servers. Products such as Tangosol [28] and the JBoss Cache [7] have
implemented caching to improve performance of J2EE applications.

In a typical J2EE architecture without application caching, the data in the data store are normally
encapsulated by an Enterprise Java Bean (EJB) [9]. EJBs are reusable and portable software components
that model business objects and processes. For every request for EJB data, a roundtrip to the database has
to be made. This can prove costly because of the delay in answering the request. When caching is involved,
the same query is likely to be answered more quickly.

1.3 Contributions

The main goal of this paper is to help decide which concurrency control algorithms would perform better
for maintaining cache coherency for several scenarios in distributed caching. There is a lot of existing work
done in the fields of concurrency control for distributed databases, distributed systems and web caches. This
paper focuses on providing guidance for selecting a concurrency control mechanism for small cluster-based
distributed environments. These schemes can be used in scenarios where caching is used to store data that
is read and updated often, but not critical enough to protect using transactions. The results of this paper
could be useful to many real world applications such as application servers running on the clustered J2EE
technology and in other enterprise applications that make expensive roundtrips to the database for data
access. Some other scenarios that can benefit from our results include client-server systems and distributed
database systems.

2 Related Work

Caching has been used for quite some time to speed up data exchanges between the database and application
systems [8]. While the single-cache model is the traditional approach to caching, the distributed caching
model is a relatively new architecture [17]. The general architecture of distributed caching is described along
with its advantages and disadvantages in [17, 5, 28]. In [24], replication and distribution of data are two out
of the four design recommendations for improving cache performance.

[17] explains some common terms associated with distributed caching. Some related problems such as
accessing replicated objects, can be found at [18] and [13]. Once the need for caching has been established
and distributed caching is seen as an important component in architectures for providing caching in cluster-
based application severs, the next logical question is how to maintain consistency among caches. In contrast
to traditional caching, this problem occurs in distributed caching as objects are replicated at many servers. A
lot of work has been done in the field of cache consistency for web caching and distributed systems [3, 26, 29].
At the same time, very little work has been done in the field of distributed caching.

[25, 3, 4, 26] are a few of the studies similar to ours. [25] and [3] are in the setting of databases, [4]
is in the context of distributed databases and [26] is in the context of web caching. The authors of [3]
compare three approaches of concurrency control in databases, namely locking with blocking, locking with
immediate-restart and an optimistic algorithm. However these approaches deal with handling transaction
conflicts, whereas in our scenario we are not concerned with transactions, but rather individual requests.
The authors of [4] compare the structure and correctness of many variations of concurrency control schemes.
However they do not provide performance analysis of the schemes. The authors of [26] compare various
schemes used in maintaining web cache coherence. However these schemes are implemented by cache polling
each time and by checking for consistency, whereas our work involves using more complex consistency control
schemes. [4] is a study of cache coherence schemes in a client-server DBMS architecture. At the same time
this paper used locking schemes, such as 2-phase locking which provides ACID properties. The focus of our
work is different in that we compare more lightweight schemes, which do not guarantee ACID properties.

3 Preliminaries

Recall that we had defined caching earlier as the concept of locally storing copies of remote data objects for
faster retrieval. In this and the following sections, we are using a setting that is same as that used by Pooja

2

Kohli in [14]. In fact Pooja Kohli and we used the same setting to study two different aspects of distributed
caching.

3.1 Pure distributed caching

In pure distributed caching, only one copy of each data object is maintained across all the cache servers. The
objects are distributed among the existing cache servers. Each cache server is responsible for maintaining
the objects it caches. When an object needs to be accessed, the cache server that has the object is contacted,
and the object is retrieved. While this scheme makes the task of cache consistency easy, it makes the lookups
relatively more expensive. This scheme could also lead to uneven distribution of workload when one object
becomes much more popular than the others, resulting in an increase in the number of queries targeted
toward that particular cache server.

3.2 Replication

In replication, each object is replicated over all cache servers, thus each cache server maintains a copy of
each object. Replication makes the system redundant and available. It also eliminates the single point of
failure, which occurs when the ‘one copy per object’ scenario is implemented as mentioned in the previous
subsection. Replication also improves response time, as the workload can be distributed among multiple
servers caching the objects. At the same time, this introduces complexity in maintaining cache consistency,
as all the servers are now accountable for the same data object.

4 Replicated distributed caching

We use the term (replicated) distributed caching to refer to schemes that contain some elements of pure dis-
tributed caching and replication. Each of pure distributed caching and replication offer two extremes. While
pure distributed caching offers a scenario that is easy to maintain, it has drawbacks. First, it usually hinders
performance as the server with the copy of the object needs to be located and contacted, making lookups
relatively more expensive. Second, it may lead to uneven workload distribution and, finally presents a single
point of failure. With replication, the system has increased redundancy and availability, but maintaining
consistency among the various replicas is more complex. By combining the two we avoid the drawbacks
offered when any one of these schemes is applied just by itself. To implement distributed caching, we repli-
cate the objects at more than one but not all cache servers. We refer to the number of servers an object is
replicated at as degree of replication.

5 Comparison of Concurrency control schemes

The schemes compared are all variations on the primary based remote write protocol, as shown in Figure 1.

5.1 Approach based on the non-locking model

5.1.1 Single thread model

This scheme is an implementation of the remote read and remote write or single server model, proposed in [12].
The cache provides sequential consistency by implementing the single thread model scheme. Sequential
consistency is a slightly weaker consistency model than strict consistency. In general, a data store is said to
be sequentially consistent when it satisfies the following condition (we borrow this definition from [23]):
The result of any execution is the same as if the (read and write) operations by all the processes on the data
store were executed in some sequential order and the operations of each individual process appeared in this
sequence in the order specified by its program.

In this scheme, concurrency control is implemented by a single thread to handle the read and write/update
requests. The requests to the cache are buffered and sent to the origin server, which hosts the primary copy.
The origin server buffers the requests and processes them in serial order. No locking is involved as there are

3

no concurrent operations. This scheme is the simplest to implement but does not offer good performance.
This scheme cannot take advantage of multi-CPU systems.

We discuss the meaning of the terms cache server, origin server, lock manager in full detail in section 6.1.1.
The cache server is a remote server that implements an object cache. The origin server is the server where
the original stored data resides. The lock manager resides on the origin server and is responsible for assigning
the locks.

Pseudocode for cache server:

1. While (no request){

do nothing

}

2. If (message == ‘new request’) {

send request to the origin server

}

3. If (message == ‘success message from origin server’) {

execute request

}

4. If (message == ‘cache update message from origin server’) {

update cache with data

}

5. Goto step 1

Pseudocode for origin server:

1. While (no message){

do nothing

}

2. If (message == ‘new request’){

add to buffer queue

}

3 While (buffer queue is not empty){

read request from front of the queue

If (request == ‘READ’)

{

send success message back to cache

}

Else If (request == ‘WRITE’)

{

update cache and database

send success message back to cache server

send cache update message to all other cache servers

}

}

4

4. Goto step 1

5.2 Approaches based on the locking model

In this scheme [4], read requests and write requests are synchronized by explicitly detecting and preventing
conflicts between concurrent operations. The schemes in this model are examples of the weak consistency
model [23].

We borrow the following definitions from [23]. A synchronization variable S has only a single associated
operation synchronize(S), which synchronizes all local copies of the data store. When the data store is
synchronized, all local writes by process P are propagated to the other copies, whereas writes by other pro-
cesses are brought in to P’s copy. Using synchronization variables to partially define consistency leads to the
so-called weak consistency. Weak consistency models have three properties: 1) Accesses to synchronization
variables associated with a data store are sequentially consistent. 2) No operation on a synchronization
variable is allowed to be performed until all previous writes have been completed everywhere. 3) No read or
write operation on data items are allowed to be performed until all previous operations to synchronization
variables have been performed.

Before a read operation, a request must own a read lock and before writing a value, it should own a write
lock on the data item. All schemes used in the locking model use a thread pool at the origin server to handle
requests [11]. In this model, a group of threads are pre-spawned during initialization to form the thread
pool. This eliminates the overhead of creating a new thread for each incoming request. When a request
arrives at the origin server, one thread from the pool is selected to handle the request. After the request has
been handled, the thread is returned to the pool.

5.2.1 Locking with write operations preferred over reads

This scheme was proposed in [6]. [15] describes an implementation of it. In this scheme, any number of
requests can read the data concurrently, whereas the write requests are serialized and handled one at a time.
The operation of this lock is as follows. The first read request that requests the lock will get it. Subsequent
read requests also get the lock, and all of them are allowed to read the data concurrently. When a write
request tries to acquire a lock, it is put on a write sleep queue until all the read requests exit. A second write
request will also be put on the write sleep queue. Should a new read request show up at this point, it will be
put on the read request sleep queue until all the write requests have completed. Further write requests will
be placed on the write sleep queue (hence, in front of the waiting read request), meaning that write requests
are always favored over read requests. The write requests will obtain the lock one at a time, each waiting
for the previous write request to complete.

When all the write requests have completed, the entire set of sleeping read requests are awakened and
can then attempt to acquire the lock.

This scheme is used primarily in situations where there are a large number of read requests and very few
write requests.

Pseudocode for cache server:

1. While (no message){

do nothing

}

2. If (message == ‘new request’) {

If (buffer_queue is empty)

{

send request to origin server

}

else

{

add new request to buffer_queue

5

}

}

3. If (message == ‘success message from origin server’) {

If (message == ‘read success’) {

read data from cache

}

Else If (message == ‘write success’) {

write data to cache

}

send first request from buffer_queue to origin server

}

4. If (message == ’cache update message from origin server’) {

update cache with data

}

5. Goto step 1

Pseudocode for origin server:

1. Initialize the thread pool and cache;

2. While (no message){

do nothing

}

3 If (new message) {

select thread from thread pool

}

4. If (message == ‘READ request’) {

acquire read_lock from lock manager

if (success) {

then send success message to cache

release read_lock

return thread to thread pool

}

}

5 if (message == ‘WRITE request’) {

acquire write_lock from lock manager

if (success) {

update cache and database

send success message back to cache server

send cache update message to all other cache servers

release write_lock

return thread to thread pool

}

}

6. Goto step 2

Pseudocode for lock manager:

6

1. function lockWrite {

If (no write lock assigned or no read lock assigned){

assign write lock

}

Else{

wait in write queue

}

}

2. function lockRead {

If (no waiting write requests){

assign read lock

}

Else{

wait in read queue

}

}

3. function releaseLock {

If (waiting write requests and no read locks assigned){

wake 1 write request

}

Else If (no waiting write requests and there are waiting read requests){

wake all read requests

}

}

5.2.2 Locking with no preference

This scheme is an implementation of primary copy locking or remote read and remote write or single server
model.

In this scheme [27], concurrency control is implemented by using mutex locks. Before a request can
perform a read or write operation, it must acquire a mutex lock for that operation. There are two types of
locks for a resource, a read lock and a write lock. Requests to the cache are buffered and dispatched one at
a time to obtain a lock on the primary copy which resides on the origin server. The lock manager on the
origin server is responsible for assigning the locks. The lock manager has two wait queues: the read wait
queue and the write wait queue. When a request cannot be assigned a lock it is placed in the wait queue.
When a lock is released, the next lock request should be granted to one request from one of the queues. To
avoid favoring one over the other, a competition based policy is used. This allows the interested requests to
race to grab the resource. In this scheme, one request from the read wait queue and one request from the
write wait queue are dispatched. They compete to grab the resource. The first request to acquire the lock
on the resource gets it, the other request is put back on the queue.

Pseudocode for cache server:

1. While (no message){

do nothing

}

2. If (message == ‘new request’) {

If (buffer_queue is empty)

{

send request to origin server

}

Else

7

{

add new request to buffer_queue

}

}

3. If (message == ‘success message from origin server’) {

execute request

send request from front of buffer_queue to origin server

}

4. If (message == ‘cache update message from origin server’) {

update cache with data

}

5. Goto step 1

Pseudocode for origin server:

1. Initialize the thread pool and cache;

2. While (no message){

do nothing

}

3 If (new message) {

select thread from thread pool

}

4. If (message == ‘READ’) {

acquire read_lock from lock manager

If (success) {

then send success message to cache

release read_lock

return thread to thread pool

}

}

5 If (message == ‘WRITE’) {

acquire write_lock from lock manager

If (success) {

update cache and database

send success message back to cache server

send cache update message to all other cache servers

release write_lock

return thread to thread pool

}

}

6. Goto step 2

Pseudocode for lock manager:

1. function wakeReader {

8

wake one read request from read queue

}

2. function wakeWriter {

wake one write request from write queue

}

3. function releaseLock {

If (no more owners){

then wakeReader() and wakeWriter()

}

}

4. function lockWrite {

If (no locks on object){

then assign write_lock

}

Else{

add to write queue

}

}

5. function lockRead {

If (no locks on object){

then assign read_lock

}

Else{

add to read queue

}

}

5.2.3 Locking for updates with write-behind cache

The concept of the write-behind approach is mentioned in [16]. Tangosol [28] uses the write-behind approach
and implements its caching in such a way that all read-only operations occur locally, all concurrency control
operations involve at most one other cluster node, and only update operations require communicating with
all other cluster nodes. This approach, shown in Figure 2, results in scalable performance. The scheme uses
the concept of an issuer. An issuer is a node that is responsible for maintaining the consistency of the data
it is caching. The issuer must issue the lock for the resource. This concept is similar to the other locking
schemes evaluated so far where in the caches try to get a lock from the primary copy.

The scheme implemented in Tangosol is different from the other schemes in that it employs the write-
behind approach to caching whereas the other schemes all use the write-through approach. In the write-
behind approach updates to a cache are not immediately written back to the database, instead they are held
in the cache. After a certain interval of time the data are written back to the database. The advantages of
this scheme are as follows:

• Application performance tends to improve because users do not have to wait for the data to be written
to the underlying data store. (The data are written later using a different execution thread.)

• The application is likely to experience reduced database load, resulting from the reduction in the
number of read and write operations. The reads are reduced by caching, as with any other caching
approach. The writes-typically much more expensive operations-are often reduced in number because
multiple changes to the same object within the write-behind interval are coalesced and only written
once to the underlying database.

Pseudocode for cache server:

9

1. While (no message){

do nothing

}

2. If (message == ‘new read request’) {

If (buffer_queue is not empty)

{

add to buffer_queue

}

Else

{

read data from cache

}

}

3. If (message == ‘new write request’) {

If (buffer_queue is empty)

{

send request to origin server

}

Else

{

add new request to buffer_queue

}

}

4. If (message == ‘success message from origin server’) {

execute request

process_buffer_queue

}

5. Function process_buffer_queue {

remove first message from buffer_queue

while (message == ‘read request’){

read data from cache

remove first message from buffer_queue

}

send request to origin server

}

6. If (message == ‘cache update message from origin server’) {

update cache with data

}

7. Goto step 1

Pseudocode for origin server:

1. Initialize the thread pool and cache;

2. While (no message){

do nothing

}

3 If (new message) {

10

select thread from thread pool

}

4 If (message == ‘WRITE’) {

acquire write_lock from lock manager

If (success) {

update cache

send success message back to cache server

send cache update message to all other cache servers

release write_lock

return thread to thread pool

}

}

5. If (timestamp expired){

update database

}

6. Goto step 2

Pseudocode for lock manager:

1. function lockWrite {

If (no write lock assigned){

assign write lock

}

Else {

wait in queue

}

}

2. function releaseLock {

If (there are waiting write requests){

wake one write request

}

}

6 Implementation

6.1 Testbed description

We simulate a distributed caching environment with a central server and a cluster of workstations serving
as client servers. The basic testbed for simulating distributed caching is implemented on three workstations,
each with a 863MHz Intel Pentium III Processor, 128 MB RAM and an internal 13.9GB hard drive. The
testbed also includes an IBM xSeries 335 server with a 2GHz Intel Xeon CPU, 1GB RAM and two internal
16.9 GB hard drives. All the servers run Microsoft Windows 2000 Professional 5.00.2195 Service Pack 4. The
IBM xSeries 335 server acts as the origin server; it hosts the IBM DB2 (Version 7.0) database-management
system. All the components are connected via a LAN to form a cluster.

6.1.1 The basic building blocks of the testbed

Origin Server The server on which the original stored data resides or is to be created is called the origin
server. Whenever a cache server needs to cache an object, it contacts the origin server and retrieves the
object to be cached. For each scheme, the origin server hosts the central controller responsible for maintaining

11

coherency, the primary copy and the issuer. There is one origin server in the environment; it hosts the central
database for all the cache servers.

Cache Servers These are the remote servers that interface with end users. Each cache server implements
an object cache which stores one object. The cache server is responsible for maintaining the state of the object
it caches. Whenever a client needs to access an object, the query is addressed by the nearest cache server
that is maintaining the object. There are multiple cache servers attached to the origin server to simulate a
distributed network. We do not consider the problems of choosing the caching policy, i.e. deciding which
object to cache, or of cache replacement-we assume cache-size and caching policies to be independent complex
problems which are studied extensively in the literature.

Objects In our scenario, objects are Java objects encapsulating tuples of a database residing on the origin
server. The objects in our experiments were of type integer.

Cache Each cache server implements an object cache. The object cache is implemented as a Java Hash
Table data structure [1]. Each stored object has a key and value pair. The key is generated on the primary
key defined for the object in the database. Using this key, the lookup of the value of the object can be done
in constant time.

Request A request is defined as a read or write/update operation for an object. Requests are simulated
as SQL queries or update statements.
An example of a read request(i.e. query) is:

SELECT age FROM employee_table WHERE salary > 1000000;

An example of a write request(i.e. update statement) is:

UPDATE employee_table SET dept=‘Accounting’ WHERE dept=‘Auditing’

Figure 3 describes how the above mentioned modules interact with each other. The database resides on
the origin server. The user interacts with the cache manager. The cache manager in turn interacts with the
cache manipulator and with the cache managers residing on other cache servers. It also sends and retrieves
objects from the origin server. The cache manipulator is mainly responsible for maintaining the local cache
and performs initialization, retrieval and updates of the cache..

6.1.2 Design assumptions and simplifications

• Cache size is infinite: Recall that we do not consider the problems of choosing the caching policy, i.e.
deciding which object to cache, or of cache replacement.

• For all the schemes studied, the origin server sends the updated data to the other caches whenever an
update has been completed. We chose this scheme because it generates the lowest number of traffic in
terms of the number of messages passed. This scheme was used in combination with all the schemes
compared in this paper.

• To minimize the number of workstations needed for simulating cache servers, in our network a sin-
gle workstation is capable of mapping to up to five caches. This is required to simulate concurrent
operations on multiple caches.

• Network traffic is not considered as a criterion for evaluating performance, since the cluster size is
never assumed to be very large. The number of cache servers in our cluster is no more than ten cache
servers.

12

6.1.3 Testbed design details

Cache Manipulator This is a Java class written to do operations on the local cache; it handles the
following operations:

• Cache initialization: Creation of cache and allocation of data structures. This is done at the time
the cache is first instantiated on a workstation.

• Filling the cache: Once the cache has been simulated, the objects that need to be cached are retrieved
from the origin server.

• Object retrieval and updates: When a client requests to read or update an object, the cache
manipulator accesses the local cache and addresses these requests.

Cache Manager This is the module that implements the concurrency control algorithm used by the cache.

Prototype design and implementation The prototype for each concurrency control protocol evaluated
in our experiments is built on top of the testbed described above. For each scheme, new methods specific to
the scheme are integrated into the cache manager module.

6.2 Evaluation Methodology

6.2.1 Parameters

• Number of requests: A request is defined as a read or update of an object requested by a query.
All requests are grouped in batches and run together; this is indicative of the load run at the servers.
The server load is classified as follows:

Low The number of requests is kept at 10

Medium The number of requests is kept at 100

High The number of requests is kept at 250

Since we didn’t have an industry standard to base these values on, we chose these values based on
information we received from our contacts at IBM, Art Jolin and Yang Lei.

• Degree of replication: To observe the scalability behavior in our small cluster size environment, we
varied the degree of replication between the values 2, 3, 5 and 10. These numbers were chosen as they
reflect the typical number of caches in small cluster-based networks.

• Ratio of read to write requests: We varied the ratio of read requests to write requests from 1:1 to
4:1 to 9:1. These ratios should reflect the typical ratios in applications where (1) the number of reads
is equal to the number of writes (2) the number of reads is greater than the number of writes, and (3)
the number of reads dominates the number of write requests.

• Latency: Is defined as end-to-end delay (measured in milliseconds) required to complete a batch of
requests by a cache server.

6.3 Evaluation

The schemes of section 5 were evaluated by measuring performance in terms of average latency experienced
while completing a batch of requests. The requests were in the form of SQL queries which either read or
update an object. We batched the SQL queries together and ran them on a client server machine. We varied
the number of requests in each batch to measure the performance of the scheme under different load settings.
Specifically, for each scheme the average latency values were recorded for the low, medium and high number
of requests. The ratio of read to write requests was also varied. The degree of replication of the caches was
varied as well. The data points for the experiments can be found in Appendix A.

13

6.4 Experimental results

6.4.1 Cumulative results

Figures 4 through 6 combine the results of all the schemes and compare the average latency times experienced
when a client server completes read and update requests in the ratio 1:1. These graphs are indicative of a
low load of 10 requests, a medium load of 100 requests and a high load of 250 requests running on the server
respectively.

Figures 7 through 9 combine the results of all the schemes and compare the average latency times
experienced when a client server completes requests of reads and writes in the ratio 4:1. These graphs are
indicative of a low load of 10 requests, a medium load of 100 requests and a high load of 250 requests running
on the server respectively.

Figures 10 through 12 combine the results of all the schemes and compare the average latency times
experienced when a client server completes requests of reads and writes in the ratio 9:1. These graphs are
indicative of a low load of 10 requests, a medium load of 100 requests and a high load of 250 requests running
on the server respectively.

6.4.2 Comparison of three mutex locking schemes

Figures 13 through 15 show a comparison of the three mutex locking schemes for the average latency times
experienced when a client server completes read and write requests in the ratio 1:1 for varying thread pool
sizes. From these three figures, we can see that the medium sized thread pool performed better than the
small and high size thread pools.

Figures 16 through 24 show a comparison of the three mutex locking schemes. Performance of caching
with the write-behind approach is maximized when the ratio of the number of read requests to write requests
is high. The mutex locking schemes in all low, medium and high load settings give similar performance. For
all scenarios, the write-behind approach performs better than locking with writes preferred over reads, the
performance of the latter scheme is similar to that of locking with no preference.

6.5 Summary

We have compared four classes of schemes - single thread model, two mutex locking schemes based on
primary based remote write protocol and one mutex locking with write-behind caching model, which were
described in section 5. An investigation of the results indicates that mutex-based locking schemes are very
close in terms of performance compared to the single thread model based scheme, which is more expensive.
This is especially true when the load of requests is high. In our experiments, the single thread model
performed the worst in terms of elapsed time. For our scenario and experiments, the single thread model
performs similar to the baseline case when there is no caching done. We also implemented a basic version of
Timestamp ordering based concurrency control and studied its performance. We found that the performance
of this scheme was worse than all the other schemes. We have not included the results of it in our work.

From our experiments we conclude that a medium sized thread pool of 100 threads performs better than
the low size (10 threads) and high size (250 threads) thread pools. For low loads, the performance of small
and medium size thread pools were comparable. For medium and high loads, the medium size thread pool
performed better than the small and high size thread pools. A possible reason why a medium size thread
pool is better than a high size thread pool size is that in our experiments the requests were short-running
and were handled well by the medium thread pool. In that case the overhead of having a larger thread pool
size is unnecessary.

7 Conclusions and Future Work

In our experiments we examined four basic classes of schemes in distributed caching: schemes based on
the single thread model, two mutex-locking schemes based on primary based remote write protocol and one
mutex-locking scheme using the write behind caching model. Our experiments show that performance of the
single thread model performs the worst among the schemes we compared. In our experiments it performs
on average ten times worse than the other schemes. In our experiments we found that it’s performance

14

is comparable to case where no caching is used. The single thread model is not scalable and cannot take
advantage of multi-CPU systems.

The scheme which used the cache write-behind approach consistently performed better than all the other
schemes. However the scheme has to have other special built in communication if the database is changed by
some other application which is not using the cache. We have implemented this built in communication by
using timestamps, similarly to what is implemented in Tangosol [28]. A mechanism for cache failure should
also be in place. Performance of caching using the write-behind approach performs the best when the ratio
of the number of read requests to the number of write requests is high. This scheme is most suitable for
applications where access to the database is for the most part through the cache.

Locking with writes preferred over reads has better performance than the other scheme, when there is a
large number of read requests and very few write requests (e.g. the ratio of 9:1 in our experiments)

In our experiments we used various thread pool sizes which corresponded to the number of requests. The
use of an optimally sized thread pool strategy removes thread creation overhead and minimizes the resource
utilization of the server. Future work would be to find a method to choose an optimal thread pool size.

Our implementation of a basic version of the timestamp ordering scheme performed worse than the single
thread model. In future, the performance of a more advanced implementation of timestamp ordering needs
to be studied and compared with the other schemes.

These schemes which we implemented for small-size cluster networks support either sequential consistency
or weak consistency with synchronization variables. These schemes scale sufficiently well when the degree of
replication is increased up to 10 caches. A future line of study would be to compare these schemes for larger
networks.

A Data Points for Latency Measurements

All the schemes described in section 5 were tested for small, medium and high batch loads. The tests were
run for 10 vs. 100 vs. 250 requests on the same data object. The requests comprised three cases, where the
ratio of reads to writes was 1:1, 4:1 and 9:1. Each scheme was tested for 2, 3, 5 and 10 caches. The results
are summarized as below. For the three schemes using the thread pool model, the number of threads in the
pool varied from 10 to 100 to 250.

15

Scheme Latency for
2 caches

Latency for
3 caches

Latency for
5 caches

Latency for
10 caches

Mutex locking with write preferred
over read (threadpool of 10 threads)

146.8 216.53 306.88 536.14

Mutex locking with write preferred
over read (threadpool of 100 threads)

114 170.73 252.48 384.72

Mutex locking with write preferred
over read (threadpool of 250 threads)

226.6 265.66 338.8 451.88

Mutex locking with no preference
(threadpool of 10 threads)

165.5 223.13 293.68 505.6

Mutex locking with no preference
(threadpool of 100 threads)

109.5 183.3 241.28 331.62

Mutex locking with no preference
(threadpool of 250 threads)

231.2 302.06 351.32 409.7

Single thread model 984.3 1444.73 2364.52 4411.26
Mutex locking with write-behind
cache (threadpool of 10 threads)

121.9 214.6 297.56 464.06

Mutex locking with write-behind
cache (threadpool of 100 threads)

111 138.6 185.68 275.64

Mutex locking with write-behind
cache (threadpool of 250 threads)

190.7 235.22 317.4 369.34

Table 1: Results for 10 requests with write/read request ratio of 1:1 (Latency is measured in milliseconds)

Scheme Latency for
2 caches

Latency for
3 caches

Latency for
5 caches

Latency for
10 caches

Mutex locking with write preferred
over read (threadpool of 10 threads)

1079.6 1592.6 2637.52 5098.42

Mutex locking with write preferred
over read (threadpool of 100 threads)

525.1 700 876.28 1380.9

Mutex locking with write preferred
over read (threadpool of 250 threads)

1568.6 2021.86 2015.73 2298.5

Mutex locking with no preference
(threadpool of 10 threads)

1079.5 1662.46 2687.48 5308.1

Mutex locking with no preference
(threadpool of 100 threads)

631.5 813.46 1067.4 2092.12

Mutex locking with no preference
(threadpool of 250 threads)

1612.6 1989.6 1975.68 2304.02

Single thread model 10247 15404.2 25677.32 50784.08
Mutex locking with write-behind
cache (threadpool of 10 threads)

1071.8 1585.53 2597.56 5075.6

Mutex locking with write-behind
cache (threadpool of 100 threads)

386 433.33 514.96 746.28

Mutex locking with write-behind
cache (threadpool of 250 threads)

1481.4 1887.46 1941.45 2185.58

Table 2: Results for 100 requests with write/read request ratio of 1:1 (Latency is measured in milliseconds)

16

Scheme Latency for
2 caches

Latency for
3 caches

Latency for
5 caches

Latency for
10 caches

Mutex locking with write preferred
over read (threadpool of 10 threads)

2610.9 3900.06 6401.8 12569.06

Mutex locking with write preferred
over read (threadpool of 100 threads)

1039.1 1277.93 1971.24 2877.14

Mutex locking with write preferred
over read (threadpool of 250 threads)

3662.5 4365.6 4628.84 5510.84

Mutex locking with no preference
(threadpool of 10 threads)

2703.2 4016.53 6633.16 13179.02

Mutex locking with no preference
(threadpool of 100 threads)

1259.3 1678.2 2311.16 4620.56

Mutex locking with no preference
(threadpool of 250 threads)

3629.8 3295.8 4187.48 4833.14

Single thread model 25807.8 38573.2 63370.56 124650.84
Mutex locking with write-behind
cache (threadpool of 10 threads)

2567.1 3853.13 6316.2 12439.63

Mutex locking with write-behind
cache (threadpool of 100 threads)

750.1 830.13 900.08 1512.14

Mutex locking with write-behind
cache (threadpool of 250 threads)

3342.1 4270.71 4592.6 4870.9

Table 3: Results for 250 requests with write/read request ratio of 1:1 (Latency is measured in milliseconds)

Scheme Latency for
2 caches

Latency for
3 caches

Latency for
5 caches

Latency for
10 caches

Mutex locking with write preferred
over read (threadpool of 10 threads)

148.5 210.46 288.84 511.02

Mutex locking with write preferred
over read (threadpool of 100 threads)

121.8 170.8 204.44 268.4

Mutex locking with write preferred
over read (threadpool of 250 threads)

223.4 297.93 339.24 409.92

Mutex locking with no preference
(threadpool of 10 threads)

143.9 214.6 301.24 508.78

Mutex locking with no preference
(threadpool of 100 threads)

140.7 151.93 242.48 342.46

Mutex locking with no preference
(threadpool of 250 threads)

229.6 271.86 383.76 535.96

Single thread model 976.3 1455.26 2341.4 4445.64
Mutex locking with write-behind
cache (threadpool of 10 threads)

128.1 197.8 287.55 501.975

Mutex locking with write-behind
cache (threadpool of 100 threads)

117.3 131.13 201.24 262.56

Mutex locking with write-behind
cache (threadpool of 250 threads)

217.1 259.5 336.53 391.56

Table 4: Results for 10 requests with write/read request ratio of 1:4 (Latency is measured in milliseconds)

17

Scheme Latency for
2 caches

Latency for
3 caches

Latency for
5 caches

Latency for
10 caches

Mutex locking with write preferred
over read (threadpool of 10 threads)

1085.9 1613.66 2585.64 5081.5

Mutex locking with write preferred
over read (threadpool of 100 threads)

498.4 637.66 709.96 1054.08

Mutex locking with write preferred
over read (threadpool of 250 threads)

1508.6 1744.8 2381.2 2385.55

Mutex locking with no preference
(threadpool of 10 threads)

1096.8 1638.46 2739.36 5274.68

Mutex locking with no preference
(threadpool of 100 threads)

634.4 712.29 1111.28 2217.12

Mutex locking with no preference
(threadpool of 250 threads)

1592.1 1499.93 2001.88 2107.14

Single thread model 10234.5 15402.13 25901.36 50768.96
Mutex locking with write-behind
cache (threadpool of 10 threads)

1076.5 1596.8 2583.4 5057.3

Mutex locking with write-behind
cache (threadpool of 100 threads)

370.2 426 639.15 988.43

Mutex locking with write-behind
cache (threadpool of 250 threads)

1456.2 1645.814 2264.85 2316.9

Table 5: Results for 100 requests with write/read request ratio of 1:4 (Latency is measured in milliseconds)

Scheme Latency for
2 caches

Latency for
3 caches

Latency for
5 caches

Latency for
10 caches

Mutex locking with write preferred
over read (threadpool of 10 threads)

2587.7 3888.6 6373.24 12495.58

Mutex locking with write preferred
over read (threadpool of 100 threads)

876.5 1032.4 1581.88 2044.1

Mutex locking with write preferred
over read (threadpool of 250 threads)

3722.375 4601.83 3783.16 3071.88

Mutex locking with no preference
(threadpool of 10 threads)

2696.8 4026.88 6627.48 13027.62

Mutex locking with no preference
(threadpool of 100 threads)

1274.9 1714.73 2318.8 6701.28

Mutex locking with no preference
(threadpool of 250 threads)

3957.7 3605.2 3520.44 5251.52

Single thread model 25815.6 38640.46 63258.16 125592.22
Mutex locking with write-behind
cache (threadpool of 10 threads)

2582.9 3876.06 6331.26 12414.53

Mutex locking with write-behind
cache (threadpool of 100 threads)

796.8 944.08 1179.06 1669.625

Mutex locking with write-behind
cache (threadpool of 250 threads)

3648.33 4569.44 3772.55 3046.825

Table 6: Results for 250 requests with write/read request ratio of 1:4 (Latency is measured in milliseconds)

18

Scheme Latency for
2 caches

Latency for
3 caches

Latency for
5 caches

Latency for
10 caches

Mutex locking with write preferred
over read (threadpool of 10 threads)

158 218.73 299.92 478.44

Mutex locking with write preferred
over read (threadpool of 100 threads)

142 180.06 166.84 282.16

Mutex locking with write preferred
over read (threadpool of 250 threads)

201.7 263.53 340 579.04

Mutex locking with no preference
(threadpool of 10 threads)

162.6 179.33 312.56 523.72

Mutex locking with no preference
(threadpool of 100 threads)

120.2 151.93 243.68 320.52

Mutex locking with no preference
(threadpool of 250 threads)

212.5 280.13 389.36 475.68

Single thread model 976.5 1458.33 2342.44 4491.24
Mutex locking with write-behind
cache (threadpool of 10 threads)

123.5 199.06 296.2 476.075

Mutex locking with write-behind
cache (threadpool of 100 threads)

117.3 148 164.15 274.12

Mutex locking with write-behind
cache (threadpool of 250 threads)

195.4 221.66 338.72 451.58

Table 7: Results for 10 requests with write/read request ratio of 1:9 (Latency is measured in milliseconds)

Scheme Latency for
2 caches

Latency for
3 caches

Latency for
5 caches

Latency for
10 caches

Mutex locking with write preferred
over read (threadpool of 10 threads)

1056.2 1620.8 2612.33 5093.12

Mutex locking with write preferred
over read (threadpool of 100 threads)

454.7 632.26 624.4 919.54

Mutex locking with write preferred
over read (threadpool of 250 threads)

1494.35 1875.82 2332.44 2307.7

Mutex locking with no preference
(threadpool of 10 threads)

1106.2 1662.6 2726.88 5349.4

Mutex locking with no preference
(threadpool of 100 threads)

589.1 855.06 1371.2 2283.42

Mutex locking with no preference
(threadpool of 250 threads)

1695.2 1539.66 1668.12 2281.04

Single thread model 10234.6 15393.86 25722 50944.68
Mutex locking with write-behind
cache (threadpool of 10 threads)

1051.6 1601 2611.24 5067.975

Mutex locking with write-behind
cache (threadpool of 100 threads)

381.3 427.06 590 852.52

Mutex locking with write-behind
cache (threadpool of 250 threads)

1481.4 1867.92 2280.35 2146.95

Table 8: Results for 100 requests with write/read request ratio of 1:9 (Latency is measured in milliseconds)

19

Scheme Latency for
2 caches

Latency for
3 caches

Latency for
5 caches

Latency for
10 caches

Mutex locking with write preferred
over read (threadpool of 10 threads)

2596.8 3875.13 6353.76 12343.12

Mutex locking with write preferred
over read (threadpool of 100 threads)

848.5 898.86 1115.6 1634.94

Mutex locking with write preferred
over read (threadpool of 250 threads)

3798.875 4244.8 5410.72 3290.975

Mutex locking with no preference
(threadpool of 10 threads)

2688.9 4031.13 6612.48 12970.36

Mutex locking with no preference
(threadpool of 100 threads)

1300 1689.66 2485.68 5869.06

Mutex locking with no preference
(threadpool of 250 threads)

3726.5 3889.6 3099.44 4955.34

Single thread model 25862.5 38576.93 63229.36 124528.54
Mutex locking with write-behind
cache (threadpool of 10 threads)

2587.4 3871.86 6330.35 12280.23

Mutex locking with write-behind
cache (threadpool of 100 threads)

828.16 833.46 1086 1601.25

Mutex locking with write-behind
cache (threadpool of 250 threads)

3642.83 3782.11 4664.44 3152.28

Table 9: Results for 250 requests with write/read request ratio of 1:9 (Latency is measured in milliseconds)

References

[1] Java hash map implementation. http://java.sun.com/j2se/1.4.2/docs/api/java/util /HashMap.html.

[2] Oracle Application Server 10g. http://www.oracle.com/technology/software/products/ias/devuse.html.

[3] Rakesh Agrawal, Michael J. Carey, and Miron Livny. Concurrency control performance modeling:
Alternatives and implications. In Performance of Concurrency Control Mechanisms in Centralized
Database Systems, pages 58–105. 1996.

[4] Philip A. Bernstein and Nathan Goodman. Concurrency control in distributed database systems. ACM
Computing Surveys, 13(2):185–221, 1981.

[5] Kyle Brown. The distributed cache pattern. IBM Software Services for WebSphere.

[6] Randal C. Burns, Robert M. Rees, and Darrell D. E. Long. Efficient data distribution in a web server
farm. IEEE Internet Computing, 5(4):56–65, 2001.

[7] JBoss Cache. http://www.jboss.com/products/jbosscache.

[8] Michael J. Carey, Michael J. Franklin, Miron Livny, and Eugene J. Shekita. Data caching tradeoffs in
client-server dbms architectures. In SIGMOD ’91: Proceedings of the 1991 ACM SIGMOD international
conference on Management of data, pages 357–366, New York, NY, USA, 1991. ACM Press.

[9] EJB concepts. http://java.sun.com/products/ejb/.

[10] J2EE concepts. http://java.sun.com/j2ee/1.4/docs/tutorial/doc/.

[11] J. Hu, I. Pyarali, and D. Schmidt. Measuring the impact of event dispatching and concurrency models
on web server performance over high-speed networks, 1997.

[12] James C. Hu, Sumedh Mungee, and Douglas C. Schmidt. Techniques for developing and measuring high
performance web servers over high speed ATM networks. In INFOCOM (3), pages 1222–1231, 1998.

20

[13] David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel Lewin, and Rina Panigrahy.
Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the
world wide web. In ACM Symposium on Theory of Computing, pages 654–663, May 1997.

[14] Pooja Kohli and Rada Y. Chirkova. Cache invalidation and propagation in distributed caching. Technical
report, NCSU.

[15] Bil Lewis and Daniel J. Berg. Multithreaded Programming with Java Technology. Sun BluePrints
Program. 2000.

[16] Timothy Mann, Andrew Birrell, Andy Hisgen, Charles Jerian, and Garret Swart. A coherent distributed
file cache with directory write-behind. ACM Trans. Comput. Syst., 12(2):123–164, 1994.

[17] Markus Pizka Oliver Theel. Distributed caching and replication. Thirty-second Annual Hawaii Inter-
national Conference on System Sciences-Volume 8, 1999.

[18] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Accessing nearby copies of replicated
objects in a distributed environment. In ACM Symposium on Parallel Algorithms and Architectures,
pages 311–320, 1997.

[19] BEA WebLogic Server. http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products
/weblogic/server.

[20] JBoss Application Server. http://www.jboss.com/products/jbossas.

[21] WebSphere Application Server. http://www-306.ibm.com/software/webservers/appserv/was/.

[22] Akara Sucharitakul. Optimizing entity beans. http://java.sun.com/developer/ technicalArti-
cles/ebeans/sevenrules/.

[23] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems: Principles and Paradigms. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[24] Renu Tewari, Michael Dahlin, Harrick Vin, and John Kay. Beyond hierarchies: Design considerations
for distributed caching on the Internet. In IEEE ICDCS’99, 1999.

[25] Alexander Thomasian. Concurrency control: Methods, performance, and analysis. ACM Computing
Surveys, 30(1):70–119, 1998.

[26] Jia Wang. A survey of web caching schemes for the internet. SIGCOMM Comput. Commun. Rev.,
29(5):36–46, 1999.

[27] Thomas Wang. Java thread programming: Implement read and write locks.
http://www.concentric.net/ Ttwang/tech/rwlock.htm.

[28] www.tangosol.com. http://www.tangosol.com/coherence-featureguide.pdf.

[29] Lin K. Yu P., Wu K. and Son S. On real-time databases: Concurrency control and scheduling. Proceed-
ings of IEEE, Special Issue on Real-Time Systems, 82(1):140–157, 1994.

21

Primary based remote-write protocol
Primary-based remote-write protocol with a fixed server to which all

read and write operations are forwarded

Client Client
Single server

for item x

W1 W4 R1 R4

W2 R2

W3 R3

W1. Write request R1. Read request

W2. Forward request to server for x R2. Forward request to server for x

W3. Acknowledge write completed R3. Return response

W4. Acknowledge write completed R4. Return response

C
lient

C
lient

Single server

for item
 x

W
1

W
4

R
1

R
2

W
2

W
3

W
3

W
1. W
rite request

R
1. R
ead request

W
2. Forw
ard request to prim
ary

R
2. R
esponse to read

W
3. T
ell backups to update

W
4. A
cknow
ledge w
rite com
pleted

DATABASERemote
cacheManager

LOCAL CACHE

cacheManipulator

cacheManager

Invalidations and updates

object

updates

query object

Initialize
cache

object update

object
query
object update

query result

user

query
object

Figure 1: Approaches based on the primary based remote write protocol

22

Client Client
Single server

for item x

W1 W4 R1 R2

W2

W3
W3

W1. Write request R1. Read request

W2. Forward request to primary R2. Response to read

W3. Tell backups to update

W4. Acknowledge write completed

Figure 2: Variation of a primary based remote write protocol (Tangosol version)

DATABASERemote
cacheManager

LOCAL CACHE

cacheManipulator

cacheManager

Invalidations and updates

object

updates

query object

Initialize
cache

object update

object
query
object update

query result

user

query
object

Figure 3: Interprocess communication

23

1 2 3 4 5 6 7 8 9 10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Single thread model
8: Mutex locking with write-behind cache (threadpool of 10 threads)
9: Mutex locking with write-behind cache (threadpool of 100 threads)
10: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 4: Consolidated results for low load: 5 writes and 5 reads

24

1 2 3 4 5 6 7 8 9 10

0

10000

20000

30000

40000

50000

60000

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Single thread model
8: Mutex locking with write-behind cache (threadpool of 10 threads)
9: Mutex locking with write-behind cache (threadpool of 100 threads)
10: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 5: Consolidated results for medium load: 50 writes and 50 reads

25

1 2 3 4 5 6 7 8 9 10

0

20000

40000

60000

80000

100000

120000

140000

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Single thread model
8: Mutex locking with write-behind cache (threadpool of 10 threads)
9: Mutex locking with write-behind cache (threadpool of 100 threads)
10: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 6: Consolidated results for high load: 125 writes and 125 reads

26

1 2 3 4 5 6 7 8 9 10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Single thread model
8: Mutex locking with write-behind cache (threadpool of 10 threads)
9: Mutex locking with write-behind cache (threadpool of 100 threads)
10: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 7: Consolidated results for low load: 2 writes and 8 reads

27

1 2 3 4 5 6 7 8 9 10

0

10000

20000

30000

40000

50000

60000

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Single thread model
8: Mutex locking with write-behind cache (threadpool of 10 threads)
9: Mutex locking with write-behind cache (threadpool of 100 threads)
10: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 8: Consolidated results for medium load: 20 writes and 80 reads

28

1 2 3 4 5 6 7 8 9 10

0

20000

40000

60000

80000

100000

120000

140000

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Single thread model
8: Mutex locking with write-behind cache (threadpool of 10 threads)
9: Mutex locking with write-behind cache (threadpool of 100 threads)
10: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 9: Consolidated results for high load: 50 writes and 200 reads

29

1 2 3 4 5 6 7 8 9 10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Single thread model
8: Mutex locking with write-behind cache (threadpool of 10 threads)
9: Mutex locking with write-behind cache (threadpool of 100 threads)
10: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 10: Consolidated results for low load: 1 write and 9 reads

30

1 2 3 4 5 6 7 8 9 10

0

10000

20000

30000

40000

50000

60000

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Single thread model
8: Mutex locking with write-behind cache (threadpool of 10 threads)
9: Mutex locking with write-behind cache (threadpool of 100 threads)
10: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 11: Consolidated results for medium load: 10 writes and 90 reads

31

1 2 3 4 5 6 7 8 9 10

0

20000

40000

60000

80000

100000

120000

140000

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Single thread model
8: Mutex locking with write-behind cache (threadpool of 10 threads)
9: Mutex locking with write-behind cache (threadpool of 100 threads)
10: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 12: Consolidated results for high load: 25 writes and 225 reads

32

0

50

100

150

200

250

0 50 100 150 200 250 300

Threadpool size

T
im

e(
m

s)
Mutex locking
with write
preferred over
read

Mutex locking
with no
preference

Tangosol
write-behind
cache

Figure 13: Comparison of three mutex locking
schemes with 10 requests for write/read request
ratio of 1:1

0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200 250 300

Threadpool size

T
im

e(
m

s)

Mutex locking
with write
preferred over
read

Mutex locking
with no
preference

Tangosol
write-behind
cache

Figure 14: Comparison of three mutex locking
schemes with 100 requests for write/read request
ratio of 1:1

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250 300

Threadpool size

T
im

e(
m

s)

Mutex locking
with write
preferred over
read

Mutex locking
with no
preference

Tangosol
write-behind
cache

Figure 15: Comparison of three mutex locking
schemes with 250 requests for write/read request
ratio of 1:1

33

1 2 3 4 5 6 7 8 9

0

100

200

300

400

500

600

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Mutex locking with write-behind cache (threadpool of 10 threads)
8: Mutex locking with write-behind cache (threadpool of 100 threads)
9: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 16: Consolidated results of locking schemes for low load: 5 writes and 5 reads

34

1 2 3 4 5 6 7 8 9

0

1000

2000

3000

4000

5000

6000

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Mutex locking with write-behind cache (threadpool of 10 threads)
8: Mutex locking with write-behind cache (threadpool of 100 threads)
9: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 17: Consolidated results of locking schemes for medium load: 50 writes and 50 reads

35

1 2 3 4 5 6 7 8 9

0

2000

4000

6000

8000

10000

12000

14000

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Mutex locking with write-behind cache (threadpool of 10 threads)
8: Mutex locking with write-behind cache (threadpool of 100 threads)
9: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 18: Consolidated results of locking schemes for high load: 125 writes and 125 reads

36

1 2 3 4 5 6 7 8 9

0

100

200

300

400

500

600

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Mutex locking with write-behind cache (threadpool of 10 threads)
8: Mutex locking with write-behind cache (threadpool of 100 threads)
9: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 19: Consolidated results of locking schemes for low load: 2 writes and 8 reads

37

1 2 3 4 5 6 7 8 9

0

1000

2000

3000

4000

5000

6000

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Mutex locking with write-behind cache (threadpool of 10 threads)
8: Mutex locking with write-behind cache (threadpool of 100 threads)
9: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 20: Consolidated results of locking schemes for medium load: 20 writes and 80 reads

38

1 2 3 4 5 6 7 8 9

0

2000

4000

6000

8000

10000

12000

14000

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Mutex locking with write-behind cache (threadpool of 10 threads)
8: Mutex locking with write-behind cache (threadpool of 100 threads)
9: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 21: Consolidated results of locking schemes for high load: 50 writes and 200 reads

39

1 2 3 4 5 6 7 8 9

0

100

200

300

400

500

600

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Mutex locking with write-behind cache (threadpool of 10 threads)
8: Mutex locking with write-behind cache (threadpool of 100 threads)
9: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 22: Consolidated results of locking schemes for low load: 1 write and 9 reads

40

1 2 3 4 5 6 7 8 9

0

1000

2000

3000

4000

5000

6000

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Mutex locking with write-behind cache (threadpool of 10 threads)
8: Mutex locking with write-behind cache (threadpool of 100 threads)
9: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 23: Consolidated results of locking schemes for medium load: 10 writes and 90 reads

41

1 2 3 4 5 6 7 8 9

0

2000

4000

6000

8000

10000

12000

14000

T
im

e
(m

s)

Schemes

2 Caches

3 Caches

5 Caches

10 Caches

1: Mutex locking with write preferred over read (threadpool of 10 threads)
2: Mutex locking with write preferred over read (threadpool of 100 threads)
3: Mutex locking with write preferred over read (threadpool of 250 threads)
4: Mutex locking with no preference (threadpool of 10 threads)
5: Mutex locking with no preference (threadpool of 100 threads)
6: Mutex locking with no preference (threadpool of 250 threads)
7: Mutex locking with write-behind cache (threadpool of 10 threads)
8: Mutex locking with write-behind cache (threadpool of 100 threads)
9: Mutex locking with write-behind cache (threadpool of 250 threads)

Figure 24: Consolidated results of locking schemes for high load: 25 writes and 225 reads

42

